LUND UNIVERSITY

Enabling Key Migration Between Non-Compatible TPM Versions

Karlsson, Linus; Hell, Martin

Published in:
Trust and Trustworthy Computing

DOI:
10.1007/978-3-319-45572-3_6

2016

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):

Karlsson, L., & Hell, M. (2016). Enabling Key Migration Between Non-Compatible TPM Versions. In Trust and
Trustworthy Computing (Vol. 9824, pp. 101-118). (Lecture Notes in Computer Science; Vol. 9824). Springer.
https://doi.org/10.1007/978-3-319-45572-3_6

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1007/978-3-319-45572-3_6
https://portal.research.lu.se/en/publications/6ac43a05-7690-4cab-b647-1412074aac01
https://doi.org/10.1007/978-3-319-45572-3_6

Enabling Key Migration Between
Non-Compatible TPM Versions

Linus Karlsson and Martin Hell

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden
{linus.karlsson,martin.hell}@eit.lth.se

Abstract. We consider the problem of migrating keys from TPM 1.2
to the backwards incompatible TPM 2.0. The major differences between
the two versions introduce several challenges for deployed systems when
support for TPM 2.0 is introduced. We show how TPM 2.0 support can
be introduced while still maintaining the functionality specified by TPM
1.2, allowing a smoother transition to the newer version. Specifically, we
propose a solution such that keys can be migrated from TPM 1.2 to TPM
2.0, while retaining behavior with regard to e.g. authorization, migration
secrets, PCR values and CMK functionality. This is achieved by utilizing
new functionality, such as policies, in TPM 2.0. The proposed solution
is implemented and verified using TPM emulators to ensure correctness.

Keywords: Trusted Computing - TPM - Migration

1 Introduction

There are different versions of the TPM, which differ from one another in several
ways. In this paper we consider TPM 1.2, introduced in 2003, and TPM 2.0 which
was introduced in 2012. TPM 2.0 is not backwards compatible with TPM 1.2,
but nevertheless TPM 2.0 chips are now available [4] and have started to ship
in devices [5].

We consider the process of migrating from the TPM 1.2 generation chips,
to the newer TPM 2.0. As new equipment comes with TPM 2.0 chips, we want
to be able to move or copy keys from TPM 1.2 to the new chips, while still
maintaining the same functionality. However, because of the lack of backwards
compatibility, there is no such support built into the TPM specifications. This
presents a problem when we would like to use the same keys even when moving
to a newer TPM, for example to be able to decrypt previously encrypted data. In
addition, we may want to continue to use these keys with the same functionality,
despite the differences between the specifications.

The lack of backwards compatibility means that this migration has to be done
manually. Keys have to be converted between different formats, and adapted to
the different feature sets of the two standards. Some features in TPM 1.2 have no
direct equivalent in TPM 2.0, but identical or similar behavior can be achieved
by using new features of TPM 2.0. The goal of this paper is to give a solution for

how to achieve this for all different key types and migration alternatives in TPM
1.2. As an example, in TPM 1.2 there is a concept of a migration secret, which
authorizes the migration of a key to another TPM. This migration secret has no
direct counterpart in TPM 2.0, but the same behavior can be implemented using
functionality only available in the TPM 2.0 specifications. Another example is
the use of Certifiable Migratable Keys (CMKs) in TPM 1.2, which also requires
a non-trivial design by expressing the functionality as policies in TPM 2.0.

We describe a process which allows us to migrate keys from a TPM 1.2 to a
TPM 2.0. We start by determining a set of requirements, and present a solution
which performs migration according to the presented requirements. We start
by implementing the equivalent functionality of TPM 1.2’s migration secret in
TPM 2.0, using constructions only available in the newest TPM version. We
then look at keys bound to Platform Configuration Register (PCR) values, and
present a way to handle the incompatibilities in key format between TPM 1.2 and
TPM 2.0. We also present a solution for CMKs, such that equivalent behavior is
achieved in both TPM versions. We do not consider the case of TPM 2.0 to 1.2
migration, since it is not likely that new TPM 1.2 equipment will be deployed
once equipment with TPM 2.0 has been deployed.

The paper is organized as follows. Section 2 presents a brief overview of TPM
1.2 and 2.0. In Section 3 we present our goals and requirements. In Section 4 we
describe our proposed solution for different relevant scenarios, which are then
extended to the case of CMKs in Section 5. Section 6 describes the implemen-
tation. Finally in Section 7, we discuss some related work. Section 8 concludes
the paper.

2 Overview of TPM 1.2 and TPM 2.0

This section will give a short introduction to TPM 1.2 and 2.0, with focus on
issues related to key migration. For a complete review, consult the specifications
[15,16].

2.1 Overview of TPM 1.2 and Certifiable Migratable Keys

A TPM 1.2 provides a key hierarchy of asymmetric keys. Keys can be of different
types, for example storage keys, signing keys, or decryption keys (the last called
binding key in TPM 1.2). Since the keys are asymmetric, they consist of two
parts: one public and one private part. The private part of every key is encrypted
with the public part of the parent key. Only a storage key can be the parent of
another key.

