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Populärvetenskaplig sammanfattning 

Med förbättrad förlossningsvård ökar chanserna för foster i riskgraviditeter att 
överleva. Vissa tillstånd, så som för tidig födsel och tillväxthämning i livmodern, 
utgör en ökad risk för fosterdöd och sjukdom i spädbarnsåldern. Tillväxthämning i 
livmodern är ett allvarligt tillstånd där fostret riskerar att avlida om man inte 
tidigarelägger förlossningen till mycket tidigt i graviditeten, detta trots att alla 
organsystem då inte är fullt utvecklade. Det finns ett starkt samband mellan för tidig 
födsel och tillväxthämning i livmodern med ökad risk för hjärtkärlsjukdomar och 
njursjukdom senare i livet. Det är dock inte helt kartlagt varför detta sker eller vilka 
organ som främst är drivande i den ökade risken. Det är inte heller känt hur 
tillväxthämning påverkar långtidseffekterna av att födas för tidigt.  

Denna avhandling undersöker ungdomar som på grund av hotande syrebrist och 
otillräcklig blodcirkulation efter tidigt isättande tillväxthämning i livmodern 
förlöstes före graviditetsvecka 30. Ungdomarna föddes vid Skånes 
universitetssjukhus i Lund 1998–2004 och jämförs i denna avhandling med två 
grupper födda med normal födelsevikt, en grupp som också föddes i liknande 
graviditetsvecka och en som föddes med normal vikt efter en normal 
graviditetslängd.   

Magnetkamera (MR) användes för att studera hjärtats, kärlens och njurarnas 
struktur och funktion. Deltagarna fick även utföra 24-timmars 
blodtrycksundersökning och lämna blod och urin för undersökning av markörer som 
kan visa på ökad risk för nuvarande eller framtida sjukdom.   

Avhandlingen inkluderar fem delarbeten. Två av dessa är arbeten testar och 
validerar nya metoder för att studera njurarnas struktur respektive 
pulsvågshastighet, ett mått på kärlstyvhet, i stora kroppspulsådern. Dessa metoder 
används i avhandlingens senare delarbeten.  

Det övergripande syftet med denna avhandling var att ta reda på i vilken 
utsträckning mycket för tidig födsel och tillväxthämning i livmodern påverkar 
hjärta, kärl och njurar i ungdomsåren. Syftet var också att ta reda på om effekterna 
av mycket för tidig födsel på de olika organen förstärks av tillväxthämning i 
livmodern. De ingående studierna omfattar i korthet följande: 

 
Delarbete I. Njurarnas olika delar mättes med hjälp av en fritt tillgänglig och MR-
metod varefter de uppmätta volymerna jämfördes med de faktiska volymerna. MR-
metoden stämde väl överens med de faktiska volymerna och metoden visade på hög 
tillförlitlighet vid upprepade mätningar och mellan olika individer. 
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Delarbete II.  Pulsvågshastigheten i stora kroppspulsådern mättes med olika MR 
metoder i nyfödda samt i ungdomar. Arbetet visade att olika vanligt använda 
metoder för att mäta denna hastighet ger olika resultat och därmed inte säkert kan 
jämföras. Den mest tillförlitliga metoden i delarbetet gavs som förslag att användas 
i framtida studier.  

Delarbete III. Blodtrycksvariation över dygnet och pulsvågshastigheten och 
styvheten i stora kroppspulsådern i de tre grupperna undersöktes och metoden från 
Studie II implementerades. Studien visade att blodtrycket hos pojkar var högre efter 
mycket för tidig födsel jämfört med att vara född i normal tid. Studien visade även 
att tillväxthämning i livmodern förstärker denna skillnad. Studien antydde även att 
pulsvågshastigheten var högre hos flickor födda mycket för tidigt jämfört med att 
vara född i normal tid.   

Delarbete IV. Magnetkamera användes för att undersöka hjärtats struktur och 
funktion. Studien visade på skillnader i hjärtvolymer men också att hjärtats funktion 
under tonåren inte var påverkad av mycket för tidig födsel, oavsett föregående 
tillväxthämning i livmodern. Skillnaden i hjärtats volymer var mest uttalad hos 
flickor.  

Delarbete V. Njurens olika volymer mättes med metoden som validerades i 
delarbete I. Studien visade att mycket för tidig födsel på grund av tillväxthämning i 
livmodern var associerad till mindre njurvolymer. En skillnad som var mest markant 
hos flickor. Detta utan att njurfunktionen var påverkad. 

Sammanfattningsvis har denna avhandling tagit ett helhetsgrepp kring de 
organsystem som visats påverkas av mycket för tidig födsel och tillväxthämning i 
livmodern. Helt nya validerade metoder har använts tillsammans med tidigare väl 
kända metoder för att bedöma hjärta, aorta och njurar. Sammantaget indikerar 
avhandlingen minskade långtidseffekter och lägre grad av kardiovaskulär påverkan 
och njurpåverkan av mycket för tidig födsel, med eller utan tillväxthämning.  
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Popular summary in English 

Improved obstetric and neonatal care have increased the number of fetuses in high-
risk pregnancies that can be identified, surveilled, and who eventually survive. Early 
onset fetal growth restriction is a clinical syndrome in which the fetus risks 
intrauterine death due to dysfunctional fetal placental circulation. At Skåne 
University Hospital in Lund, Sweden, it has been the clinical practice to actively 
deliver fetuses, due to early onset fetal growth restriction, even in very early 
gestation, when organ maturation has not yet been completed. The long-term effects 
of this management are not known. There is, however, a strong association between 
both preterm birth and fetal growth restriction with an increased risk of 
cardiovascular disease (CVD) and kidney disease later in life. Whether the heart, 
the vasculature or the kidneys drives this increased risk is not known. It is further 
not known whether early onset fetal growth restriction adds to the effects of very 
preterm birth.  

This thesis included a cohort of adolescents born very preterm due to early onset 
fetal growth restriction at Skåne University Hospital between the years 1998-2004. 
Two sex-matched control groups with appropriate birth weight were included, one 
in similar gestational and one born at term after a healthy pregnancy.  

To diagnose and quantify organ specific alterations, magnetic resonance imaging 
(MRI) was used. This method is the reference method for quantification of 
cardiovascular structure and function and is central in assessing kidney structure. 
24-hour ambulatory blood pressure measurements were performed and biochemical 
markers in blood and urine for the assessment of cardiovascular risk, kidney 
function and inflammatory activity were sampled.  

This thesis includes five studies. Two are validation studies in which methods for 
the quantification of kidney volumes and pulse wave velocity in the aorta, a measure 
of arteria stiffness, respectively, are developed and assessed. These methods are then 
applied to assess differences between groups in the primary cohort.  
The overall aim of this thesis was to investigate to what extent very preterm birth 
due to fetal growth restriction effects the heart, the vasculature, and the kidneys in 
adolescence. The aim was also to investigate whether the organ specific alterations 
induced by very preterm birth was exacerbated by fetal growth restriction.  

 
Study I. Validated renal cortical and medullary volume assessment with a readily 
available non-contrast-enhanced MRI method. For comparison, renal cortical and 
medullary volumes were quantified with Archimedes’ principle, after dissection of 
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extracted kidneys. The MRI method agreed with ex-vivo measurements and the 
intra-and interobserver variability was low. 

Study II. Validated a method for pulse wave velocity acquisition with MRI in 
neonates and in adolescents. A computer phantom was created to determine the 
temporal resolution needed for reliable quantification of pulse wave velocity in the 
respective cohort, with the actual physical parameters as input. The study showed 
what method for pulse wave velocity that should be used and determine the temporal 
resolution needed for reliable assessment of pulse eave velocity in the respective 
group.  

Study III. Investigated blood pressure variability and aortic stiffness in the three 
groups, born very preterm with and without preceding fetal growth restriction and 
born at term. 24-hour ambulatory blood pressure measurements and the validated 
method for pulse wave velocity measurements were used. The study showed that 
blood pressure is higher in boys born very preterm and that fetal growth restriction 
exacerbates this increase. The study further showed, in contrast to earlier studies of 
adolescents born very preterm with and without fetal growth restriction, that arterial 
stiffness was similar between groups.  

Study IV. Cardiac structure and function were assessed with common clinical and 
new MRI methods. The study showed that very preterm birth was associated with 
smaller cardiac volumes but also that cardiac function was unaffected after very 
preterm birth and fetal growth restriction in adolescence.  

Study V. Cortical and medullary kidney volume were assessed with the validated 
method from Study I. The study showed that very preterm birth due to fetal growth 
restriction was associated with smaller kidney volumes. This volume change was 
mostly driven by smaller medullary volumes. Kidney function was not affected. 

In summary, this thesis has taken a comprehensive approach to assess the effects of 
very preterm birth and fetal growth restriction on the cardiovascular system and the 
kidneys in adolescence. Potential prognostic biomarkers of future cardiovascular 
and renal disease have been assessed using new validated MRI methods together 
with standard clinical methods. Overall, this thesis indicates lessened long-term 
effects and degree of cardiovascular impact of very preterm birth with and without 
preceding fetal growth restriction.  
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Part I  

 
 
 

 
Research context  





 

23 

1 Introduction 

Word wide, the incidence of preterm birth is approximately 10 percent and preterm 
birth is the leading cause of death in children under 5 years of age, with worsening 
outcomes related to degree of prematurity (1,2). Fetuses presenting with early onset 
fetal growth restriction (FGR) due to pathological fetal-placental blood flow, are at 
particular risk for adverse perinatal outcomes (3). Preterm birth and low birth weight 
has further been associated with increased risk of future disease burden, including 
cardiovascular and renal disease, showing an inverse relationship between 
gestational age and birth weight to cardiovascular morbidity (4–7). Low birth 
weight and birth weight deviation have been used as a proxy for FGR in studies on 
both perinatal and long-term outcomes, resulting in inclusion of heterogeneous 
groups, since not all small fetuses are subject to restricted intrauterine growth.  

Several landmark improvements in obstetric and neonatal management, such as 
antenatal corticosteroid and postnatal surfactant administration, both implemented 
just prior to the birth of the current study population, have decreased perinatal 
morbidity and mortality (8–10). The short-term outcome of both preterm birth and 
low birth weight has improved substantially over the last decades (11,12), and the 
limit of viability has been pushed further and further back in gestation (13–15). 
Since the second half of the 1990’s, the clinical management of fetuses with early 
onset FGR, verified with pathological fetal-placental Doppler velocimetry, 
presenting at Skåne University Hospital, Lund, Sweden, has been to deliver the 
compromised fetus with emergency or elective cesarean section early in gestation 
(16).  

