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Abstract 

The imprinting factors of the β-lactam antibiotics penicillin V, methicillin, 

nafcillin, oxacillin, cloxacillin, dicloxacillin, and piperacillin on a 

poly(methacrylic acid–co–trimethylolpropane trimethacrylate) molecularly 

imprinted stationary phase targeted for penicillin G were correlated with 

molecular descriptors obtained by molecular computation. One-parameter linear 

regression and multivariate data analysis by principal component analysis (PCA) 

and partial least square (PLS) regression indicated that descriptors associated with 

molecular topology, shape, size, and volume were highly correlated with the 

imprinting factor and influential on the derived models. 
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Introduction 

Molecular imprinting is a method for the preparation of binding sites in synthetic 

polymers. Two distinct versions of the method have evolved based on the type of 

interactions between the template (the guest molecule) and the binding sites of the 

molecularly imprinted polymer (MIP). In the covalent approach, the template 

interacts with the polymer through one or several covalent interactions. Non-

covalent molecular imprinting implies that template binding relies exclusively on 

non-covalent interactions. The latter approach, schematically visualized in Fig. 1, 

involves non-covalent self-assembly of functionalized and cross-linking 

monomers around templates, followed by fixation of the assemblies by 

polymerization. Upon extraction of the templates from the MIP, recognition sites 

capable of rebinding the template are uncovered in the rigid polymer network. 

The general understanding is that the templates function as molds, creating 

cavities in the polymer that are complementary to the templates in the positioning 

of functional groups as well as in shape. 

MIPs are promising alternatives to biological recognition elements in that 

they are easy and inexpensive to produce, can be regenerated, and show high 

chemical, mechanical, and thermal stability. In addition, selectivity can be 

generated for substances for which a biological recognition element is non-

existing or difficult to obtain. MIPs have many potential applications and those 

already explored include the use as stationary phases in chromatographic 

separations and solid-phase extractions, antibody mimetics in solid-phase binding 

assays, recognition elements in sensors, and catalysts of chemical reactions [1]. 

This study focuses on the MIP recognition of β-lactam antibiotics. Our 

interest in this class of compounds originates from the need of simple and 
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efficient methods for their detection in foodstuff. In animal husbandry, antibiotics 

are applied in therapeutic and prophylactic treatment of mastitis and other 

bacterial diseases and as food additives for growth promotion [2,3]. Due to the 

risk of the development of antibiotic resistant bacterial strains, the inhibition of 

starter cultures in the dairy industry, and the potential risk of allergic reactions in 

hypersensitive human individuals [4–6], legislative authorities have prohibited 

antibiotics in foodstuffs above certain MRLs (maximum residue levels). We have 

previously reported on the synthesis of a MIP library targeted for penicillin G for 

the purpose of identifying MIP candidates to serve as recognition elements in the 

detection of antibiotic residues [7] and recently described a method for solid-

phase extraction (SPE) of penicillin G in milk using one of the formulations from 

the MIP library [8]. In the present study, the molecular recognition characteristics 

of this MIP formulation were further focused upon. The binding of penicillin G 

and a range of other β-lactam antibiotics was evaluated by determining the 

retention of the compounds on an HPLC column packed with particles of the 

MIP. Comparison was made with a column packed with a control polymer (CP) 

imprinted with an unrelated template (i.e., Boc-phenylalanine). 

Quantitative structure-retention relationship (QSRR) analysis has proven 

to be a valuable method for relating chromatographic retention of compounds to 

their chemical structure [9]. To this end, molecular descriptors, either determined 

experimentally or calculated by computational methods, are correlated to the 

retention by regression analysis. QSRR models give insights into separation 

mechanisms as well as provide means of predicting the retention of untested 

compounds. The objective of the present study was to investigate if valid models 

of the retention of β-lactam antibiotics on a MIP stationary phase targeted for 

penicillin G can be generated from molecular descriptors of the antibiotics. From 
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the chromatographic retention data, the imprinting factor (IF) of each antibiotic 

were calculated as the ratio of the retention factor obtained on the MIP to that on 

the CP. 3D molecular models and descriptors of the antibiotics were computed by 

semiempirical quantum mechanical methods. The IFs were then correlated to the 

descriptors first by one-parameter models and then by multivariate data analysis 

using PCA (principal component analysis) and PLS (partial least square or 

projection to latent structures) regression. The statistical models were evaluated 

to identify descriptors with highest influence on the selective retention arising 

from the molecular imprinting procedure. The study provides an insight into what 

is required of a template analog to bind to a MIP. Such knowledge is valuable 

since (i) MIPs intended for quantitative analyses and solid-phase extractions are 

commonly imprinted with a structural analog of the target molecule in order to 

prevent interference from bleeding of remaining non-extracted template [10–15] 

and (ii) MIPs have been suggested as mimetics of biological receptors in the 

screening of lead compounds [16,17]. 