Certain operations on the TPM, e.g. some commands related to migration,
must only be performed by the TPM owner. These operations are authorized by
proving knowledge of an owner secret, which is set when someone takes ownership
of the TPM. To be able to use the private part of a key, e.g. to decrypt or sign
data, the user must provide a usage secret. This secret is stored inside the key
in the TPM, and can be unique for each key.

Copying keys between different TPMs is called migration, and was introduced
in TPM 1.1[13]. To authorize such an operation the TPM owner must first au-
thorize the destination using the command TPM_AuthorizeMigrationKey. We
note that the TPM owner can authorize any destination, thus making it pos-
sible to migrate the key to any TPM, or even to a keypair generated outside
any TPM. In addition, the user performing the migration must prove knowl-
edge of the migration secret, which is a secret set on key creation. If this se-
cret is not known, the key is not migratable. This is verified during execution
of TPM_CreateMigrationBlob, which outputs a data blob which can be trans-
ferred to the destination TPM. At the destination, the key can be loaded by
TPM_LoadKey2, possibly after conversion by TPM_ConvertMigrationBlob.

In TPM 1.2, CMKSs were introduced. Their migration is further restricted,
such that instead of the migration secret above, an authorization from a trusted
entity, called the Migration Selection Authority (MSA), is required. The MSAs
are chosen at key creation time. During the migration, the MSA must approve
the destination, either implicitly by migrating the key to the MSA itself, or
by signing a ticket containing the destination. The signature is done using the
private key of the MSA. By signing the ticket, the MSA approves the migration
of the specified key to a specific destination. This signature is required by the
source TPM to actually perform the migration.

2.2 Overview of TPM 2.0

In TPM 2.0 the asymmetric key hierarchy has been generalized, and has been
replaced with an object hierarchy. Objects can be asymmetric or symmetric
keys, or data blobs. The type of the object is determined by a set of flags on
the object: sign, decrypt, and restricted. An object with the flags decrypt and
restricted set is a storage key, since it can be used to encrypt and decrypt the
private parts of child keys, and the restricted bit tells the TPM to operate only
on data prepared by the TPM (for example keys). However, the storage keys
in TPM 2.0 protect its child keys by using symmetric encryption instead of
asymmetric. The symmetric key is derived from a seed included in the key itself.
In addition to this, TPM 2.0 allows for a wide range of ciphers and algorithms,
including different symmetric ciphers and hash functions.

In TPM 2.0, migration has been renamed to duplication. Indeed, this is a
more appropriate terminology, since keys are not removed from the source when
performing a migration. Instead the key will exist in both TPMs. There are two
flags connected to the duplicability of a key: fixed TPM and fizedParent. A key
with fixedTPM set can never leave the TPM, and can thus not be duplicated.
The other flag, fixedParent, tells us if the key is fixed to its parent. If the flag is
set, the key cannot be explicitly duplicated, but it may still be loaded in another
TPM if it is possible to duplicate its parent.

Just like in TPM 1.2, use of the private part of a key requires a usage secret,
but there is no direct equivalent of the migration secret. Instead, a more general
authorization mechanism has been introduced in TPM 2.0, namely policies.

2.3 Policies in TPM 2.0

A major addition in TPM 2.0 is the introduction of policies. A policy can be
used to authorize different operations on an object in the hierarchy. The policy is
set at creation time, by including a value authPolicy in the object. This value is
created by repeatedly hashing different values from different policy commands.
Possible commands are for example policies based on time, signatures, or secret
values. Different policies can also be combined using OR.

Before executing a command using the object, a policy hash must be built
in a policy session. The session also includes context specific values which are
checked during command execution, for example if we are authorizing duplication
or usage of the object, or what authorization method to use. The resulting policy
hash of the policy session is then compared to the authPolicy in the object to
authorize the command execution.

In this paper we are mostly concerned with duplication and authorization.
Thus, we are only interested in a subset of the different policy commands:

— TPM2 PolicyAuthValue requires the usage secret of the object being autho-
rized, and does the authorization using a HMAC.

— TPM2_PolicyAuthorize allows us to modify an existing policy. A new policy
is signed using the private key of an authority, and if this signature is valid,
the policy is included in the policy session.

— TPM2_PolicyCommandCode limits the authorization to a certain command, for
example to authorize duplication only. This is done by setting a command
code in the current policy session.

— TPM2_PolicyDuplicationSelect limits the allowed destination parent when
performing a duplication.

— TPM2_PolicyOR is a logical OR policy, true if the current policy hash matches
any of the conditions in this policy.

— TPM2_PolicyPassword requires the usage secret of the object being autho-
rized, and does the authorization using the password in clear.

— TPM2_PolicyPCR requires the PCRs (see Section 2.4) to have a specific set
of values.

— TPM2_PolicySecret requires the usage secret of another object on the TPM.

— TPM2_PolicySigned requires a digital signature.

2.4 Platform Configuration Registers

Both TPM 1.2 and 2.0 have a number of Platform Configuration Registers
(PCRs). Each PCR stores a hash value, which is created by repeatedly call-
ing TPM_Extend or TPM2 Extend. The extend operation depends both on the
previous PCR value, and on the new data. This can be used to store measure-
ments of hardware configuration and software on the host. Keys in both TPM
1.2 and 2.0 can be bound to PCR values, such that the use of a key requires
certain PCRs to be in a specified state. This ensures that such keys are only
usable in a known environment. In addition, the PCR, values can be read by
using the commands TPM_PCRRead and TPM2_PCR_Read.

