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Abstract

This thesis deals with the modeling of structured signals under different sparsity
constraints. Many phenomena exhibit an inherent structure that may be
exploited when setting up models, examples include audio waves, radar, sonar,
and image objects. These structures allow us to model, identify, and classify the
processes, enabling parameter estimation for, e.g., identification, localisation,
and tracking. In this work, such structures are exploited, with the goal to achieve
efficient localisation and tracking of a structured source signal. Specifically, two
scenarios are considered. In papers A and B, the aim is to find a sparse subset of a
structured signal such that the signal parameters and source locations may be
estimated in an optimal way. For the sparse subset selection, a combinatorial
optimization problem is approximately solved by means of convex relaxation,
with the results of allowing for different types of a priori information to be
incorporated in the optimization. In paper C, a sparse subset of data is provided,
and a generative model is used to find the location of an unknown number of
jammers in a wireless network, with the jammers’ movement in the network
being tracked as additional observations become available.

Keywords: Source localization and tracking, Cramér-Rao lower bounds, convex
optimization
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Populärvetenskaplig sammanfattning

Denna avhandling behandlar hur man kan utnyttja signalers struktur för att fatta
bra beslut trots att man har ofullständig information. Många signaler och vardag-
liga fenomen uppvisar någon form av struktur eller mönster, som vi medvetet eller
omedvetet använder oss av vid olika typer av beslutsfattande.

Tal och musik kan väl beskrivas som en blandning av tonade och otonade ljud
som därmed har en intern struktur som beror på vad som sägs eller spelas. Denna
struktur avgör hur ljudet uppfattas av oss och där egenskaper som tonhöjd, klang
och placering avgör hur vi uppfattas ljudet i dess sammanhang.

Ofta infinner sig situationer där vi har ofullständig information, men där vi kan
utnyttja signalens struktur för att sluta oss till bra beslut. Det kan röra sig om ljud
men även till exempel bilder där placering, färger och sammanhang avgör hur vi
uppfattar bilden. Ibland kan den här typen av information vara svårtolkad och det
infinner sig en osäkerhet. Trots denna osäkerhet kan sådan partiell information
utnyttjas för att tolka informationen. Som ett exempel kan text och sammanhang
hjälpa till med identifieringen av svårtolkade handskrivna bokstäver.

De två första artiklarna i avhandlingen handlar om hur man skall designa sina ex-
periment givet partiell kunskap om signalerna man ämnar mäta. I den första ar-
tikeln har man en signalmodell för en ljudkälla och dess spridningsmönster, och
man har en uppfattning kring dess position och frekvens, men kunskapen är be-
häftad med en viss osäkerhet. Målet är att placera ut mikrofoner på ett sådant sätt
att signalmätningarna blir så bra som möjligt. Man har ett givet antal mikrofoner
att placera ut, men antalet möjliga placeringar är långt fler. Metoden för att välja
ut placeringar ger även en uppskattning på hur bra resultat man kan förvänta sig,
och kan således vara till stöd vid experimentdesignen. Utnyttjandet av signalstruk-
tur kan användas vid flera olika tillämpningar. I den andra artikeln utnyttjas kun-
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Populärvetenskaplig sammanfattning

skap om en signals utbredning och frekvens för att designa en radar på optimalt
sätt.

I avhandlingens tredje artikel lokaliserades störkällor i ett trådlöst nätverk.
Störkällor modelleras ofta som objekt vars utbredningsmönster kan beskrivas
som delvis känt och som släcker ut all kommunikation inom utbredningsarean.
Givet störstatusen för noderna i nätverket, samt generell information om
utbredningsmönstret, lokaliserades störkällorna genom att anta modeller för
utbredningsmönstret, och genom att anpassa parametrarna i modellerna så att de
passade ihop med nodernas störstatus. Genom att låta störkällorna röra sig i
nätverket kan man insamla mer information för att förbättra lokaliseringen.
Ibland uppstår dock situationer när antalet störkällor förändras under tidens
gång, till exempel för att en störkälla slås av. Avslutningsvis undersöktes metoder
för att följa störkällor, beaktande att antalet objekt kan förändras under tiden.
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Popular summary

The topic of this thesis is how signal structures may be exploited in decision
making, enabling good decisions despite a lack of information. Many signals and
everyday phenomena exhibit some sort of structure or pattern that we,
intentionally or unintentionally, make use of in terms of decision making.

Speech and music may be well described as a mixture of voiced and unvoiced
sounds that exhibit an internal structure depending on what is said and played.
This structure determines how the sound is interpreted, where features such as key,
timbre, and placement determine how we interpret the sound in its context.

Often, situations arise where we have incomplete information, but we may exploit
the signal structure to make a good decision. This may concern audio, but also
images, where placement, colours, and context determine how we perceive the
image. Sometimes this information is difficult to interpret and an uncertainty
arises. Despite this uncertainty, such partial information may be exploited when
interpreting the image. For example, text and context may aid in the identification
of blurry handwritten letters.

The first two articles in this thesis deal with experiment design, and more
precisely, on how one should design and setup an experiment given partial
information about the measurement signal of interest. The first article treats the
case with an audio source with known signal model and spatial spread, and
where there is partial knowledge about the position and frequency of the
sound source. The goal is to place microphones in such a way that the
signal measurements will be as good as possible. There is a given number of
microphones to place, but the number of possible microphone placements is far
greater. The method for selecting the optimal placement also gives an estimate of
how good results that can be expected, and may thus be used as an aid in the
experimental design. The exploitation of signal structure may be used in other
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Popular summary

applications, and in the second article an optimal radar was designed in terms of
the selection of the used carrier frequencies, given partial information about the
location of a potential reflector.

The third article in this thesis treats the localization of jammers in a wireless net-
work. Jammers are often modeled as objects with jamming patterns that are par-
tially known and that cancel all communication in the covered area. Given the
jamming status of the nodes in the network, and general information about the
jamming pattern, the jammers may be localized by assuming models for the jam-
ming patterns and adapting the parameters in the models in such a way that they
fit the nodes’ jamming status.

By allowing the jammers to move in the network, more information may be
gathered that may aid in improving the localization. Sometimes situations arise
where the number of jammers to track change with time, for example if a
jammer is switched off, or breaks. As a final task, different tracking methods
were evaluated for the tracking of jammers, where the number of jammers may
change with time.
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Introduction

The aim of this thesis is to investigate how statistical methods can be used as a
modeling tool to facilitate the placement, localization, and tracking of objects in
situations where the data is structured, as well as sparse or uncertain. This
introductory chapter gives a brief overview about the theory used in the enclosed
papers, sets the work into context, and presents a research outlook for the studied
problems.

Many forms of measurements exhibit a large degree of internal structure, such as
periodically reoccurring patterns or a harmonic structure. Typically, methods
striving to infer information about the measured signal can exploit these form
of structures beneficially, improving the ability to, for example, detect
abnormalities. However, it is not uncommon that these forms of structure are
only approximately known, or only reasonably well modeled. The resulting
mismatch may cause a substantial loss of performance if the actual inherent
structure of the signal deviates too much from the assumed model. This work
strives to exploit these partial structures, such that the assumed model is allowed
to be determined with some degree of uncertainty. This endows the resulting
methods the ability to work well over a range of models, typically making the
resulting method more robust to model mismatch.

The rest of this chapter is organized as follows: section  describes the statistical
models used in this thesis, and section  introduces some concepts from statistical
decision theory. The tracking methods used in paper C are detailed in section ,
and section  describes the evaluation method used in papers A and B. Finally,
section  gives an outline of the papers, and section  gives a brief outlook about
possible further research.





Introduction

 Statistical models

This section introduces some of the statistical models used in the enclosed papers.
All the enclosed papers deal with location estimates in - or -dimensional space.

Mathematical modeling is the task of describing the world, or a phenomena, by
means of a model. Such models can take on many forms; they may, for example,
be linear or non-linear, parametric or non-parametric, deterministic or stochastic,
or they may be a mixture of these forms. Depending on the assumptions we make
regarding the observed data, different models will be more suitable than others.
As there are many possibilities when selecting a model, the question arises regard-
ing which model is the best choice, a question that does not have a clear-cut an-
swer. However, for the case of statistical models, one may possibly narrow and
reformulate the question as one of finding the model parameters that best describe
the data.

. Maximum likelihood

For a given set of observed data 𝑥1, 𝑥2, … , 𝑥𝑁, the goal is often to estimate the joint
density of a particular observation that is formed using the parameters 𝜃, i.e., we
wish to determine 𝑝(𝑥1, 𝑥2, … , 𝑥𝑁|𝜃). However, the parameters detailing the joint
density, 𝜃, are typically unknown. The problem solved by the maximum likeli-
hood (ML) estimator is that of determining the parameters, 𝜃, assuming a known
distribution, making our observed data the likeliest. For a set of 𝑁 independent
and identically distributed observations, 𝑥𝑛 ∈ 𝑓(𝑥|𝜃), the likelihood function may
be formed as

ℒ(𝑥1, … , 𝑥𝑁|𝜃) =
𝑁
∏
𝑖=1
𝑓(𝑥𝑖|𝜃) ()

The ML estimator thus seeks to find the parameters 𝜃maximizing ℒ(𝑥1, … , 𝑥𝑁|𝜃).
That is, given a set of observed data one strives to determine the parameters that
have the highest probability of producing the observed data.

. Maximum a posteriori

An alternative estimation method is maximum a posteriori (MAP), a Bayesian
method for estimating the expected parameters in a model describing the





. Statistical models

observed data. One notable difference between the ML and the MAP estimator
is that MAP allows for the incorporation of prior knowledge regarding the data
models. Bayes’ law states that the posterior probability of event 𝐴 given 𝐵 is

𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)𝑝(𝐵) ()

where 𝑝(𝐴) and 𝑝(𝐵) are the probabilities of events 𝐴 and 𝐵, respectively. In
case 𝑝(𝐵) is used as a normalizing constant, 𝑝(𝐴|𝐵) may thus be written as
𝑝(𝐴|𝐵) ∝ 𝑝(𝐵|𝐴)𝑝(𝐴). For the estimation problem, this implies that
𝑝(𝜃|𝑥1, … , 𝑥𝑁) ∝ 𝑝(𝑥1, … , 𝑥𝑁|𝜃)𝑝(𝜃). The MAP estimator thus forms an estimate
of 𝜃 as

max
𝜃
𝑝(𝜃|𝑥1, … , 𝑥𝑁) ()

This estimate is very similar to the ML estimate, with the addition of the prior
knowledge about the parameters detailed in 𝑝(𝜃). Both estimation techniques
seek to find the joint probability density of the observed data, by determining the
most likely parameters. Often, but not always, these estimates will also converge
to the same solution.

. Range-based and range-free methods

When dealing with signals with spatial spread, there are two modeling schools,
focusing on range-based methods or range-free methods, with the main
difference being if they account for signal power drop off with distance.
Range-based methods incorporate information about the range between the
signal source and the receiver by taking into account the fact that as the signal
spreads in space, the signal power is spread over a larger area, such that the
relative drop off in signal strength between two measuring points may be used to
deduce the distance to the source. Range-based methods form the basis for
the methods used in paper A and paper B, where audio waves and radar
measurements are studied, respectively. In the papers, the signal spread is
modeled as an exponentially decaying signal that depends on the distance 𝑟 from
the signal origin []

𝑟−(𝑑−1)/2𝑒−𝑖𝜔𝑟/𝑐 ()
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where 𝑑 is the dimensionality, 𝑐 is the speed of the signal propagation, and the 𝜔 is
the angular frequency of the signal. Thus, estimates of the decaying factor may be
employed as a means to estimate the source location, and in radar also the velocity
of the target.

With the range-free methods, no knowledge about the signal strength is available,
or of the relative signal strength. This situation is common in scenarios such as
when an unknown adversary is trying to corrupt or flood a communication chan-
nel, such as in a situation where a jammer is active in a wireless sensor network
(WSN). This is the situation treated in paper C, where the signal of interest is a
jamming signal of unknown location, signal signature, and signal strength, set in
a WSN. This setup thus assumes that there is one, or more, jamming devices that
completely blocks communication in a certain area, with the only known inform-
ation being the position of all the nodes in the network and their binary state as
being available or jammed.

When the range is not included as an available signal measurement, other signal
structures have to be utilized in order to deduce the target location. In paper C, the
observations are modeled as resulting from the following properties: the jamming
patterns are isotropic, meaning that a node is either jammed or not, the jamming
patterns may be modeled as convex parametric curves (or unions of such), and
the location of all nodes are known. The number of jammers is not known, and
their jamming patterns are allowed to overlap. These assumptions are common
in the field of jammer location, but typically only a single jammer scenario is
considered [–].

A common technique for localizing a jammer is to fit a circle that encloses the
jammed nodes. Several different methods have been proposed for fitting such a
circle, ranging form the minimal enclosing circle, maximum inscribed circle, and
finding the convex hull of the jammed nodes and thus the diameter of the jamming
region [–].

An alternative approach, that makes better use of the limited information
provided, is to instead model the jammer’s spatial spread as a -dimensional
Gaussian distribution. As such, the model facilitates more general jamming
patterns than provided by circular models, and it provides the possibility to
consider overlapping jamming regions, thus making it more versatile than the
single jammer location methods. The jammer location is then estimated as the
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Figure : An example of a jamming scenario with overlapping jamming regions and
elliptical jamming patterns. The unaffected nodes are represented by blue circles, and
the jammed nodes are represented by black triangles.

mean of the distribution, and the spread is given by the standard deviation.
Figure  describes an example of a jamming situation, where the outline of the
jamming regions is marked in the red ellipses, the jammer locations is marked
with red dots, the unaffected jammers are represented as blue circles, and the
jammed nodes are represented as black triangles.

 Statistical decision theory

Often, we want to use our observed data for making statistically grounded
decisions, such as e.g., predictions or classifications. Statistical decision theory
sets a framework for such questions. If we assume that our observed input data,
𝑥, may be well described as a set of random variables, we can form a statistical
model 𝑓(𝑥), such that we may describe our observed output data, 𝑦, where it is
assumed that this output data is also a set of random variables, with the joint
distribution 𝑝(𝑥, 𝑦) []. To make a statement about how well our proposed
model 𝑓(𝑥) fits the observed data 𝑦, a function detailing the similarity
between 𝑓(𝑥) and 𝑦 is needed. In the literature, such a function is known as a





Introduction

loss-function, 𝐿(𝑦, 𝑓(𝑥)). Two common loss-functions are the squared error loss

𝐿1(𝑦, 𝑓(𝑥)) = (𝑦 − 𝑓(𝑥))2 ()

and the absolute loss

𝐿2(𝑦, 𝑓(𝑥)) = |𝑦 − 𝑓(𝑥)| ()

Typically, one wants to make a more general statement pertaining to all possible
values of the observed input and output data. Thus, one forms the expectation
with respect to the loss function, 𝔼(𝐿(𝑦, 𝑓(𝑥)), enabling general conclusions about
the model fit of 𝑓(𝑥).

In paper C, the statistical decision to be made is that of classification, whereby
we seek to classify the jammed nodes into different clusters, thus detailing the
different jamming patterns. Typical statistical methods used for classification are
k-nearest neighbour (k-nn) [], linear discriminant analysis (LDA) [], quadratic
discriminant analysis (QDA) [], logistic regression [], the EM-algorithm [],
and the Gibbs algorithm []. The k-nn method approximates the statistical
expectation by the average, and assumes that 𝑓(𝑥) is well approximated by its 𝑛
nearest neighbours. LDA assumes that the different clusters can be well separated
by a hyperplane; sometimes the dimensionality of the data has to be increased for
this to be true. Similarly, QDA assumes that the data may be well separated by a
quadratic function, sometimes eliminating the need to increase the dimension.
Logistic regression uses the logit function to classify the different data points. For
binary logistic regression the logit function becomes

logit = 𝑝
1 − 𝑝, where 𝑝 ∈ {0, 1} ()

The three main variants of logistic regression are binary logistic regression, multi-
nomial logistic regression, and ordinal logistic regression. In contrast, the EM and
the Gibbs algorithms try to fit distributions to the observed data, thus classifying
the data based on the posterior probability of class belonging.

Methods for clustering and classification are relevant in paper C of this thesis,
where one aim was to identify and localize different jammers. The suggested
modus operandi was to first classify the jammed nodes into different clusters,
potentially corresponding to different jammers. The second step was then to
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form jamming patterns covering the different clusters, such that all jammed
nodes were covered, and excluding all unjammed ones. In this thesis, we have
opted to use the k-means method, the EM-algorithm, and Gibbs algorithm for
forming the classification. The k-means method was selected mainly because
of its computational simplicity, offering an intuitive clustering at a low
computational cost. Moreover, the k-means algorithm is used as a substep in the
EM-algorihtm, suggesting one may also use the algorithm as a stand alone
method. The EM and Gibbs algorithms were selected because of their ability to
incorporate the made assumptions about the geometry of the jamming regions
when forming the clusters. Before using the algorithms, the assumption is made
that the observed data is generated form a Gaussian Mixture Model (GMM),
and that the geometry of Gaussians may be well modeled as ellipses, which is
thus the assumed jamming pattern.

. K-means and K-nn

There is often a misconception and some confusion about the difference between
the k-nn method and the k-means method, in part probably due to the similarity
between the names. Conceptually, the main difference between the two methods
is that k-nn is a supervised learning algorithm for the classification problem,
whereas k-means is an unsupervised method for the clustering problem [–].
The k-nn method classifies the data into different groups based on a set of
predefined features. These features have to be predefined by the user, and the type
of features used will differ depending on the application. Moreover, to determine
good features and how to value the different features, the k-nn algorithm has to
be trained, thus tuning the algorithm to the data, a process known as supervised
learning. Although supervised learning may yield good results, the requirement
of training the algorithm means that enough training data has to be available,
and also that structural changes in the data may require the process of algorithm
training to be repeated. In situations where clear features may be defined and
enough data is available, the k-nn method is a simple yet effective method.
Contrary to the k-nn method, the k-means method requires no features to be
defined, and no algorithm training. The k-means algorithm clusters the data
based solely on the raw data. The algorithm seeks to minimize the variance
within the each cluster, while also maximizing the variance between the different
clusters. The main appeal of the k-means algorithm is its inherent simplicity. It
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is intuitively easy to understand, and requires no training or feature selection.
The jammer data in paper C offers no clear features, only raw data about the
jamming status of the nodes, which was why the k-means algorithm was used.

. EM-algorithm

The expectation-maximization (EM) algorithm [], provides an iterative
procedure for finding maximum likelihood estimates of the parameters in a
statistical model with some form of hidden or latent state. In paper C, this is
useful when estimating the parameters detailing the jammers’ spatial Gaussian
distributions, where the observed data, 𝑦, is the locations of the jammed nodes.

The idea of the EM algorithm is to extend the original maximum likelihood
problem into two closely related problems that are easier to solve individually
than the original problem. After providing an initial set of parameters, the
algorithm proceeds by alternating between the E-step and the M-step until
convergence is reached, e.g. when the change in parameters is small enough. In
iteration 𝑘 of the EM algorithm, these steps are defined as:

E-step: The first step of the algorithm is to obtain the objective function defined
as the expectation

𝑄(𝜃, 𝜃𝑘) = 𝔼 [log pdf𝜃 (𝑥1∶𝑛, 𝑦1∶𝑛) ∣ 𝑦1∶𝑛, 𝜃𝑘] . ()

where 𝑥1∶𝑛 denotes the hidden state data, 𝑦1∶𝑛 the observed data, and 𝜃𝑘 the para-
meters in the 𝑘:th iteration.

M-step: The second step then involves finding the parameters that maximizes this
objective function,

𝜃𝑘+1 = argmax
𝜃∈Θ

𝑄(𝜃, 𝜃𝑘) . ()

It can be shown that the log-likelihood ℓ(𝜃𝑘), defined as the logarithm of the
joint probabilities of 𝜃𝑘, decided by the assumed distributions of the hidden state
data 𝑥1∶𝑛, is guaranteed to increase with each iteration of the algorithm []. The
EM algorithm, however, does not guarantee convergence to the global
maximum. Despite this, the EM algorithm is typically considered to be a simple
and robust method for obtaining maximum likelihood estimates. For many
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distributions of the exponential family, the EM algorithm is particularly well
suited, since the M-step can be solved analytically without the need for costly
numerical optimization. Also, the EM-algoritm is well suited to unsupervised
learning methods, limiting the need for user input and calibration. The two
main disadvantages of the EM-algorithm are that the convergence is slow, and
the method may converge to a local minimum, making the method sensitive to
the starting values. One way to mitigate this is to rerun the algorithm several
times with slightly different initial conditions.

. Gibbs algorithm

An alternative method that may be used for obtaining the parameter estimates
detailing the jammer’s spatial spread is the Gibbs algorithm []. The Gibbs
method is a Markov Chain Monte Carlo (MCMC) method [, ], that samples
from the assumed posterior distributions. The main difference between the
Gibbs algorithm and the EM-agorithm is that where the EM-algorithm
maximizes the conditional distribution, the Gibbs algorithm samples it
instead []. The algorithm iterates between two steps, a computing step where
the maximum likelihood estimates are computed, and a sampling step where
new estimates are sampled. The iteration between the two steps is repeated until
convergence is reached, i.e., when the change in parameters between consecutive
iterations is small enough, or a predefined maximum number of iterations is
reached. In iteration 𝑘 of the Gibbs algorithm, the steps are defined as follows:

The first step of the Gibbs algorithm is the same as in the EM-algorithm, i.e., to
obtain the objective function defined as the expectation

𝑄(𝜃, 𝜃𝑘) = 𝔼 [log pdf𝜃 (𝑥1∶𝑛, 𝑦1∶𝑛) ∣ 𝑦1∶𝑛, 𝜃𝑘] . ()

The second step is to sample the new parameter estimates, where the estimates are
sampled from the distributions defined by 𝑄(𝜃, 𝜃𝑘) from the first step

Sample 𝜃𝑘+1 from 𝑄(𝜃, 𝜃𝑘) ()

The Gibbs algorithm is well suited to be used in combination with
computationally efficient Monte Carlo methods, such as importance sampling
and rejection sampling. Moreover, it is often easy to evaluate the conditional
distributions, thus further increasing its appeal. Problems arise when the
dimensionality is high as this causes slow convergence.
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 Tracking

As an object moves, additional informationmay be acquired as more measurement
data is accumulated. In the jammer situation, the outlines of the jamming patterns
may be more accurately estimated as new nodes are jammed, thus adding more
measurements to the statistical model, and in the radar case the Doppler effect
and velocity of the target may be better estimated by using more radar stations in
the triangulation, reducing the number of ambiguities.

. Kalman filter

TheKalman filter is a tracking method based on linear dynamic systems corrupted
by an additive noise [, ]. Typically, the Kalman filter is used in situations
when either the variable of interest may only be measured indirectly, or when
measurements are available from various sensors but might be subject to noise.
For the jammer localization problem in paper C, both of the above conditions
apply. Consider a general system of the form

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝜂𝑘 ()
𝑦𝑘 = 𝐶𝑥𝑘 +𝐷𝑢𝑘 + 𝜖𝑘 ()

with hidden state 𝑥𝑘, measurements 𝑦𝑘 and deterministic input signal 𝑢𝑘. Here, 𝐴
is a (potentially time varying) state transition matrix that determines how the
hidden state 𝑥𝑘 evolves, 𝐵 and 𝐷 are control input matrices that control the effect
of the input vector 𝑢𝑘 on the hidden and observed state, respectively, and 𝐶 is a
measurement matrix that defines the relationship between the hidden and
observed states. The process noise, defined as the vector 𝜂𝑘, represents deviations
from the ideal scenario, and the measurement noise is represented as the vector
𝜖𝑘. It is often assumed that 𝜂𝑘 is a zero mean Gaussian with covariance matrix 𝑄,
and 𝜖𝑘 is zero mean Gaussian with covariance matrix 𝑅.