The long-term cardiovascular outcomes after very preterm birth due to early onset 
fetal growth restriction in adolescents born with access to modern neonatal intensive 
care has not yet been studied.  

The overall aim of this thesis was therefore to investigate whether very preterm 
birth with or without preceding early onset fetal growth restriction is associated with 
cardiovascular and renal dysfunction in adolescence. This thesis also sought to 
investigate whether fetal growth restriction exacerbated the effects of very preterm 
birth.  
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1.1 Fetal origin of adult disease 
In 1990 David Barker and colleagues proposed the “fetal origin of adult disease” (or 
“Barker hypothesis”) hypothesis, postulating that the fetal environment and 
maternal and early infant health impacts the incidence of metabolic and 
cardiovascular disease later in life (17).  

Epidemiological data to support this hypothesis had been gathering from across 
the world and studies in Finland, Norway and England all showed similar findings 
(6,18–24). The incidence of cardiovascular disease was greater in areas with poor 
socioeconomic living conditions and in areas with increased childhood and maternal 
morbidity (18,19,22,23). Studies included populations born in the late 1800s up to 
the end of the second world war.  

Other epidemiological data to support the hypothesis were observations that adult 
height was inversely related to cardiovascular mortality (24) and that low birth 
weight in infancy increased the risk of ischemic heart disease later in life (6). In 
these historical cohorts, an increased incidence in maternal and infant death as well 
as drastic alterations in height and weight, may be seen as a direct proxy for poor 
socioeconomic living conditions with lack of food and basic healthcare as 
underlying factors to changes in anthropological metrics. The conclusion that poor 
nutrition in early life increases susceptibility to the effects of future nutrition rich 
diet was drawn early (19,24) and has since been observed in recent studies showing 
an increased risk of cardiometabolic and cardiovascular disease after being born 
with low birth weight (25) and after childhood malnutrition (26). An intensive 
compensatory nutritional strategy and subsequent catch-up growth in infancy (27) 
and in childhood (28) has further been shown to increase the risk of cardiometabolic 
and cardiovascular disease after low birth weight.  

One of the most known study cohorts are those surviving and living through the 
“Dutch famine” between the years 1944-1945 when Nazi Germany occupied the 
western parts of the Netherlands and imposed an embargo on all transport and food. 
The famine raged from October in 1944 to May 1945, after which the German forces 
surrendered to the Allies (29,30). Follow-up studies on these cohorts have 
confirmed previous findings in line with the work by Barker et al, that factors in 
fetal life and infancy affects long-term morbidity and mortality (29,31).  

These historical populations, surviving and living through the Depression and the 
great wars, have given us valuable insights into future consequences of early 
programming, otherwise only available through animal experiments. However, 
considering the continuous development of obstetric and neonatal care, these 
populations might not be representative of today’s cohorts of fetuses born preterm 
with low birth weight and fetal growth restriction. 
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1.2 Pregnancy  
The human pregnancy lasts for approximately 40 weeks, or 280 days. The first day 
of the last menstruation counts as day one and the following days and weeks are 
counted as “gestational week + days”. 

The developmental stages in pregnancy are categorized and subdivided in three 
trimesters. The 1st trimester 0 to 13+6 days, the 2nd trimester 14+0 to 27+6 days and 
the 3rd trimester ≥ 28+0 days (32). 

Time of birth is further categorized based on gestational weeks   
- Extremely preterm < 28+0  
- Very preterm 28+0 to 31+6 
- Preterm birth 32+0 to 36+6 
- Term 37+0 – 41+6  

1.2.1 Maternal and fetal surveillance during pregnancy 
The maternal surveillance program in Sweden was implemented in the first part of 
the 20th century and has since evolved to a week-per-week program for risk 
stratification and management of the pregnant woman and the developing fetus. In 
Skåne, Sweden, the program is called “Basprogram för graviditet och eftervård i 
Region Skåne” and is subsidized and offered to all.  

The routine program for a healthy woman includes serial visits to the midwife for 
assessment of weight, height, blood pressure, proteinuria, symphysis-fundus 
measurements, and later in pregnancy also examination of fetal movement, fetal 
palpation, and fetal sound. Blood is initially sampled for more thorough testing, 
including blood grouping, testing for sexually transmittable diseases, and anemia. 
An oral glucose tolerance test is performed in the beginning of the third trimester.  

An early ultrasound is usually performed in the first trimester for dating of the 
pregnancy and for fetal diagnostics. A combination of ultrasound and blood 
sampling (KUB) is offered for fetal diagnostics. Pregnancy associated plasma 
protein-a (PAPP-A) and human chorionic gonadotropin (β-hCG) are sampled from 
maternal blood and the result is used together with variables from the fetal 
ultrasound and maternal parameters to calculate the risk for trisomy 21, 18 and 13. 
Noninvasive prenatal testing (NIPT) with maternal sampling of cell-free DNA 
(cfDNA) might also be offered in similar gestation and offers further certainty into 
potential chromosomal abnormalities.  

The second ultrasound is performed in the second trimester. Fetal growth and size 
assessment, and further anatomical examination of the fetus and the placenta are 
performed.  

For high-risk pregnancies, an individual plan for increased surveillance will be 
put in place together with the obstetrician and the midwife. A deviant symphysis-
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fundus measure, non-normal findings on ultrasound, or other clinical signs of 
maternal or fetal stress, will cause referral to the responsible obstetrician.  

1.2.2 Dating of pregnancy 
The expected date of birth and thus gestational age can be calculated using 
Naegele’s rule: adding 9 months and seven days to first day of the last menstruation 
(33). However, the preferred and most accurate method for dating the pregnancy is 
ultrasound at 8-14 weeks of gestation by measuring crown -rump length (CRL). The 
precision at this gestational age is ±7days (2SD), meaning that 95% of all fetuses 
will be born within two weeks from he calculated date. The risk of overestimating 
the gestational age, and thus underestimating fetal weight and growth is lessened 
with early ultrasound as compared to using Naegele’s rule. An accurate estimation 
of gestational age is needed to assess whether the estimated fetal weight is 
appropriate for gestational age (AGA). 

1.2.3 Fetal biometry  
In addition to the planned ultrasound measurements, fetal growth is assessed by the 
midwife throughout the second half of the pregnancy using the symphysis- fundus 
measurement. In Sweden, a measure of more than two standard deviations below 
reference standard is used as cut off for referral to obstetric ultrasound while the 10th 
percentile is often used internationally. Also, a growth curve that deviates from its 
original shape might also cause a referral for more accurate diagnostics. These 
deviations are however seldom noticed before 30 gestational weeks and might thus 
rather be a sign of late onset FGR rather than early onset FGR, especially if no signs 
of growth restriction were observed during the second ultrasound. Using the 
internationally used reference cutoff, the 10th percentile, sensitivity is about 50% 
while the specificity is about 80% for finding SGA fetuses and both increase with 
increased gestational age (34,35). Using two standard deviations (as opposed to the 
10th percentile) would thus improve specificity at the expense of sensitivity. 

Fetal size and subsequently growth is determined by serial measurements of head 
circumference (HC) biparietal diameter (BPD), abdominal circumference or 
diameter (AC/AD) and femur diaphysis length (FL). Several formulae have been 
presented. In an international multicenter study, the INTERGROWTH-21st project 
sought to establish internationally valid estimations of fetal weight (36), however 
the estimations provided may be less accurate than the commonly used Hadlock 
formula (37), at least in early gestation (38).  In Sweden, the Person and Weldner 
formula is used for estimation of fetal weight (39). A Swedish population with 
growth curves based on serial intrauterine measures of healthy fetuses who 
continued to grow until full term is used for reference (40). Internationally, a fetus 
with an estimated fetal weight between the 10th and 90th percentiles is termed AGA 
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while a fetus with an estimated fetal weight below the 10th percentile below the 
reference standard is termed small for gestational age (SGA). In Sweden, a cutoff 
of more than two standard deviations, or more than 22% below, the reference for 
gestational age is used to define SGA.  

Birth weight is further categorized as:  
- Extremely low birth weight (ELBW) < 1000g 
- Very low birth weight (VLBW) weighing less than 1500g 
- Low birth weight (LBW) weighing less than 2500g 
- Macrosomia weighing > 4500g 

1.2.4 Fetal growth restriction 

1.2.4.1 Definitions 
In this thesis, adolescents with early onset fetal growth restriction (FGR) are 
included. Definitions are in accordance with the Delphi Criteria, also adopted by 
The International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) 
guidelines (Table 1.1) (3,41). However, as stated above, in Lund, Sweden, the cut 
off in birth weight deviation used for determining SGA is 2SD. The previously used 
terms “symmetric” and “asymmetric” FGR, indicating early and late onset FGR (42) 
should not be used, as the classification does not add information regarding neither 
etiology nor prognosis (43).  

Fetal growth restriction, or ‘intrauterine growth restriction (IUGR)’, indicates that 
the fetus has not reached its genetic growth potential. These fetuses are not only 
smaller, as the constitutionally small SGA fetuses, they are small because of poor 
placental function, impairing fetal blood flow and thus nutrient and oxygen delivery 
(41). Risk stratification and correct definitions and diagnosis is important as the 
FGR fetus is at higher risk for adverse perinatal outcomes compared to the SGA 
fetus (41,44,45). Historically, and in many recent studies, birth weight deviation per 
se is used to define FGR. This will, however, overestimate the number of FGR 
fetuses and may also expose the mother and fetus in unnecessary surveillance and 
potentially harmful procedures.  
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Table 1.1 Definitions for early-and late-onset fetal growth restriction, based on Deplhi consensus criteria’s. 
Early fetal growth restriction Late fetal growth restriction 
Gestational age < 32w, in absence of congenital 
anomalities 

Gestational age > 32w, in absence of congenital 
anomalities 

AC/EFW < 3rd centile or umbilical artery absent 
end diastolic flow 

AC/EFW < 3rd centile 

Or Or 2/3 of the following 

1. AC/EFW < 10th centile combined with 1. AC/EFW < 10th centile 

2. UtA-PI > 95th centile and/or 2. AC/EFW crossing centiles >2 quartiles on growth 
centiles 

3. UA-PI >95th centile 3. CPR <5th centile or UA-PI >95th centile 

AC=fetal abdominal circumeference, EFW=estimated fetal weight, UA=umbilical artery, UtA=Uterine artery, 
PI=pulsatile index, CPR=cerebrplacental ratio. Reproduced and adapted from Gordijn et al. (41).  