2.5 Comparing Migration in TPM 1.2 and TPM 2.0

From the descriptions above we see that when it comes to migration, there are
several differences between the two TPM versions.

To perform a migration of a (non-CMK) TPM 1.2 key, the following criteria
must be fulfilled:

. The key must have been created with the key flag migratable set to TRUE.
. The migration secret must be known.

. The TPM owner must authorize the migration destination.

. The usage secret of the parent key on the source TPM must be known.

. The usage secret of the parent key on the destination TPM must be known.

T W N

In comparison, the following criteria must be fulfilled when migrating a TPM
2.0 key:

1. The key must have fixedParent CLEAR.

2. The command code of the policy session must be TPM_CC_Duplicate, i.e. the
key must have a policy which allows for duplication.

3. The usage secret of the parent key on the source TPM must be known.

4. The usage secret of the parent key on the destination TPM must be known.

We first note the similarities, namely that for both TPM versions, the usage
secret of the parent key on the source TPM must be known, such that the key
to be migrated can be loaded into the TPM. In addition, the usage secret of
the destination TPM’s parent key must also be known, such that the key to be
migrated can be added as a child key.

In TPM 1.2 there is an explicit flag which tells whether or not the key is
migratable. This is not the case in TPM 2.0, where there are two flags which
control the migratability of a key. If fixedParent is SET, then the key has a
fixed parent, and cannot be migrated directly (however, it could still be migrated
if its parent is migratable). If fixedTPM is SET, the key can never be migrated.
We note that it is not possible to create a key with fixedParent CLEAR and
fixedTPM SET, so a sufficient condition is that fixedParent is CLEAR.

Another difference is the authorization of the migration. In TPM 1.2 this is
done by proving knowledge of the migration secret. In TPM 2.0, it is done with
a policy session that authorizes the migration. We note that the policy session
is a more generic approach, which supports multiple ways of authorizing the
migration through the use of any policy command. The only requirement is that
there exists a command in the chain of policy commands that explicitly sets the
commandCode to TPM_CC_Duplicate, since duplication is a special authorization
role in TPM 2.0.

Finally, we note that there is no requirement for owner authorization when
performing a migration in TPM 2.0.

Looking at the migration of a CMK in TPM 1.2, the following criteria must
be fulfilled:

1. The MSA must authorize the migration destination.

2. The TPM owner must authorize the migration destination.
3. The usage secret of the parent key on the source TPM must be known.
4. The usage secret of the parent key on the destination TPM must be known.

Compared to the non-CMK criteria described above, the migration secret
criterion is replaced by the approval of the MSA. TPM 2.0 does not have the
concept of CMKs, but the behavior can be implemented by the use of policies.
Details will be presented later in Section 5.

3 Goals

We want to migrate a migratable key from a source TPM (TPM 1.2), hereafter
called TPMg, to a destination TPM (TPM 2.0), denoted TPMp. The key to be
migrated from TPMg to TPMp is denoted K.

If the source key is a CMK, then the migration must also be approved by an
already existing trusted third-party, called the authority/MSA. This third party
may, or may not, have a TPM module installed, but let’s assume that this is the
case, and call this party TPMj.

When migrating a key between two TPMs of the same version (i.e. either
1.2 = 1.2, or 2.0 — 2.0) we can immediately import the binary migration blobs
produced by the source TPM into the destination TPM. We can also be sure that
all features are supported. However, when we do a migration from 1.2 — 2.0 the
migration blob must be converted manually, taking into account the differences
between the two versions.

We introduce a conversion authority which is a trusted entity that performs
the actual binary conversion between 1.2 and 2.0, and denote this with TPMg.

Introducing this trusted entity does not lower the security of our proposed
solution. If the key K is a CMK, there is already a trusted third-party (the
authority /MSA). If a new, separate, conversion authority is undesirable, it would
be possible to extend the MSA to also be the conversion authority.

In the case of a non-CMK, the source key owner is in full control of K. This
means that the owner may migrate it to any destination, including a destina-
tion outside of a TPM. Thus the owner has full responsibility and opportunity
to choose a trusted conversion authority. It is possible to have the conversion
authority on either the source or destination, a separate third system is not re-
quired. Seeing the conversion authority as a separate entity does however provide
a clear separation of concerns, and simplifies reasoning in this paper.

3.1 Requirements

We want our solution to maintain the same functionality with respect to autho-
rization when moving from TPM 1.2 to TPM 2.0. Thus, if an entity is authorized
to migrate or use a key at the source TPM, it should have the possibility and
authorization to do so also at the destination TPM.

To maintain the functionality when moving between the different TPMs, we
identify a number of requirements which must be supported by the conversion
authority.

R1. Keep the same private and public part of the RSA key, such that it can be
used to decrypt previously encrypted data, or create identical signatures.

R2. Keep the same authorization requirements for key usage.

R3. Keep the same authorization requirements for key migration.

R4. If a key requires a certain state (PCR values) of the TPM, the same state
should be required after migration.

R5. Support all key types of the TPM 1.2, i.e., signing, decryption, and storage
keys. Both non-CMK and CMK keys should be supported.