Experimental 

Reagents 

Penicillin G sodium salt, penicillin V, methicillin sodium salt, nafcillin sodium 

salt monohydrate, cloxacillin sodium salt monohydrate, dicloxacillin sodium salt 

monohydrate, piperacillin sodium salt, and oxacillin sodium salt monohydrate 

were purchased from Sigma (St. Louis, MO, USA). Methacrylic acid (MAA) and 

trimethylolpropane trimethacrylate (TRIM) were obtained from Aldrich 

(Milwaukee, WI, USA). 2,2’-Azobisisobutyronitrile (AIBN) was purchased from 

Acros (Geel, Belgium). Boc-L-Phe-OH was obtained from Advanced ChemTech 

(Louisville, KY, USA). P.a. grades of acetonitrile (CH3CN) and methanol 
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(MeOH), used for the synthesis and extraction of the polymers, were purchased 

from Merck (Darmstadt, Germany). Acetonitrile of grade “HPLC far UV”, used 

for the chromatographic evaluation, was obtained from Labscan (Dublin, Ireland). 

MAA was distilled and TRIM was purified with inhibitor remover obtained from 

Aldrich (Milwaukee, WI, USA). 

Synthesis of molecularly imprinted polymer (MIP) and control 
polymer (CP) 

The MIP was synthesized as previously reported [7] by dissolving penicillin G 

(1.07 g, 3 mmol), MAA (2.58 g, 30 mmol), TRIM (15.23 g, 45 mmol), and AIBN 

(0.30 g, 1.8 mmol) in acetonitrile (22.5 mL). The pre-polymerization mixture was 

cooled on ice and purged with a stream of nitrogen gas for 10 min. The 

polymerization was performed at 350 nm for 24 h at 4 °C in a Rayonet 

photochemical mini-reactor model RMR-600 (Branford, CT, USA). The bulk 

polymer was ground in a Retsch Ultra Centrifugal Mill model ZM 100 (Haan, 

Germany). The ground particles were wet sieved in water using sieves from 

Retsch. The fraction containing particles <25 µm was sedimented in acetone and 

fine particles were removed by decantation (3 times). Penicillin G was extracted 

from the polymer network by microwave-assisted extraction with MeOH–HOAc 

(1:1), MeOH, and acetonitrile using a MARS 5 microwave-accelerated reaction 

system (CEM Corp., Matthews, NC) equipped with HP-500 Plus vessels. The 

samples were subjected to 300 W microwaves with a ramp over 10 min up to 

120 °C and then for 15 min at constant temperature (120 °C). The particles were 

extracted three times with each extraction solvent. Between each run, the particles  

were collected in SPE columns, washed with MeOH, and dried. The particles 

were finally dried in vacuo overnight. 



6 

 A control polymer (CP) was prepared following the same procedure as the 

one described for the MIP but substituting Boc-L-Phe-OH (0.76 g, 3 mmol) for 

penicillin G as the template. 

Generation of chromatographic retention data 

The polymer particles were suspended in chloroform–acetonitrile (17:3, v/v) and 

packed into stainless steel columns (150 × 3.0 mm) with acetone at 300 bar using 

an Alltech model 1666 slurry packer (Deerfield, IL, USA). The chromatography 

was performed with acetonitrile containing 1% of 10 mM Tris-HCl pH 7 as the 

mobile phase. Equilibration was done for 18 h prior to the injection of the 

analytes. The flow was 1.0 mL/min and detection was made at 220 nm. The 

HPLC system consisted of a Waters 600 Gradient Pump, a Waters 717 Plus 

Autosampler, and a Waters 2487 Dual Wavelength Absorbance Detector. Data 

were acquired via a PC using Chromatography Station for Windows (DataApex, 

Ltd., Prague, Czech Republic). 4 µg each of penicillin G, penicillin V, methicillin, 

nafcillin, oxacillin, cloxacillin, dicloxacillin, and piperacillin were injected and 

eluted in separate runs on the MIP and the CP columns, respectively. The 

retention factors (kMIP and kCP) were calculated as kMIP alt. CP = (t–t0)/t0 where t 

and t0 (the void) are the retention times of the analyte and acetone, respectively. 