The filter iterates between a prediction step and an update step, also known as a
propagation step and a correction step. In each step, the filter equations provide
an estimated mean and covariance, which in the case of Gaussian system are
optimal. Using the notation where (⋅̂) denotes the estimate, (⋅)− the predicted
(prior) estimate, (⋅)+ the posterior (updated) estimate, and 𝑃 denotes the error
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covariance matrix, the prediction step may be described as

𝑥̂−𝑘 = 𝐴𝑥̂+𝑘−1 + 𝐵𝑢𝑘−1 predicted state estimate ()

𝑃−𝑘 = 𝐴𝑃+𝑘−1𝐴
𝑇 +𝑄 predicted error covariance ()

In the update step, the measurement residual, 𝑧̃𝑘 is calculated and used to update
the state estimate and the error covariance, such that

𝑧̃𝑘 = 𝑦𝑘 − 𝐶𝑥̂−𝑘 −𝐷𝑢𝑘 measurement residual ()

𝐾𝑘 = 𝑃−𝑘 𝐶𝑇(𝑅 + 𝐶𝑃−𝑘 𝐶𝑇)−1 Kalman gain ()
𝑥̂+𝑘 = 𝑥̂

−
𝑘 +𝐾𝑘𝑧̃𝑘 updated state estimate ()

𝑃+𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃−𝑘 updated error covariance ()

where 𝐼 denotes the identity matrix, and 𝐾 denotes the Kalman gain. It may be
noted that the Kalman gain is multiplied with the residual to provide the
correction term, 𝐾𝑘𝑧̃𝑘, to the predicted estimate 𝑥̂+𝑘 , which determines how much
weight to assign to the current estimate. This form of the Kalman filter makes
the assumptions of model linearity as well as additive Gaussian noise, both being
fairly strong assumptions. The Gaussanity of the processes is supposed to be
reflected in the covariance matrices 𝑄 and 𝑅. Often, the statistics are not known
or are not Gaussian. In such cases, the matrices 𝑄 and 𝑅 may be used as tuning
parameters that the user can adjust to get the desired performance.

The assumption of model linearity limits the application scope of the standard
Kalman filter as many processes are not linear. A popular method for mitigating
this limitation is to instead consider the Extended Kalman filter (EKF). The EKF
is used in many real world applications such as navigation systems and GPS [].
In the EKF, the nonlinear model is linearized about the mean using a Taylor
expansion.

Unfortunately, the Kalman filter cannot handle a varying number of states, and
thus is makes tracking difficult in cases examined in paper C where objects may
leave or enter the tracked area.

. Particle filter

In many cases, the system model is non-linear or inaccurate, making the EKF
an inappropriate modeling choice []. In such situations, it may be beneficial to
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turn to sequential Monte Carlo methods and employing a particle filter [,,].
The particle filter assumes a probabilistic approach to the filtering process where
the goal is to compute the posterior distributions of the states. The dynamical
model considered may then be detailed as

𝑥𝑘 = 𝐴(𝑥𝑘−1)𝑥𝑘−1 + 𝐵(𝑥𝑘−1)𝑢𝑘 + 𝜂𝑘 ()
𝑦𝑘 = 𝐶(𝑥𝑘−1)𝑥𝑘 +𝐷(𝑥𝑘−1)𝑢𝑘 + 𝜖𝑘 ()

which is the same as the model used for the Kalman filter. The difference between
() and () is that in () no assumption about linearity or Gaussanity is made.
As for the Kalman filter, it is assumed that the hidden states 𝑥0, 𝑥1, …, may be well
modeled as a Markov process on ℝ𝑑𝑥 that evolves with a transition probability
𝑝(𝑥𝑘|𝑥1∶𝑘−1) = 𝑝(𝑥𝑘|𝑥𝑘−1), i.e., the transition between states is dependent only on
the current state, and not on the history. The observation process takes values on
ℝ𝑑𝑦 , and are assumed to be conditionally independent provided that 𝑥0, 𝑥1, … are
known.

The goal of the particle filter is to estimate the distribution of 𝑥𝑘 given 𝑦𝑘. For a
general function 𝑓(𝑥) of 𝑥 with pdf 𝑝(𝑥), this is equivalent to solving

𝔼(𝑓(𝑥)|𝑦) = ∫𝑓(𝑥)𝑝(𝑥|𝑦)𝑝(𝑥)𝑑𝑥 ()

In general, such expectations are difficult to solve analytically but may be well
approximated by the use of Monte Carlo sampling. For the particle filter, the
filtering steps consist of the state prediction step for estimating the distribution of
the latent state process, i.e.,

𝑝(𝑥𝑘|𝑦1∶𝑘−1) = ∫𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑦𝑘−1)𝑑𝑥𝑘−1 ()

The measurement update then generates the posterior probability density

𝑝(𝑥𝑘|𝑦1∶𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1∶𝑘−1)

∫ 𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1∶𝑘.1)𝑑𝑥𝑘
()

To approximate the distributions, a number of particles is needed, hence the name
particle filter. Unlike the Kalman filter, the particle filter is able to handle a vary-
ing number of states. The two main drawbacks of the particle filter are that con-
vergence is not guaranteed for a finite number of particles, and that it is a com-
putationally quite expensive method which performs poorly in high dimensions
unless variance reduction (e.g., importance sampling, Rao-Blackwellization) can
be utilized.
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. Viterbi tracking

An alternative method to the previous filters that is also able to handle non-linear
models, non-Gaussian noise, and a varying number of states is the Viterbi
algorithm. Like the particle filter, it is a probabilistic tracking algorithm that
aims at maxmizing the a posteriori probability distribution of a set of events given
a set of observations []. The algorithm assumes that the hidden states is defined
using a Markov model, enabling the tracking problem to be efficiently solved by
means of dynamic programming. In dynamic programming, one strives to break
the original problem down into smaller subproblems that may be solved
individually.

Unlike the particle filter that tries to estimate the expectation by means of
sampling, the Viterbi algorithm instead aims at maximizing the a posteriori
probability distribution. For the tracking problem in paper C this is the same as
finding the most likely path. In order to rank the paths, they are assigned a score
determined by a scoring function 𝑔(Λ), where Λ is the path. The algorithm
considers one step at a time, and at each time point evaluates which is the most
likely event given the observations. If the event set consists of 𝐵 possible events
{𝑒1, 𝑒2, … , 𝑒𝐵}, there will be 𝐵𝑇 possible tracks of length T. For this reason, the
number of events has to be quite small for the algorithm to be computationally
feasible. Unlike the particle filter that does not guarantee convergence, the
Viterbi algorithm guarantees that an optimal solution is found. Pseudo code for
the overall algorithm is presented in paper C.

 Cramér -Rao lower bound

There are many ways to evaluate the performance of an estimator, but two of
the more desirable features of a good estimator are that it is unbiased (or at least
asymptotically unbiased), which means that the estimate has a chance to reach the
true value of the parameter, and that it has a low variance. Given a statistical model
of some observed data, 𝑥, with the probability density function (pdf ) 𝑝(𝐱; 𝜽), the
amount of information that the data contains pertaining to the set of parameters,
𝜽, is captured in the Fisher information matrix (FIM), 𝐅(𝜽), defined as []

𝐅(𝜽) = −𝔼 {∇𝜽𝑙𝑜𝑔𝑝(𝐱; 𝜽), ∇𝜽𝑙𝑜𝑔𝑝(𝐱; 𝜽)𝐻} ()
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Given the FIM, one is able to determine a lower bound on the achievable estima-
tion accuracy, as specified in the following theorem:

Theorem  (Cramér-Rao lower bound) If the pdf 𝑝(𝐱; 𝜽) satisfies the condition
𝔼 {∇𝜽𝑙𝑜𝑔𝑝(𝐱; 𝜽)} = 0, ∀𝜽 ()

where the expectation is taken with respect to 𝑝(𝐱; 𝜽), then, the variance of any un-
biased estimator 𝜽̂ must satisfy

var[𝜽̂𝑖𝑖] ≥ [𝐅−1(𝜽)]𝑖𝑖 ()

That is, the Cramér-Rao lower bound (CRLB) forms a theoretical lower bound for
the variance of any unbiased estimator satisfying (). All estimators that attain
this lower bound are said to be statistically efficient.

In papers A and B, we seek to find the set of microphones placements and carrier
frequencies, respectively, such that the location parameters of the measurement
signal may be estimated as efficiently as possible. In order to do so, we exploit a
statistical model for the observed data. Using this model, we seek to determine
the most suitable microphone placements and carrier frequencies, respectively. In
order to do so, we strive to determine which of these placements and frequencies
will minimize the corresponding CRLB for the problem, utilizing the available
prior information of the observed signal sources. We thus seek to find the optimal
set of microphone placements/carrier frequencies such that mean of the norm of
the squared errors of the parameter estimates, 𝐞 = 𝜽 − 𝜽̂, is minimized. Formally,
the objective function we seek to minimize is 𝔼{||𝐞||22}, which may be written as

𝔼{||𝐞||22} = 𝔼{trace(𝐞𝐞𝑇)} = trace{𝐑𝑒} ()

where 𝐑𝑒 is the error covariance matrix. This may be formulated as the scalarized
minimization problem

minimize𝑣1…𝑣𝐽
trace (

𝐽
∑
𝑗=1
𝜆𝑗𝑣𝑗𝑣𝑇𝑗 )

−1

subject to 𝜆 ≥ 0, 𝑇𝜆 = 1 ()

where 𝜆𝑗 denotes the coefficients, and 𝑣𝑗 is the dual variable of the error of the
𝑗:th parameter, 𝐽 is the total number of parameters. This problem is known as the
A-optimal design problem [].
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. Other optimality criteria

Depending on the design requirements, different notions of optimality may be
utilized, with other noteworthy examples being the D-optimal and the E-optimal
design schemes. In the D-optimal scheme, the determinant of the error
covariance matrix, 𝐑𝑒, is minimized. Geometrically, this may be interpreted as
minimizing the resulting confidence ellipsoid of the parameters []. Formally,
the optimization problem to solve for the D-optimal case is

minimize𝑣1…𝑣𝐽
log det (

𝑝
∑
𝑖=1
𝜆𝑖𝑣𝑖𝑣𝑇𝑖 )

−1

subject to 𝜆 ≥ 0, 1𝑇𝜆 = 1, ()

The D-optimal design is often used in situations where one seeks to determine
which variables are the least significant.

In contrast, the E-optimal design scheme aims at minimizing the maximum ei-
genvalue of𝐑𝑒. Because the area of the confidence ellipsoid is related to the length
of the norm of the largest eigenvalue, minimizing it may be geometrically inter-
preted as minimizing the maximum variance of the parameters []. The optim-
ization problem for the E-optimal design is

minimize𝑣1…𝑣𝐽
∥(

𝑝
∑
𝑡=1
𝜆𝑖𝑣𝑖𝑣𝑇1 )

−1

∥
2

subject to 𝜆 ≥ 0, 1𝑇𝜆 = 1 ()

In this thesis, the selection problem is that of determining an optimal subset of
parameters from a larger set of potential parameter candidates. Formally, this
problem is a combinatorial problem, as one may only select a discrete number of
candidates. The complexity of combinatorial problems grows exponentially, and
thus finding the optimal solution quickly becomes infeasible even for cases with
only a few parameters. As a way to proceed, one may form an approximative
solution by performing a convex relaxation of the problem, whereby it is possible
to select fractions of many different parameters at the same time. After the
optimization, a rounding operation is performed such that only the candidates
with the highest fractions are included.
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. Extensions of the Cramér-Rao bound

The CRLB provides a lower bound of the variance for each of the parameter
estimates in 𝜽. This bound will depend on the true values of these parameters,
and will typically vary for different parameter values. This means that the CRLB
for a given parameter value is indicating the expected variance of a statistically
efficient estimator. However, it is often the case that the actual parameter values
are unknown, as these are what is sought by the use of an estimator. One may
estimate the parameters using the efficient estimator and then evaluate the CRLB
for the found parameters, assuming that this bound will be reasonably close to
the variance of the sought parameters, and that the resulting CRLB therefore can
be used as an estimate of the variance of the found estimator. In paper A, the
unknown microphone placements are sought, and in paper B the transmission
frequencies, such that these settings minimize the CRLB for a given location of
the signal source. Thus, in paper A, we seek to determine where sensors should
be placed such that the expected variance of the location estimates will be
minimized. As this bound will depend on the location of the sound source, this
is generally not all that helpful. However, often we have some prior knowledge
of the source location, such that we may know that the source can be expected to
be in a specified area. We may thus assume that the source may be located at a
finite number of positions, and evaluate the CRLB for each of these positions.
By then selecting the microphone placement such that the worst case CRLB
bound (WCRLB) is minimized, we determine the best sensor placements over
the range of assumed locations. Similarly, in paper B, we consider a set of
potential target locations and velocities when determining the most suitable
carrier frequencies to use, i.e., the carrier frequencies minimizing the worst case
variance of the location estimates, given the assumed uncertainty grids.

When evaluating the WCRLB, one thus forms a grid detailing the prior know-
ledge, around each of the parameters, and then evaluate () for each candidate
on this grid. If there is more than one parameter that is uncertain, they may all be
gridded, and () is then evaluated for each possible combination of the uncertain
parameters. As such, the WCRLB does not necessarily provide the optimal selec-
tion in the sense of minimum variance, but rather it provides an optimal selection
provided that there may be some uncertainty in the parameters. It may thus be
seen as an estimator that minimizes the risk of the selection.
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As may be noted, the resulting worst case estimator will need to be evaluated over a
grid of possible parameters, which will substantially increase the complexity of the
resulting design scheme. As an alternative, one may model the uncertainty in the
parameters using an assumed probability distribution. Provided this information,
one may then instead form what is known as the Bayesian Cramér-Rao Lower
bound (BCRLB). For the BCRLB, the FIM consists of two parts, one pertaining
to the data and one to the prior distributions of the parameters []. Thus, the
Bayesian FIM (BFIM) may be decomposed as

𝐅𝐵(𝜽) = 𝐅𝐷(𝜽) + 𝐅𝑃(𝜽) ()

If all the parameters are independent Gaussian variables, the second part of the
FIM, 𝐅𝑃(𝜽), pertaining to the prior, will be a diagonal matrix. Due to the stochastic
nature of the parameters, the BFIM will then be a constant matrix []. When
forming the BFIM, the MAP estimates of the parameters have to be computed.
If the parameters are all linear functions, the MAP estimate of the parameters
can be computed analytically. However, if the data model is non-linear in the
parameters, computing the BFIM analytically is typically difficult, in which case
the BFIM may instead be estimated using Monte Carlo methods.

Sometimes it may also be the case that a better model would be to describe some
of the parameters as stochastic and some of the parameters as deterministic. If this
is the case, one may form what is known as the Hybrid Cramér-Rao lower bound,
(HCRLB), defined as []

𝐅𝐻 = [
𝐅𝜽 𝐅𝜽,𝝓
𝐅𝜽,𝝓 𝐅𝝓

] ()

where 𝜽 and 𝝓 details the deterministic and stochastic variables, respectively, with
𝐹𝜽,𝝓 denoting the FIM with respect to both the stochastic and the deterministic
parameters. As the name suggests, the resulting bound it is a hybrid of the classical
CRLB and the BCRLB.
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 Outline of papers

Paper A: Optimal Sensor Placement for Localizing Structured Signal Sources
This work is concerned with determining optimal sensor placements that allow
for an accurate location estimate of structured signal sources, taking into account
the expected location areas and the typical range of the parameters detailing the
signals. In the presentation, we illustrate the technique for tonal sound signals,
exploiting the expected harmonic structure of such signals. To determine
preferable sensor placements, we propose a computationally efficient scheme that
minimizes theoretical lower bounds on the variance of the location estimate over
the possible sensor placements, while taking into account the expected variability
in the impinging signals, and introducing various forms of constraints on the
optimization. Numerical examples and real measurements illustrate the
performance of the proposed scheme. The work in paper A has been published
in part as

M. Juhlin and A. Jakobsson, “Optimal Microphone Placement for
Localising Tonal Sounds Sources”, th European Signal Processing
Conference, Amsterdam, Jan. -, .

and in full as

M. Juhlin and A. Jakobsson, “Optimal Sensor Placement for Localizing
Structured Signal Sources”, Elsevier Signal Processing, Volume ,
January .

Paper B: Designing Optimal Frequency Offsets for Frequency Diverse Array
MIMO Radar
Frequency diverse array (FDA) radars provide a potential solution
to target localisation along the slant range and azimuth angle due to the
range-angle-dependent transmit beampattern caused by the used frequency
increments. However, the S-shaped beampattern resulting from the standard
FDA leads to multiple candidate location estimates, introducing ambiguity in
the target localization. To make full use of the degrees of freedom (DOF)
allowed by the frequency increments, we here propose an optimal FDA
multiple-input multiple-output (MIMO) frequency design scheme based on the
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Cramér-Rao lower bound (CRLB). The resulting system, here termed the
optimal FDA-MIMO (OFDA-MIMO), is formed by optimizing the expected
localization estimation accuracy, given the available prior knowledge of
potential target locations. The used offsets are found as those minimizing the
corresponding Bayesian CRLB (BCRLB), and may be iteratively refined as
further information becomes available in a multi-pulse detection scenario. Both
theoretical analysis and simulation results validate the preferable performance of
the proposed system as compared to alternative frequency selection schemes.

Paper C: Efficient tracking of inhomogeneous jammers in a wireless network In
this paper, we propose a novel approach for locating and tracking an unknown
number of jammers in a wireless network. The area and shape covered by each
jammer is assumed to be partly unknown, and may vary over time as the jammers
move through the network. By assuming that the jammed region for each
jammer may be described by one of a set of parametric methods, the appropriate
shape as well as the number of jammers may be determined, even when the
jammed regions overlap substantially. Employing a Viterbi-based tracking
approach, we allow for an improved localization of moving jammers, including
when new jammers emerge or leave the network. Numerical simulations
illustrate the performance of the introduced framework as compared to recent
alternative approaches. The work in paper C has been published in part as

M. Juhlin and A. Jakobsson, “Localization of Multiple Jammers in Wireless
SensorNetworks”, th European Signal Processing Conference, Dublin, Aug.
-, .

The manuscript in this thesis will be submitted as a journal contribution.

 Further outlook

The work in this thesis can be generalized in several different ways. In the follow-
ing, we briefly mention some such extensions that closely relate to the presented
works.
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. Paper A

The work in paper A may be further generalized in various ways. For example,
currently, the model addresses the case of harmonic sources. A natural extension
to this model would be to also allow for the presence of nearly-harmonic
sources, possibly using models such as the one in []. One may also include
envelope-based signal models, thereby also allowing for unvoiced or non-tonal
sound sources. Moreover, the model may be improved by including information
inferred by the surroundings such as the room impulse response, wall structures,
as well as parametric reverberation models.

. Paper B

As the model in paper B is currently stated, it deals with far field targets with no
interfering surroundings. For a radar, this is typically an idealized and somewhat
unrealistic scenario. A more realistic setting would include clutter from the
surroundings as well as the presence of interference. One development of the
model would be to make use of the area topology to deal with wideband
disruptions. Another extension would be to consider wider targets that may not
be approximated as point sources. Moreover, targets are often subject to rotation
and acceleration, something currently not addressed by the model. Allowing for
rotation and acceleration could be done by introducing a time varying reflexivity,
or by the use of a parametric model, where these parameters are then included in
the parameter vector.

. Paper C

The work in paper C may also be extended in various ways. One such alternative
is to extend the jammer patterns to more arbitrary patterns, e.g., described by a
polygon that is then estimated as part of the tracking algorithm. Other research
ventures would be to allow for fading effects from buildings and trees. This could
possibly be done by including the topology of the area under study, inferred form
e.g., maps. Further, the implementation of an online tracking algorithm would
broaden the usability of the algorithm as adversaries may be tracked in real time.
One may also envision that the ideas in the first two papers are employed to de-
termine suitable locations for a subset of network nodes in order to allow for im-
proved detection and localization performance of potential jammers.
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Paper A

Optimal Sensor Placement for
Localizing Structured Signal Sources

Maria Juhlin and Andreas Jakobsson

Abstract

This work is concerned with determining optimal sensor placements that allow
for an accurate location estimate of structured signal sources, taking into account
the expected location areas and the typical range of the parameters detailing the
signals. In the presentation, we illustrate the technique for tonal sound signals,
exploiting the expected harmonic structure of such signals. To determine prefer-
able sensor placements, we propose a computationally efficient scheme that min-
imizes theoretical lower bounds on the variance of the location estimate over the
possible sensor placements, while taking into account the expected variability in
the impinging signals, and introducing various forms of constraints on the optim-
ization. Numerical examples and real measurements illustrate the performance of
the proposed scheme.

Keywords: Sensor placement, structured signals, performance bounds, convex
optimization
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 Introduction

Reliable localization, estimation, and/or detection of a partly known signal source
is a problem of notable interest in many applications, ranging from telecommu-
nications and metrology, to radar, sonar, and surveillance. For all these applica-
tions, the topic of sensor placement is of outmost importance in the resulting es-
timation problems, as it sets the boundary for the accuracy that may be achieved
[–].

The problem of optimal sensor placement is a diverse and multi-faceted problem
that allows for a rich plethora of different problem setups; [] discusses the
problem of optimal sensor placement for passive stationary sensors, [] treats
the optimal geometry for multi-static sensors using time of arrival (ToA)
estimates, [] explores optimal sensor configuration in a -D setting with mobile
sensors/targets, and [] presents an algorithm for a near optimal sensor
placement under a minimum redundancy constraint. When discussing the
problem of optimal sensor placement, one has to be precise in defining the
premises of the problem formulation, as the setup will differ notably depending
on factors such as if the sensors are passive or active, if the sensor environment is
monostatic or multistatic, if the solution is grid-based, and if the sensors and/or
target(s) are stationary or moving, to mention some of the aspects.

Another matter to take into account when formulating the optimal sensor
placement scheme is the desired parameter estimates. Depending on what it is
you try to estimate, the optimal sensor placement might differ. Consider, for
example, the joint estimation of frequency and amplitude of a sinusoidal signal
component. It is not obvious that the optimal sensor setup for estimating the
amplitudes is the same as the optimal setup for estimating only the frequency.
Often, the time difference of arrival (TDoA) is used to determine suitable
locations, such as in [], where optimal sensor placements were selected to
minimize the corresponding Cramér-Rao lower bound (CRLB). Other sought
parameters include the direction of arrival (DoA), which was employed in [],
the ToA as was used in [], and the frequency difference of arrival (FDoA),
which was used in combination with the TDoA in [], where the latter also
demonstrated that the optimal sensor setup differs depending on the desired
parameters.

Yet another aspect of the sensor placement problem is the definition of optimal,
as there are many different notions of optimality, which give rise to different
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optimization methods and frameworks. In many formulations, the criteria to
be optimized relate in some notion to the signal strength/energy or the
reconstruction error. Some widely used criteria of optimality are related to the
Fisher information matrix (FIM) and its inverse; the uncertainty ellipse of an
estimator is proportional to the determinant of the inverse FIM, the mean
square error (MSE) is proportional to the trace of the inverse FIM, whereas
E-optimality relates to the eigenvalues of the FIM. Another aspect to take into
account is what robustness you require of your estimator. One might not be
interested in maximizing the best case scenario, but rather in minimizing the
error for the worst case scenario, as this will set an upper bound for the error of
your estimation problem. The choice of optimality condition will affect the
optimization scheme, and each of the notions offer different advantages and
drawbacks. Moreover, when dealing with a set of different estimation
parameters, it is unlikely that they are all of the same magnitude. Rather, the
resulting optimization will be more dependent on the largest parameter, which
might be a nuisance parameter. As such, a coveted feature of an optimization
algorithm is the flexibility to weigh the impact of different parameters in the
resulting optimization.

In [], the authors formulated the sensor selection problem as a convex
minimization, maximizing the power of the received signal. Later, in [–],
the sensor placement was formulated as a minimization of the MSE of the
localization estimates. In [], sensor placement was considered from the
perspective of a minimum variance distortionless response. Typically, the chosen
algorithm will affect the solution and the computational complexity of the
proposed method. Often, some sort of convex relaxation is required to allow for
a computationally feasible solution, although other methods are employed, such
as in [], where a genetic algorithm utilizing the CRLB as the fitness function
was presented. Generally, the sensor selection problem can be formulated as a
grid-based combinatorial problem, but as the number of possible locations
grows, such a solution quickly becomes unfeasible, and other methods or
relaxations have to be utilized. An example of this is found in [], wherein the
authors formulate the optimization problem as one of maximizing the signal
energy, and thereafter proceed to solve the non-convex optimization using a
convex relaxation of the constraints.

