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ABSTRACT	
  	
  	
  

Factor H is an important complement regulator of the alternative pathway commonly 

recruited by pathogens for increased survival in the human host. The respiratory pathogen 

Moraxella catarrhalis that resides in the mucosa is highly serum resistant and causes otitis 

media in children and respiratory tract infections in individuals with underlying diseases. In 

this study, we show that M. catarrhalis binds factor H via the outer membrane protein OlpA. 

M. catarrhalis serum resistance was dramatically decreased in the absence of either OlpA or 

factor H, demonstrating that this inhibition of the alternative pathway significantly contributes 

to the virulence of M. catarrhalis. 
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INTRODUCTION	
  

The complement system is a crucial component of the immune response that results in direct 

lysis of pathogens or opsonisation for increased phagocytosis. Therefore, complement 

resistance is an important virulence trait of many pathogens that consequently increases the 

bacterial survival within the human host [1]. The complement system is activated via three 

different routes, i.e., the classical, the lectin or the alternative pathway, all three leading to the 

terminal pathway resulting in the bactericidal membrane attack complex (MAC). All 

pathways are tightly controlled by human fluid-phase or membrane-bound regulators, and one 

of the most well described complement resistance mechanisms consists of  hijacking of such 

regulators. Factor H (FH) is a 150 kDa fluid-phase protein and an important regulator of the 

alternative pathway facilitating the decay of C3b [2]. Factor H consists of 20 short consensus 

repeat (SCR) domains of approximately 60 amino acids.  

 

Moraxella catarrhalis is a human commensal and an emerging respiratory pathogen causing 

otitis media in children and lower respiratory infections in patients with chronic obstructive 

pulmonary disease. The vast majority of clinical M. catarrhalis isolates recovered from both 

adults and children are complement resistant [3]. We have previously shown that M. 

catarrhalis ubiquitous surface protein (Usp) A1 and A2 that reside in the outer membrane 

interact with the C4b binding protein (C4BP), thereby inhibiting the classical pathway [4]. In 

addition, we and others have presented an interaction of vitronectin and UspA2/UspA2H that 

results in increased survival of M. catarrhalis due to inhibition of the terminal pathway [5, 6]. 

A non-covalent interaction of C3 and UspA1/A2 has also been described to have a protective 

effect against the bactericidal activity of serum [7]. In the present study we reveal an 

additional complement resistance mechanism of M. catarrhalis, the Opa-like protein A 

(OlpA)-dependent interaction with FH. 
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MATERIALS	
  AND	
  METHODS	
  	
  

Bacterial	
  strains	
  and	
  culture	
  conditions	
  

M. catarrhalis strains were obtained and cultured as described [8]. Appropriate antibiotics 

were supplemented to the M. catarrhalis mutants. 

 

SDS-­‐Page	
  and	
  Western	
  blots	
  

Whole bacterial lysates of M. catarrhalis strains were analysed on 12 % SDS-PAGE and 

separated proteins were transferred to an Immobilon-P membrane (Millipore). Membranes 

were blocked in PBS with 0.05 % Tween 20 (PBST) containing 2.5 % milk powder (blocking 

buffer) and incubated with 3 µg/ml human complement FH (Quidel) in blocking buffer for 2 h 

at room temperature (RT). Membranes were thereafter incubated with a monoclonal mouse 

anti-human complement factor H antibody (AbD Serotec) diluted 1/1000 followed by 

horseradish peroxidase (HRP) -conjugated rabbit anti-mouse polyclonal antibodies (Dako). 

Development of membranes was done using Pierce ECL Western blotting detection reagents 

(Thermo Fisher Scientific). 

 

2D-­‐gel	
  electrophoresis	
  and	
  mass	
  spectrometry	
  

Bacterial outer membrane vesicles (OMV) were prepared as described [9]. To digest nucleic 

acids, OMV (1 mg) were incubated with 50 U Benzonase (Sigma-Aldrich) in 100 µl at 25oC 

for 30 min. Thereafter, samples were solubilized for 1 h in 400 µl of rehydration buffer with 

alternate vortexing, and subsequently spun down. Separation in the first and second 

dimension was performed by isoelectric focusing (IEF) and gel electrophoresis, respectively 

[10]. Protein spots were identified by Matrix-assisted laser desorption/ionisation-time of flight 

mass spectrometry (MALDI-TOF-MS). 
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Construction	
  and	
  complementation	
  of	
  OlpA-­‐	
  and	
  OMP	
  J-­‐deficient	
  M.	
  catarrhalis 	
  

To construct isogenic mutants of M. catarrhalis unable to express OlpA or the outer 

membrane protein J (OMPJ), the corresponding genes were disrupted with an erythromycin 

resistance cassette. The olpA/ompJ upstream flanking region, the erythromycin resistance 

cassette and finally the olpA/ompJ downstream flanking region were fused by overlapping 

extension PCR. In the construction of the RH4ΔolpAΔompJ double mutant, the OMPJ-

encoding gene was abolished with a kanamycin resistance cassette.  