1.2.4.2 Epidemiology and incidence  
Between 115.000 and 120.000 children are born in Sweden each year. Of these, five 
to six percent are born preterm, while approximately one percent are born very 
preterm. Approximately four to five percent of babies are born with low birth weight 
(<2500g) (46). Both preterm birth and FGR are important causes of low birth 
weight, and both constitutes clinical problems, especially in combination. Early 
onset FGR constitutes 20-30 percent of all FGR cases. In low- and middle-income 
countries almost one in five is born SGA and approximately one in ten is born 
preterm, significantly contributing to infant mortality. Although infant mortality is 
high in these populations, the majority of these infants survive, increasing the global 
prevalence of individuals born preterm with birth weight deviation (1,47).  

1.2.4.3 Etiology and risk factors for fetal growth restriction 
The etiology of FGR is often not known but common risk factors for early onset 
FGR include preeclampsia or other maternal hypertensive disorders, multiple 
pregnancy, primipara, chronic diseases of the mother, malnutrition and 
socioeconomic factors and substance abuse, such as smoking (48,49). Risk factors 
for preterm birth includes multiple pregnancy, bacterial vaginosis, systemic diseases 
such as thyroid disease or diabetes and local or systemic inflammation. Other 
factors, such as stress, smoking and substance abuse and socioeconomic 
characteristics and race are also important risk factors (42). 

Fetuses with genetic abnormalities were excluded in the current thesis but 
constitute a portion of fetuses presenting with early onset FGR. Further, prenatal 
infections, especially TORCH infections, is an important cause to early onset FGR, 
at least word wide. As all pregnant women in Sweden are screened for these 
diseases, the incidence of early onset FGR due to these infections is most probably 
low.  

1.2.4.4 Pathophysiology of fetal growth restriction 
Factors influencing uteroplacental blood flow also impact fetal circulation and can 
thus lead to fetal hypoxia and subsequent asphyxia. Increased resistance in the 
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maternal vasculature and in the fetoplacental circulation are common pathways 
towards early-onset FGR (50). Causes include poor placental implantation and a 
faulty trophoblast invasion, spiral artery abnormalities and maternal vasculopathy 
(51–54). Abnormal Doppler velocity measurements in the umbilical and uterine 
arteries are indicative of increased placental fetoplacental resistance and are 
prognostic of both preeclampsia and FGR, especially in high risk pregnancies (55). 
The uteroplacental vasculature is not subject to autonomic regulation and thus lacks 
innervation, making it susceptible to changes in systemic vascular pressure. The 
increased resistance in the uteroplacental vasculature, as observed with doppler 
ultrasound, is an effect of endothelial activation and vasoconstriction and impaired 
angiogenesis, where blood vessels within the terminal villi are abnormal and 
dysfunctional, increasing fetoplacental vascular resistance and limiting adequate 
oxygen and nutritional exchange across the villi (56). Trophoblast invasion of 
myometrial spiral arteries, as needed for low resistance uteroplacental blood flow, 
has been shown to be faulty in up to 75% of preeclamptic pregnancies, also showing 
high correlation to pathological doppler findings in the uterine artery (53). Further, 
in pregnancies with FGR fetuses, the placenta has been shown to be smaller, the 
villi having thicker walls and smaller lumens, indicative of a poor gaseous exchange 
and high vascular resistance, changes also correlating to pathological umbilical 
artery blood flow (52).  

1.2.4.5 Diagnosis and management  
Early onset FGR might not be detectable using symphysis fundus measurements. 
Instead, other factors, such as high blood pressure, proteinuria and maternal symptoms 
cause referral for an obstetric ultrasound. Figure 1.1 shows a flow chart for 
surveillance and clinical management of fetuses identified as being SGA and Table 
1.1 shows the diagnostic criteria for early onset FGR. Diagnosis and management are 
based on biophysical examination, i.e., expected fetal weight ≥ 2SD (-22%) below the 
reference for gestational age, and doppler velocimetry in the umbilical artery, the 
uterine artery, ductus venosus and in the middle cerebral artery. 

Fetoplacental Doppler velocimetry is central for the identification of uteroplacental 
insufficiency associated with FGR, allowing for differentiation of constitutionally 
small fetuses (SGA) from FGR (3). The blood flow patterns in the feto- placental 
circulation show characteristic changes with severity of FGR and has been shown to 
be predicative of future fetal demise. These measures are therefore used for grading 
of the severity and to decide when to induce labor (3,57).   

In addition to doppler ultrasound, analysis of fetal heart rate, usually by 
cardiotocography (CTG), is used for identifying fetal distress and may, if 
pathological support the decision to induce labor (3). However, alterations in blood 
flow patterns might precede pathological CTG patterns and thus support active 
management in the absence of abnormal CTG findings. 

Reduced and abnormal uterine artery blood flow has been observed in 
preeclampsia and in pregnancies with FGR fetuses (58–60) and the bilateral 



 

30 

notching (end-diastolic velocity increase) and increased pulsatility index (PI) (61) 
indicates up to a 50% reduction in uterine blood flow to the fetus (50,62). Pulsatility 
index is measured in the umbilical artery and is defined as peak velocity in systole 
minus the velocity in end-diastole divided by the average velocity. Uterine artery 
score further classifies the PI and the blood flow in the uterine artery. Ranging from 
0-4, worsening uterine artery score is predictive of adverse perinatal outcomes such 
as 5 minute Apgar score <7, preterm delivery, NICU admission and birth weight 
deviation (63).  

 

Figure 1.1 Flow chart for surveillence and clinical management of SGA fetuses. 
The SGA fetus will undergo fetometry every other week. Management will differ depending weight deviation and blood 
flow findings. Sections with bold linings indicate the scheme for surveillence and clinical management of the current 
FGR study population. SGA=small for gestational age, BFC= blood flow class, CTG=cardiotocographi, AFI=amniotic 
fluid index.  

Similarly, on the fetal side, umbilical arterial blood flow, assessed with doppler 
ultrasound, is lower and shows abnormal blood flow patterns in pregnancies with 
preeclampsia and/or FGR, changes that are prognostic of perinatal death (64–67). 
Pulsatility index decreases continuously in a healthy pregnancy but increases in a 
sequential and typical manner in fetuses with early onset FGR. The continuous 
measure pulsatility index (PI) is subdivided and categorized in to blood flow classes, 
from 1 to 3A and 3B, where 3A corresponds to arrested end-diastolic blood flow 
and 3B to reversed end-diastolic blood flow in the umbilical artery (Figure 1.2) (68). 
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Increasing PI and changes in the blood flow pattern show a progressive correlation 
to an increasing resistance and a functional loss of blood flow between the fetus and 
the placenta, resulting in an up to 70% loss of placental blood flow in the FGR fetus 
with reversed end diastolic blood flow in the umbilical artery (69,70). 

The blood flow pattern in the middle cerebral artery (MCA) in FGR fetus displays 
an increased end-diastolic blood flow, indicative of a “brain-sparing effect” and has 
been shown to be of prognostic value in these fetuses (71). The cerebral-placental 
ratio indicates a redistribution of blood flow to the brain and is calculated as the 
middle cerebral artery PI divided by the umbilical artery PI. An abnormal cerebral-
placental ratio is strongly associated with adverse perinatal outcome and improves 
risk prediction as compared to using umbilical artery assessment alone (72,73).  

Further, abnormal blood flow in the ductus venosus is highly predicative of infant 
mortality and severe morbidity in FGR fetuses (74,75). In Lund, Sweden, ductus 
venosus blood flow assessment is, together with CTG and the above blood flow 
measurements, used to aid decision making for the induction of labor of the FGR 
fetus.  

1.2.4.6 Perinatal mortality and morbidity  
Survival has improved for infants born early in gestation (13,14) and intensive 
surveillance of SGA fetuses and active management of fetuses with early onset FGR 
limits and prevents fetal demise. Today, mortality after early onset FGR with active 
management is comparable to that of fetuses born AGA at similar gestational ages 
(76,77). Studies evaluating neonatal morbidity and mortality in SGA and FGR 
fetuses, show that gestational age seems to be the most important risk factor for 
adverse outcome (45). The susceptibility for adverse outcomes and neonatal 
morbidity will thus depend on gestational week at birth as well as the degree of 
placental insufficiency and subsequent growth restriction. Although mortality rates 
after both very and extremely preterm birth and FGR have decreased, adverse 
perinatal and neonatal outcomes remain as important challenges (13,76–78). The 
incidence of neonatal morbidity has not seen similar trends in reductions as that of 
infant mortality, and for some conditions, such as bronchopulmonary dysplasia 
(BPD) and respiratory distress syndrome (RDS) the incidence has rather increased 
(13,76).  

The FGR infant has an increased risk for postnatal hypoglycemia. The increased 
risk is mainly due to depleted glycogen stores but may also be due to hypoxia 
leading to acidosis, and the metabolism shifting to a non-oxygen dependent and 
ineffective pathway for glucose utilization. Transient hypoglycemia is often present 
also in the term infant, although subclinical. The term infant utilizes energy 
substrates such as fatty acids and ketone bodies from fat storage in order to 
compensate for transient hypoglycemia, a process which is limited in the FGR 
infant.   

Antenatal corticosteroid administration increases maturation of several organs, 
and lowers mortality and morbidity in the very preterm infant (8,9). The effect of 
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antenatal corticosteroid administration is especially effective in reducing the risk for 
RDS by increasing synthesis and release of surfactant (32). Respiratory distress 
syndrome is a major cause of morbidity and mortality in the very preterm infant, 
affecting up to ~90% of those born very preterm FGR (76). The cause of RDS is a 
lack of surfactant and subsequent high surface tension at the air-liquid interface 
within the alveoli, causing the lungs to collapse during respiration. RDS often 
presents immediately post-partum, and the incidence and severity are inversely 
related to gestational age. Surfactant is produced by Type II alveolar cells which are 
not fully differentiated and functional until 34 gestational weeks (79). To decrease 
the risk of relying on invasive mechanical ventilation, surfactant is usually 
administered via the INSURE method (intubation-surfactant-extubation) whereafter 
the infant, if possible, is ventilated via continuous positive airway pressure (CPAP), 
nasal intermittent positive pressure ventilation (NIPPV) or high flow nasal cannula 
(HFNC). If necessary, the infant will be intubated and ventilated using conventional 
mechanical ventilation or high frequency oscillatory ventilation (HFOV) (32).  