One limitation of the noted works is that these do not exploit any available a
priori knowledge of the expected source signals, such as signal structure or
knowledge about the parameters detailing the signal. Often, the structure of the
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impinging signals is at least partly known, such as in the case of, for example,
chirps and tonal audio, as well as several forms of sonar and vibrational
signals [, ]. Such a structure may be exploited in determining a suitable
sensor placement. Reminiscent to the optimal sampling scheme presented
in [], wherein the expected signal structure of spectroscopic signals was
exploited to develop an optimal multi-dimensional sampling scheme allowing
for the there typically partly known signals, we here propose an optimal sensor
placement that exploits the expected signal structure of the signals, illustrating
our development with tonal sources, such as voiced speech, sonar, or vibrational
signals, as well as chirp signals.

In order to do so, we formulate an optimal sensor placement scheme that
minimizes the CRLB of the source localization problem over the range of
potential sensor placements, taking into account the spherical propagation of the
waves, the expected location areas of the sources, the expected structure of the
measured signals, in our initial illustration being the harmonic structure of tonal
signals, as well as various forms of connection costs. In this sense, the work also
expands on the source localization problem examined in [], wherein the
harmonic structure of tonal sounds was exploited to localize sound sources.
Other than the signal structure, there are other types of a priori information that
may be utilized, such as e.g. the nature of the parameters. For the case when the
parameters to be estimated contain a mix of deterministic and stochastic
components, it is more suitable to formulate the problem using the hybrid
CRLB (HCRLB) [], which allows for the integration of a priori information.
In cases where such information exists for all parameters, it may be preferable to
instead use the Bayesian CRLB (BCRLB) []. By comparing the optimal sensor
placement when using the HCRLB, BCRLB, and the CRLB, we examine how
the optimization criteria change as the amount of prior knowledge changes, and
to what extent the accuracy and precision of the resulting estimator is affected.
We also examine the robustness of the different estimators by exploring what
happens when the prior information is incomplete or slightly incorrect. In
summary, the main contributions of this work are

. We formulate the problem of optimal sensor placement for structured sig-
nals as a convex minimization problem in the context of minimizing the
worst case CRLB.
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. We illustrate and evaluate how the optimization problem and solution
change when using the HCRLB and BCRLB instead of the worst case
CRLB.

. We present how different variations of the problem formulation, in terms
of regularization terms and constraint functions, can be utilized to obtain
solutions to real world applications.

. By formulating robustness using prior distributions, in place of earlier grid-
ding formulations, we substantially reduce the complexity of the resulting
optimization problem.

The paper is structured as follows; initially, in the next section, the signal model
is introduced together with the optimization problem that we aim to solve. In
section , the different bounds used in the optimization procedure are detailed
and derived. In section , numerical examples illustrate the results. Finally, in
section , we conclude upon the work.

 Signal Model

Consider a setup where 𝑀 sensors measure the wavefronts impinging from 𝐾
(near-field) sources. To better illustrate the methodology we will initially consider
the sources to be tonal, but again note that other structures would be similarly
applicable. Thus, we adopt a signal model where each of these sources have a
harmonically related structure, such as may be expected in e.g., tonal audio, sonar,
and vibrational signals, implying that the direct path ¹ the 𝑘th sound source may
be deemed to be well modeled as² [, ]

𝑧𝑘(𝑡) =
𝐿𝑘
∑
ℓ=1
𝐴𝑘,ℓexp{𝑖𝜔𝑘,ℓ𝑡 + 𝑖𝜁𝑘,ℓ} ()

where 𝜔𝑘,ℓ, 𝐴𝑘,ℓ ∈ ℝ, and 𝜁𝑘,ℓ ∈ [0, 2𝜋) denote the angular frequency, amplitude,
and phase for the ℓth harmonic component of the 𝑘th source, respectively, for

¹For notational simplicity, we will here restrict our attention to the direct path wavefront, noting
that details on the room acoustic response can be incorporated in the model, if they are (at least
partially) known.

²For notational simplicity, we here use a complex-valued notation, noting that the complex-
valued form of the measured signal may be formed using the discrete-time analytic signal [].
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𝑡 = 0, … ,𝑁 − 1. For tonal sounds, typically the ℓth frequency may be well
modelled³ as𝜔𝑘,ℓ = ℓ𝜔𝑘,0, where𝜔𝑘,0 denotes the fundamental frequency, or pitch,
of the 𝑘th sound source []. It should further be noted that for most sound
sources, the number of overtones, 𝐿𝑘, is unknown, and typically varies over time.
Assuming that the 𝑘th source is located at position

s𝑘 = [ 𝑥𝑠𝑘 𝑦𝑠𝑘 𝑧𝑠𝑘 ]𝑇 ()

the wavefront from source 𝑘 impinging on the 𝑞th sensor, located at

m𝑞 = [ 𝑥𝑚𝑞 𝑦𝑚𝑞 𝑧𝑚𝑞 ]𝑇 ()

may then be expressed as

𝑦𝑘,𝑞(𝑡) =
𝐿𝑘
∑
ℓ=1
𝜒ℓ,𝑘,𝑞(𝑡) + 𝑛𝑘(𝑡) ()

with the noise-free signal component defined as

𝜒ℓ,𝑘,𝑞(𝑡) = 𝑎𝑘,𝑞(𝜔𝑘,ℓ)𝐴𝑘,ℓexp{𝑖𝜔𝑘,ℓ𝑡 + 𝜁𝑘,ℓ} ()

and where 𝑛𝑘(𝑡) is an additive noise, here assumed to be well modelled as being
zero-mean and circularly symmetric white Gaussian distributed. Furthermore,
𝑎𝑘,𝑞(𝜔) details the spherical propagation gain and phase rotation of frequency 𝜔
for the signal impinging from the 𝑘th source onto the 𝑞th sensor, i.e., []

𝑎𝑘,𝑞(𝜔) = 𝑟−(𝑑−1)/2𝑘,𝑞 𝑒−𝑖𝜔𝑟𝑘,𝑞/𝑐 ()

where 𝑟𝑘,𝑞 is the distance between the 𝑘th source and the 𝑞th sensor, i.e.,

𝑟𝑘,𝑞 = ∥s𝑘 −m𝑞∥2 ()

and 𝑐 is the propagation speed of the wavefront, for acoustic sources in air gen-
erally being 𝑐 = 343 m/s, ∀𝜔, whereas the propagation speed in water typically
depends on depth and salination []. Finally, 𝑑 denotes the dimensionality of
the considered space, i.e., 𝑑 = 2 in a flat space and 𝑑 = 3 in -D.

³It is worth noting that many forms of tonal sources also exhibit inharmonicity, enabling further
forms of structure [].
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In order to illustrate the performance for another structured signal, we will in the
following also examine sources where the frequency is time dependent, such that
a chirp model may be a better fit, i.e.,

𝑧(𝑡) =
𝐾
∑
𝑘=1
𝐴𝑘 sin(𝑖𝜔(𝑡)) ()

where 𝜔(𝑡) = 𝜔0+𝑐𝑡. Here, the frequency is defined as a base frequency, 𝜔0, with
an additive drift term that depends on time, 𝑐𝑡. This signal model well describes
the sounds made by various animals, e.g., bats and whales.

Independent of the considered signal model, the problem may be formulated as
that of determining the placement of 𝑀 sensors such that the locations of the
sources may be well estimated. To determine an optimal sensor placement, we
propose minimizing a weighted form of the CRLB associated with the estimate
of the 𝐾 source locations given the𝑀 sensor locations. The𝑀 sensor locations
are selected from a set of possible sensor placements, ℳ, consisting of a
predefined grid of candidate sensor locations, the choice of which is dictated by
computational as well as environmental considerations. In this work, we have
mainly opted for the use of an equidistant cartesian grid, as well as a circular
grid. Clearly, the CRLB for the source localization problem will depend on the
locations of the𝑀 sensors, the source locations, and the source signals. Let the
unknown parameters detailing the sources be

𝜽 = [ 𝜽1 … 𝜽𝐾 𝜎2𝑛 ]
𝑇

()

where 𝜎2𝑛 denotes the variance of the additive noise 𝑛𝑘(𝑡) (which, for notational
simplicity, is here assumed to be the same for each sensor), and with

𝜽𝑘 = [ s𝑘 𝜔𝑘,0 ]𝑇 ()

which thus implicitly makes an assumption that the number of sources,𝐾, and the
number of overtones for each source, 𝐿𝑘, for 𝑘 = 1, … ,𝐾, are known. Typically,
this cannot be assumed in many practical cases, and the sensor placement should
thus be designed to allow for robustness to these assumptions. In this work, we
will limit the discussion of robustness to the unknown parameters 𝜽𝑘, formulating
the minimization allowing for the expected source locations and range of pitches,
noting that a similar robustness with respect to 𝐾 and 𝐿𝐾 may be implemented
similarly, or using a formulation reminiscent to [, ].
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 Placement Scheme

Our goal is to find a sensor placement scheme that minimizes the estimation error
of the parameters, 𝜽̂−𝜽. By utilizing the assumed structure of the signal, one may
form the FIM, which can be used to calculate the covariance matrix related to the
maximum likelihood estimator. Let Y𝜽(𝑚) denote𝑁 samples measured by sensor
𝑚, with probability density function 𝑝(Y𝜽(𝑚)), parameterised by 𝜽 ∈ ℝ𝑃×1, where
𝑃 denotes the number of unknown parameters in (). The FIM for the localization
problem at hand, denoted F(Y𝜽(𝑚)), may then be formed as

F(Y𝜽(𝑚)) = 𝔼 {∇𝜽 log (𝑝(Y𝜽(𝑚))) ∇𝜽 log (𝑝(Y𝜽(𝑚)))
𝐻} ()

where 𝔼 {⋅} denotes the statistical expectation, in this case taken with respect to
the distribution of Y𝜽(𝑚), which in turn is parametrised by 𝜽, and ∇𝜽 denotes
the gradient with respect to 𝜽, respectively. There are many different optimality
notions related to the error covariance matrix. In this work, we use A-optimality,
which amounts to minimizing the trace of the resulting error covariance matrix.
Since each of the diagonal elements of the inverse FIM relates to the variance
of the associated parameter, the trace of the error covariance matrix will give an
estimate of the variance of the overall estimate. From [], the trace minimization
problem can be formulated as

minimize
w

trace((
Υ
∑
𝑚=1
𝑤𝑚F(Y𝜽(𝑚)))

−1)

subject to 𝑇w ≤ 𝑀,
𝑤𝑚 ∈ {0, 1}, 𝑚 = 1, 2, … , Υ = |ℳ|

()

where w is theΥ dimensional weight vector indicating if a candidate sensor place-
ment in the set of potential candidate placements,ℳ, is used or not. Here, 𝑤𝑚
denotes the 𝑚:th element in w. Because the weight vector w only takes the values
 or , the optimisation problem in () amounts to a non-convex combinatorial
problem. To form a computationally tractable approximation to (), one may
instead use the convex relaxation

minimize
w

trace((
Υ
∑
𝑚=1
𝑤𝑚F(Y𝜽(𝑚)))

−1)

subject to 𝑇w ≤ 𝑀,
𝑤𝑚 ∈ [0, 1], 𝑚 = 1, 2, … , Υ

()
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where the constraints on w have been relaxed by allowing it to take on values in
the interval [0, 1]. The resulting relaxed solution will result in a sensor placement,
formed by rounding the determined w values to either  or , yielding close to
the optimal (combinatorial) solution. An actual comparison to the achievable op-
timal solution is typically unfeasible for non-trivial cases, but a small scale com-
parison is included in the numerical section, together with observations on the
achieved duality gap for the considered examples. Fortunately, as shown in [,
], this problem can be relaxed to allow it to be implemented as a semidefinite
program, using for example, the projected Newton’s method with computational
complexity 𝒪(dim(𝜽)Γ3) per iteration []. Here, we extend upon the work in
[], which focused on the temporal sampling of (structured) decaying sinusoidal
signals. Our formulation is reminiscent to the one in this work, although we ex-
tend the formulation to consider both the temporal and spatial sampling of struc-
tured near-field sound sources. Furthermore, we introduce several forms of ad-
ditional constraints as well as computationally efficient formulations for allowing
uncertainty in the assumed signal parameters that reduce the computational com-
plexity of the optimization substantially. For completeness and to introduce our
notation, we next summarize the steps presented in []. Initially, note that for
every invertible 𝑃 × 𝑃 matrix, it holds that

trace(B−1) =
𝑃
∑
𝑝=1

e𝑇𝑝B
−1e𝑝 ()

where e𝑝 denotes the p:th canonical basis vector, i.e., a vector containing a 1 at
the 𝑝:th position and zeros elsewhere. Moreover, using the Schur complement, it
holds that for any positive definite matrix B, scalar 𝜇, and arbitrary vector a,

𝜇 − a𝑇B−1a ≥ 0 ⟺ [B a
a𝑇 𝜇] ⪰ 0 ()

where X ⪰ 0 denotes that the matrix is positive semidefinite. Utilizing (), the
same matrix, B, minimizes both

minimize
B≻0

a𝑇B−1a ()

and

minimize
𝜇,B≻0

𝜇 ()

subject to [B a
a𝑇 𝜇] ⪰ 0 , 𝑤𝑚 ∈ [0, 1] ()
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Hence, () can be reformulated as

minimize𝜇,w

𝑃
∑
𝑝=1
𝜇𝑝

subject to [ ∑Υ
𝑚=1 𝑤𝑚F(Y𝜽(𝑚)) e

e𝑇 𝜇𝑝
] ⪰ ,

Υ
∑
𝑚
𝑤𝑚F(Y𝜽(𝑚)) ≻ 

𝑇w ≤ 𝑀, 𝑤𝑚 ∈ [0, 1], 𝑚 = 1…Υ

()

where 𝑝 = 1, … , 𝑃. The minimization in () constitutes a semi-definite
program that may be solved efficiently using standard convex solvers, such as
SeDuMi [] or SDPT []. Accounting for imperfect signal information can
be done in many different ways. Inspired by [] and [], one approach to
induce robustness is to consider the worst case scenario. In this setting, the
parameter space is partitioned into nonempty sets of possible parameter
values, and the minimization is done over all different parameter sets, i.e.,
𝚯 = [𝜽1 ⋯𝜽𝐽], where 𝐽 is the cardinality of the set 𝚯. The result is that the
optimization is formed over all parameters in the set, thereby yielding the sensor
selection that is the most robust to all these parameter values. Clearly, if the true
parameters are known, and this knowledge used in the optimization, the
resulting sensor placement will be preferable to one formed over such a set of
parameters. However, in case the assumed prior knowledge is imperfect, this
may result in a loss of performance. Optimizing over a set of potential
parameters, thereby minimizing the potential discrepancy for all parameters in
the set, results in the selection optimizing the worst case CRLB. The placement
scheme presented thus far assumes that all parameters are of the same
magnitude, a setup that is highly unrealistic in many real world settings. To
broaden the usefulness of the proposed placement estimation scheme, it is
necessary to introduce some robustness to account for this mismatch. To address
the case when the different parameters in the error covariance matrix are of
different importance, or of significantly different magnitudes, one may
introduce a weighting parameter, as was done in []. In this setup, a
linear weighting matrix A(𝜽) is introduced yielding the weighted FIM
F̃(Y𝜽(𝑚)) = A(𝜽)F(Y𝜽(𝑚))A(𝜽)𝑇, which is then used in the optimization
instead. An example of when this type of weighting is needed is mentioned
in [], where the CRLB of a damped sinusoid will be dominated by the
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amplitude estimate. The resulting worst case minimization becomes

minimize𝜇,w

𝑃
∑
𝑝=1
𝜓𝑝𝜇𝑝

subject to [ ∑Υ
𝑚=1 𝑤𝑚F(Y𝜽(𝑚)) e

e𝑇 𝜇𝑝
] ⪰ , ∀𝑝

∀𝜽 ∈ 𝚯,
Υ
∑
𝑚=1
𝑤𝑚F(Y𝜽(𝑚)) ≻ 

𝑇w ≤ 𝑀, 𝜇𝑝 ≤ 𝜆𝑝 𝑚 = 1…Υ

()

where 𝜓𝑝 denotes the weighting of parameter 𝑝, and we have also included an
upper tolerance on the weights 𝜇𝑝 ≤ 𝜆𝑝.

Comparing equations () and (), one may note that the weighing parameter
𝜓𝑝 has been introduced in (). The linear weighting matrix A(𝜽) enables
reweighting of the FIM by linear transformation, but to ensure invertibility A(𝜽)
has to have full rank. Thus, in order to completely disregard a parameter in the
FIM, the weighting parameter 𝜓𝑝 has to be introduced as well. If 𝜓𝑝 = 1 for all
values of 𝑝, no weighting is introduced and one recovers (), and by putting
𝜓𝑝 = 0 for some values of 𝑝 makes it possible to completely disregard those
parameters in the minimization.

The reason for including the upper tolerance parameter is to account for possible
performance constraints on the parameters, more specifically if there is some
upper tolerance constraint on the CRLB of one or more of the parameters. In
this formulation, the placement scheme is robust to several performance
measures, improving the control of the optimization procedure. One notable
drawback with the worst case scenario is tractability. The accuracy of the
estimator becomes better the finer the gridding of the parameter space is.
However, the finer the gridding, the larger the dimensionality of the problem.
For example, the dimensionality of using a parameter space of three parameters,
with each grid consisting of  points, would mean that the optimisation has to
be evaluated at    grid points, for each time point. In order to reduce
this complexity, we here introduce the assumption that the parameters have
some known distribution, instead of discretizing the parameter set with a grid.
In the case when all the parameters are stochastic, one may then instead form the
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optimisation using the Bayesian FIM (BFIM) []. Adapting the notation
from [], the FIM in the Bayesian case consists of two parts,

F𝐵(𝐘𝜽) = F𝐷(𝐘𝜽) + F𝑃(𝐘𝜽) ()

where the first part, F𝐷(𝐘𝜽), comes from the data and the second part, F𝑃(𝐘𝜃),
comes from the a priori knowledge. Denote the likelihood of the observed signal
by 𝐿𝐘(𝜽). Then, the (𝑖, 𝑗)th element of F𝐷(𝐘𝜽) is

[F𝐷(𝐘𝜽)]𝑖,𝑗 = −𝔼 [
𝜕2𝐿𝐘(𝜽)
𝜕𝜽𝑖𝜕𝜽𝑗

] ()

with the expectation over both the data and 𝜽. Moreover,

[F𝑃(𝐘𝜽)]𝑖,𝑗 = −𝔼 [
𝜕2𝑙𝑜𝑔(𝑝(𝜽))
𝜕𝜽𝑖𝜕𝜽𝑗

] ()

where the expectation is over 𝜽. In this case, the minimization problem in ()
may be reformulated as

minimize
w

trace((
Υ
∑
𝑚=1
𝑤𝑚F𝐵(Y𝜽(𝑚)))

−1)

subject to 𝑇w ≤ 𝑀,
𝑤𝑚 ∈ [0, 1], 𝑚 = 1, 2, … , Υ

()

where F𝐵(Y𝜽(𝑚)) denotes the BFIM, with the minimized bound being the
Bayesian Cramér-Rao lower bound (BCRLB).

Similar to the worst case bound investigated above, the BFIM forms a minimax
bound. The difference is that the CRLB utilized in () yields a lower bound for
all unbiased estimators; in contrast, the BCRLB bound yields a lower bound for
all estimators, both biased or unbiased. Furthermore, the BFIM has the
advantage of computational tractability. Given that the distributions are known
and computable, the dimensionality of the problem only grows with the number
of parameters, as opposed to the worst case estimator considered above, where
the dimensionality depended not only on the number of parameters, but also on
their gridding. An obvious drawback of the BFIM is that the prior distribution
is assumed to be known⁴.

⁴The distributions also have to be Lipschitz [].
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In many practical applications, the parameter set is best modeled as a mixture of
both deterministic and stochastic parameters. In such cases, it makes more sense
to instead minimize the hybrid Cramér-Rao lower bound (HCRLB) (see
e.g. [] and []). To form the HCRLB, assume we have 𝑈 deterministic and
𝑄 stochastic parameters, and let 𝝍 = [𝜽𝑇, 𝝓𝑇]𝑇, where 𝜽 ∈ ℝ𝑈 and 𝝓 ∈ ℝ𝑄 are
the deterministic and stochastic parameters detailing the signals, respectively.
Introduce the joint probability density function 𝑓𝜒,𝝓(𝜒, 𝝓; 𝜽). The hybrid Fisher
information (HFIM) is then formed as

F𝐻(𝜽) = 𝔼 {
𝜕 log𝑓𝜒,𝝓(𝜒, 𝝓; 𝜽)

𝜕𝝍𝑇
𝜕 log𝑓𝜒,𝝓(𝜒, 𝝓; 𝜽)

𝜕𝝍 } ()

= [ F𝜽 F𝜽,𝝓
F𝑇𝜽,𝝓 F𝝓

] ()

The fundamental difference between () and () is that in () the matrix has
been divided into one deterministic, one stochastic, and two joint blocks yielding
the HCRLB

𝔼{(𝝍̂ − 𝝍)(𝝍̂ − 𝝍)𝑇} ≥ F−1𝐻 (𝜽) ()

The deterministic FIM may be derived using the marginal probability density of
the measurement vector, i.e.,

𝑓𝜒(𝜒; 𝜽) = ∫
ℝ𝑄
𝑓𝜒,𝝍(𝜒, 𝝍; 𝜽)𝑑𝝍 ()

yielding

F(𝜽) = 𝔼 {
𝜕log𝑓𝜒(𝜒; 𝜽)

𝜕𝜽𝑇
𝜕log𝑓𝜒(𝜒; 𝜽)

𝜕𝜽 } ()

The deterministic CRLB is asymptotically tight for high signal to noise ratios
(SNRs) or large sample sizes. This property is typically not enjoyed by the
HCRLB [, ]. As with the BCRLB, one assumption for using the HCRLB is
that the distributions are known and Lipschitz. As is suggested by the name, the
HCRLB is a tradeoff between the BCRLB and the deterministic CRLB, offering
the traceability of the Bayesian bound, while not being limited to unbiased
estimators only. Significantly, the computational complexity of the problem
reduces as the amount of a priori knowledge is increased. For each stochastic
parameter the complexity decreases by a factor 𝑃, where the complexity of the
worst case CRLB with 𝑏 parameters is of the order (Υ𝑃)𝑏.
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Figure : In a real world sensor placement scenario, not all sensor placements have the
same cost.

In many applications, the cost of placing sensors is also not equal for all
candidate positions. This is illustrated in Figure , where placing sensors on top
of a mountain or in the river is probably more difficult/expensive than placing
the sensors in the open field. Moreover, in many settings the cost of placing the
first sensor in a region is often more expensive than placing the rest of the
sensors, a notion familiar from infrastructure where the cost of laying the wire is
expensive but connecting further sensors to the wire when it is already in place is
less expensive. This, and other design features, can be incorporated either as a
penalty that assigns extra cost to a sensor placement scheme in which the sensors
are scattered, or alternatively as constraints. To exemplify, suppose the terrain is
divided into 𝑅 regions 𝑆1, … , 𝑆𝑅, as illustrated in Figure . Moreover, assume that
one sensor is placed in region 𝑆1, such that the wiring is already in place in this
region. Then, placing an extra sensor in region 𝑆1 will be cheaper than placing a
sensor in any of 𝑆2, … , 𝑆𝑅, since 𝑆2, … , 𝑆𝑅 all come with the extra cost of laying
the cable. As such, the resulting design will prefer a sensor placement scheme
that places the sensors in the same region, employing a new region only in the
case when the benefit outweighs the cost. Such a penalty can be implemented in
terms of a group penalty, 𝑉(w) = ∑𝑆𝑅

𝑗=1 ||w𝑗||2, where the weight vector w has
been partitioned into the different groups and w𝑗 represents the parts of the
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weight vector belonging to group 𝑗. This yields

minimize
w

trace((
Υ
∑
𝑚=1
𝑤𝑚F(Y𝜽(𝑚)))

−1) + 𝜈𝑉(w)

subject to 𝑇w ≤ 𝑀,
𝑤𝑚 ∈ [0, 1], 𝑚 = 1, 2, … , Υ

()

where the parameter 𝜈 is a scalar governing the amount of total variation regu-
larization. It is worth noting that in this setup, the number of selected sensors is
still𝑀. Alternatively, sometimes one wishes to study only a subset of the possible
sensor positions, for example to allow for efficient wiring or hardware restrictions.
One such constraint example could be to force all the sensors to be in the same
predefined region. If the region of interest is a square, the optimization problem
becomes

minimize
w

trace((
Υ
∑
𝑚=1
𝑤𝑚F(Y𝜽(𝑚)))

−1)

subject to 𝑇w ≤ 𝑀,
ℓ ≤ 𝑚𝑚 ≤ 𝑢, 𝑚 = 1, 2, … , Υ
𝑤𝑚 ∈ [0, 1], 𝑚 = 1, 2, … , Υ

()

where the extra variables ℓ and 𝑢 have been introduced, representing the borders
of the square in either, some, or all dimensions. Other forms of regions can be in-
cluded similarly, by introducing a corresponding function indicating if the place-
ment is in the region or not. The major difference between applying a penalty
function or a constraint is that a constraint has to be met, whereas with a pen-
alty function the sensor placement can deviate if the benefit of deviating is greater
than the cost. Thus, depending on if the constraints are fixed or if there is some
flexibility decides if the design should be implemented as a penalty function or as
a set of constraints.