R6. Once migrated to a TPM 2.0, it should be possible (if authorized) to further
migrate the key to another TPM 2.0.

R7. The migration should be deterministic, such that if the same key is migrated
twice, the result at the destination TPM should be identical after both mi-
grations.

The motivation for R7 is that when migrating a storage key in TPM 1.2
or TPM 2.0, its child keys are implicitly migrated as well, since they can just
be loaded at the destination TPM with the respective Load-commands. This
allows a hierarchy to be moved incrementally, simply by moving the child keys
to the destination. However, when migrating keys between TPM 1.2 and 2.0,
we will have to perform a conversion step. To be able to perform the migration
incrementally at different occasions, the steps involved must be deterministic.

4 Migration Scenarios

We will look at the following different migration scenarios:

1. Migration of a simple, single, key from TPMg to TPMp. Only signing keys
and decryption keys, without considering PCR values.

2. Migration of a simple, single, key requiring specific values of the PCRs.

Migration of a storage key, including its child keys.

4. All of the scenarios above, for CMKs.

@

4.1 Signing or Decryption Key

In this case we want to migrate a signing or decryption key from TPMg to
TPMp. Clearly we must retain both the private and public portions of the key
when migrating to TPMp. Furthermore we assume that this key is the child key
of the storage root key (SRK), but the steps will be identical for any parent key.

Because of the differences between TPM 1.2 and 2.0, both in functionality and
in the actual binary migration blob format, we must do a conversion of the binary
migration blob before importing it into TPMp. This means that we cannot
simply perform the migration to the SRK of TPMp. If we did, the migration

blob could only be decrypted by the destination TPM, which would also have to

perform the actual conversion. This is not possible, since the conversion cannot

be performed inside the destination TPM. Rather, we must use the previously

introduced conversion authority, TPM¢. The conversion authority has its own

RSA keypair, which will act as an intermediate destination during the migration.
The outline of the conversion is as follows, also depicted in Figure 1.

1. The owner of TPMg, and the owner of K authorize the migration of K
to TPM¢, by proving knowledge of the owner secret and migration secret
respectively.

2. A migration blob is created by the command TPM_CreateMigrationBlob.

3. The migration blob is first decrypted by TPM¢, and then converted to a
TPM 2.0-format, and migrated to the final destination TPMp.

4. TPMp imports the migration blob and now has its own copy of K.

TPM 1.2 (TPMs) Conversion authority (TPMc): TPM 2.0 (TPMp)
migrate TPM 1,'2 convert | TPM 2.0| :migrate
******* > migration - ---- > key [TTiTTC *
ey
blob

Fig. 1: Overview of migration using the conversion authority.

Conversion The conversion authority will perform the conversion of the key.
The following are some important steps in this process.

TPM 2.0 supports a wide range of hash functions, and each key has a property
nameAlg which stores the algorithm for the key. We set nameAlg of the TPM
2.0 key to be SHA-1, since that is the only supported hash algorithm in TPM
1.2. After this, the usageAuth in the TPM 1.2 key (which is the SHA-1 hash of
some secret) can be moved as-is to the TPM 2.0 formatted key.

Next, we want to move the public and private part of the source key. The
public part of the key, which is simply a structure from the TPM 1.2 specification,
must be sent separately to TPM¢, since it is not included in the migration blob.
This contains the public modulus and exponent.

The private part of the key, which we obtained by manually decrypting the
migration blob with the key of TPM¢, can be copied directly to the sensitive
structure in TPM 2.0, since both TPM specifications states that the private part
of RSA keys is one of the two RSA primes.

Migration of the Migration Secret In TPM 1.2, each key has a migration
secret, in addition to usage secret. If the value of this secret is tpmProof, no
migration is possible since tpmProof is a value internal to the TPM. However,
if the migration secret is the hash of a secret known to the user, migration is
possible.

In TPM 2.0 there is no direct equivalent of the migration secret (called
migrationAuth) in TPM 1.2. An analysis of the migration secret functional-
ity provides the following four options.

1. Disallow any further migration, that is, once migrated to TPM 2.0, no more
migrations will be possible. This violates requirement R6.

2. Always allow migration, that is, anyone can migrate the key. This violates
requirement R3.

3. Only allow migration if the user knows the usageAuth. This can be imple-
mented through a simple policy. However, this violates requirement R3.

4. Construct a more complex policy, which emulates the migrationAuth be-
havior of TPM 1.2.

Of these options, option 4 is the only one which fulfills our requirements, and
most closely resembles the original behavior of TPMg. Thus, when migrating K
to TPMp, we wish to keep the same migration secret, such that only entities
with knowledge of the migration secret can migrate the key further.

In TPM 2.0, migration authorization is performed using policies. Thus, to
keep the same migration secret, we must find a policy scheme that mimics the
behavior of TPM 1.2.

An initial thought may be to utilize the commands TPM2_PolicyAuthValue
or TPM2_PolicyPassword command in combination with setting the command
code with TPM2_PolicyCommandCode (TPM_CC_DUPLICATION), which would al-
low migration to any destination as long as a secret is known. However, both
TPM2_PolicyAuthValue and TPM2 PolicyPassword use the authValue of the
key, which is the same secret which is required for regular usage of the key. This
would correspond to our discarded option 3 in the list above.