Bronchopulmonary dysplasia is also a common lung disease in the preterm infant, 
indicated by the need for supplemental oxygen at an age corresponding to 36 
gestational weeks. Risk factors are prolonged ventilatory support, RDS and early 
gestation. Immature lungs, pulmonary injury and a faulty healing process 
characterize the disease. The incidence of BPD is about 75% in infants born very 
preterm with FGR as compared to ~50% for very preterm AGA infants born at 
similar gestation (76). Postnatal corticosteroid administration is the major treatment 
strategy for BPD (80), used to reduce oxygen requirement and to facilitate 
extubation.   

Intraventricular hemorrhage (IVH) and periventricular leukomalacia (PVL) are 
two complications of preterm birth. Blood vessels in the germinal matrix are delicate 
and sensitive to changes in blood pressure and blood flow, making them prone for 
rupture. Severe IVH affects 10-15 percent of the extremely preterm population. 
Intraventricular hemorrhage is sensitively detected as all infants below 30 
gestational weeks undergo frequent ultrasound examinations of the brain to screen 
for IVH. Hypoxia and general inflammation contribute to injury to the white matter 
close to the ventricular system in the brain causing periventricular leukomalacia 
(PVL) with motor dysfunction, such as spastic diplegia and cognitive delay as 
sequele. The risk for both of these serious complications of the immature brain is 
reduced by antenatal corticosteroid administration (8,32).  

Both septicemia and necrotizing enterocolitis (NEC) are common in the very 
preterm FGR infant. Septicemia may be due to maternal fetal spread or nosocomial 
infection and affects up to 45% of FGR infants born <30weeks of gestation as 
compared to ~35% in term AGA infants born at similar gestation (76).  The cause 
of NEC is not fully understood but it is thought that an abnormal perfusion of the 
colon is a contributing factor. Inflammation of the wall of the colon with subsequent 
necrosis and perforation may be observed.  
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1.2.4.7 Active clinical care at the limit of viability  
The first national consensus guideline on perinatal management at extremely early 
gestational age was issued in 2016 by the Swedish society of perinatal medicine and 
provided specific recommendations on centralization of care, antenatal 
corticosteroid treatment, mode of delivery and a neonatologist attending at the birth. 
These guidelines formulated that antenatal steroid treatment and active resuscitation 
of the newborn infant should be considered from 22+0 GW and are recommended 
from 23+0 GW. Existing national guidelines do not specify gestational-age related 
recommendations for the extremely preterm FGR fetus. The current guidelines from 
the American College of Obstetricians and Gynecologists and the Society for 
Maternal-Fetal Medicine (15), was updated in 2021 and corresponding 
recommendations state that antenatal steroid treatment and active resuscitation of 
the newborn infant should be considered from 22+0 GW and are recommended from 
24+0 GW, also with no specific statement regarding FGR. In current clinical 
practice globally, delivery on fetal indication due to early onset FGR is very rarely 
considered before 24+0 GW. 

1.2.4.8 Long term consequences of preterm birth and fetal growth restriction  
Preterm birth and low birth weight are associated with long term adverse outcomes 
such as hypertension (5,81), ischemic heart disease and heart failure (82,83) and 
chronic kidney disease (4,84). These quite recent studies support the validity of the 
Barker hypothesis (17), indicating that both preterm birth in itself and the 
intrauterine environment affects future cardiovascular and renal disease (85). 
However, studies with the objective of relating FGR to health outcomes have used 
birthweight as a proxy for FGR (6,86,87), potentially mixing the constitutionally 
small infants with truly growth-restricted infants. Also, using the 10th percentile (in 
comparison to the >2SD) as cutoff for significant birth weight deviation and for 
FGR diagnosis greatly increase the number of fetuses included.  

For comparison between studies, gestational age, birth weight deviation and 
presence of FGR verified with doppler ultrasound, and year of birth (and thus 
clinical management) must be accounted for. The full impact of FGR on future 
morbidity after preterm birth is therefore difficult to assess. It is further not known 
which organ system driving the increased cardiovascular and renal risk in these 
populations. Biomarkers indicative of future cardiovascular and kidney disease have 
been observed from infancy to adulthood after preterm birth and FGR.  

Cardiac changes after preterm birth and birth weight deviation have been 
observed from childhood to adulthood and preterm birth has even been proposed as 
its own cardiomyopathy (88). Increased blood pressure and increased arterial 
stiffness and RAAS activation are commonly observed after preterm birth (81,89–
91). It might thus be hypothesized that long term cardiac structural changes after 
preterm birth, such as increased left ventricular mass (92,93), are mainly a result of 
increased afterload. However, studies also suggest impaired cardiac function in 
utero (94,95) and in infancy (96–98), indicative of hemodynamic and potentially 
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also structural changes in the preterm heart. These changes also seem to persist from 
infancy to pre adolescence (99). 

Fetal growth restriction may further impair vascular growth (100) and several 
studies have shown that both preterm birth and low birth weight are associated with 
increased arterial stiffness (87,91,101). Arterial stiffness is a surrogate marker for 
the atherosclerotic process and is an independent risk factor for CVD and all-cause 
mortality in differing populations (102–104) including patients with known renal 
disease (105).  

In line with the Barker hypothesis (17), Brenner et al. (106,107), suggested the 
“Hyperfiltration theory”; that a low nephron count at birth, as observed after preterm 
birth and FGR (108–110), increases the risk for future hypertension and progressive 
decline in renal function. Hyperfiltration of the remaining glomeruli as a response 
to increased hydrostatic pressures at the glomerular level is suggested to result in 
accelerated renal dysfunction (106,107). Increased birth weight correlate to 
increased number of glomeruli but shows an inverse relationship to glomerular size 
(110). Preterm birth and FGR independently impede renal development resulting in 
a low nephron count at birth (108,109,111,112). As both prematurity and low birth 
weight are associated with smaller kidney volumes (113–117), kidney volume 
quantification has been used as a proxy for nephron count in these populations. Both 
preterm birth (4,5,118) and a low nephron count (107,119,120) increases the risk 
for future renal functional decline and development of chronic kidney disease 
(CKD) (4,5,118) and several studies have shown associations between preterm birth 
and low birth weight with reduced kidney function (4,118,121). Biochemical 
markers of RAAS activation have been shown to be elevated in populations born 
preterm, with increases observed after preeclamptic pregnancies and after prenatal 
corticosteroid administration (89,122). Angiotensin II derived vasoconstriction and 
aldosterone derived plasma volume expansion due to increased absorption and 
decreased excretion of sodium and water will increase both preload and afterload 
and could thus be a contributing factor to the increased risk for CVD and CKD in 
the preterm population.  

1.2.5 Preeclampsia  
Gestational hypertension affects up to 10% of all pregnancies. About 3-7% of these 
will also develop preeclampsia (123,124), approximating 5000 women per year in 
Sweden. Gestational hypertension increases the risk of both preterm birth and FGR, 
with preeclampsia being the major contributor, causing ~15% of all preterm births 
and up to ~40% of all FGR cases (76). Both states increases perinatal maternal and 
fetal morbidity and mortality (125,126) as well as long term morbidity of both the 
offspring and the mother (123,127–129). Risk factors for preeclampsia includes 
chronic hypertension and kidney disease, blood clotting disorders, diabetes and 
obesity. Previous preeclampsia and a family history of preeclampsia are both strong 
risk factors (42).  



 

35 

Preeclampsia is defined as blood pressure ≥140/90 mmHg commencing after 20 
gestational weeks with simultaneous proteinuria (>0.3g/24 hours or an albumin- 
creatinine ratio (ACR) > 30mg/mmol). Blood pressure should be verified on two 
separate occasions, at least 4-6 hours apart. Serial blood pressure measurements and 
urine analysis for proteinuria during pregnancy are thus an important screening tool 
for ensuing preeclampsia (130). In addition, uterine artery PI >90th percentile detects 
~50% of women who will develop early preeclampsia and could also be used for 
screening (131). Preeclampsia is associated with endothelial activation and general 
inflammation affecting not only the uteroplacental circulation. A general 
vasoconstriction in the pregnant woman increases the peripheral resistance lowering 
glomerular filtration and also increases preload and afterload, inducing left 
ventricular hypertrophy and in some cases even heart failure (132). In severe cases 
of preeclampsia, liver function gets severely affected, with ensuing hemolysis, 
elevated liver enzymes and low platelets, collectively called the HELLP syndrome 
(133). Eclampsia describes the most sever complication, affecting central nervous 
system with general seizure and tonic-clonic seizures (134).  

1.2.6 Human embryology 

1.2.6.1 The placenta  
During the first 36 hours after fertilization the egg undergoes multiple cleavage 
stages and at the 16-cell stage it becomes a mass of cells called morula, which 
shortly after gets fluid filled to form the blastocyst. By day 6-7 the blastocyst, now 
containing an inner cell layer of cytotrophoblasts and an outer layer of 
syncytiotrophoblats, attach to and penetrate the endometrium as a result of invasion 
and phagocytosis of endometrial stromal cells. A subset of trophoblasts, the extra 
villous trophoblasts, penetrates deeper into the endometrial stroma and invade the 
spiral arteries, creating lacunae, filled with maternal blood. These will eventually 
join to form the intervillous space, making up the area where the fetal and maternal 
blood exchanges nutrients and waste products.  

By the 13th day after conception, cords of cytotrophoblasts called “Langhan’s 
cells” protrudes in the area of the intervillous space and forms the primary villi, 
eventually branching into secondary, and then subclasses of vascularized tertiary 
villi, in different developmental stages. These vessels will form the end-capillaries 
of the fetal circulation, i.e., from the umbilical arteries, towards the placenta. About 
10-16 generations of branching of the villi occurs before complete maturation of the 
placenta. Gas exchange is taking place between the distal terminal villi and the 
intervillous space (50,135).  