In contrast to the previous design setup, one might also want to enforce some
separation among the selected sensor placements, to avoid clustering. Sensor
separation may be a desired feature especially in terms of robustness. Placing all
the sensors close to each other, although possibly being more optimal in terms of
CRB, may make the positioning sensitive to environmental impact, as well as
detrimental effort such as the possible destruction of the sensors, or topological
differences that have not been addressed here, potentially making it desirable to
separate the sensors by some minimum distance. This too can be incorporated in
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the design, but in terms of constraints on the variables. Introduce the
two-diagonal matrix

D = [
−1 1 0 … 0 0
0 −1 1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 0 −1 1

] ()

The constraints enforcing the separation between the sensors can then be imple-
mented as

minimize
w

trace((
Υ
∑
𝑚=1
𝑤𝑚F(Y𝜽(𝑚)))

−1)

subject to 𝑇w ≤ 𝑀,
𝑤𝑚 ∈ [0, 1], 𝑚 = 1, 2, … , Υ
||D𝑚|| ≥ 𝜂

()

where 𝜂 is the minimum separation required. Clearly, these two designs may be
combined by introducing both constraints. So far, we have considered problems of
minimising the trace for a given number of sensors. This problem can naturally be
reformulated to another problem whereby instead of fixing the number of sensors
to be placed, we fix a budget, 𝐵, which is added to the optimisation problem in
terms of a constraint. The cost of placing a sensor at position 𝑖 is then associated
with the cost 𝑐𝑖, with the total cost for all sensors collected in the vector c =
[ 𝑐1, … , 𝑐Υ ]. The associated problem then becomes

minimize
w

trace((
Υ
∑
𝑚=1
𝑤𝑚F(Y𝜽(𝑚)))

−1)

subject to 𝑤𝑚 ∈ [0, 1], 𝑚 = 1, 2, … , Υ
c𝑇w ≤ 𝐵

()

Analogous to the previous formulation, we might seek a sensor placement where
the cost of connecting the different sensors, measured as the distance between
them, is minimized. Such a formulation might arise when the sensors are to be
connected by a cable, and one seeks a design that minimizes the length of the
cable. Typically such a design feature is incorporated as a penalty function where
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one assigns a cost to each arc connecting two sensors, such that

minimize
w

trace((
Υ
∑
𝑚=1
𝑤𝑚F(Y𝜽(𝑚)))

−1) +
Υ
∑
𝑖,𝑗=1

𝑘𝑖,𝑗||𝑤𝑖 − 𝑤𝑗||𝑞

subject to 𝑇w ≤ 𝑀,
𝑤𝑚 ∈ [0, 1], 𝑚 = 1, 2, … , Υ

()

where 𝑘𝑖,𝑗 is a weight associated with each arc and || ⋅ ||𝑞 denotes the q-norm.
Different choices for 𝑞 yield different sensor placement setups. Another
important class of penalty functions that may be utilized is the deadzone-linear
penalty function. Such a penalty assigns no cost when the sensors are within the
deadzone with width 𝑎, but the cost increases linearly as the sensors deviate from
𝑎. Naturally, one may combine the different types of design feature such as
minimum cost together with a group constraint.

We conclude this section with a remark regarding the introduced grid of potential
candidate sensor placements. Clearly, the use of a grid impose some restrictions
on the available sensor placements. This is done partly to allow for that sensors
typically occupies some space, making it unrealistic to allow sensors to be be placed
arbitrarily close to each other; furthermore, the used grid allows the problem to
be solved in a computationally efficient manner, with the size of the sensor grid
having a direct impact on the computational complexity of the optimization as the
problem needs to be evaluated at each grid point. In this work, we have limited
our attention to equidistant cartesian grids as well as circular grids. Other grids,
more suitable to the environment of considered applications are of course possible.

 Numerical

To illustrate the proposed sensor placement scheme, we examine the results using
both simulated and experimental data.

. Simulated data - Tonal model

Initially, consider a hypothetical setup where two speakers are expected to be
located at coordinates (,) and (,), respectively, such as could be expected,
for instance, in an auditorium. The fundamental frequencies of the two speakers
are assumed to be 200 ± 5 Hz and 180 ± 5 Hz, respectively, although the exact
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Figure : The figure illustrates the found optimal sensor placement (magenta) for two
tonal sources (red). Shown in the background is the expected signal strength for the
possible positions. As seen, the sensor placement scheme has selected sensor placement
where the signal strength is expected to be strong, while spread around the expected source
locations.

pitches are unknown. The sources have 𝐿1 = 𝐿2 = 5 overtones. For simplicity,
we limit our attention to the planar scenario, so that 𝑑 = 2. We consider an
equidistant grid of potential sensor locations consisting of |ℳ| = 9820
candidate locations in the region 𝑥, 𝑦 ∈ [−2, 5], except, for presentational
clarity, within a ≤ 1.5 m distance from the sources. Figure  illustrates the setup,
where each pixel represents a candidate sensor location (except in the vicinity of
≤ 1.5 form each source), and the actual source locations are marked in red. The
magenta marks indicate the optimal placements if placing 𝑀 = 8 sensors,
together with the expected strength of the sound field at each location. As can be
seen from the figure, the optimization has selected sensor placements where the
expected signal is strong. Because of the superposition of the signals, the regions
with high signal power are spread out, and so in this case there is no need to
enforce sensor separation. Here, we have used𝑀 = 8, 𝜆 = 0.10, 𝜓𝑝 = 1, ∀𝑝.
The uncertainty in the pitches has been accounted for by adding an equally fine
gridding for both frequency parameters, consisting of  gridpoints around the
proposed frequencies. The simulated data in the numerical section used a square
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Figure : The expected variation of the source position estimates as a function of number
of sensors, comparing the worst case estimator to the randomized rounding method.

equidistant set of gridpoints, with the signals sampled at . kHz. The
simulated data length was𝑁 = 500, and the noise variance was set to 𝜎2 = 0.01.

Figure  illustrates how the variance of the source location decreases with the
number of placed sensors, when placing the sensor optimally for each number of
sensors using (), as compared to the randomized rounding method presented
in []. The figure shows the minimum expected variance over the 𝑥- and 𝑦-
directions for a setup with one source, with  harmonics, placed at the origin as the
number of sensors grow, also illustrating how one may determine the minimum
required number of sensors to use to allow for a desired localization accuracy. As
can be expected, the marginal gain of adding a sensor decreases as the number of
sensors increases, with the amount of added useful information available in the
localization problem decreasing for each additional sensor. It should be noted that
for each setup, the sensors are here placed anew, meaning that when placing five
sensors all five sensors are placed simultaneously, instead of keeping the optimal
sensor setup for four sensors and adding one.
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Figure : The figure shows the proposed optimal sensor selection for the chirp signal for
the Bayesian and hybrid cases, respectively.

. Chirp data

As an illustration of how the method works for signals with time dependent fre-
quency, we also present the resulting sensor placement for the chirp signal con-
sisting of one sinusoid with base frequency 𝜔0 = 180 Hz and a drift term of 𝑐 =
0.5. The results are displayed in Figure , for both the Bayesian and Hybrid ap-
proach. In the setup, the sensors were placed on a grid, and each grid point as-
signed a linear index. The figure shows which sensors were selected with respect
to this linear index. It may be noted that the selected indices for the Bayesian and
the hybrid are quite similar, although the resulting variance of the Bayesian estim-
ate is somewhat lower than the hybrid version, . and ., respectively.

. Real data

Next, we consider a real data experimental setup, using the data set reported on in
[]. This data was collected in an anechoic chamber of approximate dimensions
4 × 4 × 3 meters. The sensor/source setup can be seen in Figures  and , where
the sources are located at s = [−0.4866, 1.0420] and s = [0.3548, −1.2818].
The sources each play the same signal, a SQAM violin signal. As a first step, we
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Figure : The setup of sources and sensors in the anechoic chamber.
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Figure : The setup of sources and sensors used in the real experiment.
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Figure : The figure illustrates the found optimal sensor placement (white) for two audio
sources (red) for the real data case. Shown in the background is the expected signal strength
for the possible positions.

used the HALO method presented in [] to estimate the signal parameters and
locations. The estimates indicated that the violin signal may be well described
as having fundamental frequency 𝜔̂/2𝜋 = 198.0 Hz with 𝐿̂ = 14 overtones.
Next, we proceeded to use these estimates in the sensor placement scheme to
find an optimal sensor placement. The result for placing  sensors is shown in
Figure , where the uncertainties in pitch have been allowed to be ±5𝐻𝑧, again
gridded using  gridpoints in the uncertainty area for each parameter. Again
the selected sensor placement is in locations where the signal is strong. Given the
low dimensionality of the problem, we also compared which of the sensors that
yielded most information, for varying number of sensors, comparing this to the
combinatorial solution. We found that the sensor selections were the same for
both approaches, indicating that the optimization scheme yields the same sensor
placement as the combinatorial search.

. Worst case estimator vs stochastic estimators

To illustrate how the worst case sensor placement in () compares with the
Bayesian and hybrid optimization schemes, we simulate data from one sinusoid
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with frequency 𝑓 = 180 Hz, and 𝐿 = 5, located at [,]. We introduce an
uncertainty of ±0.25m for the x and y coordinates, and a frequency uncertainty
of ±10Hz. For the worst case placement scheme, we grid the parameter space
around the frequency with  points for each grid, i.e., forming the parameter
grid 𝑓 = [170, 190], and a grid of  points around the source coordinates. For
the hybrid placement scheme, we assume that the frequency has a Gaussian
distribution, 𝑓 ∈ 𝒩(180, 0.32), and place a grid around the source coordinates
similar to the one employed for the worst case scheme. Finally, for the Bayesian
setup, we assume the same distribution for the frequency as in the hybrid case,
and further assume that both source coordinates follow a normal distrbution,
𝑥, 𝑦 ∈ 𝒩(0, 0.08).

It is worth noting that if selecting a uniform prior for the stochastic placement
scheme, this will coincide with the worst case placement scheme as 𝐽𝑃 reduces to
zero, and the second part, 𝐽𝐷, simplifies to the Fisher information for the
midpoint of the interval corresponding to the uniform prior. Figures -,
illustrating the performance of the placement schemes, are generated by a
two-step procedure. First, the optimal sensor placement is found by minimizing
the optimization problem associated with the worst case CRLB, the HCRLB,
and the BCRLB. Given the sensor positions found, the resulting RMSE curves
for the different parameters were formed. Here, the MSE estimates are formed
using the corresponding maximum likelihood (ML) and maximum a posteriori
(MAP) estimators, depending on the assumed problem formulation, i.e., when
designing the optimal sensor placement under the Bayesian framework,
using (), we then estimate the corresponding sensor location using the
corresponding MAP estimator. The simulation was repeated for different
number of sensors and different SNRs. The performance is also compared to a
compressed sensing approach, employing a random sensor placement, as well as
the randomized rounding method introduced in []. For these cases, the
corresponding location estimator is the corresponding maximum likelihood
estimator. The figures show the results of averaging  Monte Carlo
simulations. As can be seen, the Bayesian placement scheme in combination
with the corresponding MAP estimator gives the lowest variance, as expected
given that it is able to efficiently exploit the available a priori knowledge. The
compressed sensing approach performs the worst, which is also to be expected
given that it exploits no signal or structure information, either for the placement
or the estimation problem. Also displayed in the figure is the theoretical lower
bound for the Bayesian approach, and one may note that it coincides with its
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corresponding simulated curve. It should be stressed that the different placement
schemes will yield different sensor placements, and as a result different
estimation bounds. These bounds are illustrated in Figure , indicating the
notable performance limits resulting from the used optimality criteria. One may
note that the theoretical bound is the lowest for the Bayesian approach and the
highest for the compressed sensing case. The behaviour of these bounds shows a
similar behaviour as a function of SNR. Finally, a note on the number of
evaluations needed for the different estimators. The minimization using the
BCRLB requires one evaluation for each grid point, yielding a total number of
optimization rounds of Υ. For the hybrid estimator, the same problem required
𝜗Υ evaluations of the optimization problem, and for the worst case estimator
the minimization required 𝜗Υ × 𝜗Υ evaluations of the optimization problem,
where 𝜗 denotes the size of the used grid. In cases where the expectation in the
FIM can not be estimated analytically the MAP has to first be estimated. This
may be done using Monte Carlo methods When comparing the proposed
methods to alternative methods, it may be noted that the proposed methods
have a better performance in terms of MSE for both range and frequency. This
performance gap stems form the fact that the proposed methods utilize the
(partial) a priori knowledge of the signal structure. The computational burden
will depend on how fine the gridding is, an aspect where random methods may
offer a lower complexity at the cost of lower performance.

. Penalised worst case optimisation

We proceed to consider how incorporating a total variation penalty on the optim-
isation changes the sensor placement. Again, we utilize the above simulated ex-
ample, but now we also enforce a sensor separation of at least . (m) to avoid
clustering. We consider the case when the regularization parameter is 𝜈 = 0.7.
The result is illustrated in Figure . As can be seen the sensor separation is much
smaller as compared to the case with no penalty enforced. The parameter 𝜈 is a
design parameter related to the cost of sensor separation. We also compare the
case in (), when the sensors are constrained to lie in a small region, 2.5 ≤ 𝑥 ≤
4.5, −1.5 ≤ 𝑦 ≤ 0.5, and when the same constraint is applied as a penalty. The
results when placing  sensors are shown in Figure . For this case, we chose the
hyper-parameter 𝜈 to have the value .. As can be seen in the figure, the sensor
placement complies with the constraints. Finally, we conclude with an example
of the group penalty in (). In this example, we use a signal with frequency 
Hz and  overtones, located at position (,). All other simulation variables are
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Figure : The RMSE of the range vs the number of sensors, given sensor locations derived
using five different methods.
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Figure : The RMSE of the frequency vs the number of sensors, given sensor locations
derived using five different methods.
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Figure : The theoretical lower bounds for the different placement approaches.

Figure : The proposed sensor placement of eight sensors when using the penalized worst
case optimization. The proposed sensor placement using the penalty is illustrated in pink
circles, whereas the unpenalized sensor placement is illustrated in white.
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Figure : The proposed sensor placement of five sensors when using the penalized worst
case optimization and the box constrained optimization.

Figure : The proposed sensor placement of three sensors when using the group penalty.
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as before. Consider a set of  potential sensors, divided into three groups, out of
which𝑀 = 3 sensors should be selected. Here, the parameter 𝜈 has been set to .
The setup is presented in figure , where it may be noted that the selected sensors
all belong to the same group, marked blue in the picture. Although the signal val-
ues are higher for some individual sensors in the other groups, the group penalty
selects the sensors so that they belong to the same group, which is what was de-
sired.

 Conclusion

In this paper, we have proposed a method for determining a sensor placement
that minimizes a formulation of the CRLB for the corresponding localization
problem. Exploiting the expected signal model, the scheme minimizes a
relaxation of the resulting A-optimality formulation of the localization problem,
and can be efficiently implemented as a semi-definite program. We studied how
the optimization problem changes when using performance measures such as the
worst case CRLB, the Bayesian CRLB, and the hybrid CRLB. Noting the
amount of a priori knowledge needed, and the reduction in complexity
associated with more a priori information. For each known parameter, the
optimization problem reduces in complexity by a factor equal to the grid size. As
an alternative, one could initially use a coarse candidate grid, make an initial
sensor placement, and then repeat the optimization with a finer grid around the
selected points. Given that the sensor placement is a problem that may typically
be solved offline, and that the required computations may be done using parallel
implementations, the computational burden may be reduced allowing for the
efficient use of the method. Additionally, we have extended the problem of
finding an optimal sensor placement to also include different design features, as
may be expected in real applications, such as minimum sensor separation and
sensor placement cost. The proposed methods have been evaluated by numerical
experiments for both simulated and experimental data.

A The Fisher Information Matrix

Introduce the signal at sensor 𝑞 and the signal derived from source 𝑘 as

𝑦∶,𝑞(𝑡) =
𝐾
∑
𝑘=1
𝑦𝑘,𝑞(𝑡) and 𝑦𝑘,∶(𝑡) =

𝑀
∑
𝑞=1
𝑦𝑘,𝑞(𝑡)
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and let 𝐲̃𝑡 denote the measured data vector at time 𝑡, i.e.,

𝐲̃𝑡 = [ 𝑦∶,1(𝑡) … 𝑦∶,𝑀(𝑡) ]
𝑇 = 𝐮̃𝑡 + 𝐧̃𝑡

where 𝐧̃ is defined similar to 𝐲̃, and sensor

𝐮̃𝑡 = [ Ψ1(𝑡) … Ψ𝑀(𝑡) ]
𝑇

with the noise-free measurements at sensor 𝑞 defined as

Ψ𝑞(𝑡) =
𝐾
∑
𝑘=1

𝐿𝑘
∑
ℓ=1
𝜒ℓ,𝑘,𝑞

Then, according to Slepian-Bangs formula (see, e.g., []), when 𝑑 = 2, the 𝑖, 𝑗th
element in F(Y𝜽(𝑚)) may then be expressed as

[F(Y𝜽(𝑚))]𝑖,𝑗 =
2
𝜎2𝑛
ℜ{

𝑁−1
∑
𝑡=0

𝜕𝐮̃𝐻𝑡
𝜕𝜽𝑖

𝜕𝐮̃𝑡
𝜕𝜽𝑗
}

where ℜ(⋅) denotes the real part, with

𝜕𝐮̃(𝑡)
𝜕𝑥𝑠𝑘

=
𝑀
∑
𝑞=1

𝐿𝑘
∑
ℓ=1
(
𝜅𝑞,𝑘
2𝜉2𝑞,𝑘

+
𝑖𝜔𝑘,0𝜅𝑞,𝑘
𝑐𝜉𝑞,𝑘

) 𝜒ℓ,𝑘,𝑞

𝜕𝐮̃(𝑡)
𝜕𝜔𝑘,0

=
𝑀
∑
𝑞=1

𝐿𝑘
∑
ℓ=1
ℓ𝑖 (𝑡 −

𝑟𝑘,𝑞
𝑐 ) 𝜒ℓ,𝑘,𝑞

where 𝜉𝑞,𝑘 = ||𝐦𝑞−𝐬𝑘||2 and 𝜅𝑞,𝑘 = (𝑥𝑚𝑞 −𝑥𝑠𝑘) for the 𝑞th sensor and 𝑘th source,
respectively. The derivatives with respect to the 𝑦-coordinate is defined analog-
ously. For the hybrid and Bayesian bounds, we utilize the formula given in (),
with one part denoting information from the data and the other part denoting
information from the prior knowledge. Assuming independent Gaussian distri-
butions, the components become 𝐽𝑃 = Σ−1𝜽 , where Σ𝜽 has the form of a diagonal
matrix with [Σ𝜽]𝑖,𝑖 = 𝜎2𝜃𝑖 , where 𝜎

2
𝜃𝑖 is the variance for parameter 𝑖. The compon-

ents in 𝐽𝐷 are given by []

[F(Y𝜽(𝑚))]𝑖,𝑗 = 𝔼𝜽, 𝐲̃𝑡 {
2
𝜎2𝑛
ℜ{

𝑁−1
∑
𝑡=0

𝜕𝐮̃𝐻𝑡
𝜕𝜽𝑖

𝜕𝐮̃𝑡
𝜕𝜽𝑗
}}
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Designing Optimal Frequency Offsets
for Frequency Diverse Array MIMO
Radar

Jie Cheng, Maria Juhlin, Andreas Jakobsson, Wen-Qin Wang

Abstract

Frequency diverse array (FDA) radars provide a potential solution to target local-
isation along the slant range and azimuth angle due to the range-angle-dependent
transmit beampattern caused by the used frequency increments. However, the S-
shaped beampattern resulting from the standard FDA leads to multiple candid-
ate location estimates, introducing ambiguity in the target localization. To make
full use of the degrees of freedom (DOF) allowed by the frequency increments,
we here propose an optimal FDA multiple-input multiple-output (MIMO) fre-
quency design scheme based on the Cramér-Rao lower bound (CRLB). The res-
ulting system, here termed the optimal FDA-MIMO (OFDA-MIMO), is formed
by optimizing the expected localization estimation accuracy, given the available
prior knowledge of potential target locations. The used offsets are found as those
minimizing the corresponding Bayesian CRLB (BCRLB), and may be iteratively
refined as further information becomes available in a multi-pulse detection scen-
ario. Both theoretical analysis and simulation results validate the preferable per-
formance of the proposed system as compared to alternative frequency selection
schemes.

Keywords: Frequency diverse array multiple-input multiple-output
(FDA-MIMO), MIMO radar, frequency offset optimization, exploiting prior
knowledge
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 Introduction

Frequency diverse array (FDA) radars have recently attracted notable attention in
the literature [–]. This interest is partly due to that, in contrast to phased-array
(PA) radars with angle-dependent transmit beampatterns and MIMO radars
with conventional joint angular-Doppler processing, FDA can generate a
range-angle-time-dependent response due to the existence of the different carrier
frequencies used by adjacent antenna elements. In , Antonik et al.
introduced the concept of FDA [] and showed the potential for multipath
interference suppression and joint time-frequency control [, ]. Subsequently,
the radiation pattern of FDA has been studied theoretically [–], using
electromagnetic simulations [, ], as well as physical FDA antennas [–].
These results show that, in addition to the range dependence, the range-angle
factors in the standard (uniform) FDA (SFDA) transmit beampattern are
coupled with each other. This coupling leads to an S-shaped beampattern, which
cannot be focused at a specific range-angle region, creating a range-angle
ambiguity in the target localization. In effect, the decoupling of range and angle
cause the resulting beampattern to differ for non-uniform arrays and for the case
of using different carrier frequencies, as is done in an FDA.

For non-uniform arrays, Sammartino et al. introduced a non-uniform array
element spacing arrangement for the transmit FDA of a bistatic system,
creating a range-dependent transmit beampattern []. Combined with
the angle-dependent beamforming of the receive phased array, the joint
transmit-receive beampattern of the entire bistatic system is then decoupled in
range and in angle, forming a point-like distribution. Sparsity has also been
introduced in non-uniform FDA systems to achieve range-angle decoupling with
the aim to obtain a well-focused point beampattern []. Nevertheless, it is often
difficult to modify the arrangement of the antenna elements due to constraints
in the array structure, whereas the choice of used carrier frequencies is often
more flexible. Therefore, many FDA transmit beam-decoupling methods are
based on nonlinear frequency increments. For example, Khan et al. []
proposed an FDA with logarithmically increasing frequency carriers to decouple
the range-angle transmitting beampattern, which produces a single maximum at
the area of interest. Gao et al. [] instead used a nonlinear frequency increment
according to square and cubic functions, but the resulting beam side flap is
relatively high. Additionally, non-uniform frequency offset functions, such as
using a logarithmic frequency offset scheme [], a sinusoidal function [], a
Hamming window-based [], a tangent hyperbolic circular function [], and a
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Costas-sequence modulated code [] have also been proposed for FDA systems.
Further alternatives include an FDA range-angle-dependent decoupling transmit
beamforming method based on random frequency offsets [] and a discrete
frequency increment scheme design based on subspace orthogonality [].
However, for an FDA radar, these approaches still preserve the time-varying
characteristics, and there is no optimal way to match the range-angle pairs in the
transmitted signal, causing potential performance degradation. To overcome
these drawbacks, there has been notable interest in FDA-MIMO radars, which
can provide greater degrees of freedom (DOF) for range-angle control.