 

To reconstitute OlpA expression, M. catarrhalis RH4 OlpA was amplified by PCR and 

ligated into pWW115 (a kind gift from prof. Eric Hansen, Southwestern Medical Center, 

Dallas, TX). The resulting plasmid, pWWolpA, was transformed into the RH4ΔolpA mutant 

and the OlpA-negative M. catarrhalis Bc5, yielding strains RH4ΔolpA(pWWolpA) and 

Bc5(pWWolpA). The backbone plasmid pWW115 was used to generate 

RH4ΔolpA(pWW115) and Bc5(pWW115) as controls. 

 

Flow	
  cytometry	
  analysis	
  

Bacteria (0.5x106 CFU) were incubated at 37°C for 1 h with 10 µg/ml FH in incubation buffer 

(PBS, 1% bovine serum albumin). After two washing steps, bacteria were incubated with 

Flourescein isothiocyanate (FITC)-conjugated anti-FH antibody (Abcam) followed by 

washings and flow cytometry analysis (FACSCanto; BD Bioscience).  

 

Serum	
  bactericidal	
  assay	
  

Normal human serum (NHS) from five healthy adult volunteers was pooled. Heat inactivated 

serum (HIS) was manufactured by treatment at 56°C for 30 min. FH-depleted human serum 

was purchased from Complement Technologies. Human FH (Quidel) (100 µg/ml) was used to 
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reconstitute the FH-depleted serum. To inactivate the classical pathway, 10 mM Mg-EGTA 

was included, whereas 10 mM EDTA was used for complete complement inactivation. The 

serum bactericidal assay was as described [4]. 

 

Fluorescence	
  microscopy	
  

Bacteria were incubated with FH (10 µg/ml) for 1 h at 37°C followed by incubation with a 

FITC-conjugated anti-FH antibody. After washing, bacteria were transferred on Poly-L-

Lysine (Sigma-Aldrich) coated microscopy glass slides and fixed with 4% paraformaldehyde. 

Binding was visualized using an Olympus fluorescence microscope.  

 

Statistical	
  analysis	
  

A two-way ANOVA test (GraphPad Prism®) was used for the bactericidal serum resistance 

assays and Mann-Whitney test for the flow cytometry results.  
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RESULTS	
  

We have previously shown that M. catarrhalis interacts with both the classical and alternative 

pathway through binding of C4BP and C3, respectively. To further elucidate M. catarrhalis 

serum resistance, the interaction with the abundant and important alternative pathway 

inhibitor FH was studied. A randomly chosen collection of M. catarrhalis strains was 

screened by far Western blotting. As can be seen in Figure 1A, nine out of ten M. catarrhalis 

strains bound FH, although to a different level. The high-binding strain RH4 and the non-

binding strain Bc5 were chosen for further analysis.  

 

To identify the FH-binding proteins of M. catarrhalis RH4, outer membrane vesicles (OMV) 

were separated by 2D-gel electrophoresis followed by far Western blot using human 

complement FH and a monoclonal anti-FH antibody. Two putative FH-binding proteins of 

approximately 24 kDa and 20 kDa were identified (Figure 1B). Subsequent MALDI-TOF 

mass spectrometry analysis identified the larger protein as OlpA and the smaller protein as 

OMP J.  

 

The FH-binding capacity and the particular role of OlpA and OMP J expression were assessed 

using different mutants. The binding of FH was abolished in OlpA-deficient mutants as 

shown by flow cytometry analysis (Figure 1C; lower left histogram). In contrast, deletion of 

OMP J did not decrease the FH binding, i.e., the RH4ΔompJ mutant showed a similar FH-

binding capacity as compared to the wild type counterpart. In addition, the double mutant did 

not have any reduced binding of Factor H relative to the single OlpA mutant. These results 

were consistent with the far Western blot analysis of OMV derived from the wild type and 

mutant strains (Figure 1D). OlpA expression was reconstituted in the RH4 mutant devoid of 



	
   9	
  

OlpA resulting in RH4ΔolpA(pWWolpA). The specificity of the OlpA-dependent FH-binding 

was confirmed using far Western blotting (data not shown) and fluorescence microscopy 

(Figure 1E). Importantly, introduction of OlpA in M. catarrhalis Bc5, which did not bind FH 

(Figure 1A), resulted in a significant FH binding (Figure 1F). Taken together, our results 

show that OMP J does not contribute to the interaction with FH, whereas OlpA is a new FH-

binding protein of M. catarrhalis.  