The imprinting factors (IFs) were calculated as IF = kMIP/kCP

Molecular computations 

. 

Chemical structures of the antibiotics, drawn with ChemDraw Ultra 10.0 of the 

ChemOffice 2006 software package (CambridgeSoft, Cambridge, MA, USA), 

were transferred into Chem 3D Ultra 10.0 to obtain 3D structures. The energy of 

the structures were minimized first by a modified version of Allinger’s MM2 

force field and then by the semiempirical molecular orbital MOPAC algorithm 
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with the Austin model 1 (AM1) Hamiltonian approximation. Molecular 

descriptors were calculated with the MOPAC application and the ChemProp 

interface. The Connolly molecular area (CMA), the Connolly solvent excluded 

volume (CSEV), and the ovality were calculated with a probe molecule of radius 

0.001 Å (i.e., the minimum radius allowed by the software) [18]. 

QSRR computations 

To correlate the IFs (the response variables) to the molecular descriptors (the 

predictor variables), one-parameter regression analyses were performed using 

Prism-4.0b (Graphpad Software, Inc. San Diego, CA, USA) and multivariate data 

analysis was carried out by principal components analysis (PCA) and partial least 

squares (PLS; also referred to as projections to latent structures) regression using 

the Simca-P 8.0 software (Umetrics AB, Umeå, Sweden) [19,20]. The software 

automatically mean-centered and scaled the data to unit variance prior to 

modeling and determined the number of significant principal components (PCs) 

by cross-validation. Cross-validation was carried out by calculating and 

comparing the PRESS (i.e., the sum of the squared differences between predicted 

and observed values) for each model dimension with the RSS (i.e., the residual 

sum of squares) of the previous dimension. A component was considered 

significant when PRESS was significantly smaller than RSS. The model validity 

was estimated with the validate diagnostic tool of SIMCA-P by PLS model fitting 

to 100 data sets obtained by random permutation of the response (y) data of the 

original data set. The computed r2y- and q2-values of the derived models were 

plotted against the correlation coefficients between original and permuted y-

variables. After linear regression, the r2y- and q2-intercepts of the regression lines 

were assessed. Intercepts below 0.3–0.4 and 0.05, respectively, were considered 
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indicative of a valid original model [19]. Theoretical background on PCA and 

PLS regression analysis can be found in Supplementary Materials. 

Results and discussion 

Particles of a poly(methacrylic acid–co–trimethylolpropane trimethacrylate) MIP, 

targeted for penicillin G (structure 1 in Scheme 1), were prepared as previously 

described [7]. Control polymer (CP) particles were prepared under identical 

conditions as the MIP but with Boc-L-Phe-OH (structure 2 in Scheme 1) as the 

template instead of penicillin G. MIP and CP particles were packed into HPLC 

columns and retention data of penicillin G and a range of β-lactam analogs were 

obtained by elution with acetonitrile containing 1–5% of 10 mM Tris-HCl pH 7 

(Table 1). The retention obtained on a MIP stationary phase generally originates 

from both specific interactions and non-specific ones. The specific interactions 

take place in the recognition sites created during the molecular imprinting 

procedure while the non-specific binding is due to random interactions with the 

polymer. The non-specific binding to the MIP was here estimated from the 

binding to the CP stationary phase.  

The analogs injected on the columns included penicillin V (structure 3 in 

Scheme 1), methicillin (structure 4), nafcillin (structure 5), oxacillin (structure 6), 

cloxacillin (structure 7), dicloxacillin (structure 8), and piperacillin (structure 9). 