Employing an orthogonal frequency shift, the transmit aperture of an
FDA-MIMO radar can be recovered at the receiver to jointly determine the
range and angle parameters of the target []. In [], the Cramér-Rao lower
bound (CRLB) was derived for the resulting estimation problem, and
both MUSIC [] and maximum likelihood [] estimators, using an
unstructured model, were proposed to estimate the joint range, angle, and
Doppler parameters. In [], a unitary tensor MUSIC (UTMUSIC) method
was developed for multiple-target localization using a frequency diverse
subaperturing MIMO (FDS-MIMO) radar, whereas a one-dimensional MUSIC
algorithm for the joint angle and range estimation was proposed in []. A joint
angle and range estimator for low-elevation FDA-MIMO was also proposed
in []. In all these works, linear frequency offsets are employed, limiting the
resulting DOF, and thereby the achievable performance.

In this work, we formulate an optimal frequency selection scheme for an
FDA-MIMO radar that minimizes the CRLB of the target localization problem
given the available a priori knowledge of potential target locations. In order to
do so, the OFDA-MIMO constructs a (possibly non-uniform) grid of potential
carrier frequencies covering the available bandwidth. Then, for each transmit
antenna, the scheme determines which of these candidate carriers that should be
used for the transmission pulse, such that the collection of offsets used over the
array maximize the expected localization performance. For a given (possible)
target location, the resulting optimization determines the set of offset candidates
that minimize the corresponding CRLB. More realistically, when one only has
some knowledge of the regions of interest where a target may appear, such
partial information may be included by instead minimizing either the worst-case
CRLB (WCRLB) or the Bayesian CRLB (BCRLB), in a manner reminiscent of
the microphone placement scheme developed in []. The main contributions
of this work are
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• We propose an optimal transmit frequency selection scheme for an FDA-
MIMO radar, which selects the used carrier frequencies for each transmit-
ter in order to optimize the location performance given the available prior
knowledge.

• We introduce an efficient updating scheme of the used carriers that exploits
the additional information obtained as a result of each pulse transmission.

• We illustrate and evaluate the proposed schemes for varying levels of avail-
able prior knowledge, illustrating the preferable performance obtained as
compared to alternative frequency selection schemes.

The remainder of the paper is organized as follows: Section II formulates the
OFDA-MIMO radar model. The different bounds used in the optimization and
the proposed frequency selection scheme are derived in Section III. Section IV
discusses the corresponding maximum likelihood (ML) and maximum a posteriori
(MAP) estimates. Numerical results are presented in Section V, and, in Section
VI, we conclude upon the work.

 OFDA-MIMO Radar Design

For notational simplicity, we consider a linearly colocated FDA-MIMO radar with
𝑀 transmit antennas and𝑁 receive antennas, using a range of carrier frequencies,
as illustrated in Fig. . The inter-element spacing of the transmitters and receivers
are, again for notational simplicity, assumed to be uniform, and is denoted by 𝑑.
Each antenna element is connected to a narrowband transmitter, with the overall
available bandwidth for all of the transmitters being denoted 𝐵𝑚𝑎𝑥. Initially, only
considering a single pulse, we proceed to form a (potentially non-uniform) grid of
𝑃 candidate carrier frequencies, which here, for notational convenience, is formed,
such that the 𝑚th candidate carrier takes the form

𝑓𝑚=𝑓0+Δ𝑓𝑚=𝑓0+w𝑇𝑚 [
𝛿
2𝛿
⋮
𝑃𝛿
]=𝑓0+w𝑇𝑚𝜹𝑃 ()

for 𝑚 = 0, 1, … ,𝑀− 1, where (⋅)𝑇 denotes the transpose, w𝑚 is a 𝑃-dimensional
selection vector containing a single non-zero element, which is set to one, 𝛿 is the
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Figure : System sketch of an OFDA-MIMO radar. As shown, each transmitter
use a frequency band selected among 𝑃 candidate frequency bands. Each transmitter
emits a waveform with envelope 𝜑𝑚 (𝑡), centered at the corresponding carrier frequency,
𝑓𝑚=𝑓0+Δ𝑓𝑚, for 𝑚 = 0, 1, … ,𝑀 − 1.

frequency increment between the 𝑃 candidate offsets, and 𝑓0 denotes the reference
carrier frequency. For an FDA system, the narrowband signal emitted from the
𝑚th element can be expressed as

𝑠𝑚 (𝑡) = √
𝐸
𝑀𝜑𝑚 (𝑡) 𝑒𝑗2𝜋w

𝑇
𝑚𝜹𝑃𝑡, 0 ≤ 𝑡 ≤ 𝑇𝑃 ()

where 𝜑𝑚 (𝑡) is the complex envelope, 𝑗 denotes the imaginary unit, 𝐸 is the
transmitted energy, 𝑇𝑃 is the radar pulse duration, and 𝑡 is the (fast) time index
within the radar pulse. The transmitted complex envelopes are selected so that
they are (at least approximately) orthogonal to each other [, ], such that

∫
𝑇𝑃
𝜑𝑘 (𝑡)𝜑∗𝑚 (𝑡 − 𝜏) 𝑑𝑡 ≈ 0, 𝑘 ≠ 𝑚, ∀𝜏 ()

where 𝜏 and ∗ denote the time delay and complex conjugate operator, respectively.
Consider a far-field point target with range-angle pair (𝑟, 𝜃), where 𝑟 is the slant
range and 𝜃 is the azimuth angle, as measured from the target direction to the radar
boresight. The target is assumed to be moving at constant velocity 𝑣 towards the
radar. Therefore, using the far-field approximation, the noise-free radar return at
the 𝑛th receive antenna transmitted from the 𝑚th antenna, may be well detailed
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Figure : Receive structure of an OFDA-MIMO radar.

as []
𝑥̃𝑚𝑛 (𝑡, 𝑟, 𝜃) = 𝜉𝜑𝑚 (𝑡 − 𝜏𝑚𝑛 (𝑡, 𝑟, 𝜃)) 𝑒𝑗2𝜋𝑓𝑚(𝑡−𝜏𝑚𝑛(𝑡,𝑟,𝜃)) ()

where 𝜉 denotes the target’s complex reflection coefficient accounting for the two-
way path loss and the target reflexivity. Here, 𝜏𝑚𝑛 (𝑡, 𝑟, 𝜃) denotes the round-trip
delay for the signal from the 𝑚th transmit element to the 𝑛th receive element,
such that

𝜏𝑚𝑛 (𝑡, 𝑟, 𝜃) = 𝜏0(𝑟) + 𝜏𝐷 (𝑡, 𝑟, 𝜃) + 𝜏𝑇,𝑚(𝜃) + 𝜏𝑅,𝑛(𝜃) ()

where

𝜏0(𝑟) = 2𝑟/𝑐 (a)
𝜏𝐷 (𝑡) = −2𝑣𝑡/𝑐 (b)
𝜏𝑇,𝑚(𝜃) = −𝑚𝑑 sin 𝜃/𝑐 (c)
𝜏𝑅,𝑛(𝜃) = −𝑛𝑑 sin 𝜃/𝑐 (d)

with 𝜏0 (𝑟), 𝜏𝐷 (𝑡), 𝜏𝑇,𝑚 (𝜃), and 𝜏𝑅,𝑛 (𝜃) denoting the propagation delays
experienced by the slant range, target motion, inter-element spacings for
the transmitting elements, and the receiving elements, respectively.
Considering that 𝛿 ≪ 𝑓0 and employing the narrowband assumption, i.e.,
𝜑𝑚 (𝑡 − 𝜏𝑚𝑛 (𝑡, 𝑟, 𝜃)) ≈ 𝜑𝑚 (𝑡 − 𝜏0(𝑟)), the approximative (noise-free) radar
return, at receiver 𝑛, from transmitter 𝑚 = 0…𝑀 − 1, may be obtained by
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inserting () into (), yielding

𝑥̃𝑛 (𝑡, 𝑟, 𝜃) ≈ 𝜉𝑒−𝑗2𝜋𝑓0𝜏𝑅,𝑛(𝜃)𝑒−𝑗2𝜋𝑓0𝜏𝐷(𝑡)
𝑀−1
∑
𝑚=0

𝑒−𝑗2𝜋𝑓0𝜏𝑇,𝑚(𝜃)𝑒𝑗2𝜋𝑓𝑚(𝑡−𝜏0(𝑟))𝜑𝑚 (𝑡 − 𝜏0(𝑟))
()

For notational brevity, we will in the following use the notation
𝑥̃𝑛 (𝑡) = 𝑥̃𝑛 (𝑡, 𝑟, 𝜃), 𝜏0 = 𝜏0(𝑟), 𝜏𝐷 = 𝜏𝐷(𝑡), 𝜏𝑇,𝑚 = 𝜏𝑇,𝑚(𝜃), and 𝜏𝑅,𝑛 = 𝜏𝑅,𝑛(𝜃) .
The Doppler shift within the pulse may be neglected assuming that the
individual pulse durations satisfy 𝑇𝑃𝑅𝐷𝑓 ≪ 1, where 𝐷𝑓 = 2𝑣

𝑐 𝑓0𝑇𝑃𝑅, i.e., (see
also [])

𝜈 (𝑡, 𝐷𝑓) = 𝑒−𝑗2𝜋𝑓0𝜏𝐷(𝑡) ≈ 𝑒−𝑗2𝜋𝑘𝐷𝑓 = 𝜈 (𝐷𝑓) ()

where 𝑇𝑃𝑅 denotes the pulse repetition interval (PRI). In the initial processing
of an FDA-MIMO radar, the received signal () is demodulated with 𝑒−𝑗2𝜋𝑓0𝑡,
yielding

𝑥̄𝑛 (𝑡) = 𝜉𝜈 (𝐷𝑓) 𝑒𝑗2𝜋𝑓0𝜏𝑅,𝑛
𝑀−1
∑
𝑚=0

𝜑𝑚 (𝑡 − 𝜏0)𝑒𝑗2𝜋𝑓0𝜏𝑇,𝑚𝑒𝑗2𝜋w
𝑇
𝑚𝜹𝑃(𝑡−𝜏0)𝑒𝑗2𝜋𝑓0𝜏𝐷 ()

where 𝜉 = 𝜉𝑒−𝑗2𝜋𝑓0𝜏0 . After this step, the received signal is processed through a
bank of𝑀matched filters, i.e., ℎ𝑙 (𝑡) = 𝜑∗𝑙 (𝑡) 𝑒𝑗2𝜋w

𝑇
𝑙 𝜹𝑃𝑡, for 𝑙 = 0, … ,𝑀−1, such

that the filter output of the 𝑙th filter may be expressed as

𝑧𝑛𝑙 = ∫
∞

−∞
𝜉𝜈 (𝐷𝑓) 𝑒𝑗2𝜋𝑓0𝜏𝑅,𝑛

𝑀−1
∑
𝑚=0

𝜑𝑚 (𝑡 − 𝜏0)𝑒𝑗2𝜋𝑓0𝜏𝑇,𝑚𝑒𝑗2𝜋w
𝑇
𝑚𝜹𝑃(𝑡−𝜏0)ℎ𝑙(𝑡 − 𝜏′)𝑑𝑡

= ∫
∞

−∞
𝜉𝜈 (𝐷𝑓) 𝑒𝑗2𝜋𝑓0𝜏𝑅,𝑛

𝑀−1
∑
𝑚=0

𝜑𝑚 (𝑡 − 𝜏0)𝑒𝑗2𝜋𝑓0𝜏𝑇,𝑚𝑒𝑗2𝜋w
𝑇
𝑚𝜹𝑃(𝑡−𝜏0)𝜑∗𝑙 (𝑡 − 𝜏′) 𝑒−𝑗2𝜋w

𝑇
𝑙 𝜹𝑃𝑡𝑑𝑡

= 𝜉𝜈 (𝐷𝑓) 𝑒𝑗2𝜋𝑓0𝜏𝑅,𝑛
𝑀−1
∑
𝑚=0

𝑒𝑗2𝜋𝑓0𝜏𝑇,𝑚𝑒−𝑗2𝜋w𝑇𝑚𝜹𝑃𝜏0∫
∞

−∞
𝜑𝑚 (𝑡) 𝜑∗𝑙 (𝑡 − Δ𝜏) 𝑒

−𝑗2𝜋(w𝑇𝑚−w𝑇𝑙 )𝜹𝑃𝑡𝑑𝑡

= 𝜉𝜈 (𝐷𝑓) 𝑒𝑗2𝜋𝑓0𝜏𝑅,𝑛𝑒−𝑗2𝜋w
𝑇
𝑚𝜹𝑃𝜏0

𝑀−1
∑
𝑚=0

𝑒𝑗2𝜋𝑓0𝜏𝑇,𝑚𝜒𝑚,𝑙 (Δ𝜏, [w𝑇𝑚 − w𝑇𝑙 ] 𝜹𝑃)

()

where

𝜒𝑚,𝑙 (Δ𝜏, [w𝑇𝑚 − w𝑇𝑙 ] 𝜹𝑃) = ∫
∞

−∞
𝜑𝑚 (𝑡) 𝜑∗𝑙 (𝑡 − Δ𝜏) 𝑒

−𝑗2𝜋(w𝑇𝑚−w𝑇𝑙 )𝜹𝑃𝑡𝑑𝑡 ()
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with 𝜏′ denoting the time delay corresponding to the cell under test (CUT) and
Δ𝜏 the relative delay corresponding to the first array element, i.e., Δ𝜏 = 𝜏′ − 𝜏0.
For an FDA-MIMO, () may be well approximated as [, ]

𝜒𝑚,𝑙 (Δ𝜏, [w𝑇𝑚 − w𝑇𝑙 ] 𝜹𝑃) ≈𝜒𝑚,𝑙 (0, [w𝑇𝑚 − w𝑇𝑙 ] 𝜹𝑃)

=∫
𝑇𝑃

0
𝜑𝑚 (𝑡)𝜑∗𝑙 (𝑡) 𝑒

𝑗2𝜋(w𝑇𝑚−w𝑇𝑙 )𝜹𝑃𝑡𝑑𝑡

≈∫
𝑇𝑃

0
𝜑𝑚 (𝑡)𝜑∗𝑙 (𝑡) 𝑑𝑡 = 𝑅𝑚,𝑙

()

with the approximations holding for those pulses whose cross ambiguities are
Doppler tolerant []. Here, 𝑅𝑚,𝑙 = ∫𝑇𝑃0 𝜑𝑚 (𝑡)𝜑∗𝑙 (𝑡) 𝑑𝑡 denotes the output of
the 𝑙th filter matched to the 𝑚th transmitter waveform. In particular, because of
the orthogonality assumption in (), the synthesized output of the 𝑛th received
signal with the 𝑙th matched filter for one pulse, including the corresponding
additive noise, may be expressed as

𝑦𝑛𝑙 = 𝑧𝑛𝑙 + 𝜔𝑛𝑙
= 𝜉𝜈 (𝐷𝑓) 𝑒𝑗2𝜋𝑓0𝜏𝑅,𝑛𝑒𝑗2𝜋w

𝑇
𝑙 𝜹𝑃𝜏0𝑒𝑗2𝜋𝑓0𝜏𝑇,𝑙 + 𝜔𝑛𝑙

()

where 𝜔𝑛𝑙 ∼ 𝒞𝒩(0, 𝜎2𝜔 ) is assumed to be well modelled using a zero-mean cir-
cularly symmetric Gaussian distribution, and where we have used the assumption
that 𝑅𝑙,𝑙 ≈ 1, and 𝑅𝑚,𝑙 ≈ 0 if 𝑚 ≠ 𝑙.

 Frequency offset design via CRLB minimisation

To derive the frequency offset scheme that minimizes the estimation error for the
range, angle, andDoppler shift estimates, we introduce a vector 𝜸 ∈ ℝ𝐿×1 detailing
the unknown parameters of the target, where 𝐿 denotes the number of unknown
parameters, initially considering these parameters to be given, such that

𝜸 = [ ℜ {𝜉} ℑ {𝜉} 𝑟 𝜃 𝐷𝑓 ]
𝑇

()

where ℜ{⋅} and ℑ {⋅} indicates the real and imaginary parts, respectively.
Assuming that a statistically efficient estimator of the unknown parameters, 𝜸, is
feasible, we seek to determine the set of frequency offsets such that the
corresponding CRLB is minimized, thus minimizing the achievable root mean
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squared error (RMSE) of the 𝜸 estimate. The CRLB is formed as the inverse of
the Fisher Information Matrix (FIM). Let 𝑦𝑛𝑙 (𝜸) denote the received signal at
receiver 𝑛 and filtered through the matched filter 𝑙, as defined in (), for the
parameters 𝜸, and 𝐅 (𝑦𝑛𝑙 (𝜸)) the corresponding FIM. In order to minimize the
CRLB, one should determine which form of optimality that is sought; in this
work, as is also commonly done in the literature [, , ], we employ an
A-optimality formulation, minimizing the trace of the inverse FIM, yielding the
minimization

minimize
w𝑙

trace ((
𝑁−1
∑
𝑛=0

𝑀−1
∑
𝑙=0
𝐅 (𝑦𝑛𝑙 (𝜸)))

−1

)

subject to 0 < ||w𝑙||0 ≤ 1, 𝑙 = 0, … ,𝑀 − 1
()

where the (𝑖, 𝑗)th element of 𝐅 (𝑦𝑛𝑙 (𝜸)) is formed as

[𝐅 (𝑦𝑛𝑙 (𝜸))]𝑖,𝑗 = 𝔼 {∇𝛾𝑖 log (𝑝𝑑𝑓 (𝑦𝑛𝑙 (𝜸))) ∇𝛾𝑗 log (𝑝𝑑𝑓 (𝑦𝑛𝑙 (𝜸)))
∗} ()

where 𝔼 {⋅}, ∇𝛾𝑖 , and 𝑝𝑑𝑓 (𝑦𝑛𝑙 (𝜸)) denote the statistical expectation, gradient
with respect to 𝛾𝑖, i.e., the 𝑖th element of 𝜸, and the probability density function
(PDF) of 𝑦𝑛𝑙 (𝜸), respectively, and where the (pseudo)-norm constraint, ||w𝑙||0,
ensures that only one element in the selection vector w𝑙 is chosen, for each
𝑙. This constraint causes the optimization problem to be a non-convex
combinatorial problem, which implies that it is infeasible to solve in any
practically relevant scenario. Fortunately, the problem may be approximated by
relaxing the constraint by allowing the elements of w𝑙 to instead take on values
in the interval [0, 1], relaxing the (pseudo)-norm by instead using the -norm,
enabling the problem to be approximated by a semidefinite program [], [].
The resulting relaxed solution, as detailed below, leads to an estimated selection
vector for each transmitting antenna, with each element of the vector indicating
the suitability of each candidate. By only retaining the maximum value in the
vector, the selected candidate may then be determined.

In order to form the relaxed optimization problem, we initially note that the
identity

trace (B−1) =
𝐺−1
∑
𝑔=0

e𝑇𝑔B
−1e𝑔 ()

where e𝑔 denotes the 𝑔th canonical basis vector, i.e., a vector that is 1 at the 𝑔th
element and zero elsewhere, holds for every invertible 𝐺 × 𝐺 matrix []. Em-
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ploying the Schur’s complement

𝜇 − c𝑇B−1c ≥ 0 ⇔ [ B c
c𝑇 𝜇 ] ⪰ 0 ()

where 𝜇 is scalar, c is an arbitrary vector, and X ⪰ 0 denotes that the matrix is
positive semidefinite. Therefore, it follows that the minimization problem

minimize
B≻0

c𝑇B−1c ()

may be reformulated as the equivalent problem

minimize
𝜇,B≻0

𝜇

subject to [ B c
c𝑇 𝜇 ] ⪰ 0

()

Therefore, () can be reformulated as the relaxed optimization problem

minimize
{𝜇𝑔},{w𝑙}

𝑀−1
∑
𝑔=0

𝜇𝑔

subject to [ 𝐅 (𝐲𝑀 (𝜸)) e𝑔
e𝑇𝑔 𝜇𝑔

] ⪰ 0

𝐅 (𝐲𝑀 (𝜸)) ≻ 0
0 < ||w𝑙||1 ≤ 1

()

where

𝐅 (𝐲𝑀 (𝜸)) =
𝑁−1
∑
𝑛=0

𝑀−1
∑
𝑙=0
𝐅 (𝑦𝑛𝑙 (𝜸)) ()

The minimization in () may be solved as a semidefinite program with standard
convex solvers, such as SeDuMi [] or SDPT [], although such a solution is
computationally somewhat cumbersome if evaluable for multiple candidate tar-
get locations. The resulting optimization assumes perfect signal information in
terms of the unknown parameters, 𝜸, and it is assumed that parameters have the
same impact on the minimization, assumptions which are highly unrealistic. In
order to address the case of varying importance of parameters in the minimization
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FDA-MIMO radar

The potential target

( )2
r

( )2
θ

( )1
r

( )1
θ

Figure : The discrete range and angle grid of the detection area for the worst-case
formulation in (). Here, the considered range and angle regions are formed over a
grid 𝒯(𝑖)𝑟 = {𝑟(𝑖)1 , … , 𝑟

(𝑖)
𝑇𝑟 } and 𝒯

(𝑖)
𝜃 = {𝜃(𝑖)1 , … , 𝜃

(𝑖)
𝑇𝜃 }, respectively. For each such location,

a grid of 𝑇𝐷 Doppler shifts is considered.

problem, a weighting matrix may be introduced to yield the weighted FIM [,
]. Introducing the weighting parameters {𝜓𝑔}, () may be generalized as

minimize
{𝜇𝑔},{w𝑙}

𝑀−1
∑
𝑔=0

𝜓𝑔𝜇𝑔

subject to [ 𝐅 (y𝑀 (𝜸)) 𝑒𝑔
𝑒𝑇𝑔 𝜇𝑔

] ⪰ 0

𝐅 (y𝑀 (𝜸)) ≻ 0
0 < ||w𝑙||1 ≤ 1

()

Comparing () and (), it may be noted that the weight parameter, 𝜓𝑔, allows
the user to put different emphasis on different components in the vector 𝜸. If
𝜓𝑔 = 0 for some values of 𝑔, this implies that the parameter 𝜸𝑔 will be disregarded
in the minimization.

Typically, the precise location of a potential target is not known a priori, although
regions of interest may well be. To allow for this, we proceed to modify the design
scheme such that this form of information may be taken into account. In order
to do so, we examine two different approaches to allow for a wider range of target
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locations. Initially, we examine an extension of (), wherein we form a worst-
case optimization over a grid of potential target locations and Doppler shifts. Let
𝒯(1)𝑟 = {𝑟(1)1 , … , 𝑟

(1)
𝑇𝑟 }, 𝒯

(1)
𝜃 = {𝜃(1)1 , … , 𝜃

(1)
𝑇𝜃 }, and 𝒯

(1)
𝐷 = {𝐷(1)1 , … ,𝐷𝑓

(1)
𝑇𝐷
} denote

the sets of considered range and angle locations, as well as Doppler shifts of a
potential target for the initial pulse, as illustrated in Fig. , where 𝑇𝑟, 𝑇𝜃, and 𝑇𝐷
denote the number of range, angle, and Doppler candidates, respectively. Thus,
in order to determine the worst-case optimal solution for the initial pulse, the
optimization in () is generalized to

minimize
{𝜇𝑔},{w𝑙}

𝑀−1
∑
𝑔=0

𝜓𝑔𝜇𝑔

subject to [ 𝐅 (y𝑀 (𝜸)) e𝑔
e𝑇𝑔 𝜇𝑔

] ⪰ 0

𝐅 (y𝑀 (𝜸)) ≻ 0
0 < ||w𝑙||1 ≤ 1
𝑟 ∈ 𝒯(1)𝑟 , 𝜃 ∈ 𝒯(1)𝜃 , 𝐷𝑓 ∈ 𝒯(1)𝐷𝑓

()

We term the resulting worst-case optimal frequency selection scheme
OFDA-MIMO-W. For a single pulse, the computational complexity of forming
() is mainly affected by the size of the used parameter grids. Forming the FIM
over all 𝑃 possible combinations of carriers, for the 𝑀 transmitters, over the
three parameter grids, thus requires 𝑂(𝑃𝑀𝑇𝑟𝑇𝜃𝑇𝐷𝐿3) operations, where the 𝐿3
results from the cost of forming the inverse FIM. Fortunately, the optimization
in () may be formed in a greedy manner, fixing all but one of the transmitter
grids and only optimizing for the sole remaining transmitter. By then doing this
for all transmitters, the overall complexity may be reduced to 𝑂(𝑀𝑃𝑇𝑟𝑇𝜃𝑇𝐷𝐿3).