As the trophoblasts invade the endometrium a portion of the smooth muscle walls 
of the maternal spiral arterioles are destroyed making the vessels flaccid and dilated. 
During maternal systole this facilitates high flow at low pressures in the intervillous 
space. Blood flow in uterine artery at term is ~500-750 ml/min. The oxygen 
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saturation of maternal blood reaching the intervillous space is 90-100% and as fetal 
hemoglobin is at higher concentrations and has a higher affinity for oxygen than 
maternal blood, delivery of oxygen from the mother to the fetus will be favored. 
The umbilical cord contains two arteries who carries deoxygenated blood from the 
fetus to the placenta and one vein carrying oxygenated blood from the placenta to 
the fetus. The vessels grow in a spiral shape inside a polysaccharide structure called 
“Wharton’s jelly”. At term, the blood flow is approximately 350ml/min and the 
umbilical arterial blood pressure is about 70/60mmHg while the venous pressure is 
~25mmHg (136).  

1.2.6.2 Fetal circulation 
The fetal circulation differs quite extensively from the adult circulation. Three 
shunts make up the main differences between the pre- and post-natal circulation. 
More than half of the venous return passes from the right to the left atrium through 
the foramen ovale. The rest enters the right chamber where it is pumped through the 
pulmonary artery. Most of this blood is redirected to the aorta through the ductus 
arteriosus and only a small portion, 8-10%, passes through the pulmonary 
vasculature. The two umbilical arteries branch from the internal iliac arteries and 
carry deoxygenated blood from the fetus via the umbilical cord to the placenta, 
finally branching out as capillaries in tertiary villi. The oxygenated blood from the 
placenta returns to the fetus via the umbilical vein which branches to the liver, and 
the portal vein, and about 50-60% reaches the inferior vena cava directly though the 
ductus venosus, and thus bypasses the liver, before returning back to the heart 
(32,137).  

1.2.6.3 Cardiac development 
The first heartbeat is initiated at gestational day 22 but the heart first becomes 
functional by the 4th gestational week. The heart goes through several developmental 
stages finally becoming the 4-chamber heart during the 7th week of gestation (137). 
Cardiomyocyte proliferation is active throughout fetal life but significantly tapers 
by the end of the third trimester, although with some proliferative function persisting 
also in infancy (138). Animal studies show cardiac myocyte hypertrophy and 
increased deposits in collagen and abnormal changes in cardiomyocyte nuclear 
numbers after preterm birth (139) and that the switch from intrauterine to 
extrauterine life induces cell cycle arrest, indicating arrested cardiomyocyte 
proliferation (140). Human studies of infants born preterm show an abruptly 
arrested cardiomyocyte proliferation and the initiation of a hypertrophic growth 
pattern of the myocytes (141). These findings together indicates that the premature 
change from intrauterine to infant life induces permanent changes in the 
myocardium, possibly relating to the increased CVD risk observed in those born 
preterm.  
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1.2.6.4 Vascular development 
During early embryonic life groups of mesodermal cells differentiate to angioblasts, 
endothelial precursor cells, and joins to form rudimentary blood vessels. 
Vasculogenesis refers to the de novo synthetization of blood vessels from 
endothelial precursors whereas angiogenesis refers to the process of generating new 
vessels from existing ones. Following the initial vasculogenesis, capillaries will 
begin to form mostly though angiogenesis, which entails proteolysis of the 
surrounding extracellular matrix and the following proliferation, migration, and 
lumen formation of endothelial cells. Several signaling molecules are crucial for 
normal vascularization, and one of these factors, the vascular endothelial growth 
factor (VEGF) and its pathways have been shown to be essential for both 
vasculogenesis and angiogenesis (142). Vessels will remodel and/or regress 
according to the environment and the stress and need of blood flow in the area. The 
circulatory system remains plastic throughout life with examples in wound healing, 
the formation of collaterals and increased capillarization as an adaptation to 
exercise.  

Studies suggest that preterm birth interrupts the normal elastin composition of the 
aorta, lessening the elastin component at birth (143). Elastin is the major component 
of the large elastic arteries, such as thoracic and abdominal aorta, and during normal 
aging, the elastin/collagen ratio decreases (144). An altered elastin composition in 
the vessel walls after preterm birth and impaired growth is suggested to increase 
arterial stiffness, blood pressure and cardiovascular disease (145).  

1.2.6.5 Renal development 
The urogenital system develops from the intermediate mesoderm forming the 
urogenital ridge on both sides of the aorta at the caudal parts of the embryo. The 
urogenital ridge develops into the pronephros, the mesonephros and the 
metanephros. The most cranial region, the pronephros, induces nearby intermediate 
mesoderm to form the mesonephric tubules which filtrates blood until the 8th week. 
The pronephros itself will regress in the 4th gestational week. The metanephros, will 
form the functional kidneys and appears in the 5th week of gestation becoming 
functional by the 12th week.  

Functional glomeruli are first observed in the juxtaglomerular zone at 22 weeks 
of gestation. Glomerular filtration increases as the number of glomeruli and blood 
pressure increases. In the fetus, only about 2% of cardiac output is directed through 
the kidneys, to be compared with approximately 20% of the adult cardiac output. 
Although the placenta is responsible for excretion of waste products the larger 
portion of the amniotic fluid is produced from fetal excretion via the kidneys. The 
majority of nephrons are formed in the second half of the pregnancy with the 
completion of nephrogenesis by ~36 gestational weeks (108). The number of 
nephrons at birth are however highly individual, ranging from 200.000 to 2.000.000. 
Both preterm birth and fetal growth restriction hinders nephrogenesis and renal 
development and thus lowers nephron count at birth (108,109,119).  



 

38 

The preterm infant has fewer and less mature nephrons, lower mean arterial blood 
pressure and comparably higher renal vascular resistance, all factors contributing to 
lower glomerular filtration rate (GFR). Glomerular filtration rate is lower in the 
preterm infant compared to a term infant at similar gestation.  

As the tubular function and the ability to concentrate urine are impaired there is 
an increased risk for hyponatremia and metabolic acidosis. Neonatal acute kidney 
injury is common (146) and both maternal and neonatal medication may impact 
neonatal and future renal function (147,148). Antenatal corticosteroid 
administration has been shown to accelerate renal maturation, increasing kidney 
function by increasing the number of developed glomeruli (149), potentially 
lessening the negative impact of preterm birth. In the case of fetuses with early onset 
FGR, where the mother often is inpatient and continuously surveilled with fetal 
Doppler velocimetry, most if not all mothers will receive prenatal corticosteroids 
before induction of delivery. Growth of the embryo causes the kidneys to ascend 
from the pelvis to the lumbar region. As they ascend, new vessels, renal arteries, are 
formed while the pelvic branches regress. 

1.3 Cardiovascular anatomy and function 

1.3.1 Cardiac anatomy  
Figure 1.2 shows cardiac anatomy. The heart is situated in the pericardial cavity 
within the inferior mediastinum, a central compartment of the thoracic cavity. The 
pericardial sac encapsulates and protects the heart and restricts the outward 
movement of the myocardium during cardiac pumping. The heart consists of 4 
chambers, the left and right atria, separated by the interatrial septum, and the left 
and the right ventricles, separated by the muscular interventricular septum. The 
fibrous atrioventricular plane separates the atria from the ventricles and contains the 
mitral valve enabling blood flow between the left atria to the left ventricle and the 
tricuspid valve enabling blood flow between the right atria to the right ventricle. The 
left ventricle connects to the systemic circulation via the aortic valve and the 
ascending aorta whereas the right ventricle connects to the pulmonary artery via the 
pulmonary valve. The left atria receive oxygenated blood from the pulmonary 
arteries and the right atria receives deoxygenated blood from the superior and 
inferior vena cava. The heart provides blood flow to two interconnected systems: 
the low resistance pulmonary circulation and the high resistance systemic 
circulation.  
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Figure 1.2 Cardiac anatomy.  
A schematic image of the heart (left) and an MRI image (right) showing the “ 4-chamber view “ of the heart with the 
corresponding anatomical landmarks labled (if visible) as appropriate. Labelling were added in the left figure from 
Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported 
License (https://creativecommons.org/licenses/by/3.0/). 

1.3.2 Cardiac pumping 
The right atrium receives deoxygenated blood from the body via the inferior and 
superior vena cava and serves as a reservoir of blood for the right ventricle. During 
diastole i.e., ventricular filling, the right ventricular myocardium relaxes, lowering 
intraventricular pressure so that the tricuspid valve opens and blood flows from the 
atria to the ventricle, ending with a “atrial kick” where the atria contracts and forces 
blood to the ventricle. At the start of systole, the ventricles will contract, increasing 
intraventricular pressures and closing the tricuspid and mitral valves.  When the 
intraventricular pressure surpasses the pulmonary and the systemic pressure, 
respectively, the pulmonary and aortic valves will open, and blood will be ejected.  

It was long believed, and is, in many places, still taught, that the heart pumps 
blood in a squeezing pattern with the epicardial borders and the whole 
myocardium “contracting” inwards squeezing and pushing the blood upward to 
the aorta and pulmonary artery, respectively. Using MRI, Carlsson et al. (150–
152), in a series of papers showed that ~60% of left ventricular stroke volume is 
generated by longitudinal motion, i.e., atrioventricular plane displacement 
(longitudinal contribution to stroke volume) and that approximately 40% is 
generated by an inward-squeezing motion by radial contraction (radial 
contribution to stroke volume). Notably, the other border of the heart only changes 
5-8% throughout the cardiac cycle and the apex is almost fixed in place (152). The 
radial contribution to stroke volume is mainly due to the inward contraction and 
bulging of the myocardium, not an outer volume change of the entire heart as 
previously believed. For the right ventricle, the longitudinal contribution to stroke 
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volume is even higher, contributing to 80%, with 20% of the stroke volume 
generated by radial contraction (150).  

1.3.3 Arterial structure and function 
The arterial tree can be divided into elastic arteries such as the aorta and carotids, 
muscular arteries such as coronary arteries and renal arteries, and arterioles. The 
arterioles make up the last part of the arterial three and resides within tissues and 
organs before finally branching to capillaries through which diffusion of oxygen 
and carbon dioxide takes place. Arterial wall thickness decreases as vessels become 
smaller but the ratio of wall thickness to the lumen of the vessel increase, enabling 
the muscular arteries and arterioles to control blood flow and blood pressure. Three 
concentric layers makes up all arteries (Figure 1.3).   

The inner cell layer of all blood vessels, the endothelium, consists of a single 
layer squamous epithelial cells attached to a basal membrane. This layer is referred 
to as the tunica intima. Initially believed to be only a physical barrier between the 
blood and the outer parts of the blood vessel, the endothelium has been shown to be 
central to vascular function but also to the atherosclerotic process.  