The molecules are derivatives of 6-aminopenicillanic acid (6-APA, structure 10); 

they hence share the same backbone but each molecule has a unique substituent at 

the 6-amino position. All of the antibiotics were retained longer on the MIP 

column than on the CP column as reflected in their retention factors (kMIP and kCP) 

and imprinting factors (IFs) (Table 1), indicating that the penicillin G recognition 

sites created during the imprinting were able to bind not only penicillin G but also 
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the analogs. The IF is a measure of the imprinting effect and the selectivity of the 

MIP as it compares the retention on the MIP to that on the CP (IF = kMIP/kCP). The 

retention times decreased with increasing amounts of buffer used as additive in 

the mobile phase. The MIP was able to retain and discriminate between the 

different antibiotics at conditions with 1% and 2.5% of buffer additive in the 

eluent. At higher amounts of buffer, the specificity of the MIP was lost. These 

findings are in line with our previous studies on penicillin G imprinted 

poly(methacrylic acid–co–trimethylolpropane trimethacrylate); water weakens 

hydrogen bonding and polar interactions between the template and the polymer 

[7,8,21].  

As discussed in the introduction, size and shape of a molecule have been 

recognized as important determinants in MIP recognition [22–24]. Among 

molecules having the same spatial positioning of functional groups as the 

template, the highest selective binding can be expected with those that provide the 

best shape complementarity to the MIP cavity. The best fit in this respect is 

obviously obtained with the template. Molecules with substituents that are too 

large to fit into the cavity will be excluded from the recognition sites due to steric 

hindrance and molecules with substituents smaller than those of the template will 

not provide optimal van der Waals contacts and hydrophobic interactions with the 

walls of the cavities. Both of these scenarios will result in binding affinities that 

are lower than that for the template. 

To investigate how the structure and the properties of the antibiotics affect 

their retention on the MIP stationary phase in relation to the CP stationary phase, 

a set of molecular descriptors were computed (Table S1). The energy of the 

antibiotics was first minimized by semiempirical quantum mechanical methods to 

obtain stable 3D molecular conformations (Fig. S1 in Supplementary Materials) 
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and the molecular descriptors were thereafter computed. The IFs, obtained at 

elution with 1% of Tris-buffer pH 7 in acetonitrile, were plotted against each of 

the descriptors and linear regression was carried out to derive linear one-

parameter models (Fig. S2 and Table S1 in Supplementary Materials). The data 

points of penicillin G were excluded from the regression analyses. Visual 

inspection of the plots as well as assessment of the statistical parameters of the 

regression lines indicated clear linear relationships between the IF and each of the 

following descriptors: the molar refractivity (MR), the critical volume (CV), the 

Connolly solvent-excluded volume (CSEV), the molecular weight (MW), the total 

connectivity (TC), and the COSMO volume (COSMO V). The descriptors are all 

related to molecular size and shape and thereby support the previous notion that 

these properties are important factors in the recognition process. The one-

parameter models predicted an IF in the size range of 6.03–6.69 for penicillin G 

(the observed IF was 7.62). Hence, Penicillin G deviated from the linear one-

parameter models derived from the data of the analogs. The remaining descriptors 

showed moderate or no linear correlation to the IFs of the antibiotic analogs 

(Fig. S2 and Table S1 in Supplementary Materials).  

 To obtain a model that correlated the IFs of the antibiotic analogs to all of 

the descriptors simultaneously, multivariate data analysis was carried out as 

outlined in Fig. 2. A PCA of the complete data set [i.e., a data matrix consisting of 

seven observations and thirty variables, the latter consisting of one response (IF) 

and twenty-nine descriptors] was first performed in order to detect outliers and to 

evaluate relations, deviations, or groupings within the data (Table 2). The t2/t1 

score plot in Fig. 3a shows that the analogs were well within the 95% confidence 

ellipse based on Hotelling’s T2, i.e., no outliers were detected (the two remaining 

score plots are found in Fig. S3 in Supplementary Materials). The grouping of 
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nafcillin, oxacillin, cloxacillin, and dicloxacillin in Fig. 3a shows that these 

antibiotics have similar characteristics. Likewise, the proximity of penicillin V 

and methicillin indicates that these two antibiotics are more closely related to each 

other than to any of the other antibiotics. The p2/p1 loading plot in Fig. 3b shows 

that all variables to some extent contribute to the PCA-model (the two remaining 

loading plots are found in Fig. S4 in Supplementary Materials). Fig. 3b shows that 

the IF is correlated directly to the total connectivity (TC) and to a lower degree 

also to the electronic energy (EE), the total energy (TE), and the dipole moment 

(Dipole). The Connolly solvent excluded volume (CSEV), the molecular weight 

(MW), the molecular connectivity (MR), the sum of degrees (SD), the critical 

volume (CV), the COSMO volume (COSMO V), the shape attribute (SA), the 

core-core repulsion (CCR), the cluster count (CC), and the principal moment of 

inertia in the x-direction (Ix) are correlated with each other and with the IF 

inversely. It is noteworthy that many of these descriptors also gave the best one-

parameter models. 