In a second formulation, we instead consider that the target parameters follow
some known distribution. In this way, the range and angle of a potential target
may be considered stochastic, allowing for a solution that incorporates this
uncertainty. To incorporate the location uncertainty, we therefore instead
optimize the localization performance using the Bayesian FIM (BFIM) []. In
this case, the BFIM, 𝐅𝐵 (y𝑀 (𝜸)), will consist of two parts [], such that

𝐅𝐵 (y𝑀 (𝜸)) = 𝐅𝐷 (y𝑀 (𝜸)) + 𝐅𝑃 (y𝑀 (𝜸)) ()

where 𝐅𝐷 (y𝑀 (𝜸)) denotes the contribution from the data, as defined in (),
whereas𝐅𝑃 (y𝑀 (𝜸)) details the available knowledge of the stochastic prior [,],
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with the (𝑖, 𝑗)th element of 𝐅𝑃 (y𝑀 (𝜸)) being

[𝐅𝑃 (y𝑀 (𝜸))]𝑖,𝑗 = −𝔼 [
𝜕2𝑝𝑑𝑓 (𝜸)
𝜕𝜸𝑖𝜕𝜸𝑗

] ()

where 𝑝𝑑𝑓 (𝜸) denotes the prior distribution of the L-dimensional parameters 𝜸.
In order to form 𝐅𝐵 (y𝑀 (𝜸)), the expected value of the Jacobian in 𝐅𝐷 (y𝑀 (𝜸))
has to be estimated. As further discussed in the numerical section, this can be
done using Monte Carlo simulations given the assumed prior. This allows the
frequency design problem to be reformulated as the one instead minimizing the
Bayesian CRLB (BCRLB), such that

minimize
{𝜇𝑔},{w𝑙}

𝑀−1
∑
𝑔=0

𝜓𝑔𝜇𝑔

subject to [ 𝐅𝐵 (y𝑀 (𝜸)) e𝑔
e𝑇𝑔 𝜇𝑔

] ⪰ 0

𝐅𝐵 (y𝑀 (𝜸)) ≻ 0
0 < ||w𝑙||1 ≤ 1

()

Different from (), () only need to be solved once, without the use of grid
over 𝑟, 𝜃, and 𝐷𝑓, resulting in a computational cost of 𝑂(𝑃𝑀𝐿3), which, by the
use of a greedy implementation as noted above, reduces to 𝑂(𝑃𝑀𝐿3). However,
in order to form the BFIM one has to form 𝐅𝐷 (𝑦𝑀 (𝜸)), which typically has to be
done using Monte Carlo simulations, increasing the complexity by 𝑂(𝐶𝐿), where
𝐶 denotes the number of Monte Carlo samples.

 Estimation

We proceed to examine the problem of estimating the location of a target using the
used frequency offset selection. Consider a target at location Φ = [𝑟, 𝜃], moving
with velocity 𝑣. The filtered signal samples for the 𝑘th pulse, 𝑦(𝑘)𝑛𝑙 , as defined in
(), may be stacked in matrix form as

𝐘𝑘 = [ y(𝑘)0 … y(𝑘)𝑀−1 ] ∈ ℂ
𝑁×𝑀 ()

y(𝑘)ℓ = [ 𝑦(𝑘)0ℓ … 𝑦(𝑘)(𝑁−1)ℓ ]
𝑇

()





Paper B

where y(𝑘)ℓ denotes the ℓth filtered signals for all receivers, for pulse 𝑘. This may
succinctly be expressed as

𝐘𝑘 = 𝜉𝜈𝑘 (𝐷𝑓)𝐀𝑇𝑅|𝑘 (𝑟, 𝜃) + 𝛀𝑘 ()

where

𝐀𝑇𝑅|𝑘 (𝑟, 𝜃) = 𝐚𝑅 (𝜃) 𝐚𝑇𝑇|𝑘 (𝑟, 𝜃) ()

𝐚𝑇|𝑘 (𝑟, 𝜃) = [

𝑒−𝑗2𝜋(𝐰
𝑇
0|𝑘 𝜹𝑃𝜏0+𝑓0𝜏𝑇,0)

𝑒−𝑗2𝜋(𝐰
𝑇
1|𝑘 𝜹𝑃𝜏0+𝑓0𝜏𝑇,1)

⋮
𝑒−𝑗2𝜋(𝐰

𝑇
𝑀−1|𝑘 𝜹𝑃𝜏0+𝑓0𝜏𝑇,𝑀−1)

] ()

𝐚𝑅 (𝜃) = [ 𝑒−𝑗2𝜋𝑓0𝜏𝑅,0 ⋯ 𝑒−𝑗2𝜋𝑓0𝜏𝑅,𝑁−1 ]𝑇 ()

𝛀𝑘 = [ 𝝎(𝑘)0 … 𝝎(𝑘)𝑀−1 ] ()

𝝎(𝑘)ℓ = [ 𝜔(𝑘)0ℓ … 𝜔(𝑘)(𝑁−1)ℓ ]
𝑇

()

with 𝜈𝑘(𝐷𝑓) representing the Doppler shift of the 𝑘th pulse, as defined in (), and
𝜔(𝑘)𝑛𝑙 ∼ 𝒞𝒩(0, 𝜎2𝜔 ). TheML estimate of the unknown parameters using𝐾 pulses,
each possibly having different sets of carrier frequencies, may then be formed as
(see also [, ])

{𝚽̂, 𝐷̂𝑓} = argmax
𝚽,𝐷𝑓

∣
𝐾−1
∑
𝑘=0
𝐚𝐻𝑅 (𝜃)𝑌𝑘𝐚∗𝑇|𝑘 (𝑟, 𝜃)∣

2

()

In the case when considering Bayesian priors, one may instead form the MAP
estimate as [, ]

{𝚽̂, 𝐷̂𝑓} = argmax
𝚽,𝐷𝑓

pdf (𝚪 ∣𝚽,𝐷𝑓 ) pdf (𝚽) pdf (𝐷𝑓) ()

When forming the estimates, one initially has only a coarse prior knowledge of
potential target locations, or perhaps no such knowledge is available at
all. In the latter case, as is also considered in the following, we employ a
standard linear frequency offset scheme, i.e., using the standard FDA-MIMO
(SFDA-MIMO) [], for the initial pulse. The accuracy of the resulting
location and velocity estimates may be reasonably well approximated by the
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Table : Simulation parameters of the studied FDA-MIMO radar

Parameter Value

Transmit elements 
Receive elements 
Reference carrier frequency, 𝑓0  GHz
Wavelength, 𝜆 . m

corresponding CRLB, allowing this accuracy to be employed as prior knowledge
when computing the suitable frequency offsets for the following pulse, thereby
allowing for an iteratively refined localization estimate. In this way, the optimal
frequency offset schemes are found for the consecutive pulses by minimizing the
optimization problem associated with the worst-case CRLB or the BCRLB,
respectively. The resulting frequency offsets are then employed for the following
pulse, and the location and velocity estimates updated using the ML or MAP
estimates, respectively, for the new offset scheme. The resulting search grids for
the second pulse, 𝒯(2)𝑟 , 𝒯(2)𝜃 , and 𝒯(2)𝐷 , are then, as illustrated in Fig. , formed
over a smaller uncertainty region, reflecting the improved prior information
available for the second pulse. This in turn allows the CRLB estimates to be
improved, further improving the offset scheme used for the following pulse, and
so on, until the desired resolution has been achieved. As the velocity estimates
are typically quite poor until the uncertainty in 𝑟 and 𝜃 has been reduced, it is
often preferable to restrict the size of the grid of 𝐷𝑓 to a single or a few elements
for the initial pulses, and first include a finer grid for later pulses.

 Numerical Evaluation

We proceed to evaluate the performance of the proposed frequency selection
scheme using simulated data with parameters as listed in Table I. When doing
so, we design the transmission carrier frequencies using different approaches and
illustrate both the resulting bounds and the RMSE achieved when employing
the ML or MAP estimators, for the corresponding deterministic and Bayesian
settings, respectively. The ML or MAP estimators are in these cases given data
simulated using the corresponding carrier design scheme, illustrating the
achievable performance for each design scheme. In the simulations, we examine
the following FDA-MIMO radar configurations: (i) the SFDA-MIMO radar
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Figure : The resulting FDA-MIMO radar transmit beampatterns for the discussed
frequency selection schemes.

with linear increasing frequency offset, using Δ𝑓𝑆𝐹𝐷𝐴−𝑀𝐼𝑀𝑂𝑚 = 𝑚 ⋅ 𝐵max/𝑀 as
frequency offset for the 𝑚th carrier; (ii) the logarithmic FDA-MIMO
(LFDA-MIMO) []: FDA-MIMO radar using logarithmically increasing
frequency offset, where the frequency offset for the 𝑚th element is
Δ𝑓𝐿𝐹𝐷𝐴−𝑀𝐼𝑀𝑂𝑚 = log(𝑚 + 1) ⋅ 𝐵max/log(𝑀); (iii) the proposed worst-case
OFDA-MIMO selection scheme (OFDA-MIMO-W), i.e., the FDA-MIMO
radar using Δ𝑓𝑂𝐹𝐷𝐴−𝑀𝐼𝑀𝑂𝑚 minimizing () for a given target location; (iv) the
proposed Bayesian OFDA-MIMO selected scheme (OFDA-MIMO-B): the
FDA-MIMO radar minimizing the BCRLB in (). For the OFDA-MIMO- B,
the BFIM is computed using 𝐶 = 103 Monte Carlo simulations.

. Example : FDA-MIMO radar transmit beampatterns

Initially, we illustrate the beampatterns of the different FDA-MIMO radar
configurations for a single target located at (10 km, −28∘), with a velocity
𝑣 = 324 km/h, yielding a Doppler shift 𝐷𝑓 = 0.4 Hz. In the figures, we have
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Table : Used frequency offset schemes (in kHz) of the discussed FDA-MIMO radar for
the example in Fig. 

Δ𝑓1 Δ𝑓2 Δ𝑓3 Δ𝑓4 Δ𝑓5 Δ𝑓6
SFDA-MIMO      
LFDA-MIMO  . . . . 
OFDA-MIMO-W      
OFDA-MIMO-B      

used 𝑃 = 50 carrier candidates, for a grid spacing 𝛿 = 100 kHz, such that
𝐵𝑚𝑎𝑥 = 5 MHz. Fig. (a) shows the beampattern of the SFDA-MIMO radar,
illustrating how the energy of its beampattern in space has the noted S-shape,
being scattered over a large region and with high sidelobe ridges. Fig. (b) shows
the corresponding beampattern of the LFDA-MIMO radar, illustrating how the
energy of the beampattern is even more scattered than for the SFDA-MIMO,
although having lower energy in the sidelobe. Fig. (c) shows the beampattern
of the proposed OFDA-MIMO-W radar, assuming accurate information of the
target location. As can be seen in the figure, the resulting beampattern yields
a well focused pattern centered at the target location. Allowing for an
uncertainty in the target location, Fig. (d) shows the beampattern of the
proposed OFDA-MIMO-B radar, which is seen to also offer a well focused
beampattern, even though the radar now only assumes the target to be located as
detailed by the priors. Here, the parameter vector 𝜸 is modelled with 𝜉 = 1,
𝑟 ∈ 𝒩(10000, 200), 𝜃 ∈ 𝒩(−28, 0.5), and 𝐷𝑓 ∈ 𝒩(0.4, 0.05).

. Example : localisation performance analysis for target

We proceed to illustrate how the used frequency offset scheme affects the
performance of the location estimate considering a target located
at 𝑟0 = 10220 m, 𝜃0 = −28∘, with 𝐷𝑓 = 0.4 Hz and 𝜉 = 1. For
the OFDA-MIMO-W, we consider an initial gird of candidate locations
𝒯(1)𝑟 = {1, 1.02, 1.04, … , 15} km, 𝒯(1)𝜃 = {−40∘, −37∘, −34∘, … , 11∘}, and
𝒯(1)𝐷 = {0.25, 0.35, 0.45}. For the OFDA-MIMO-B, we assume that the
range, angle, and Doppler shift have Gaussian distributions, 𝑟𝑠 ∈ 𝒩(𝑟0, 𝜎𝑟),
𝜃𝑠 ∈ 𝒩(𝜃0, 𝜎𝜃), and 𝐷𝑓 ∈ 𝒩(𝐷𝑓, 𝜎𝐷𝑓). To allow the different forms of priors to
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be roughly the same, we set 𝜎𝑟 = 15 m, 𝜎𝜃 = 1.5∘, and 𝜎𝐷𝑓 = 0.05. The

signal-to-noise ratio (SNR) in decibel is here defined as 𝑆𝑁𝑅 = −10log10
|𝜉|2
𝜎2𝜔 ,

where 𝜎2𝜔 is the noise power at the receiver (for notational simplicity, we here
assume that all receivers experience the same 𝑆𝑁𝑅).

In this example, the initial pulse of the proposed scheme is formed using
SFDA-MIMO, after which the resulting location estimates are used to estimate
the corresponding CRLB, which is then in turn used to improve the frequency
selection scheme, as discussed above. As the prior knowledge of the location and
velocity of a target will initially be poor, we proceed to illustrate the proposed
updating procedure taking this into account. In the first pulse, striving
to initially detect the presence of a target, we are primarily interested in
determining the range to a potential reflector. For this reason, we use a
weighting of the parameters in 𝜸 such that the frequency offset scheme will
emphasise only the range parameter, setting 𝜓3 = 1, while letting all other
weights, 𝜓𝑙 = 0, for 𝑙 = 1, … , 𝐿, 𝑙 ≠ 3. This will cause the offset design scheme
to prioritize minimizing the CRLB corresponding to the range estimate. The
corresponding uncertainties are set correspondingly to reflect the lack of
knowledge for the other parameters. For the second pulse, the measured signal
offers some information of the range to the target, thereby allowing us to reduce
the size of the corresponding uncertainty region, using the estimated range to
determine the CRLB and update the used prior. To begin to also consider the
angle information, we now include the weighting for 𝜃, setting 𝜓4 = 10, while
retaining 𝜓3 = 1 (note the significant difference in scale for the range and angle
estimates, indicating that we are still giving the range parameter a weighting
roughly 100 times higher than the angle estimate.) After the second pulse, we
have further information of the range and angle estimates, allowing us to increase
the weighting of the 𝜃 parameter, setting 𝜓4 = 103, although the location
information is still deemed to be insufficient to accurately estimate the velocity,
updating the frequency selection scheme accordingly. In the fourth pulse, we
start including a focus also on the velocity estimate; letting 𝜓3 = 1, 𝜓4 = 104, and
𝜓5 = 100, now giving equal weighting to the range and angle estimates, but a
lower weighting to the velocity estimate. Finally, in the fifth pulse, and onwards,
we allow an equal weighting of the sought parameters (reflecting their
difference in size), setting 𝜓3 = 1, 𝜓4 = 104, and 𝜓5 = 105. Figs. - show the
corresponding performance for the first  pulses, as a function of SNR,
illustrating how the performance of the corresponding estimates improve given
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Figure : The expected achievable performance for the initial pulse as measured by the
corresponding CRLB when employing the discussed frequency selection schemes using
𝜓3 = 1 and 𝜓𝑙 = 0, for 𝑙 = 1, … , 5, 𝑙 ≠ 3, as a function of SNR, for the (a) range and (b)
angle estimates.

the increasing information. As can be seen in the figures, the optimal schemes
allow for notably improved location estimates as compared to the standard and
logarithmic frequency selection schemes, for all configurations. It may be noted
that the performance difference for these initial pulses are rather similar. To
better illustrate how the performance improves over the pulses, Fig.  illustrates
the performance as a function of the pulse number, for SNR = −10 𝑑𝐵. It may
be noted that OFDA- MIMO-B yields the best performance in both angle,
range, and Doppler, whereas the SFDA-MIMO radar offers the worst. Fig. 
compares the RMSE as a function of the number of used pulses, 𝐾, of
FDA-MIMO radars for range, angle and Doppler shift, respectively. The results
are here averaged over  Monte Carlo (MC) trials at 𝑆𝑁𝑅 = −10 dB. It is
observed that, in the case of larger 𝐾, the range, angle and Doppler estimators of
both FDA-MIMO radars have MSEs close to the corresponding CRLBs.

Fig.  illustrates the expected performance as a function of the used bandwidth
𝐵𝑚𝑎𝑥, for 𝑆𝑁𝑅 = −10 dB and 𝛿 = 100 kHz. As may be seen in the figure, the
proposed frequency selection schemes improve on the efficiency of the used
bandwidth, enabling accurate estimates using a substantially lower overall
bandwidth. It should be stressed that, for the OFDA-MIMO-B, the bandwidth
does not notably affect the performance as the exploited information is the
assumed prior information. When accurate prior information of target is given,
the bandwidth does not have a significant effect on the estimation of the target.
Interestingly, it can also be seen in Fig. , that the accuracy of the angle
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Figure : The expected achievable performance for the second pulse as measured by the
corresponding CRLB when employing the discussed frequency selection schemes for 𝜓3 =
1, 𝜓4 = 10, and 𝜓𝑙 = 0, 𝑙 = 1, … , 5, ≠ 3, 4, as a function of SNR, for the (a) range and
(b) angle estimates.
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Figure : The expected achievable performance as measured by the corresponding CRLB
when employing of the discussed frequency selection schemes for 𝜓3 = 1, 𝜓4 = 103, and
𝜓𝑙 = 0, for 𝑙 = 1, 2, 5, as a function of SNR, for the (a) range, (b) angle.

estimate are almost not affected by the changes of 𝐵𝑚𝑎𝑥, a result which is
consistent with [].

 Conclusion

In this paper, we formulate two frequency selection design schemes based on
minimizing the worst-case and the Bayesian CRLB, incorporating the available
prior knowledge of potential target locations in the design scheme. The
proposed scheme form an A-optimal minimization of the corresponding CRLB
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Figure : The expected achievable performance for the fourth pulse as measured by the
corresponding CRLB when employing the discussed frequency selection schemes using
𝜓3 = 1, 𝜓4 = 104, 𝜓5 = 100, and 𝜓𝑙 = 0, for 𝑙 = 1, 2, as a function of SNR, for the (a)
range, (b) angle, and (c) Doppler shift estimates.

over a range of candidate frequency offsets, thereby obtaining the set of carriers
most suitable for locating a target given the prior information. Comparative
simulation results show that the proposed selection schemes significantly
improve the radar performance as compared with existing frequency selection
approaches, in both focusing the transmit energy to the desired target position,
as well as for the resulting estimates.
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Figure : The expected achievable performance as measured by the corresponding RMSE
when employing the discussed frequency selection schemes, as a function of the number
of pulses, for the (a) range, (b) angle, and (c) Doppler shift estimates.
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Efficient Tracking of Inhomogeneous
Jammers in a Wireless Network

Maria Juhlin and Andreas Jakobsson

Abstract

In this paper, we propose a novel approach for locating and tracking an
unknown number of jammers in a wireless network. The area and shape covered
by each jammer is assumed to be partly unknown, and may vary over time as the
jammers move through the network. By assuming that the jammed region for
each jammer may be described by one of a set of parametric methods, the
appropriate shape as well as the number of jammers may be determined, even
when the jammed regions overlap substantially. Employing a Viterbi-based
tracking approach, we allow for an improved localization of moving jammers,
including when new jammers emerge or leave the network. Numerical
simulations illustrate the performance of the introduced framework as compared
to recent alternative approaches.

Keywords: Localization and tracking of jammers, wireless networks, model or-
der estimation, detecting jamming patterns
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 Introduction

Many everyday phenomena may be considered as different forms of networks,
with examples ranging from railway networks and shipping routes, to wireless
LANs and sensor networks. In most cases, the communication in the
networks are safe-guarded against adversarial attacks by means of predefined
communication protocols, such as e.g. MACs, and other security measures.
Apart from eavesdropping, denial-of-service (DoS) is a common method used to
interfere with the communication in a network. There are many ways to
instigate a DoS attack, e.g., with the DoS attacker flooding the network with
data forcing parts of it to shut down due to overload. Another way to interfere
with a network is to use physical jamming devices, making communication in
the jammed area impossible.

When a successful jamming attack does occur, some form of action must
be taken to fend off the attack in order to allow the communication to
recommence. To counter jamming attacks, it is generally critical to accurately
locate the jammer’s location, whereafter it may be neutralized in a suitable way.
Thus, an important problem is to detect and accurately estimate the location of
any jammers in the network. Given the prevalence of wireless sensor networks
(WSNs), jammer localization in WSNs is a problem currently attracting notable
interest. In the literature, there are two main approaches to jammer localization,
range-based methods and range-free methods []. Range-based methods
utilize the fact that the signal strength of the jamming signal decreases with
distance, whereas range-free methods do not make this assumption. When
range measurements are available, range-based methods are often superior.
Regrettably, in most cases, range estimates are not available or reliable, generally
making range-free techniques the methods of choice. One of the first methods
presented for jammer localization is found in [], where a single jammer with a
circular jamming region is located on a grid of sensor nodes. The setup of
sensors and jammers on a grid as done in [] is a somewhat idealized setup, and
a more general approach was considered in [,], where the jammer location was
found as the weighted average of the jammed nodes. The method in [] may be
used both with range measurements and without. An alternative method is
found in [], where physical constraints have been applied to find the jammer
location. The localization algorithm is iterative and at each time point the
jammer location is updated so as to incorporate all the jammed nodes while still
maximizing the distance to the unaffected ones. Yet another method was
presented in [] whereby the convex hull of the jammed nodes was formed, with
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the (single) jammer being assumed to be located at the center of the circle
enclosing this hull. The common feature for all the noted methods is that they
all treat the somewhat ideal setup of a single stationary jammer with a circular
jamming region. A more realistic scenario considering multiple possibly
overlapping jammers was presented in [], where two methods were presented
for jammer localization, the first method exploiting fuzzy C-means, and the
other making use of a skeleton algorithm from image analysis for finding
bifurcation points. Despite this extension, the jammers were still assumed to be
circular and stationary, moreover the jammers were only allowed a maximum
overlap of %, making the problem rather idealized for real world applications.
Addressing these concerns have partially been done by studying jammer tracking
in e.g. [, ], where the first method allows for the tracking of one circular
jammer, and the other two methods use different variants of the Kalman filter
for tracking multiple jammers, albeit all assuming circular jamming regions.
Apart from only allowing for a circular jamming region, another drawback with
the proposed methods is that they assume that the number of jammers is known
a priori, an often unrealistic assumption, but one that is required by the Kalman
filter. A potential workaround to this problem could be to estimate the number
of jammers present at several prescribed time instances and then update the
Kalman algorithm accordingly, although such an approach will quickly
become computationally wasteful, and might suffer significant performance
degradations.

To address the issues outlined above, this work focuses on the more realistic
setup of moving jammers with potentially overlapping non-circular jamming
regions, with an unknown number of jammers being present in the network. By
allowing for non-stationary jammers, one may extract information about their
locations and jamming patterns that would not have been possible from a single
snapshot. As the jammer moves through the network, information regarding the
jammer’s jamming pattern can be accumulated, thus potentially allowing for a
better jammer location estimate, as opposed to the case when only a single
snapshot is used. To address this, we examine the problem when one observes a
series of snapshots of a jamming scenario, wherein the network suffers from the
effects of an unknown number of non-stationary, possibly overlapping, jammers
with unknown locations and jamming patterns, with the aim of developing a
method for tracking each such jammer as time progresses. Because the jamming
regions are allowed to overlap, the problem resembles that of the cell tracking
problem studied in [], from which we draw inspiration. There are two main
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methods for tackling this form of tracking problems, namely tracking-by-model
evaluation or tracking-by-detection []. In this work, we have opted to form our
estimate using tracking-by-detection, treating the jammer detection step in
terms of an image segmentation problem. The image analysis literature contains
a multitude of methods to segment overlapping objects (see e.g. []). What sets
the jammer problem apart from previously studied image segmentation
problems is that the contour of the jammed region is unknown and has to be
inferred from the surroundings. This problem is associated with a high degree of
uncertainty, as illustrated in Figure , and []. The three curves in Figure 
depict the maximal and minimal jamming regions given the observed nodes,
along with the actual jamming region. The dark blue circle is the result when
estimating the jamming region as the maximally inscribed circle of the
unjammed nodes, and the red circle is the result when using the minimally
enclosing circle of the jammed nodes. As may be seen, the true jamming region
is here in between these two extremes. In this work, in the segmentation step, we
seek not only to estimate the number of jammers, and their respective position,
but also to identify their respective jamming patterns. We present a greedy
algorithm for iteratively estimating the number of jammers and their locations.
The jamming patterns are deemed to be unknown, but limited to a set of
possible patterns found in a predefined bank of parametric pattern models, or to
a combination of these patterns. Due to the complexity of the problem, we also
study approximation methods to allow for a faster convergence of the estimator,
reducing the overall computational complexity.