In the general case, the migration and usage secret will be different, and
thus these two policy commands do not offer a solution to our problem. An-
other possibility is to use TPM2_PolicySecret. This policy command uses the
authValue of another entity in the TPM. Thus we could imagine a scenario
where we could create a new, separate entity whose only purpose is to keep the
previous migrationAuth as its own usage auth. In this way, we could create a
policy with TPM2_ PolicySecret which uses this extra entity.

However, we have chosen another approach, which somewhat mimics the
scenario where we have an MSA that approves our migration. This makes our
proposed solution more consistent when we later on start considering CMKs.
The proposed solution is depicted in Figure 2.

The usageAuth from our TPM 1.2 key is copied directly to the authValue
field of the TPM 2.0 key. We also copy the migrationAuth from the TPM 1.2
key to the authValue field of a separate, newly created, signing key, called the

TPM 1.2 (TPMs) TPM 2.0 (TPMp)

Parent key Parent key

usageAuth
migrationAuth

Fig. 2: Migration secret in TPM 2.0

Ksib (Slgl’l)

authVallvle «authValue
authPolicy .7 |authPolicy

sibling key (Kip), on the TPM 2.0. Thus, to be able to create signatures using
the sibling key, we must know the authValue of this key (which is the original
migrationAuth).

Now, to control the migration of the key, we include a policy in the authPolicy
field of the key K at the destination TPM. We construct the policy such that
a signature from the sibling key is required for a migration to succeed. To con-
struct such a signature, the user clearly must have knowledge of the migration
secret.

Constructing a policy which validates a signature can be done by using the
policy command TPM2_PolicySigned. The policy will require the TPM user to
present a signature from the sibling key (thus proving possession of the migration
secret), and if valid, TPM2_PolicyCommandCode (TPM_CC_Duplicate) is used to
authorize a migration to any destination, mimicking the behavior of TPM 1.2.

Furthermore, in the authPolicy field of the sibling key we include a policy
which allows migration of the sibling key as long as the authValue is known. This
allows us to migrate both the sibling key and K to another TPM 2.0 destination,
which fulfills requirement R6.

When creating K1, care must be taken to ensure that we get a deterministic
creation. Simply creating a new, random, RSA keypair would violate require-
ment R7, since every migration of K would result in different K, and thus
different authPolicy in K. Instead, we must base the generation of K, on K,
to ensure that the generation is deterministic, yet unique for all keys. Assuming
that the original private part of K, the pair of primes (p, ¢), is random, we use a
hash of (p, q) as the seed to the prime number generator to construct new primes
for the sibling key. This is similar to how TPM 2.0 generates primary objects
(such as the SRK) using the primary seeds in the TPM. The process is depicted
in Figure 3. Since we assumed that the original (p, q) were random primes, our
derived seed can also be considered random, thus giving a deterministic, but
still secure Kgp. Clearly, if someone has knowledge of (p, ¢) of K, they would be
able to derive Ky, and authorize a migration. However, if (p, q) of K is already

Parent key (TPMp) ‘

T

K (psib, gsib) = genPrime(h(pllq)) Ksiv
(P, q) (Psib, Gsib)

Y

Fig. 3: Generating the primes for Ky, based on (p, q) of K.

known, there is no reason for an attacker to do a migration, since the private
part of K is already compromised.

Owner Secret In TPM 1.2 the TPM owner is also required to authorize the
migration. However this is not the case in TPM 2.0. We propose a solution where
an extra signing key is introduced, similar to the sibling key above. However,
different from the owner secret, this key is not unique per TPM, but rather per
key. In a sense, it becomes an extra migration secret. It does deviate slightly from
the behavior in TPM 1.2 since this owner signing key will have to be identical
on all TPM 2.0 chips. The secret of the owner signing key is selected during
the initial 1.2 to 2.0 migration, and the key will be created by the conversion
authority. Just like for the migration key, the actual verification of the signature
is done by including a TPM2_PolicySigned in the policy chain.

4.2 PCR Bound Keys

In TPM 1.2, key usage can be restricted such that both certain PCR values
(through pcrSelection) and knowledge of the usageAuth is required. In TPM
2.0, this must be implemented through the use of policies. As can be seen in [16,
Part 1, Annex A], this can be realized by combining the use of TPM2_PolicyPCR
and TPM2 PolicyAuthValue. When converting the key to TPM 2.0-format, it
is important to set the userWithAuth-attribute to CLEAR, since otherwise the
user could circumvent the PCR requirement by only providing the authValue.

When migrating and converting from 1.2 to 2.0, the PCR values need to
be moved from the pcrSelection structure and instead be included in the
TPM2_PolicyPCR policy.

However, it is not possible for TPM¢ to extract the PCR values from the
TPM 1.2 migration blob. This is because the TPM 1.2 PCR structure present
in the TPM 1.2 key only contains the hash over a structure containing multiple
PCR values. The exact steps to calculate this hash is described in [15, Part 2,
Sec. 5.4.1].

To be able to convert the PCR values to a format suitable for TPM 2.0, we
would require access to each individual PCR value. In TPM 2.0 we will use the
hash of the concatenation of all PCR values in the TPM2_PolicyPCR command,
which is not the same structure that were used in TPM 1.2.