The PLS regression method can be used to analyze numerous x-variables 

that are strongly correlated, noisy, and/or incomplete [19,20]. The method hence 

overcomes the shortcomings of traditional MLR (multiple linear regression). 

Since PCA showed that several of the descriptors were correlated, PLS regression 

appeared to be a suitable method for analyzing the data in the present case. Two 

different strategies were investigated (Fig. 2): In the first one, PLS regression was 

carried out on all descriptors. In the second strategy, only the descriptors that were 

indicated by PCA to be directly or inversely correlated with the IF were included. 

PLS regression on the full data set resulted in a three-component model (referred 

to as PLS model 1a in Fig. 2 and Table 2) that was found to be non valid by a 

response permutation test (the methodology of the test is detailed in the methods 
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section). The VIP plot indicated thirteen descriptors with a VIP value >1 and six 

descriptors with a VIP value >1.1 (Fig. S5a in Supporting Materials). A second 

PLS regression analysis, based on the six most influential descriptors from the 

first PLS model (i.e., the dimensions of the X and Y matrices were (7  6) and 

(7  1), respectively), resulted in a two-component model (PLS model 1b in Fig. 

2 and Table 2). The response permutation test indicated that the model was now 

valid. The VIP plot showed that log P was the least influential descriptor with a 

VIP value of 0.46 (Fig. S5b in Supporting Material). A third PLS regression 

analysis was therefore carried out by omitting this descriptor. The result was a 

one-component model (PLS model 1c in Fig. 2 and Table 2) that used 94.2% of 

the x-variation for describing 91.1% and predicting 87.1% of the y-variance. The 

response permutation test indicated that the model was valid. The VIP plot in Fig. 

4a shows satisfactory VIP values (>0.95) for the remaining descriptors, i.e., the 

Connolly solvent excluded volume (CSEV), the molar refractivity (MR), the 

molecular weight (MW), the critical volume (CV), and the total connectivity 

(TC). The plot in Fig. 4b shows the observed IFs vs. the IFs predicted by the 

model. The model predicted an IF for penicillin G of 6.28, which should be 

compared with the experimentally determined value of 7.62. Hence, the model 

derived from the antibiotic analogs underestimated the IF of the template 

penicillin G. 

 The second strategy, i.e., PLS regression on descriptors selected by PCA, 

started with an X matrix of dimension (7  14). The result of the analysis was a 

one-component model (PLS model 2a in Fig. 2 and Table 2) that was valid 

according to the response permutation test. The model predicted an IF of 6.16 for 

penicillin G. All descriptors except for the principal moment of inertia in the x-

direction (Ix) and the dipole moment (Dipole) showed VIP values >1.0 (Fig. S6a 
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in Supporting Materials). A second PLS regression analysis was carried out by 

omitting the two least influential descriptors. The resultant two-component model 

(PLS model 2b in Fig. 2 and Table 2) used 98.7% of the x-variation for describing 

92.4% and predicting 78.0% of the y-variance. The model was valid according to 

the response permutation test, although the validity of PLS model 2a appeared to 

be higher. The VIP plot shows that all descriptors had VIP values >0.95 (Fig. 5a). 

The observed vs. predicted IF plot is shown in Fig. 5b. The model predicted an IF 

of 6.45 for penicillin G. The five most influential descriptors according to the VIP 

plot [i.e., the total connectivity (TC), the Connolly solvent–excluded volume 

(CSEV), the molar refractivity (MR), the molecular weight (MR), and the critical 

volume(CV)] are the descriptors found to be most influential in the first modeling 

strategy detailed above. These descriptors also provided the best one-parameter 

models as discussed earlier. All of these descriptors are related to topology, shape, 

size, and volume: the total connectivity is a mathematically derived index of 

molecular branching, the Connolly solvent-excluded volume is the volume 

contained within the contact molecular surface formed by rolling a probe sphere 

over the molecule, the molar refractivity is a measure of the polarizability and is 

proportional to the molar volume, the molecular weight is the average molecular 

mass of the molecule, and the critical volume is the volume occupied per mole of 

the compound at the critical temperature and pressure. 