The middle layer, tunica media, is separated to the intima by the internal elastic 
lamina and consists of smooth muscle cells in well-organized concentric layers. The 
thickness, the collagen, and elastin content of the tunica media differs across the 
arterial tree. The elastic arteries, e.g., the aorta, has a high degree of elastin fibers, 
enabling the vessel to distend during systole and to recoil in diastole, whereas 
muscular arteries and arterioles are less distensible and have a higher proportion of 
media-to-lumen ratio than the elastic arteries. Arterioles are the major contributors 
to changes in blood pressure and has via a larger intima media the ability to change 
vessel diameter, in turn altering blood flow and peripheral resistance.   

The outermost layer, the tunica adventitia, is separated from media by the 
external elastic lamina and  consists of connective tissue, mostly collagen, and the 
vasa vasorum, blood vessels supplying the blood vessel and nerve fibers (153). 
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Figure 1.3 Arterial morphology.  
Overview of the histology of the arterial wall. The innermost layer tunica intima consisting of endothelial cells, the 
tunica media, containing smooth muscle cells, elastin and collagen, and the tunica adventitia, containing the 
supportive vessels and nerves to supply the artery. The figure was modified and put in a collage by using pictures 
from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 
Unported License (https://creativecommons.org/licenses/by/3.0/). 

1.3.3.1 Arterial stiffness   
Arterial stiffness increases with age and may be attributed to two separate processes 
in the arteries. The atherosclerotic process affecting mostly the tunica intima and a 
change in the elastic properties of the arteries, mainly affecting the tunica media.   

The atherosclerotic process, although starting in childhood and adolescence 
(154,155), is strongly associated with high cholesterol, dyslipidemia, diabetes, 
smoking and hypertension. The process affects elastic and muscular arteries and 
starts off with endothelial dysfunction and a following cascade of endothelial 
activation, cell migration, proliferation and thickening of the intimal wall (153). 
Atherosclerotic disease may in turn lead to myocardial infarction, stroke and 
peripheral vascular disease and is the leading cause of death and disease world-wide 
and is and is thus an important target for disease prevention (156).  

Elastin and collagen make up the elastic properties and strength the aorta. 
Changes in the relation between these connective fibers within the vessel walls, i.e., 
a lower elastin to collagen ratio, leads to lower compliance and increased arterial 
stiffness and increased afterload (157). The amount of both collagen and elastin 
increases with age but the ratio of elastin to collagen decrease, indicating stiffer 
blood vessels with age, a relationship that seems to be augmented in older patients 
with hypertension (158).     
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1.4 The kidney 

1.4.1 Renal anatomy and physiology  
Figure 1.4 shows an illustration of the kidneys with gross anatomy and histology 
visualized. The kidneys are situated retroperitoneally in the abdominal cavity, right 
next to the lumbar spine along the TH12- L3 vertebrae. The left kidney is usually 
more cranially located than the right. The renal fascia encapsulates the kidneys, with 
pararenal fat on the outer side and perirenal fat towards the fibrous renal capsule 
that protects the kidneys and surrounds the renal parenchymal tissue. The renal 
parenchymal tissue is in turn divided into renal cortex and medulla. The renal 
medulla is subdivided into medullary pyramids where the apex of the pyramid, the 
papilla, connects with the minor calyx, in turn forming the major calyx and the renal 
pelvis. 

The renal arteries, on the left and right side, respectively, branch directly from 
the abdominal aorta. The renal artery first branches into segmental arteries, then into 
interlobular arteries which pass through the renal capsule and extend into the renal 
columns and eventually branch out into the afferent arterioles, leading blood 
towards the glomeruli.  

The functional unit of the kidney is the nephron (Figure 1.4). The nephron is in 
turn comprised of the renal corpuscle, dispersed throughout the renal cortex, and the 
renal tubule and collecting duct, which passes through both cortex and medulla. The 
renal corpuscle encompasses the afferent arteriole and its tuft of glomerular 
capillaries responsible for filtering blood into the tubular system. Blood that 
circulates through the glomeruli without being filtered leaves the corpuscle in the 
efferent arteriole which travels along the tubular system and form peritubular 
capillaries and the vasa recta. Both are important for reabsorption and excretion 
along the tubular system. These blood vessels will thereafter form efferent venules 
and eventually renal veins, which connects to the inferior vena cava. The nephron 
is where filtration, reabsorption and potential excretion of solutes takes place. The 
kidneys play an integral role in homeostasis and the regulation of blood pressure, 
electrolyte balance, pH and is responsible for most of the excretion of waste 
products produced during metabolism. The amount of filtration is mainly governed 
by changes in blood pressure, both through direct sympathetic innervation and 
hormonal influence and also through local feedback systems within the kidney i.e., 
tubuloglomerular feedback. All of these systems affect the hydrostatic pressure 
within the glomeruli to manipulate the nephron to filtrate or to retain water.  
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1.4.2 Blood pressure regulation 
The heart acts as a pump to create a pressure gradient to enable blood flow from the 
heart to the tissues. Besides tissue specific intrinsic feedback systems impacting 
blood flow, such as tissue autoregulation in muscles and the “Frank Starling 
mechanism” and the “Bainbridge effect” in the heart, blood pressure is mainly 
regulated by two systems, the sympathetic nervous system and the renin-
angiotensin-aldosterone system (RAAS). These systems are highly interconnected, 
and both rely mostly on signals from baroreceptors, situated mainly in the carotid 
sinuses and the aortic arch. These receptors get activated depending on stretch of 
the arterial wall, i.e., high blood flow, high stretch and vice versa. The hormonal 
system responsible for long-term blood pressure regulation is the RAAS system and 
is regulated by the kidneys. 

As part of keeping homeostasis, when blood pressure decreases, cells in the 
juxtaglomerular apparatus (Figure 1.4) cleaves circulating prorenin to renin, which 
in turn activates angiotensinogen, synthesized in the liver, to angiotensin I. 
Angiotensin I gets cleaved to angiotensin II by angiotensin-converting enzyme 
(ACE), a main drug target in cardiovascular disease, which are mostly expressed in 
endothelial cells in the lungs. Angiotensin II and its derivates stimulate the adrenal 
glands to produce and release aldosterone, which in turn increases sodium retention 
from the tubular system and from the intestines, and excretion of potassium, both 
resulting in increased extracellular volume. Angiotensin II is a strong 
vasoconstrictor, causing redistribution of blood flow and increased peripheral 
resistance.  Plasma concentration of antidiuretic hormone is increased, causing 
increased thirst and retention of water by the increasing the numbers of aquaporins 
in the distal and cortical collecting tubules (153).  
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Figure 1.4 Renal anatomy and histology. 
A schematic view of the right kidney (upper left) with gross anatomy outlined, a juxtaglomerular nephron (upper 
right) with blood supply and collecting duct outlined and the renal corpuscle (lower image) with histological 
landmarks outlined. Figure modified and text added from Servier Medical Art by Servier, licensed under a Creative 
Commons Attribution 3.0 Unported License” (https://creativecommons.org/licenses/by/3.0/). 

1.4.3 Renal function 

1.4.3.1 Measures of renal function 
Renal function is measured though estimations of glomerular filtration rate (eGFR) 
based on plasma concentration of cystatin C and creatinine. Plasma concentration 
of these waste products of metabolism increases a result of a decrease in filtration 
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capacity and thus reflect kidney function. In this thesis the Caucasian, Asian, 
Pediatric and Adult (CAPA) equation based on Cystatin C was used for the 
assessment of eGFRCystatin C (159) while the updated Schwartz method (160) was 
used for calculating eGFRCreatinine. Clinically, at Skåne University Hospital, Lund, 
Sweden, only the CAPA method is used in children and adolescents (<18 years old). 
A wide range of glomerular filtration rates have been investigated using both 
creatinine and cystatin C, and especially the Cystatin C based method shows low 
bias versus reference standard iohexol plasma clearance (159,161).  

1.4.3.2 Chronic kidney disease (CKD)  
According to the KDIGO (Kidney Disease Improving Global Outcome) guidelines 
the definition for CKD diagnosis is “abnormalities of kidney structure or function 
persistent >3 months, with implications for health”. Imaging thus has a place already 
in the diagnostic stage. The staging and prognosis of CKD is based on both eGFR 
(G1-5) and degree of albuminuria (A1-3) (162,163).  

The global prevalence of chronic kidney disease (CKD) is between 11-13% and 
as hypertension and diabetes are the main drivers of the disease (164) the prevalence 
are set to increase (165,166). The cardiorenal syndrome describes the interplay 
between kidney function and cardiac function, where dysfunction of one organ 
negatively impacts the other (167,168). A decrease in kidney function and an 
increase in albumin creatinine ratio (ACR) is prognostic for heart failure and all-
cause mortality and the combination of ACR with eGFR improves risk stratification, 
also in individuals without CKD (169–172).  

The number of nephrons in the general population ranges from 200,000 to 
2,000,000 per kidney (119,120,173). The average loss of nephrons due to aging in 
healthy population is ~6500 per year, potentially corresponding to half the nephrons 
lost from young adulthood to old age (70-75 years). This gradual loss of nephrons 
is proportional to the decline in GFR accompanied with aging (174) and it is 
believed that a low nephron count increases susceptibility for future renal insults 
and also increase the risk for hypertension and chronic kidney disease.  

1.4.4 Hypertension 
The prevalence of hypertension is high and increasing (165), affecting ~25% of men 
and women worldwide (175).  Increased blood pressure is strongly associated with 
cardiovascular and renal morbidity and all-cause mortality and is one of the main 
targets for cardiovascular disease prevention (156,175). Office blood pressure 
measurements are often used for screening but ambulatory blood pressure 
measurements are reference standard and more sensitive to predict adverse 
outcomes (175–177). The definition and diagnosis of hypertension differs between 
children and adolescents as compared to adults, where cutoff values for the former 
group is based on percentiles of sex, height and age while the cutoff for the latter is 
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defined as ≥140/90 mmHg. In the most recent guidelines for children and 
adolescents, hypertension is defined as systolic and/or diastolic blood pressures 
≥95th percentile for those under the age of 15, while ≥140/90 mmHg is used as a 
cutoff for boys and girls 16 years old and older (178). Sixteen year old’s thus follows 
the same guidance as adults (175).  

1.5 Imaging modalities 
In this thesis, non-contrast-enhanced magnetic resonance imaging (MRI) is used for 
the assessment of cardiovascular and renal morphology and function. Magnetic 
resonance imaging and other modalities which could be used for non-invasive 
imaging of these organ systems are briefly discussed below. 