Thus, since we cannot extract each individual PCR value from the composite
hash of the key in TPM 1.2, we cannot reconstruct a TPM 2.0 key bound to the
exact same PCR values, at least not given only a migration blob. Therefore, the
PCR values from TPMg must be provided separately to the TPM¢ during the
conversion step.

A migration using TPM_CreateMigrationBlob does not require that the PCR
values of the TPM are in the expected state. This means that we cannot be sure
that reading PCR values using TPM_PCRRead returns the PCR values required
to use the key. Instead, this must be verified by the conversion authority. As-
suming that the PCR values, and the corresponding PCR index, are sent to the
conversion authority, it can verify that these are indeed the correct values by
calculating the hash in the same way as the TPM 1.2, and then compare it to
the hash in the migration blob. If they match, TPM¢ can then use the PCR
values when converting the key for TPM 2.0.

Assuming the correct PCR, values are sent to the conversion authority, we can
construct a policy using TPM2 PolicyPCR followed by TPM2_PolicyAuthValue,
which when combined will require both the correct PCR values and the correct
usage secret.

However, we must also combine this with the policy for migration authoriza-
tion in Section 4.1, such that we both can have PCR requirements and migration
requirements. This does not mean that a migration requires correct PCR values
(this is not required in TPM 1.2 either), but that one of the two policy branches
is satisfied.

Thus, we create a policy with two branches, combined with TPM2 PolicyOR,
as in Figure 4. Either of the two branches can be satisfied, if the left branch is
satisfied, key usage is granted (if the PCR values are correct). If the right branch
is satisfied, migration is authorized.

TPM2 PolicySigned

TPM2_PolicyPCR TPM2_PolicySigned

TPM2_PolicyAuthValue TPM2_PolicyCommandCode

N 7

TPM2_PolicyOR

Fig. 4: Policy for PCR combined with migration authorization.

4.3 Key Hierarchies

Up until now, we have only considered the case where K is either a signing or a
decryption key. If K is a storage key with child keys, we must be able to migrate
the complete hierarchy as well.

Normally, when migrating keys either from 1.2 to 1.2, or from 2.0 to 2.0,
there is no need to explicitly migrate the child keys. If the parent key is migrated
and thus available in the destination TPM, all child keys can simply be loaded
directly with TPM_LoadKey2 or TPM2_Load, using the same encrypted private part
on both the source and destination, without any migration.

However, due to the difference in encryption and overall key storage format
between 1.2 and 2.0, a more elaborate scheme is required when migrating a
hierarchy from 1.2 to 2.0.

Recall that in TPM 1.2, the parent’s public key is used to encrypt the child
key’s private part. Thus, asymmetric encryption is used. However, in TPM 2.0,
symmetric encryption is used instead. The child key’s private part is encrypted
using a symmetric key derived from a seed in the parent key. Normally, this
seed is generated upon key creation, and is based on data from the RNG in
the TPM. However, due to requirement R7, we require a deterministic seed.
Otherwise, subsequent migrations of the same hierarchy would yield different
seeds, and child keys would be encrypted with different symmetric keys, even
though they share the same parent.

When migrating a complete key hierarchy, we introduce extra requirements
on our solution:

1. When migrating a hierarchy, only the migration secret of the hierarchy’s root
key should be required to migrate the root and all of its descendant keys.
2. It should be possible to migrate parts of a hierarchy at different occasions.

Assume the hierarchy of keys given in Figure 5. If we want to migrate K,
including its child keys C1 and C2, we first perform a migration of K as usual,
i.e. just like if it was a signature or decryption key. However, TPM¢ can see
that K is a storage key, and if this is the case we include a seed inside the TPM
2.0-version of the key.

Fig. 5: Key hierarchy

We calculate the seed as seed = SHA1(p||q). The reason for using SHA-1 is
because the seed must be of the same size as the nameAlg of the key, which is
set to SHA-1 to be able to use the same usageAuth as in TPM 1.2.

When migrating a hierarchy, we also provide TPM¢ with the encrypted pri-
vate parts of the child keys of K, which we wish to migrate to TPMp. When
TPM¢ receives this bundle of keys, it can use the private parts of K to decrypt
all the other encrypted private parts of the child keys. The child keys can then be

converted to TPM 2.0-format, and re-encrypted using the symmetric key derived
from the seed.

This approach will work for hierarchies of any depth. However, the hierarchy
must be preserved inside the bundle, since TPM¢ must have access to the parent
of a child key to be able to decrypt it. We can also migrate only parts of a deep
hierarchy, as long as all relevant parents leading to K are included.

When migrating keys in the hierarchy, their migration secret must be pre-
served just as before. This means that in addition to converted child keys, we
will also get sibling keys for each converted child key. The sibling keys are placed
so that they share parent with the key that they correspond to, see Figure 6.

TPM 1.2 (TPMs) TPM 2.0 (TPMp)

SRK SRK

Fig. 6: Key hierarchy and sibling keys

5 Certifiable Migratable Keys

In TPM 1.2, a CMK can only be migrated with the approval of both the TPM
owner and a third-party Migration Selection Authority (MSA).