 The kMIP was higher than the kCP for all of the antibiotics. Hence, the 

imprinting of penicillin G created an increased affinity for β-lactam antibiotics as 

a group. The derived models showed linear relationship between the ratio of the 

retention factors (i.e., the IF) for the antibiotic analogs and a selection of the 

molecular descriptors. It is noteworthy that all of the derived models 

underestimated the IF for the template penicillin G. This finding supports the 
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hypothesis that the template functions as a mold that generates complementary 

recognition sites in the polymer network. If the imprinting effect had been a 

product of random structural changes (e.g., altered porosity, surface area, and 

exposition or shielding of functional groups) of the polymer network without 

formation of selective recognition sites, one would expect that the derived linear 

models should be valid for the template as well. Instead, the IF for the template 

was higher than predicted by the models. It remains to be investigated if 

molecular descriptors quantifying the spatial overlap of the template and the 

analogs can generate linear models for both the template and the analogs. 

 Models that relate the IF to the molecular descriptors can be used to 

predict the ability of a MIP to recognize an untested compound. A potential use of 

the models derived in the present study is for in-silico screening of virtual 

libraries of compounds for the purpose of identifying novel antibiotic leads. 

Another potential application of the models is to assess the feasibility of applying 

the MIP for solid-phase extraction of novel β-lactam antibiotics. As mentioned in 

the introduction section, molecules structurally related to the target molecules are 

often used as the template instead of the target molecule itself for the generation 

of molecularly imprinted solid-phase extraction media. 

 

CONCLUSIONS 

This study has demonstrated that molecular descriptors associated with topology, 

shape, size, and volume of a range of β-lactam antibiotics are correlated with their 

IFs on a MIP stationary phase imprinted with the template penicillin G. In one-

parameter models, linear relationships between the IF and each of the following 

descriptors were observed: the molar refractivity, the critical volume, the 
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Connolly solvent-excluded volume, the molecular weight, the total connectivity, 

and the COSMO volume. These descriptors were influential also in models 

obtained by multivariate data analysis methods (i.e., PCA and PLS regression). 

The template penicillin G diverged from linearity with an IF that was higher than 

predicted from the models derived from the data of the analogs. This indicates 

that the imprinting procedure indeed generated molecular recognition sites for the 

template. Good correlation between the observed and the predicted IFs propose 

that the models can be used for predictions of untested antibiotics. 
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Legends 

 

 

 

Scheme 1.  Structure of penicillin G (1); Boc-L-Phe-OH (2); penicillin V (3); 

methicillin (4); nafcillin (5); oxacillin (6); cloxacillin (7); dicloxacillin (8); 

piperacillin (9); and 6-aminopenicillanic acid (10) 

 

Fig. 1 Schematic representation of the concept of non-covalent molecular 

imprinting. Monomers and template self-assemble by non-covalent interactions 

(I). A rigid polymer is formed after co-polymerization with a cross-linker (II). The 

template is extracted from the polymer (III), leaving a recognition site that can 

rebind the template (IV) 

 

Fig. 2 Schematic flowchart of the generation of response and predictor variables 

(i.e., imprinting factors (IFs) and molecular descriptors) and QSRR models by 

multivariate data analysis. (a) A PCA model was derived by PCA on the full data 

set. The most influential descriptors were identified from the PCA loading plot; 

(b) PLS models were derived by PLS regression analysis starting with the full 

data set to generate PLS model 1a, followed by successive reduction of predictor 

variables to generate PLS models 1b and 1c; (c) PLS models were derived by PLS 

regression analysis starting with a reduced data set, containing predictor variables 

identified to be influential by PCA, to generate PLS model 2a followed by 

reduction of predictor variables to generate PLS model 2b. The derived models 

are marked with grey boxes 

 

Fig. 3  (a) PCA t2/t1 score plot; (b) PCA p2/p1 loading plot 

 

Fig. 4 (a) VIP plot of PLS model 1c; and (b) Plot of observed vs. predicted 

imprinting factor (IF) of PLS model 1c 

 