 

Since FH inhibits the alternative pathway, we hypothesized that the bacterial binding of FH 

would contribute to M. catarrhalis serum resistance. Hence, a series of bactericidal assays 

using the RH4 wild type and the OlpA mutant strains were performed. OlpA expression 

promoted survival in human serum, i.e., the M. catarrhalis RH4 wild type and the 

complemented OlpA mutant (RH4ΔolpA(pWWolpA) survived equally well (Figure 2; white 

bars), whereas the OlpA mutant and the transcomplemented control (RH4ΔolpA(pWW115)) 

displayed a significantly decreased survival. Interestingly, selective blocking of the classical 

pathway using the Ca2+-chelating agent EGTA, leaving the alternative pathway intact, 

resulted in a comparable killing of the OlpA-deficient mutants. This last experiment with 

EGTA thus indicated that OlpA expression plays a role, specifically in serum resistance 

related to the alternative pathway.  

 

To further elucidate the role of FH in the OlpA-dependent survival of M. catarrhalis when 

exposed to human serum, a FH-depleted serum preparation was used in the bactericidal assay. 

M. catarrhalis exhibited a decreased survival in FH-depleted serum, and when the serum was 

reconstituted with FH the survival was significantly increased (Figure 2B). In contrast, the 
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survival of the OlpA-deficient RH4 mutant was unaffected by addition of FH. Taken together, 

M. catarrhalis FH-binding OlpA significantly contributes to serum resistance.  

 

DISCUSSION	
  

Here we describe a novel mechanism of escaping complement-mediated killing by the 

alternative pathway that significantly contributes to M. catarrhalis serum resistance. We have 

demonstrated the specific binding of the important inhibitory complement regulator FH to M. 

catarrhalis using several independent methods including far Western blot, flow cytometry 

and fluorescence microscopy. Initial results with 2D-SDS-PAGE revealed two FH-binding 

proteins, OlpA and OMP J that both have been described earlier [11]. In further downstream 

experiments we confirmed a specific FH-binding to OlpA only. 

 

OlpA is a conserved 24 kDa outer membrane protein that has a high similarity with the 

nesserial Opa adhesins [11]. The neisserial Opa proteins are known to bind both 

Carcinoembryonic Antigen-related Cell Adhesion Molecule (CEACAM) and heparin sulphate 

proteoglycan (HSPG) receptors. However, no similar interactions or other additional 

functions have been assigned to OlpA. Recently, Vries and colleagues presented a detailed 

molecular profile of the complement resistance factors of M. catarrhalis [12]. They studied 

the transcriptional adaptation and performed a genome-wide targeted sequencing using 

transposon mutagenesis (Tn-seq) in the presence of human serum, and demonstrated an 

upregulation of 84 genes and a downregulation of 134 genes. The Usp-proteins have for long 

been regarded as the major complement resistance factor which was also confirmed in that 

study. However, the olpA gene together with several other genes were also identified as 

required for M. catarrhalis complement resistance. One of the main findings in that study was 

the importance of the disulphide bond formation (DSB) system in the resistance against the 
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classical pathway. Taken together, M. catarrhalis have several mechanisms that are involved 

in serum resistance and it is difficult to judge their individual importance in vivo. The 

advantage for Moraxella of having several mechanisms is that the serum resistance is 

maintained although separate strains express different factors at various levels. For example 

the natural OlpA-deficient M. catarrhalis Bc5 used in our study are still very serum resistant 

(data not shown). 

 

Bacterial complement resistance is a well described and intriguing phenomenon for most 

respiratory pathogens, and consequently is an important virulence mechanism. Components of 

the complement system are detectable in the respiratory tract and the complement resistance 

of several pathogens indicates that complement components are active in the mucosa. The 

ability to bind the complement regulator FH with acquired protection of the alternative 

pathway is a characteristic feature of several bacteria, including human respiratory pathogens 

[1]. The three most common microbes causing acute otitis media are Streptococcus 

pneumoniae, Haemophilus influenzae and M. catarrhalis. S. pneumoniae and H. influenzae 

have previously been shown to interact with FH resulting in enhanced survival in serum [1, 

13]. The FH-binding also inhibited opsonisation of S. pneumoniae and facilitated adherence to 

epithelial cells [13, 14]. It was previously demonstrated that all known FH-binding microbes 

interact with the same binding region on SCR number 20 [15]. Most interestingly, when FH is 

bound to bacterial proteins an enhanced FH-dependent interaction with C3b occurs, and thus 

FH mediates an efficient inhibition of complement activation at the bacterial surface. 