In TPM 2.0, there is no direct equivalent of CMK, but the behavior can be
achieved by using policies as in Figure 7. TPM2_PolicyAuthorize allows us to
replace the previous commands in the policy chain, in this case, it allows us to
replace TPM2_PolicyDuplicationSelect with another destination, as long as
we can present a valid signature of the policy hash. This signature is done by
the authority (MSA in TPM 1.2 terminology).

In this way the MSA must approve the destination before any migration can
be performed, and the approval is only valid for a specific destination.

TPM2_PolicyDuplicationSelect

b

TPM2_PolicyAuthorize

Fig. 7: Policy for CMK.

A complication introduced by CMKs is that TPM 1.2 introduces restrictions
on the place of CMKs in the key hierarchy. A CMK cannot be the child of a
migratable key, nor can it be the child of another CMK. When we convert a
CMK into TPM 2.0 format, we must ensure that these restrictions still hold.
Otherwise we would violate requirement R3, since we would be able to further
migrate the child CMK if we were authorized to migrate the migratable parent.

Thus, when migrating a CMK, we must ensure that the destination parent is
not a migratable key. This is the responsibility of the MSA, and is not discussed
any further.

We consider the three cases in the previous section, and construct the re-
quired policy for each case.

5.1 Signing or Decryption Key

When using CMKs, there is no migration secret that the key owner needs to
present. In Section 4.1 we presented a solution where two TPM2_PolicySigned
commands were included in the authPolicy of K. In the CMK case, we can
remove one of the signatures, since there is no migration secret. This also means
that no sibling key is required, we can consider the key of the MSA as our
(remote) sibling key.

Since there is no built-in requirement in TPM 2.0 for the owner to authorize
a migration, we introduced an owner signing key. This signature is still required
in the CMK case.

We can do this by simply adding the TPM2_PolicySigned command to the
end of the chain. Note that adding it to the start of the chain would make it possi-
ble for the authority to override the owner authorization, which we want to avoid.
Thus the chain now look like in Figure 8. TPM2_PolicyDuplicationSelect will
set the command code to TPM_CC_Duplicate, so no explicit call to set the com-
mand code is required after TPM2_PolicySigned.

TPM2 PolicyDuplicationSelect

b

TPM2_PolicyAuthorize

b

TPM2_PolicySigned

Fig. 8: Policy for CMK, with owner authorization.

5.2 PCR Bound Keys

We start with the policy from the previous section, and add a PCR policy,
similar to what we did in Section 4.2. Again, we get two different branches of
the policy, one for usage, and one for migration, see Figure 9. Just like before,
either of the two branches can be satisfied. If the left branch is satisfied, key

usage is granted (if the PCR values are correct). If the right branch is satisfied,
migration is authorized, because TPM2 PolicyDuplicationSelect will set the
correct command code for migration.

TPM2_PolicyDuplicationSelect

TPM2_PolicyPCR TPM2_PolicyAuthorize
' b
TPM2_PolicyAuthValue TPM2_PolicySigned
TPM2_PolicyOR

Fig.9: Policy for PCR combined with migration authorization and CMK.

5.3 Storage Keys

Recall the restrictions on CMKs in the key hierarchy. A CMK may not have a
migratable parent, neither a regular migratable key nor a CMK. The effect is
the only possible key hierarchy which includes CMKs is a hierarchy where the
root node is a CMK. This means that we can proceed as in Section 4.3, with
the additional requirement that the root CMK key gets a policy just like in
Section 5.1.

6 Implementation

To ensure that our conversion process works as intended, we have implemented

all the above test cases, and verified their behavior. The TPMs have been emu-

lated in software. For TPM 1.2, IBM’s Software TPM version 4720 [3] has been

used. For TPM 2.0, Microsoft’s TPM2 Simulator version 1.1 [7] has been used.
To simplify the implementation, we have assumed the following:

— All TPM 1.2 keys are in the TPM_KEY12-key format.

— K is 2048 bit RSA, two primes. Two primes and RSA is a requirement for
migratable keys according to [15, Part 2, Sec. 10.7].

— The default RSA exponent (2! + 1) is used for all keys. For storage keys
this is also required by the TPM 1.2 specification.

The TPM 1.2 specification in [15] has no defined formats on how to send
migration packages between the different entities. It does, however, exist a spec-
ification [14] which describes an XML schema for supplying information about
keys during the migration phase. This specification is, however, not fully up-
dated for TPM 1.2, but rather based on TPM 1.1, and thus we have not used
this XML-based approach in our implementation.

Instead, since our implementation was primary meant for testing and eval-
uation purposes, we have simply passed files with binary content between the
different entities.

7 Related Work

While there are few widespread applications that rely on the functionality pro-
vided by the TPM, there are examples of existing pieces of software, and some
other proposed use cases. From Microsoft we have both Bitlocker [6], used for
full-disk encryption, and Virtual Smart Cards [8], which uses the TPM instead
of physical smart cards to store private keys. Examples of proposed use cases for
the newer TPM 2.0 are for example the use of TPM for tamper-proof logging
[11], or the use of TPM 2.0 for electronic identities [9].

Related to the challenge of providing consistent behavior between the two
TPM versions, in [2], the authors design a unified API which implements their
functionality on both TPM 1.2 and 2.0. In contrast to this work, they consider
the functionality for a certain use case, and then create two different and separate
implementations, one for each TPM version, with no possibility of key migration
between them.