Fig. 5 (a) VIP plot of PLS model 2b; and (b) Plot of observed vs. predicted 

imprinting factor (IF) of PLS model 2b 
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Scheme 1 
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Fig. 1 
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Fig. 2 
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Fig. 3a 
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Fig. 3b 
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Fig 4a 
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Fig. 4b 
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Fig. 5a 
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Fig. 5b 
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Table 1 Retention factors (kMIP and kCP) and imprinting factors (IFs) of antibiotics 

eluted on MIP and CP stationary phases with mobile phases consisting of 

acetonitrile containing the indicated amount of 10 mM Tris-HCl buffer pH 7 as 

additive 

Antibiotic 

Percentage of buffer additive in the mobile phase 

1 2.5 5 

kMIP kCP IF kMIP kCP IF kMIP kCP IF 

Penicillin G  

(1 in Scheme 1) 

16.14 2.12 7.62 6.55 1.19 5.49 2.21 0.33 6.63 

Penicillin V  

(3 in Scheme 1) 

12.11 1.96 6.19 5.01 1.11 4.54 1.75 0.32 5.54 

Methicillin 

(4 in Scheme 1) 

7.25 1.25 5.80 3.20 0.75 4.24 1.27 0.21 6.05 

Nafcillin  

(5 in Scheme 1) 

8.91 1.71 5.22 4.13 1.02 4.06 1.68 0.32 5.29 

Oxacillin  

(6 in Scheme 1) 

10.50 1.84 5.72 4.62 1.07 4.34 1.72 0.33 5.16 

Cloxacillin  

(7 in Scheme 1) 

8.75 1.66 5.28 4.05 0.98 4.12 1.54 0.30 5.15 

Dicloxacillin  

(8 in Scheme 1) 

7.95 1.58 5.03 3.72 0.95 3.93 1.46 0.30 4.90 

Piperacillin  

(9 in Scheme 1) 

8.32 1.69 4.94 3.87 0.97 3.99 1.44 0.25 5.88 
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Table 2 Multivariate data analysis 

Model Number of  
x variables 

Number of  
y variables 

Number  
of PCs 

r2x r2xcumulative r2y r2ycumulative q2 q2
cumulative PLS validate test 

PCA model 30 – 1 
2 
3 

0.774 
0.145 
0.059 

0.774 
0.920 
0.979 

– 
– 
– 

– 
– 
– 

0.500 
0.457 
0.527 

0.500 
0.728 
0.872 

– 

PLS model 1a 29 1 1 
2 
3 

0.772 
0.134 
0.072 

0.772 
0.906 
0.978 

0.746 
0.180 
0.049 

0.746 
0.926 
0975 

0.575 
0.568 
0.483 

0.575 
0.816 
0.905 

Intercepts: 
r2 = (0, 0.61) 
q2 = (0, -0.03) 

PLS model 1b 6 1 1 
2 

0.783 
0.190 

0.783 
0.974 

0.926 
0.026 

0.926 
0.952 

0.915 
0.247 

0.915 
0.936 

Intercepts: 
r2 = (0, 0.21) 
q2 = (0, -0.23) 

PLS model 1c 
 

5 1 1 0.942 0.942 0.911 0.911 0.871 0.871 Intercepts: 
r2 = (0, -0.11) 
q2 = (0, -0.27) 

PLS model 2a 14 1 1 0.906 0.906 0.831 0.831 0.698 0.698 Intercepts: 
r2 = (0, -0.03) 
q2 = (0, -0.20) 

PLS model 2b 12 1 1 
2 
 

0.959 
0.028 

0.959 
0.987 
 

0.845 
0.078 

0.845 
0.924 

0.715 
0.228 

0.715 
0.780 

Intercepts: 
r2 = (0, 0.32) 
q2 = (0, -0.02) 
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PCA theory 

PCA starts with a data matrix of N observations and K variables. Each 

observation of the matrix is first plotted in a K-dimensional variable space. After 

mean-centering and scaling to unit variance the data are approximated to a line 

passing through the average point in the K-dimensional space. The line is referred 

to as the first principal component (PC). Projection of the observations onto the 

PC-line gives the score value of each observation. A second PC, orthogonal to the 

first PC and again passing through the average point is then calculated. More PCs 

are calculated as needed in order to model the variation in the data adequately. 