1.5.1 Magnetic resonance imaging 
Magnetic resonance imaging is the reference method for non-invasive quantification 
of blood flow and cardiovascular morphology and function (179). It is possible to 
acquire detailed images of any organ, creating a complete 3D image independent of 
orientation in space. There is thus no limit in either x, y, or z direction. Body habitus 
has practically no impact on field of view or image quality. The MRI technique is 
free of ionizing radiation and instead uses hydrogen atoms in the human body to 
generate images. These factors make MRI particularly suitable for imaging during 
pregnancy, in pediatric cohorts, in cohorts with planned successive imaging, such 
as patients with polycystic kidney disease, and for imaging in patients with renal 
failure who might get worsening renal function if contrast a is given. 

1.5.1.1 MRI scanner  
An MRI scanner consists of a strong superconducting magnet, three gradient coils, 
shim coils and radiofrequency (RF) coils. Magnetic resonance imaging uses 
radiofrequency waves to generate an image of the patient. The MRI scanner is 
enclosed in a copper-lined examination room, a “Faraday cage” with the purpose of 
keeping interfering radio signals outside. The main magnet generates a constant 
magnetic field called B0 along the z axis. The strength of the magnetic field is 
measured in units of tesla (T) and is for cardiovascular imaging usually 1.5 or 3.0 
T. For perspective, one tesla is equivalent to approximately 20.000 times the earth’s 
magnetic field. The three gradient coils, in the x, y, and z directions, respectively, 
generate a superimposed magnetic field to that of B0. The shim coil is used to 
homogenize the magnetic field in the specific area of interest, e.g., over the thorax 
for cardiac imaging or over the abdomen for renal imaging. The RF coils are used 
to add energy to the tissue by applying a radiofrequency field (B1) while another RF 
coil is on the receiving end and collects the signal back from the tissue.  
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1.5.1.2 The MR signal 
The source of the MRI signal used to generate images is the hydrogen nucleus, 
containing a single proton with a positive charge. The proton is spinning around its 
own axis creating a small magnetic field with a north and a south pole, practically 
creating a tiny bar magnet. These magnets are referred to as “spins”. These spins 
are, without a strong magnetic field present, randomly oriented in space. When an 
external magnetic field, B0, is applied, the spins will start to align and precess around 
the axis of B0. Precessing protons can be seen as small vectors which cancel each 
other out in all directions except the z-axis, along B0. The sum of these vectors, the 
net magnetization vector (M0), is parallel to the magnetic field and is referred to as 
longitudinal magnetization. The precession frequency, or the Larmor frequency, ω0, 
is defined by the Larmor equation:  𝜔 =  𝛾 ⋅ 𝐵   
Where γ, the gyromagnetic ratio is a constant for the specific nuclear species e.g., 
42.58 MHz/T for hydrogen. Hydrogen thus precesses at ~64MHz at 1.5T. The 
Larmor equation states that the precession frequency is proportional to the strength 
of the external magnetic field.  

For the patient lying supine in the MRI scanner in the z direction, the net 
magnetization will be in the direction of the external magnetic field, B0, and thus 
not measurable. By applying an external radiofrequency (RF) pulse along B0, in the 
same frequency (on resonance) as the precessing protons, these protons can be 
manipulated to align to the new magnetic component, the B1 field. As the protons 
align in the B1 direction they will now begin to precess around the z-axis in phase. 
The RF pulse thus excites the protons, causing flipping of the longitudinal 
magnetization to the x-y plane. The flip angle is dependent on the strength and 
duration of the RF pulse. As the RF pulse is terminated, the spins will return to their 
low-energy state, along B0. The return of the longitudinal magnetization, from the 
x-y plane to the z-axis makes up the basis for the MRI contrast and signal. Two 
independent processes can describe the tissue specific relaxation towards the low 
energy state 

T1, or longitudinal relaxation, is referred to as the spin-lattice relaxation and is 
due to transfer of energy from the spinning protons to the surrounding tissue. Simply 
put, T1 is a time constant for the recovery of the longitudinal magnetization along 
the z axis. T1 is defined as when the z magnetization has recovered 0.63 times its 
original value and is tissue specific. Difference in T1 relaxation time makes up the 
contrast between the tissues being imaged. By acquiring multiple images at different 
time-points after a single RF pulse, the tissue specific T1 curve can be reconstructed 
and the tissue specific T1 value be calculated.  

T2, or transverse relaxion, refers to the spin-spin interactions between the 
spinning protons making them dephase and lose coherent transverse magnetization 
in the x-y plane. The rate of dephasing and decay of transverse magnetization is 



 

48 

governed by T2. When time equals T2 the transverse magnetization will have 
decayed to 0.37 of its original value. The T2 value is tissue specific, where tissues 
with high amounts of water have a long T2. The combination of spin-spin 
interactions (T2) and dephasing as a result of field inhomogeneities is defined as 
T2*. It is possible to acquire serial images at different times after an RF pulse to 
reconstruct and calculate the T2 or T2*(180). 

1.5.1.3 The MR image  
To acquire an image needed for visualization of the organ of choice, the coordinates 
in the x, y and z directions need to be defined. Gradient coils are used to encode 
spatial information. The signals detected by the scanner are gathered in what’s 
called k-space. k-space can be viewed as a coordinate system holding spatial 
information about the imaged tissue. Each coordinate in k-space contains 
information about all the pixels in the image. In order to get an MR image, the 
radiofrequency signal from the chosen tissue, now stored in k-space must be 
transformed using the mathematical Fourier transform.  

1.5.1.4 Limitations and potential drawbacks  
Motion during image acquisition will distort the image, giving motion artefacts, 
possibly lessening diagnostic quality. Motion artefacts due to breathing can be 
avoided by using breath-hold sequences, with repeated image acquisition at a 
similar breathing depth. A similar technique is used during gated image acquisition, 
where imaging is coupled to diaphragmatic movement. Artefacts due to cardiac 
motion can be avoided by ECG-gating where imaging is synchronized to the patients 
ECG. Images acquired with ECG gating can be sorted and compiled as a “movie” 
of one heartbeat, called “cine” imaging.   

Potential limitations with the MRI method are mostly due to patient specifics. 
Some objects constitute an absolute contraindication for scanning while other, non- 
magnetic objects, constitute a partial contraindication, potentially distorting the 
image. Atrial fibrillation makes it difficult to properly synchronize and then sort the 
images and is another limitation. Claustrophobia is a potential patient specific factor 
usually overcome by administering sedatives and could be completely overcome by 
putting the patient under general anesthesia.  

Other “limitations” often discussed when comparing MRI to echocardiography 
are the lack of availability, both of MRI scanners and staff, the cost and the time 
allotted for the examination. One could however argue that these examples are 
rather a resource problem and not limitations in the method per se.  

1.5.2 Computed Tomography  
Computed tomography (CT) uses rapidly rotating X-ray tubes to image and 
visualize the tissues as a highly detailed 3D image. The penetration of the X-rays in 
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the tissue, or attenuation, is proportional to the density of the tissue. The radio 
density of the tissues is measured in Hounsfield units (HU). To calculate the 
attenuation coefficient for each tissue within the sample, air (~-1000 HU) and 
distilled water at standard temperature and pressure (0 HU) are used for 
standardization. The attenuation for the tissue within the image is depicted in 
greyscale. Tissues with high density has positive values and appear white while 
tissues with low densities have negative values and appears dark. The range of HU 
between tissues are ~-1000 HU (air) to ~+2000 HU for dense bone (181). 

1.5.3 Ultrasound 
Ultrasound represents the region of the sound spectrum with frequencies >20kHz. 
Medical ultrasound employs frequencies between 1 and 20 megahertz to create 
sonographic images of anatomical structures. Ultrasound transducers, also referred 
to as probes, are compiled of piezoelectrical crystals in which electrical energy, by 
inducing vibrations in the crystals, is transformed to ultrasound and vice versa. The 
transducer thus acts as both a sender and receiver of signals.  

The acoustic impedance is a physical property of the tissue and describes the 
interaction of ultrasound with tissue. The acoustic impendence depends on tissue 
density and the velocity of the sound wave. As the sound wave propagates through 
tissues with different densities, some of the energy will be reflected. The higher the 
acoustic impedance between different tissues, the stronger the reflected wave. The 
amplitude of the sinusoidal sound wave is a measure of the strength of the sound 
and is measured in decibel. When reflective ultrasonic waves reach the transducer, 
electrical impulses in proportion to the amplitude of the ultrasonic wave are created. 
As ultrasonic waves propagate with near constant speed of around 1500 m/s in 
tissue, the depth of where the reflections originated can be calculated. The reduction 
in amplitude and intensity of the ultrasonic wave as it propagates through tissues 
(attenuation) is mainly due to refraction, reflection and absorption. By decreasing 
the frequency, signal penetration can be increased, however at the expense of spatial 
resolution, in ultrasound divided into axial and lateral resolution (182). 

1.5.3.1 Doppler ultrasound 
When ultrasound reflects against moving objects the frequency will change in 
proportion to the velocity of the moving object. If the object, e.g., erythrocytes, 
moves towards the transducer, the reflected frequency will be higher than the 
transmitted frequency and vice versa. When the angle between the transducer and 
the measured moving object increases, the frequency and the speed of the moving 
object will be underestimated. When employing Doppler, it is thus important to 
quantify velocities placing a sample volume parallel to blood flow, with as small a 
deviation with respect to the blood vessel as possible.  
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There are two types of Doppler techniques at use, continuous wave (CW) Doppler 
and pulsed wave (PW) Doppler. Continuous wave Doppler continuously transmit 
and receive ultrasound signals, and plots this as a velocity waveform on the screen. 
Velocity of blood flow towards the transducer is displayed above the baseline while 
flow from the transducer is displayed below the baseline. This technique is 
especially good for assessing high blood flow velocities and for detecting the highest 
velocity within the field of view. An example of when to use CW Doppler is to 
estimate blood flow velocities across stenotic valves, or in the setting of 
regurgitation. As no pulses are emitted, it is not possible to assess velocity at a 
specific depth using CW Doppler. This is however possible using PW Doppler in 
which short bursts of ultrasound are transmitted and received before the following 
bursts are sent out. The method enables quantification of velocities within a specific 
area, at a specific depth called “sample volume”. If the velocity measured exceeds 
the maximum pulse interval, the phase shift measured will be made on wrong 
assumptions, creating aliasing artefacts, limiting the use of this technique at high 
flow velocities.  