Analogous to [], we propose to use the Viterbi algorithm [] for the trajectory
linking. The Viterbi algorithm is a probabilistic algorithm used in a variety of ap-
plications (see, e.g., [–]). The choice of the Viterbi algorithm is motivated
by the algorithm’s ability to handle a changing number of states, thus allowing
jammers and nodes to leave and enter the studied area. This feature is necessary in
the case of overlapping jamming regions, where it may be difficult or impossible
to discern the correct number of jammers present from one snapshot. Another
advantage is that the Viterbi algorithm’s probabilistic nature enables path determ-
ination of the most likely path anchored in the problem setting by using the a pri-
ori information included in the form of the chosen distributions. The Viterbi al-
gorithm is suitable for batch implementations, thus allowing one to find the over-
all most likely path within each batch, but lends itself poorly to on-line imple-
mentation, although good approximative methods are available [].

In summary, the contributions in this work are the following:
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• We present three new methods, depending on the assumptions made, for
determining the locations of an unknown number of jammers, allowing for
partly unknown jamming patterns. The presented segmentation methods
allow for several forms of jamming regions, as well as for combinations of
different jamming patterns.

• We track the jammer’s movement over time by linking sequential jammer
segmentations using the Viterbi algorithm. The use of the Viterbi algorithm
allows for both complete and partial overlap of the jamming regions, and
the introduction/loss of jammers over time.

The remainder of the paper is structured as follows: in the next section, we
formalize the jammer localization problem, splitting the overall procedure into a
series of subproblems aiming to determine the number of jammers and the
shape of their jammed regions. Then, in section , we examine how jammers
may be tracked over time as they move through the network. In section , we
evaluate the performance of the proposed method as compared to alternative
approaches. Finally, section  contains our conclusion.

 Problem Formulation

Consider a network containing 𝑁 sensors and 𝐾 jammers. The positions of the
sensors are here assumed to be known, whereas both the number of jammers, 𝐾,
and their positions are unknown. The sensors are considered to be in either of
two possible states, being jammed or not, here represented as 1 or 0, respectively.
Thus, the state of being jammed is considered to be a binary state. Each present
jammer is considered to have a jamming region that may be represented by a
predefined pattern, collected as a parametric template in a bank of such patterns.
The jamming regions are assumed to be isotropic, implying that all nodes within
the jammer’s range are jammed, as opposed to a degree of jamming that
decreases with the distance from the jammer, reflecting the fact that nodes
typically are either able to communicate or not, but that they typically do not
provide information about the radio environment at the sensor. Furthermore,
the jammers may have overlapping jamming regions. The unknowns in this
problem setup are thus the number of jammers and their positions, the form of
their respective jamming regions, as well as their motions over time. An example
of the setup is shown in Figure , showing a network with 𝐾 = 3 jammers
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Figure : The resulting jamming region using a maximally inscribed circle (dark blue),
and minimally enclosing circle (red), along with the true region (cyan). The network
dimensions are for simplicity normalized.

with partly overlapping jamming regions. The problem of locating and
tracking multiple jammers is non-trivial, and one that typically has to be
broken down into several subproblems. In this work, we have opted for a
tracking-by-detection approach, which means that the overall algorithm may be
divided into two subproblems that are solved in sequence. This procedure is
then updated for each time point. The first of these subproblems is that of
jammer localization, for which the aim is to find the position of each of the
jammers, whereas the second problem is that of jammer tracking, where the goal
is to find the path each of the jammers have moved between two consecutive
time points. An overview of the overall procedure is presented in Algorithm ,
for a batch of 𝑇 timepoints.

To formalise the problem further, consider a set of𝑁 sensor nodes 𝒮 = {𝒰,𝒱},
composed of 𝐽 jammed nodes, 𝒰 = (𝑢1, … , 𝑢𝐽), and 𝑁 − 𝐽 unaffected nodes,
𝒱 = (𝑣1, … , 𝑣𝑁−𝐽), with𝒰,𝒱 ∈ ℝ𝑑, where 𝑑 denotes the dimensionality of the
scenario, typically  or . The coordinates of the 𝑗:th jammed node are represented
by the tuple 𝑢𝑗 = [𝑢𝑗,1, 𝑢𝑗,2, … , 𝑢𝑗,𝑑]𝑇, with 𝑣𝑗 being defined similarly. At each
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Algorithm  Overview
Input: 𝐾 = 1
for 𝑡 ← 1 to 𝑇 do T is the batch size

Solve the segmentation problem using algorithm 
noSolutionFound = True
while noSolutionFound do

Estimate the number of jammers, 𝐾
for 𝑘 ← 1 to 𝐾 do

Using either of algorithms -, for each jammer 𝑘, find its
jamming region and estimate the jammer location, ℓ𝑘(𝑡)

end for
if Estimated jamming regions cover all jammed and no

unjammed nodes then
noSolutionFound = False

else
𝐾 = 𝐾+ 1

end if
end while
Check if pattern merging should be done
Track the 𝐾 jammers using the Viterbi algorithm
for 𝑘 ← 1 to 𝐾 do

Update the trajectory of jammer 𝑘,
using algorithm 

end for
end for

point in time, each of the𝐾 jammers will give rise to a minimum volume jammed
region 𝑃𝑘(𝑡), for 𝑘 = 1, … ,𝐾, such that the total jammed area may be modeled as

𝑃(𝑡) =
𝐾
⋃
𝑘=1
𝑃𝑘(𝑡) ()

For notational simplicity, we will for now omit the time index, later reintrodu-
cing it in the tracking steps. The aim of the estimation problem is to, for each
point in time, find the number of jammers, 𝐾, and deduce which of the jammed
nodes that are jammed by each of the jammers. Thus, we simultaneously wish to
estimate 𝐾, partition the jammed nodes into 𝐾 jamming regions, and find the
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Figure : An example setup with unjammed nodes, jammed nodes, jammers, and
jamming regions marked. The dimensions of the network are normalized.

parameters describing each jamming region, 𝜃𝑘, and its respective center point,
𝑐𝑘 = (𝑐𝑘,1, 𝑐𝑘,2, … , 𝑐𝑘,𝑑).

For each 𝑘 = 1, 2, … ,𝐾, we therefore seek to find the jammed nodes
𝑈𝑘 = (𝑢1, 𝑢2, … , 𝑢𝑞), 𝑞 ≤ 𝐽, constituting the jammed region 𝑃𝑘, and the
transformation matrix 𝐴𝑘(𝜃𝑘) detailing the jamming region, and its parameters
𝜃𝑘, such that each 𝑃𝑘 may be described as

𝑃𝑘 = {𝑢 ∈ 𝑈𝑘 ∶ ∥𝐴−1𝑘 (𝜃𝑘)(𝑢 − 𝑐𝑘)∥ ≤ 1} ()

for every 𝑢 in𝑈𝑘. The outline of the jamming region,𝐴𝑘(𝜃𝑘), is thus parameterized
by 𝜃𝑘, with some examples being a circle, an ellipse, and an oval, all of which may
be specified as

𝐴𝑘(𝜃𝑘) = [
𝜃𝑘,1 0
0 𝜃𝑘,2

] ()

where 𝜃𝑘,ℓ = 𝑡(𝑢)/𝑎ℓ, with 𝑡(⋅) denoting a function of the coordinates, and 𝑎ℓ is
the length of the ℓ:th semi axis. Thus, using 𝜃 = [1, 1], 𝜃 = [1/𝑎1, 1/𝑎2], and
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𝜃 = [ 1𝑎1 ,
𝑒0.2𝑢𝑗,1
𝑎2 ], where 𝑢𝑗,1 is the first coordinate of the 𝑗:th jammed node, results

in a circular, an elliptical, and an oval jamming pattern, respectively [].

Using this form of pattern, one may also form more complicated patterns, such
as a flower pattern, common in beamforming, by forming a collection of ellipses
overlapping at one end. Rewriting () as

1 ≥ ∥𝐴−1𝑘 (𝜃𝑘)(𝑢 − 𝑐𝑘)∥
2

= (𝐴−1𝑘 (𝜃𝑘)(𝑢 − 𝑐𝑘))
T (𝐴−1𝑘 (𝜃𝑘)(𝑢 − 𝑐𝑘))

= (𝑢 − 𝑐𝑘)T (𝐴−1𝑘 (𝜃𝑘))
T 𝐴−1𝑘 (𝜃𝑘)(𝑢 − 𝑐𝑘)

= (𝑢 − 𝑐𝑘)T𝑄−1𝑘 (𝜃𝑘)(𝑢 − 𝑐𝑘), ()

indicates that one may specify the closed curve describing the jamming region 𝑃𝑘
using the symmetric positive definite matrix

𝑄𝑘(𝜃𝑘) = 𝐴𝑇𝑘 (𝜃𝑘)𝐴𝑘(𝜃𝑘) ()

The volume covered by this curve is found as the determinant of 𝑄𝑘(𝜃𝑘). The op-
timization problem to be solved may therefore be reformulated as that of finding
the areas of minimum volume covering the jammed nodes, i.e.,

min
𝐾

𝐾
⋃
𝑘=1
𝑃𝑘 ()

To solve this problem, one has to determine the number of jammers present, 𝐾,
and for each jammer fit a jamming pattern 𝑃𝑘 of minimum volume, such that the
union of all jamming patterns covers the jammed nodes𝒰, and none of the unaf-
fected nodes 𝒱. Using () as a parameterization of 𝑃𝑘, the resulting optimization
problem in () may be expressed as

min
𝐾,{𝑈𝑘},{𝑄𝑘},{𝜃𝑘},{𝑐𝑘}

𝐾
⋃
𝑘=1

det𝑄𝑘(𝜃𝑘)

s.t. (𝑢 − 𝑐𝑘)
T𝑄−1𝑘 (𝜃𝑘) (𝑢 − 𝑐𝑘) ≤ 1, ∀𝑢 ∈ 𝑈𝑘, ∀𝑘 ()

The formulation thus strives to minimize the total jamming volume, with
respect to the number of jammers, the different possible node sets 𝑈𝑘, and the
parameterization of the individual jamming regions. The optimization in () is a





Paper C

non-convex problem, but allows for a solution if the problem is approximated as
a series of smaller convex subproblems. To do so, we initially consider the
situation for a given (and thus known) number of jammers, 𝐾. The solution
process can thus be separated into the following subproblems, 𝒫1, 𝒫2, and 𝒫3,
detailed as follows:

• Subproblem 𝒫1: The first obstacle consists of finding a partitioning of the
set of jammed nodes𝒰 into 𝐾 (potentially overlapping) sets.

• Subproblem 𝒫2: Given a partitioning, obtained as the solution to 𝒫1, the
next problem is to find the minimum volume jamming region (MVJR)
enclosing the nodes in the partitioning.

• Subproblem𝒫3: As a final step, one needs to determine if the union of the
proposed MVJRs covers any unaffected nodes. If that is the case, the solu-
tion process has to be reiterated, finding a new partitioning and/or finding
a new MVJR (thereby changing the estimated pattern).

The solution process iterates between subproblems𝒫1-𝒫3. In case no solution can
be found that does not cover any unjammed nodes, while still covering all the
jammed nodes, the method deems it necessary to increase the number of assumed
jammers by , and the process begins anew. An overview of the segmentation is
presented in Algorithm .

Solving subproblem 𝒫1
The first problem that needs to be solved is that of finding a partitioning of the
jammed nodes into possibly overlapping clusters, and to find the cluster center of
each such cluster. This cluster center will then be used as an estimate of the MVJR
center in the next section. There are various methods for finding a partitioning
of nodes (see e.g. []). In this work, we present three different methods used to
find a good initial partitioning depending on the assumptions that can be made,
namely (i) the k-means with soft thresholding [–], (ii) using the Expectation
Maximization algorithm (EM-algorithm) [, ] for fitting a Gaussian Mixture
Model (GMM), and (iii) classification using Gibbs sampling from an underlying
GMM [,] . These three methods are tailored for different assumptions on the
jamming regions. Notably, the k-means method imposes no assumptions on the
clustering, whereas the EM and Gibbs methods both make the assumption that
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Algorithm  Segmentation
noSolutionFound = True
while noSolutionFound do

Partition the jammed nodes into 𝐾 sets𝒰 = {𝑈1, … , 𝑈𝐾},
using either of algorithms -
for each 𝑈𝑘 in𝒰 do

Find the minimum jamming region, 𝑃𝑘, by solving ()
end for
if ⋃𝑃𝑘 does not cover any unaffected nodes then

noSolutionFound = False
else
𝐾 ← 𝐾+ 1

end if
end while

the regions may be well modeled using ellipsoids. In the k-means algorithm, we
cluster the data into 𝐾 sets, for a given value of 𝐾, such that the average squared
distance between the jammed nodes and the cluster center is minimized. The
use of a soft threshold ensures that the clusters do not have to be disjoint, but
are allowed to overlap, in accordance with the possibility of overlapping jamming
regions. To each jammed node 𝑢, we assign a weight, 𝑤𝑘(𝑢), that signifies its
degree of belonging to cluster 𝑘. For the regular k-means algorithm, this weight is
binary and thus limited to 𝑤𝑘(𝑢) ∈ {0, 1}, but for the soft threshold version, this
is relaxed to allow for weights in the interval between  and , i.e., 𝑤𝑘(𝑢) ∈ [0, 1].
The algorithm finds the weight matrix𝑊 ∈ ℝ𝐽×𝐾, that describes the degree of
belonging of all nodes and all clusters, 𝑤𝑗,𝑘 = 𝑤𝑘(𝑢𝑗), as well as the cluster centers
for the𝐾 clusters, 𝜇 = [𝜇1, … , 𝜇𝐾]. It is worth noting that the cluster centers, 𝜇𝑘,
may be different from the center of the MVJRs, 𝑐𝑘. Formally, the minimization
forming the partitioning is

min𝜇

𝐽
∑
𝑗=1

𝐾
∑
𝑘=1
𝑤𝑚𝑗,𝑘||𝑢𝑗 − 𝜇𝑘||

2 ()

where the weights are defined as

𝑤𝑚𝑗,𝑘 =
1

∑𝐾
ℓ=1 (

||𝑢𝑗−𝜇𝑘||
||𝑢𝑗−𝜇ℓ||

)
2
𝑚−1

()
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Algorithm  k-means clustering
: Initialize: 𝑤 ← 𝑤0
: repeat
: for 𝑘 ← 1 to 𝐾 do
: Compute the cluster centers 𝜇𝑘 = ∑

𝐽
𝑗=1 𝑤𝑚𝑗,𝑘𝑢𝑗

: end for
: for 𝑘 ← 1 to 𝐾 do
: Update the weights 𝑤𝑗,𝑘 using ()
: end for
: untilThe cost function in () is below a given threshold, 𝑇𝑤, or the maximum

number of allowed iterations is reached

with 𝑚 > 1 being a user-defined parameter that governs the allowed degree of
overlap. For 𝑚 = 1, the algorithm degenerates and the k-means segmentation
without any overlap is recovered, in which case the weights are instead
proportional to the number of class members. It should be noted that the
partitioning given by the k-means algorithm is only a local solution to the
partitioning problem that will depend on the provided initial weights.

As an alternative to the k-means algorithm, one may instead employ the second
method, i.e., the EM-algorithm, which may be viewed as a probabilistic way of
doing clustering with soft thresholding. As opposed to the k-means algorithm,
the EM-algorithm assumes that each cluster results from a generative model. We
here assume that the data may be described by a GMM. That is, we assume that
the different clusters may be well modeled using 𝑑-dimensional Gaussian distri-
butions, thus taking into consideration that we are looking for elliptical, or some-
what elliptical, patterns, where the mean is an estimate of the cluster center, and
where the covariance matrix may be used to determine the 𝑑 semiaxises of the el-
lipse. The GMM allows for the clusters to overlap, meaning that some data points
may belong to more than one cluster. The use of the EM-algorithm is to find the
local maximum likelihood estimates of the parameters in a given statistical model,
in our case the mean, 𝜇𝑘, and covariance, Σ𝑘, of the underlying data, 𝑍, as well
as the prior class probabilities, 𝜋𝑘. The jammed nodes 𝒰 = (𝑢1, … , 𝑢𝐽) consti-
tute the observations of the underlying data 𝑍 = (𝑧1, … , 𝑧𝐽), and the prior class
probabilities are formed as 𝑝(𝑧𝑖 = 𝑘) = 𝜋𝑘 for 𝑖 = 1, … , 𝐽. The conditional distri-
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butions of the observed variables are then formed as

𝑝(𝑢𝑖|𝑧𝑖 = 𝑘) ∈ 𝒩𝑑(𝜇𝑘, Σ𝑘)

where 𝑑 denotes the dimensionality of the considered scenario. The Gaussian
mixture model for node 𝑢𝑖 may then be specified as

𝑝(𝑢𝑖) =
𝐾
∑
𝑘=1
𝑝(𝑢𝑖|𝑧𝑖 = 𝑘)𝜋𝑘

where the density for all of𝒰 becomes

𝑝(𝜓; 𝑢1, … , 𝑢𝐽, 𝑍) =
𝐽
∏
𝑖=1

𝐾
∑
𝑘=1
𝑝(𝑢𝑖|𝑧𝑖 = 𝑘)𝜋𝑘 ()

giving rise to the log-likelihood function

ℓ(𝜓; 𝑢1, … , 𝑢𝐽, 𝑍) =
𝐽
∑
𝑖=1

log (
𝐾
∑
𝑘=1
𝑝(𝑢𝑖|𝑧𝑖 = 𝑘)𝜋𝑘) ()

where 𝜓 = [𝜇1, … , 𝜇𝐾, Σ1, … , Σ𝑘, 𝜋1, … , 𝜋𝐾] is the set of parameters we wish to
estimate. Numerical evaluation of () is generally difficult, due to the sum of
terms within the logarithm []. This is the problem that is solved iteratively by
the EM-algorithm. The method alternates between first forming the conditional
expectation (E) of an observation given the current parameter estimates, and then
a maximization (M) of the expectation function to find new parameter estimates.
The expectation at iteration 𝑚 may be specified as

Γ(𝑚)(𝜓(𝑚)𝑘 , 𝑢𝑖, 𝑘) = E (ℓ(𝜓;𝒰, 𝑍)|𝒰, 𝜓(𝑚)) =
𝐽
∑
𝑖=1

𝐾
∑
𝑘=1
𝛾𝑖ℓ(𝜓(𝑚)𝑘 , 𝑢𝑖, 𝑘) ()

where 𝜓𝑘 = (𝜇𝑘, Σ𝑘, 𝜋𝑘) are the parameters for distribution 𝑘. Using Bayes’ for-
mula, it may be concluded that

𝛾𝑖 = 𝑝(𝑧𝑖 = 𝑘|𝑢𝑖; 𝜓(𝑚)) =
𝜋(𝑚)𝑘 𝑝(𝑢𝑖|𝜇𝑘, Σ𝑘)

∑𝐾
𝑡=1,𝑡≠𝑘 𝜋𝑡𝑝(𝑢𝑖|𝜇𝑡, Σ𝑡)

()
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Algorithm  EM-clustering
: Initialize: 𝜓 ← 𝜓0, 𝑚 ← 1
: repeat
: Compute Γ(𝑚)(𝜓(𝑚)𝑘 , 𝑢𝑖, 𝑘) using the expectation step in ()
: Compute 𝜓(𝑚+1) using the maximization step in ()
: 𝑚 = 𝑚+ 1
: until diff(𝜓(𝑚+1), 𝜓(𝑚)) < tol, or max iterations

The maximization step is then completed by maximizing () with respect to the
parameters in 𝜓, setting

𝜓(𝑚+1) = argmax
𝜓

Γ(𝑚)(𝜓(𝑚)𝑘 , 𝑢𝑖, 𝑘) ()

The method then iterates between the E-step and the M-step until convergence.
The method assumes that the number of clusters to estimate, 𝐾, is known, and
starts out by randomly selecting the parameters for the𝐾 distributions (if a priori
knowledge exists, this may be used when initiating the parameters, to get a faster
convergence). In our case, we consider different Gaussian distributions specified
by their mean and covariance. As an initial guess for the prior class probabilities,
we set 𝜋𝑖 = 1/𝐾, for 𝑖 = 1, … ,𝐾.

Finally, one may employ the third approach based on Gibbs sampling, forming a
Markov Chain Monte Carlo (MCMC) method, sampling from the assumed pos-
terior distributions, as summarized in algorithm . The main difference between
Gibbs sampling and the EM-algorithm is that where the EM-algorithm maxim-
ises the conditional distributions, the Gibbs sampling method samples them in-
stead []. The method starts in the same way as the EM-algorithm, with ran-
domly selecting the parameters for the 𝐾 initial distributions, in our case Gaus-
sian distributions, parametrized by 𝜓 = [𝜇1, … , 𝜇𝐾, Σ1, … , Σ𝐾]. The method then
continues by sampling from the posterior distributions of the class belongings in
(). The algorithm terminates when the posterior distributions do not change
significantly in the consecutive iterations.
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Algorithm  Clustering with Gibbs sampling
Initialize: 𝜓 ← 𝜓0
repeat

for 𝑖 ← 1 to 𝐾 do
Compute 𝛾𝑖 using ()

end for
Compute estimates of 𝜓̂ using ()
Sample new estimates of 𝜇𝑘, Σ𝑘 ∈ 𝑁(𝜇̂𝑘, Σ̂𝑘)

until convergence, or maximum number of allowed iterations reached.

Solving subproblem 𝒫2
After determining the partitioning, the next step is to find the MVJR for each of
the clusters. This may be solved independently and in parallel for each cluster,
𝑈𝑘 = (𝑢𝑞1 , 𝑢𝑞2 , … , 𝑢𝑞𝑗), where 𝑢𝑞1 , … 𝑢𝑞𝑗 ∈ 𝐽. In this work, we consider a set of dif-
ferent predefined jamming patterns, or combinations thereof, collected in a pre-
defined bank of pattern templates. For each cluster, we proceed to fit a jamming
pattern from the set of potential template patterns. Even though the patterns dif-
fer, the methodology of finding the MVJR is similar for most patterns. It is ini-
tially assumed that the center of the MVJR, 𝑐𝑘 is the same as the cluster center, 𝜇𝑘.
This assumption implies a centered solution (which may well be incorrect). For
each cluster, the MVJR problem may then be formulated as the convex problem

min
𝑄𝑘(𝜃𝑘),𝑐𝑘

det𝑄𝑘(𝜃𝑘)−1

s.t. (𝑢𝑖 − 𝑐𝑘)
T𝑄𝑘(𝜃𝑘) (𝑢𝑖 − 𝑐𝑘) ≤ 1, 𝑖 = 1, … , 𝑞 ()

Noting that taking the logarithm of the objective function does not change the
location of the minimum, one may reformulate the problem as

min
𝑄̃𝑘(𝜃𝑘),𝑐𝑘

− log det 𝑄̃𝑘(𝜃𝑘)

s.t. (𝑢̂𝑖 − 𝑐𝑘)
T 𝑄̃𝑘(𝜃𝑘) (𝑢̂𝑖 − 𝑐𝑘) ≤ 1, 𝑖 = 1, … , 𝑞 ()

where 𝑄̃𝑘(𝜃𝑘) ∈ ℝ𝑑+1×𝑑+1 and 𝑢̂𝑖 = (𝑢𝑖, 1), implying that the problem has been
augmented with an additional dimension (see also []). In order to form the dual
of (), one may introduce the Lagrangian multipliers 𝜆 = (𝜆1, … , 𝜆𝑞), forming
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the Lagrangian, such that

𝐿(𝑄̃𝑘(𝜃𝑘), 𝜆) = − log det 𝑄̃𝑘(𝜃) +
𝑞
∑
𝑖=1
𝜆𝑖 ((𝑢̂𝑖 − 𝑐𝑘)

T 𝑄̃𝑘(𝜃𝑘) (𝑢̂𝑖 − 𝑐𝑘) − 1) ()

This problem is strictly convex and satisfies Slater’s condition, implying that the
dual and primal problems have the same solution []. The dual problem may be
formulated as

argmax
𝜆

log det(
𝑞
∑
𝑖=1
𝜆𝑖(𝑢𝑖 − 𝑐𝑘)(𝑢𝑖 − 𝑐𝑘)𝑇) − 𝜆 + 𝑑 + 1

s.t. 𝜆𝑖 ≥ 0, 𝑖 = 1, … , 𝑞 ()

where  denotes a vector of ones. This problem is convex and may be efficiently
solved by standard optimizers, such as, e.g. cvx [].