The optimal dimensionality is determined by cross-validation, a procedure that 

compares the predictive residual sum of squares (PRESS, the sum of the squared 

differences between predicted and observed values) of the present dimension with 

the residual sum of squares (RSS) of the previous dimension. The model building 

continues as long as PRESS is significantly smaller than RSS. Projection of the 

observations onto the plane defined by two PCs gives a score plot. The score plot 

reveals strong outliers and shows the relation between the observations. The 

loadings are calculated from the angle between the PC and the original variable in 

the K-dimensional space. The loading plot shows the influence of the variables 

and how they are correlated. The most influential variables are those positioned 

furthest away from the loading plot origin. Variables that are highly correlated are 

grouped together while variables that are inversely correlated are positioned on 

opposite sides of the plot origin. 

 

PLS regression analysis theory 

In PLS regression, two data matrices X (the predictor variables) and Y (the 

response variables) are related to each other by a linear multivariate model. Prior 
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to PLS regression analysis, the data are mean-centered and scaled to unit variance. 

The first PLS component calculated is a line in the x-space that passes through the 

origin, approximates the x variables, and provides a good correlation with the y-

vector. Projection of the observations onto the line forms the x score vector t1. If 

one component is insufficient to model the variation in the y data, a second 

component is calculated. The second component is orthogonal to the first 

component and passes through the origin of the x-space. Projection of the 

observations onto this second component produces the score vector t2, etc. The 

procedure is repeated until the variation in the y-data is modeled adequately 

according to the cross-validation method (giving a final number of components 

equal to A). The x score vectors ta (a = 1,2, …, A) can be seen as new variables, 

often referred to as latent variables. The scores matrix (T) is related to the 

original x data matrix (X) as T = XW* where W* is the x-weights matrix 

containing the x-weight vectors wa* (a = 1,2, …, A). The x-weights show the 

influence of the original x-variables on the new latent variables, i.e., the score 

vectors ta

 

. The VIP (variable influence on projection) parameter is a weighted 

sum of squares of w* that takes the y-variance in each dimension into account. 

Predictor variables with large VIP values (>0.7–0.8; preferably >1) are the most 

relevant for explaining the variation in the response variables. 
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Fig. S1 3D structures of (a) penicillin G; (b) penicillin V; (c) methicillin; (d) 

nafcillin; (e) oxacillin; (f) cloxacillin; (g) dicloxacillin; and (h) piperacillin 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Fig. S2 Correlation of the retention factor and (a) the standard Gibbs free energy, 

(b) the heat of formation, (c) the log P, (d) the molar refractivity, (e) the critical 

volume, (f) the Connolly molecular area, (g) the Connolly Solvent-Excluded 

Volume, (h) the molecular weight, (i) the ovality, (j) the principal moment of 

inertia – x, (k) the principal moment of inertia – y, (l) the principal moment of 

inertia – z, (m) the Balaban index, (n) the cluster count, (o) the molecular 

topological index, (p) the polar surface area, (q) the shape attribute, (r) the sum of 

degrees, (s) the sum of valence degrees, (t) the topological diameter, (u) the total 

connectivity, (v) the Wiener index, (w) the core-core repulsion, (x) the COSMO 

area, (y) the COSMO volume (z) the dipole moment, (å) the electronic energy, (ä) 

the ionization potential, and (ö) the total energy 
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(Fig. S2 Continued) 
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(Fig. S2 Continued) 
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(Fig. S2 Continued) 

-1250000 -1000000 -750000

5

6

7

8

Electronic Energy, EE (kcal/mol)

210 215 220

5

6

7

8

Ionization Potential, IP (kcal/mol)

-150000 -125000 -100000
0

5

10

15

Total Energy (kcal/mol)

(�) (�)

(�)

 
 



9 

(a) 

-4

-3

-2

-1

0

1

2

3

4

-10 0 10

t3

t1

Penicillin V

Piperacillin

Methicillin

Nafcillin

Oxacillin

Cloxacillin
Dicloxacillin

 
(b) 

-4

-3

-2

-1

0

1

2

3

4

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

t3

t2

Penicillin V

Piperacillin

Methicillin

Nafcillin

Oxacillin

Cloxacillin
Dicloxacillin

 
 

Fig. S3 (a) PCA t3/t1 score plot and PCA t3/t2 score plot 
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Fig. S4 (a) PCA p3/p1 loading plot and (b) PCA p3/p2 loading plot 
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Fig. S5 (a) VIP plot of PLS model 1a; (b) VIP plot of PLS model 1b 
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Fig. S6 (a) VIP plot of PLS model 2a; (b) Plot of observed vs. predicted 

imprinting factor (IF) of PLS model 2a 
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