 

In conclusion, M. catarrhalis possesses several mechanisms for mediating complement 

resistance. Interactions with C4BP and vitronectin have previously been reported and in the 

present paper we describe an additional mechanism resulting in inhibition of the alternative 

pathway. Serum resistance of M. catarrhalis has previously been described to be mainly 
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dependent on the Usp family of proteins. However, we now propose that OlpA also 

contributes to the serum resistance further increasing Moraxella pathogenesis.  
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LEGENDS	
  

Figure 1. M. catarrhalis binds FH and OlpA is the main FH-binding protein. A) Most M. 

catarrhalis strains bind FH as demonstrated by a far Western blotting. B) Identification of two 

FH-binding outer membrane proteins of approximately 24 kDa and 20 kDa were identified 

using in a 2D-SDS-PAGE. In A), B) and D), whole cell bacterial lysates or outer membrane 

vesicles of M. catarrhalis were separated by SDS-PAGE or 2D-SDS-PAGE and either stained 

by Coomassie blue or transferred to membranes followed by incubation with human 

complement FH and an anti-FH monoclonal antibody. C and F) M. catarrhalis strains were 

incubated with FH followed by FITC-conjugated anti-FH antibody and flow cytometry 

analysis. The negative controls (background) represent bacteria incubated with FITC-

conjugated antibody only. E) Bacteria were incubated with FH (10 µg/ml) followed by a 

FITC-conjugated anti-FH antibody, and thereafter bacteria were fixed on glass slides. 

Representative experiments are shown. In F) the mean value out of three is presented and 

error bars represent standard deviations. ** P<0.01.  

 

Figure 2. A) OlpA expression is important for the serum resistance of M. catarrhalis. B) 

Recruitment of FH by M. catarrhalis wild type contributes to the survival in human serum. 

Bacteria were incubated with 10 % of the indicated sera for 30 min at 37°C. Aliquots were 

plated out at time 0 (t=0) and after 30 min (t=30). The number of bacteria (CFU) at t=0 was 

defined as 100 % and the percentage relative to the initial CFU was calculated. Heat-

inactivated 10 % NHS (HIS) and EDTA-treated serum was used as negative controls. The 

data represent the mean of three independent experiments, error bars indicate standard 

deviations. *** P<0.001. 



Figure	
  1,	
  Bernhard	
  et	
  al.	
  

A	
   B	
  

C	
   D	
  

Fluorescence	
  (FH	
  binding)	
  

Ce
ll	
  
nu

m
be

r	
  
Ce

ll	
  
nu

m
be

r	
   RH4	
  wt	
  

RH4ΔolpA	
  

RH4ΔompJ	
  

RH4ΔolpAΔompJ	
  

F	
  
RH4	
  wt	
   RH4	
  ΔolpA	
   RH4	
  ΔolpA(pWWolpA)	
  

with	
  FH	
  

w/o	
  FH	
  

Background	
   Bc5	
  wt	
   Bc5(pWWolpA)	
   Bc5(pWW115)	
  

**	
  **	
  

FH
	
  b
in
di
ng
	
  (%

)	
  

100	
  

80	
  

60	
  

40	
  

20	
  

0	
  

E	
  

36	
  

28	
  

17	
  

Coomassie	
  blue	
   Wb	
  (FH)	
  

36	
  

28	
  

17	
  

Wb	
  (FH)	
  Coomassie	
  blue	
  

250	
  
130	
  
95	
  
72	
  
55	
  

36	
  
28	
  

17	
  

pH	
  3-­‐10	
   pH	
  3-­‐10	
  

Coomassie	
  blue	
   Wb	
  (FH)	
  

OlpA	
  
OMPJ	
  



Figure	
  2,	
  Bernhard	
  et	
  al.	
  

A	
  

B	
  

RH4	
  wt	
   RH4ΔolpA	
   RH4ΔolpA(pWWOlpA)	
   RH4ΔolpA(pWW115)	
  

Su
rv
iv
al
	
  a
;e

r	
  3
0	
  
m
in
	
  (%

)	
  

***	
  
***	
  

***	
  
***	
  

RH4	
  wt	
   RH4ΔolpA	
  

***	
  
***	
  

***	
  

Su
rv
iv
al
	
  a
;e

r	
  3
0	
  
m
in
	
  (%

)	
  