Solving subproblem 𝒫3
After determining the clusters and their centers, we proceed to determine if the
found solution explains the observed nodes, i.e., if the formed jamming patterns
cover all jammed nodes and none of the unjammed nodes. This may be violated
for three reasons.

• Reasonℛ1: The assumption that the jammer locations are the same as the
cluster centers, 𝜇𝑘 = 𝑐𝑘, may not hold.

• Reasonℛ2: The partitioning may not be optimal.

• Reasonℛ3: The number of jammers may need to be increased.

Considering each of these reasons in turn, forℛ1, the assumption that 𝑐𝑘 = 𝜇𝑘 is
fairly strong, and will, in general, not hold. One way to deal with this issue is to
compute the farthest distance between the cluster center and the nodes, and then
move the proposed center point a prespecified distance, Δ𝑑, in the direction of the
point that is farthest from the center point, as illustrated in figure . After this
move of the center, the steps in subproblems 𝒫2-𝒫3 are reiterated. If moving the
center point does not solve the problem, we proceed to contemplate the second
reason,ℛ2, i.e., that we ought to consider a different partitioning of the sets [].
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(a) Before the center move.
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(b) After the center move.

Figure : Illustrating the center move operation whereby the blue center is moved closer
to the red (true) center, thus ensuring a better fit of the jamming patterns.
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Because the inclusion/exclusion of 𝑞 points in a set is a problem of dimensionality
2𝑞, an exhaustive partitioning search quickly becomes intractable. An alternative
route to finding a good candidate set is to study the concept of active sets, in
combination with the weight matrix from the partitioning, 𝑊. The active set,
𝒵𝑘, of a point set 𝑈𝑘 is the subset of nodes in 𝑈𝑘 that are on the boundary of the
MVJR, as illustrated in figure . The points in the active set are the points that
determine the shape of the MVJR, whereas the points that are not part of the
active set are found in the interior of the MVJR, and will have no direct effect on
its shape. Thus, when changing the partitioning, only changes to the active set
will have an effect on the MVJR. Having identified the active set, the next step is
to determine which points should be included or excluded from the set. Let the
thresholding matrix from the partitioning, 𝑊, denote the magnitude of the set
belonging for each point, where𝑊 is a dense matrix. The procedure to decide
which points to include or exclude is as follows:

• When the partitioning is made, the set belonging for all points and all sets
are gathered in the thresholding matrix𝑊. A point is considered as part
of the set if its set belonging for that set is above a predefined threshold,
𝜅. Each partitioning has an associated active set that consists of the points
in the set with more than one set belonging. For each such active set, the
points are ranked based on their magnitude of belonging to the current set,
as specified in the thresholding matrix𝑊.

• Next, a second ranking is done whereby the points are ranked based on
the relative difference between the set belonging to the current set and the
set belonging to the second set. In practice, this means that the points are
ranked based on their difference in set belonging. The relative distances are
then normalized, and the ranking is done in descending order.

Based on the above feature criteria, a ranking is formed of which nodes to include
or exclude. If the points to be included are only interior points of the other sets,
the procedure in subproblem 𝒫2 is repeated for the current set alone, and if the
points to be included are active points of a different set, subproblem𝒫2 is repeated
for the current set as well as the set from which the included points came from. If
the steps taken above do not solve the problem, the assumed number of jammers
is insufficient to explain the observed jammed nodes and the number of jammers
should be increased by one, after which the entire procedure begins anew.
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Figure : An illustration of two jammers where the active set of the jammer located at
(.,.) is marked with green diamonds.

 Jammer tracking

It is not uncommon that jamming sources are moving over time, causing the
jamming pattern to be nonstationary. As the jammers move through the
network, the set of jammed nodes will then differ, providing additional
information of the jammers’ locations and movements. The problem of tracking
moving objects via indirect measurements occurs in numerous applications and
the topic has attracted notable attention in the literature [, , , ]. A
common feature in many tracking algorithms, such as the popular Kalman filter
and its derivatives, is that the number of objects to track is assumed to be known
a priori, or can at least be assumed to be constant over the tracking period. This
assumption notably simplifies the problem, and often improves the performance
of such algorithms, but also poses a severe restriction for problems that do not
meet this condition. One potential solution when this assumption is unrealistic
is to also estimate the number of states in every frame, and each time an object is
added or removed, a new tracking model is initiated, combined with some
method of fusing the tracks between the different tracking models. Although
this approach can work, it is reasonable to expect a notable loss of performance
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due to the addition of the often difficult model order estimation procedure, and
it is generally better to find alternative solutions instead.

The here considered problem necessitates that the segmentation pattern is estim-
ated for each time snapshot, while also allowing for overlapping jammers, as well
as for jammers that migrate in or out of the tracking region over time. The pos-
sibility of overlapping jamming regions provides further challenges to the localiz-
ation problem, but also new possibilities, such as allowing for the occurrence of
new jamming sources over time. A natural solution to the resulting problem is to
use a tracking approach based on the Viterbi algorithm, as was also done in the
related problem of cell tracking proposed in [].

Similar to the Kalman algorithm, the Viterbi algorithm may be applied to
situations where we are provided with a set of observations of an underlying
unobservable event variable [, ]. The Viterbi algorithm has been
recommended for tracking point like objects [], such as a jammer location. It
is a probabilistic algorithm, based on dynamic programming [], that seeks to
maximize the a posteriori probability of the possible events given the set of
observations. In the discussed scenario, this is the same as finding the most likely
path taken by the jammers, given observations of the set of jammed nodes over
time. Here, the observation set consists of the jammed nodes, and the thus
inferred jammer locations, and the set of events consists of six possible events,
collected in Table . For each time frame, the segmentation step provides
information about the location of the jammers, and the aim is to link the
jammers between consecutive time frames, thus tracking the progression of the
jammers over time, often referred to as tracking by detection. Figure  illustrates
the event when two overlapping jamming regions divide and appear as two
separate jammers, known as a splitting event, where in the first frame there
appears to be only one jammer present, whereas in the second frame both
jammers can be observed; such a scenario may happen when two jammers
overlap, and then move in different directions. Figure  illustrates the different
possible paths created between frame  and frame , along with their most likely
paths. The events represent the different scenarios that may happen between two
consecutive frames, and when tracking a batch of 𝑇 frames, the path consists of
a sequence of events of length 𝑇 − 1. The Viterbi algorithm is a global
optimization algorithm, and the dynamic programming implementation of the
algorithm means that every possible path is investigated. Denote the set of
events as 𝐸𝐵, with with 𝐸𝐵 = {𝑒1, … , 𝑒𝐵}, where 𝐵 = |𝐸𝐵|. Considering a batch of
𝑇 frames, the number of possible paths that have to be evaluated is 𝐵𝑇, i.e., the
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number of paths grows exponentially with the batch size 𝑇, necessitating the use
of relative low values of 𝐵, especially when 𝑇 is large.

Formally, the problem formulation when running the Viterbi algorithm is that
of finding the most likely path, given the set of observations. Considering a
batch of 𝑇 frames, the algorithm starts at the first frame with the observation 𝑂0,
and finds the most likely path between 𝑂0 and 𝑂1, the second observation. The
algorithm then proceeds in this way, finding the most likely path between
observation 𝑂𝑡−1 and 𝑂𝑡, for 𝑡 = 1, … , 𝑇. This procedure of finding the global
optimum by dividing the problem into smaller parts and solving them
individually is what is known as dynamic programming. The assumption
enabling the use of dynamic programming is known as the Markov property,
which assumes that the path history leading up to observation 𝑂𝑡−1 has no
bearing on the most likely path between 𝑂𝑡−1 and 𝑂𝑡.

In an ideal scenario, the probability distributions of the different events are all
unimodal, and finding the most likely path may be done by considering only the
forward path between 𝑂𝑡−1 and 𝑂𝑡, for 𝑡 = 1, … , 𝑇. However, often the
probabilities are not unimodal, and considering the forward path is not
guaranteed to find the optimal path. Fortunately, the Viterbi algorithm is able
to handle also the multimodal case []. By also considering the backward
propagation, i.e., the most likely path between 𝑂𝑡 and 𝑂𝑡−1 if traversing in the
reverse order, multimodal probability distributions may be handled. Hence, the
Viterbi algorithm is known as a forward-backward algorithm as is considers both
the forward and the backward path.

In order to rank the different paths, a scoring function has to be defined, that as-
signs different scores to different paths. The Viterbi algorithm is a probabilistic
algorithm, and thus the scoring function is associated to the a posteriori probabil-
ities of the different paths. As noted, a path may be described as a time indexed
set of events, Λ𝑡 = {𝑒𝑡𝑏}, with 𝑒𝑏 ∈ 𝐸𝐵, and 𝑡 = 1, … , 𝑇. For example, the optimal
path in Figure  may be described as Λ = {𝑒1𝐶, 𝑒2𝑆 , 𝑒3𝐶}. In this work, we adopt the
same scoring function used in [], i.e.,

𝑔(Λ) =
𝑇
∑
𝑡=1

𝐵
∑
𝑏=1

log(𝑝(Λ𝑡 = Λ𝑒𝑡𝑏)) ()
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Table : The possible events taken by the jammer(s). Count refers to the case when the
number of jammers is the same in two consecutive frames, splitting is when jammers
that previously overlap are identified, quiet is when a jammers is suddenly switched off,
migration in is when an additional jammer is observed without a splitting event, migration
out is when a jammer leaves the observation area, and pattern merging is when simpler
jamming patterns are merged to form a more complicated pattern, such as the one seen
in, e.g., beamforming.

Event description Abbreviation
Count C
Splitting S
Quiet Q
Migration in MI
Migration out MO
Pattern merging PM

where 𝑝 denotes the assumed probability function⁵. Here Λ is the overall optimal
path, and Λ𝑡 is the event of the optimal path in frame 𝑡, and Λ𝑒𝑡𝑏 is the candidate
path that is in event 𝑒𝑏 at time 𝑡, an example of which is illustrated in Figure .
Formally, the optimization problem we solve when using the Viterbi algorithm is
that of

𝑔max(Λ) = max𝑒1,…𝑒𝐵

𝑇
∑
𝑡=1

𝐵
∑
𝑏=1

log(𝑝(Λ𝑡 = Λ𝑒𝑡𝑏)) ()

The overall Viterbi algorithm is illustrated in algorithm , where 𝜙 is a function
to keep track of the second to last event in the highest scoring path.

 Numerical Experiments

We proceed to evaluate the performance of the proposed methods using
Monte-Carlo simulations, examining both cases when jammers leave and enter
the area of interest. We begin with evaluating the different segmentation
methods in terms of their jammer localization performance. We examine two
scenarios, one with circular jamming regions, as is commonly assumed in the

⁵The usage of the logarithmized probabilities is merely for numerical convenience, as the sum
offers better numerical performance than the multiplication.
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(a) Before the splitting event.

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) After the splitting event.

Figure : An illustration of a splitting event, wherein two jammers move apart.
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Figure : An illustration of the possible paths between the observations in Figure .
Example probabilities of each path are marked on each edge, with the nodes in the path
with highest probability being highlighted.

literature, and one with oval jamming regions. It is worth noting that most of
the state-of-the-art methods for jammer localization, such as X-ray [], CJ [],
and WCL [], are based both on the assumption that the jamming regions are
circular, and for CJ and WCL also that the number of jammers is known a
priori. We then proceed to evaluate the jammer tracking method, considering
two different scenarios, namely that of tracking jammers with a fixed orientation
as well as tracking jammers with changing orientation. The results illustrate how
tracking may be used to improve jammer localisation, and the effect that
knowledge about the orientation can have on the accuracy of the localisation as
well as on the convergence rate of the localisation. Moreover, we illustrate the
tracking performance of our method when splitting, migration in, and migration
out occur, all cases when the number of objects to track change over time. The
tracking performance is evaluated with respect to state-of-the-art-methods,
clearly illustrating the need for a tracking method that can handle a variable
number of states.

Finally, the methods are evaluated on a scenario with a so-called pattern merging
event. In this case, the algorithm first identifies the number of states to track, but
as time progresses it becomes clear that the pattern does not stem from individual
jammers, but rather from one jammer with a complicated jamming pattern, that
may be viewed as composed of many simpler jamming patterns. This situation
may be viewed as the merging of states, forcing the algorithm to backtrack and
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Algorithm  Viterbi algorithm

In each forward step we seek to maximize (), by finding 𝑔𝑚𝑎𝑥(Λ𝑓).
Initialize: 𝑔𝑚𝑎𝑥(𝑂0)
Forward algorithm
for 𝑡 ← 1 to 𝑇 do Loop over the frames

for 𝑒𝑏 = 𝑒1, … , 𝑒𝐵 do Loop over the events
Compute 𝑔𝑚𝑎𝑥(Λ

𝑓
𝑒𝑡𝑏
) using ()

Compute 𝜙(Λ𝑓𝑒𝑡𝑏) as the second to last state in the highest scoring path.
This is needed in the backward path.

end for
end for
In each backward step we seek to find the most likely path Λ𝑏𝑎𝑐𝑘.
Initialize: 𝐸𝑚𝑎𝑥 = 𝑂𝑇 The algorithm starts at 𝑂𝑇.
Λ𝑏𝑎𝑐𝑘 ← {𝐸𝑚𝑎𝑥} Assign the likeliest event to the path
for 𝑖 ← 𝑇 to 1 do Loop over the frames
𝐸𝑚𝑎𝑥 ← 𝜙(𝐸𝑚𝑎𝑥) Find the next step in the backward search by using 𝜙

from the forward algorithm.
Λ𝑏𝑎𝑐𝑘 ← {𝐸𝑚𝑎𝑥, Λ𝑏𝑎𝑐𝑘} Add the likeliest state to the path

end for

update its pervious jammer localisations. For the simulations in this section we
have used threshold value of set belonging set to 𝜁 = 0.3, and when a center move
occurs, the predefined distance is set to Δ𝑑 = 0.01 standard units. For the initial
parameters estimated in the Gibbs and EM methods the means were chosen as
the mean of the points and the standard deviations were all set to ..

. Stationary jammers

Circular jammers

Initially, we examine a case with 𝐾 jammers, all having circular jamming
regions, albeit with different radii, 𝑟𝑖, for 𝑖 = 1, … ,𝐾. The area under
consideration is a 1 × 1 square in normalized units, and with the jammer radii all
selected uniformly in the interval [0.05, 0.2], 𝑟𝑖 ∈ 𝑈[0.05, 0.2], ∀𝑖. The jammers
initial locations are selected uniformly at random, with the constraint that their
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initial jamming areas may not overlap more than %, in order to allow for a
comparison with methods with such restrictions. For a fixed maximum overlap,
the two main external parameters affecting the localisation accuracy are the
number of jammers present, 𝐾, and the node density. To control for these two
factors, two simulation studies were performed, one with a fixed 𝐾 but variable
node densities, and one with fixed node density but a variable number of
jammers. Additionally, the effect of oracle knowledge of 𝐾 was studied in both
simulations. The performance was evaluated with respect to the overall average
localisation error, here defined as the average root mean squared error (ARMSE)
of all jammer localizations, i.e.,

𝐴𝑅𝑀𝑆𝐸 = 1
𝐾

𝐾
∑
𝑘=1
√(𝑥𝑘 − 𝑥̂𝑘)2 + (𝑦𝑘 − 𝑦̂𝑘)2 ()

where 𝑥̂𝑘 and 𝑦̂𝑘 are the estimated jammer coordinates of the 𝑘:th jammer, (𝑥𝑘, 𝑦𝑘),
respectively, and for the cases where 𝐾 was unknown, also with the respect to the
percentage of correct detections, here defined as the percentage of Monte Carlo
simulations where the correct number of jammers were identified. For the variable
node density scenario, we consider the case𝐾 = 3, and three node densities: ,
, and  nodes. In the variable jammer scenario, the node density is fixed
to  nodes, whereas the number of jammers present varies from 𝐾 = 1, … , 4.
The results are displayed in Figures -. In cases where a method is unable to
form an estimate, such as for WCL and CJ when 𝐾 > 1, the results have been
omitted from the figures. Studying the case with variable node density, one may
note that the localisation error decreases when the node density increases. This
should be expected as a higher node density will result in more data points, thus
increasing the accuracy of the localisation. Furthermore, one may note that of the
proposedmethods, the EM-algorithm and the Gibbs method perform on par with
the state of the art X-ray method, whereas the k-means algorithm has a slightly
lower accuracy, which in turn may be compensated by its lower computational
complexity. For 𝐾 = 1, it may be noted that CJ and WCL estimates perform
well in case the jamming region is circular, as these methods assume, but this
performance degrades notably if this is not the case. Also, it should be stressed
that both fail to yield estimates when 𝐾 > 1. Moreover, one may note that the
localisation accuracy decreases as the number of jammers increase, a behaviour
that may be attributed to all the proposed methods. This is as expected, as the
number of unambiguous data points can only increase or remain the same with
an increasing number of overlapping jammers, causing the marginal information
gained for each data point to be bigger for small values of 𝐾.
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Figure : Total ARMSE localization estimation error for the single jammer case.
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Figure : Total ARMSE localization estimation error with respect to all jammers vs
number of jammers.
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Figure : Total ARMSE localization estimation error with respect to all jammers vs
number of nodes.
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Figure : Percentage of number of correct detections over all Monte Carlo simulations.
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Oval jammers

In many real situations, jamming patterns are often directed, meaning that the
degree of jamming is larger in some direction than in other. A simple way to
model this is to consider oval jamming patterns instead of circular ones. To
investigate how this affects the performance of the discussed methods, we
proceed to modify the earlier simulations to instead employ elliptical jamming
patterns, with the semiaxes of the ellipses, 𝑟𝑎𝑖 and 𝑟𝑏𝑖 , being randomly generated
as independent uniform stochastic variables from 𝑟𝑎𝑖 , 𝑟𝑏𝑖 ∈ 𝒰[0.05, 0.2], ∀𝑖. The
rotation of the jamming regions were similarly drawn as having rotations
𝛼 ∈ 𝑈[−𝜋, 𝜋]. An example of the resulting setup is shown in figure . The
resulting localization performance results are shown in figures -, wherein one
may note that for the elliptical case, all of the proposed segmentation methods
outperform other methods with the CJ and WCL again failing to yield estimates
for 𝐾 > 1. Notably, the X-ray method can now be seen to suffer a significant
performance loss. This happens as the X-ray method specifically assumes a
circular jamming region. Moreover, it can be noted that the X-ray method
suffers significant performance losses in the elliptical case, as illustrated in
figure . This is because of the assumption the method makes about circular
jamming regions.

. Moving jammers

Proceeding, we examine the performance of the tracking algorithm by
considering the case of 𝐾 = 2 jammers moving in a network with  nodes.
The jammers under consideration have elliptical jamming patterns with
𝑟𝑎𝑖 , 𝑟𝑏𝑖 ∈ 𝑈[0.05, 0.2], ∀𝑖, and 𝛼 ∈ 𝑈[−𝜋, 𝜋]. As before, the initial locations of
the jammers were selected at random, with the constraint that the jamming
regions should overlap of at least  %. In this scenario, no upper bound on the
amount of overlap allowed was imposed. The jammers are modeled as
moving in different directions, along linear paths, 𝑦1(𝑡) = 0.5𝑥1(𝑡) + 2, and
𝑦2(𝑡) = −0.3𝑥2(𝑡) + 5, where 𝑡 = 1, … , 𝑇 = 20 denotes the time steps.
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Figure : Total ARMSE localization estimation error for the single jammer elliptical case.
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Figure : Total ARMSE localization estimation error with respect to all jammers vs
number of jammers for the elliptical case.
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Figure : Total ARMSE localization estimation error with respect to all jammers vs
number of nodes for the elliptical case.

Fixed orientation

As time progressed, the jammers’ orientation here remained fixed, i.e., 𝛼 does not
vary over time, this in order to illustrate how a time-varying orientation affects
the results (as shown below). The proposed method here employs the EM seg-
mentation algorithm. The tracking was evaluated for unknown𝐾 where the value
of 𝐾 was obtained from the segmentation step, and the performance of the dif-
ferent tracking algorithms is presented in Table . The tracking was evaluated for
the Kalman filter (KF) [], and a particle filter [, ]. It should be noted that
the Kalman filter fails to produce accurate estimates when the number of jammers
change. Such estimates have been excluded from the ARMSE calculation. The
proposed method employs the estimated pattern to improve the localization es-
timates.
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Figure : An illustration of a tracking scenario where the purple circle has been split up
in the blue and green circle.

Table : Path errors for the three different methods tested.

Method Final ARMSE
Proposed .
KF .
Particle filter .

Table : Path errors for the three different methods tested.

Method ARMSE fixed orientation ARMSE variable orientation
Proposed . .
KF . .
Particle filter . .
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Variable orientation

Proceeding, we examine how the performance of the methods are affected if the
jammer’s orientation is allowed to change over time. It may well happen that
jammers (or persons operating such devices) aims at disrupting a specific target of
interest and thus may be interested in changing the orientation of its jamming in
order tomaximize the jamming effect. Thismakes the detection stepmore difficult
as the learning curve effectively has a smaller rate of change than in the case when
the orientation may be assumed to be fixed, thus making the convergence slower.
To investigate this effect, we examine a scenario in which a single jammer moves
through the network. The simulation setup was the same as before, following the
path given for 𝑦1(𝑡) but the studied cases now also include a variable orientation
with the orientation 𝛼 drifting with time, such that 𝛼(𝑡) = 𝛼 + 𝑛(𝑡), where
𝑛(𝑡) ∈ 𝒩(0, 1). The resulting localization error of the proposed method is shown
in Table , along with comparison methods.Figure  illustrates the learning rate
for the first  steps for the fixed and variable case, respectively. Onemay notice that
the localisation error decreases with time, illustrating how knowledge about the
orientation helps to improve the estimate, as may be expected, but also that this
gain diminishes somewhat over time as the method is able to utilize the estimated
jamming pattern to accurately locate the orientation.

. Merged patterns

Finally, we examine how more complicated jamming patterns may be
constructed by merging simple jamming patterns together. If one only has one
observation, it is impossible to determine if the observed pattern is from
multiple overlapping jammers, or if it is one jammer with a complicated
jamming pattern. However, if several consecutive observations are available, it
may be possible to tell the scenarios apart. If the pattern is made up of
individual jammers, it is reasonable to believe that as time progresses they will
move independently of each other, thus changing the relative distance between
their centra. In contrast, if the pattern is made up of just one jammer, it is likely
that the relative distance between their centra should remain unaltered. To setup
a simulation study for this case, we considered a jamming pattern consisting of 
joined jammers, all with elliptical jamming regions, all sharing a common
merging point such that the entire pattern moves as one, with their shared center
points 𝑦(𝑡) moving as 𝑦(𝑡) = 0.5𝑥(𝑡), 𝑡 = 1, … , 20. When the tracking starts,
the method tracked  individual jammers, however, as time progressed and the
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Figure : Convergence of the jammer localization problem with fixed and variable
orientation, illustrated for the proposed method.

relative distances between the jammers remained unaltered, the method instead
started to track the entire entity as one object, updating the previous track as
well. The methods was evaluated for three different node densities, ,  and
. The results are presented in Table , only results for the proposed method
are presented, due to the inability of the other methods to capture the scenario.

Table : RMSE for the merged pattern.

Node density Final RMSE Number of steps before merged pattern detected
 . 
 . 
 . 
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 Conclusion

To conclude, this article presents a procedure for the localisation of multiple,
overlapping jammers, with general jamming patterns. We evaluate three
methods for the segmentation and localisation step, and their resulting
localisation performances are compared to other state of the art jammer
localisation techniques, illustrating the improved performance by using the
proposed techniques. The proposed methods are evaluated for different jamming
scenarios, including different types of jammers, different amount of overlap, and
different network settings. Additionally, a jammer tracking method is presented
to track the jammers’ movement in the network. The proposed algorithm is
flexible regarding the number of tracked objects, as opposed to other state of the
art tracking methods the require knowledge about the number of agents to track.
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