The use of TPMs to provide trusted computing functionality within cloud
computing is an area where there also has been development and research. In [10]
the use of trusted computing in cloud platforms is discussed, and in [12] trusted
snapshots of running virtual machines is discussed. Related to migrating keys
between TPMs are ways of sharing keys between different TPMs. A cloud-based
solution is proposed in [1].

8 Conclusions

We have proposed a solution to make it possible to move or copy key material
from TPM 1.2 to TPM 2.0. Even though the two TPM versions differ signifi-
cantly in functionality, and offer no backward compatibility, we have presented a
design which allows the migration of keys between different versions, while still
maintaining the same functionality. This allows users of the current TPM 1.2
version to start using the newer TPM 2.0 chips, still keeping the same encryption
keys and functionality. In this way, previously encrypted data can be decrypted
with the same set of authorization requirements as before. The required func-
tionality was first identified and organized as a set of requirements. After this
we looked at several different cases, where each case corresponded to different
properties of the source key on the TPM 1.2.

We presented a way to provide the migration secret functionality of TPM
1.2 also in TPM 2.0. By introducing sibling keys and using policies, we can
maintain the same authorization requirements in both TPM versions. We also
handle migration of PCR bound keys from TPM 1.2 to TPM 2.0. Because of the
differences in key format between the two versions, the migration requires PCR
values to be sent to the conversion authority. The conversion authority can then
verify the values against the source key before including them in the destination
key. In addition to this, we showed how the TPM 1.2 CMK functionality can
be expressed in terms of TPM 2.0 policies, and combined this with the previous
results so that migration of all key types of TPM 1.2 are covered. Finally the
different proposed solutions were implemented and tested using TPM emulators.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful and valuable comments.

References

10.

11.

12.

13.

14.

15.

16.

Chen, C., Raj, H., Saroiu, S., Wolman, A.: cTPM: A Cloud TPM for Cross-Device
Trusted Applications. In: 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). USENIX Association, Seattle, WA (Apr 2014)
Hell, M., Karlsson, L., Smeets, B., Mirosavljevic, J.: Using TPM Secure Stor-
age in Trusted High Availability Systems. In: Trusted Systems: 6th International
Conference, INTRUST 2014, Beijing, China. pp. 243—-258. Springer International
Publishing (2015)

IBM: IBM’s software trusted platform module. http://ibmswtpm.sourceforge.
net/

Infineon: Infineon Advances Trusted Computing with New OPTIGA™ TPM
Family: Security Chips Serve Industrial/Embedded Environments and Sup-
port Next Generation TPM 2.0 Firmware. http://www.infineon.com/cms/en/
about-infineon/press/press-releases/2013/INFCCS201309-062.html
Infineon: Infineon Expands its Trusted Computing Expertise to Mobile De-
vices: OPTIGA™ TPM 2.0 Chips Secure Microsoft Surface Pro 3 Tablet.
http://wuw.infineon.com/cms/en/about-infineon/press/press-releases/
2015/INFCCS201502-026.html

Microsoft: BitLocker Drive Encryption Overview. https://www.microsoft.com/
en-us/download/details.aspx?id=29076

Microsoft: TSS.MSR v1.1 TPM2 simulator. http://research.microsoft.com/
en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
Microsoft: Understanding and Evaluating Virtual Smart Cards (July 2014)
Nyman, T., Ekberg, J.E., Asokan, N.: Citizen Electronic Identities Using TPM
2.0. In: Proceedings of the 4th International Workshop on Trustworthy Embedded
Devices. pp. 37-48. TrustED ’14, ACM, New York, NY, USA (2014)

Santos, N., Gummadi, K.P., Rodrigues, R.: Towards trusted cloud computing. In:
Proceedings of the 2009 conference on Hot topics in cloud computing. USENIX
Association (2009)

Sinha, A., Jia, L., England, P., Lorch, J.R.: Continuous Tamper-Proof Logging Us-
ing TPM 2.0. In: Trust and Trustworthy Computing: 7th International Conference,
TRUST 2014. pp. 19-36. Springer International Publishing (2014)

Srivastava, A., Raj, H., Giffin, J., England, P.: Trusted VM Snapshots in Untrusted
Cloud Infrastructures, pp. 1-21. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

Trusted Computing Group: Trusted Computing Platform Alliance (TCPA) Main
Specification Version 1.1b (February 2002)

Trusted Computing Group: Interoperability Specification for Backup and Migra-
tion Services, Specification Version: 1.0 Final, Revision 1.0 (June 2005)

Trusted Computing Group: TPM main specification, Version 1.2, Revision 116
(March 2011)

Trusted Computing Group: Trusted Platform Module Library Specification, Family
72.0”, Level 00, Revision 01.16 (October 2014)

http://ibmswtpm.sourceforge.net/
http://ibmswtpm.sourceforge.net/
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2013/INFCCS201309-062.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2013/INFCCS201309-062.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2015/INFCCS201502-026.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2015/INFCCS201502-026.html
https://www.microsoft.com/en-us/download/details.aspx?id=29076
https://www.microsoft.com/en-us/download/details.aspx?id=29076
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx

	Enabling Key Migration BetweenNon-Compatible TPM Versions