Color Doppler uses a pulsed wave technique where several pulses of ultrasound 
continuously are transmitted to the tissue. This enables the calculation and color 
coding of the direction and velocity of flow in the respective sample volume. The 
area of interest is divided into a multitude of sample volumes, which together creates 
a “map” of differing velocities and blood flow directions within the field. These are 
visualized as a color map overlaying the anatomical 2D image of the area at hand. 
Blood flow away from the transducer is depicted as cold colors and blood flow 
towards the transducer is often depicted as warm colors (182).  

1.5.4 Cardiovascular imaging 
Magnetic resonance imaging, Computed Tomography (CT) and Echocardiography 
are the main modalities of choice for assessment of cardiac morphology and 
function. Table 1.2 shows a simplified comparison of the pros and cons between 
these cardiac imaging modalities in relation to relevant measures included in the 
current thesis.  
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Table 1.2. Comparison of cardiac imaging techniques  
Magnetic resonance 
imaging  

Computed 
tomography 

Echocardiography 

Cardiac morphology +++ +++ ++ 
Cardiac function +++ ++ ++ 
Blood flow +++ - +++ 
Aortic morphology +++ +++ + 
Spatial resolution ++ +++ + 
Accuracy/precision +++ +++ ++ 
Typical temporal resolution  ++ +(+) +++ 
Ionizing radiation No Yes No 
Contrast agents  Yes/No Yes/No Yes/No 
Major limitations Incompatible devices, 

costs and availability.  
Ionizing radiation, 
availability 

Operator dependence, 
acoustic window 

Grading +++= excellent, ++=good, +=ok, - = non existing.  

1.5.4.1 Cardiovascular magnetic resonance imaging  
Magnetic resonance imaging is the gold standard for the assessment of cardiac 
volumes and, cardiac function and blood flow (179,183). The method enables 
imaging of the entire heart including accurate measurements of atrial and ventricular 
volumes as well as total heart volume. In this thesis, cardiac volumes, and measures 
of cardiac pumping as well as blood flow in the thoracic and abdominal aorta were 
assessed using non-contrast enhanced MRI.   

Stroke volume can either be calculated using anatomical images and comparing 
the end-diastolic and end-systolic volumes or by using phase contrast imaging of 
the ascending aorta. The ejected stroke volume is a direct result of both longitudinal 
and radial pumping which both can be assessed using MRI. Longitudinal function 
can be measured as atrioventricular plane displacement (AVPD) whereas 
longitudinal contribution to stroke volume is calculated as the portion of the ejected 
stroke blood volume that is derived from the AVPD. By calculating the inward 
movement of the myocardial borders during the cardiac cycle the radial function 
and radial contribution to stroke volume can be calculated (150,152,184). The 
AVPD corresponds to, but is not equal, to the echocardiographic measures mitral 
annular plane systolic excursion (MAPSE) for the left ventricle and tricuspid 
annular plane systolic excursion (TAPSE) for the right ventricle and show low 
variability between the measurements (185).  

Pulse wave velocity and distensibility of the thoracic aorta are both used as 
proxies for arterial stiffness and can be assessed using MRI, showing high 
agreement with invasive measurements (186). 

Further, MRI decreases the number of subjects needed to detect clinically 
relevant changes in left ventricular volumes (~10ml), left ventricular mass (~10g) 
and ejection fraction (~3%), up to 95% (50–95%) as compared to 2D 
echocardiography (187,188). Reproducibility of RV volume and function show 
similar reproducibility as left ventricular quantification (189). 
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1.5.4.2 Cardiac computed tomography (CT) 
The clinical question at hand dictates the choice of modality, cardiac CT versus 
cardiac MRI, but as both modalities have wide and overlapping capabilities 
(179,190), the choice also depends on availability and clinical praxis. Cardiac CT 
can be used for a wide range of clinical indications (191,192).  Two big draw backs 
in comparison with MRI is the inability to measure blood flow and the ionizing 
radiation. 

Because of the high spatial resolution, cardiac CT is the preferred choice for the 
assessment of vessel morphology and coronary artery disease (190). Cardiac CT can 
also provide “Coronary calcium score” which is one of the strongest predictors of 
cardiovascular risk, also in a asymptomatic population (193). Further, CT 
angiography (CTA) is gold standard for non-invasive assessment and visualization 
of the presence of atherosclerotic plaques in the coronary arteries. Visualization of 
coronary arteries can be performed using MRI but is not clinical standard and the 
sensitivity for plaque identification is lower than for CTA (194).   

1.5.4.3 Echocardiography 
Ultrasound cardiography, or Echocardiography, is today most often the first line of 
cardiac imaging for diagnosis and management of patients with suspected or 
manifest heart disease. 

The first known experiment utilizing ultrasonic waves was conducted in the 
1880s (195), but it wasn’t until 1954 the first paper on cardiac applications was 
published (196). In the paper, Swedish cardiologist Inge Edler and physicist Carl 
Helmuth Hertz were able to visualize the cardiac wall motion in situ, using what’s 
now known as “motion mode” or “M-mode”. M-mode is still widely utilized given 
its high temporal resolution (~1000 frames per second) which permits accurate 
visualization of fast-moving structures such as heart valves or the vessel wall. In 
comparison, the temporal resolution of a 2D echocardiographic image is around 50 
frames per second, and standard MRI is around 30 frames per second (197). AVPD 
for the right ventricle free wall can be measured by tracking the annular motion of 
the tricuspid valve during systole or TAPSE and for the left ventricle using the 
mitral annular motion or MAPSE.  

The standard echocardiographic examination uses transthoracic imaging (TTE) 
but probes for transesophageal (TEE), intravascular and intracardiac images are also 
available.  

The method is widely available, low-cost and very versatile, with the possibility 
to image virtually any structure and blood flow within the field of view. 
Echocardiography, however, is an operator dependent diagnostic evaluation that is 
limited by narrow acoustic windows, high interobserver variability, and suboptimal 
image resolution in patients with obesity or lung disease. Air in the lungs distorts 
the sound waves limiting the quality of the images and as the ultrasonic waves are 
directly reflected against the costae, the intercostal spaces for cardiac imaging. 
When the ultrasonic wave reaches a structure of high density, such as bone or a 
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calcification, all energy is reflected, creating a shadow behind the structure. It is 
thus not possible to completely visualize the right ventricle and atria. 

1.5.5 Renal imaging  
Several conditions affecting renal function, either acutely or chronically, will 
eventually show also as alterations in renal macrostructure. Clinically, imaging of 
the kidneys is performed using computed tomography (CT) or ultrasound. 
Computed tomography is accurate in measuring renal parenchymal volumes (198–
200), but uses radiation and might not be generally available. The risk/ benefit of 
serial assessment or imaging in pediatric populations using imaging with radiation 
should be carefully considered.  

Ultrasound is on the other hand widely available and is thus a low-cost non-
invasive imaging alternative with no radiation or potential harm to the patient. 
However, the acoustic window and field of view is limited, especially in adults and 
in overweight patients. As the entirety of the kidneys cannot be visualized using 
ultrasound, several proxies for renal morphology and volymes have been used. 
Examples include renal width at different locations, length and cortical or pyramidal 
thickness (201–203). Repeated measurements of renal length with ultrasound in 
children up to adolescent age show intra- and interobserver variability comparable 
with the expected annual increase in renal length (202). This indicates that serial 
measurements of renal length should not be performed within at least 12 months in 
these cohorts, and these data were from experienced observers. Repeatability and 
observer variability are thus an issue with ultrasound (204,205). Renal volumes are 
usually calculated by measuring the three axes of the kidney assuming an ellipsoid 
shape. The ellipsoid method (renal volume = length x width x thickness x π/6) is the 
most commonly used method for the assessment of kidney volumes (206). However, 
although commonly used, several studies have shown that this method 
underestimates total renal volume by an average of 24%, independent on whether 
measurements were done using ultrasound or MRI (204,206).  

Renal volumes may instead be quantified using non- contrast enhanced MRI, 
showing low variability and low observer variability for total kidney and cortical 
volume (206–208). In addition to volume measurements, blood flow and tissue 
characteristics using T1 and T2* mapping can be performed in the same session, 
possibly adding prognostic information (209–211).  
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2 Aims 

The overall aim of this thesis was to investigate to what extent very preterm birth 
due to early onset fetal growth restriction impact the heart, the vasculature, and the 
kidneys in adolescence. The thesis further sought to investigate whether fetal growth 
restriction exacerbates the organ-specific effects of very preterm birth.  
 
The specific aims were 
 
Study I 
To validate a non-contrast enhanced MRI method for the quantification of renal 
cortical and medullary volumes.  
 
Study II  
To validate MRI methods for quantification of thoracic pulse wave velocity in 
neonates and in adolescents.  
 
Study III 
To investigate to what extent very preterm birth and early onset fetal growth 
restriction impact blood pressure and arterial stiffness in adolescence, and to 
investigate whether fetal growth restriction exacerbates the effect of very preterm 
birth on these parameters.  
 
Study IV 
To investigate to what extent very preterm birth and early onset fetal growth 
restriction impact cardiac volumes and function in adolescence, and to investigate 
whether fetal growth restriction exacerbates the effect of very preterm birth on these 
parameters.  
 
Study V 
To investigate to what extent very preterm birth and early onset fetal growth 
restriction impact kidney structure and function in adolescence, and to investigate 
whether fetal growth restriction exacerbates the effect of very preterm birth on these 
parameters.  
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3 Methods and material 

3.1 Study population  

3.1.1 Ethical permits  
Studies were performed in accordance with the declaration of Helsinki (212) and all 
participants or their guardians when appropriate, provided written informed consent 
before participation. 

3.1.1.1 Adolescents 
The Regional Ethical Review board in Lund, Sweden, approved Studies I–V (DNR 
2013/244) and (DNR 2014/431). The application is a follow-up to the original 
application titled “Uppföljningsundersökning av kärl-och nervutveckling samt 
glykosreglering hos barn och unga vuxna med tillväxthämning och hotande asfyxi 
under fosterperioden” (DNR 197/2006), with inclusion in childhood and 
retrospective analysis of perinatal outcome in the three groups.  

One healthy adolescent volunteer was included in Study II for method 
development (DNR 2019-01966, original ethics application: 741/2004). 

3.1.1.2 Neonates  
Neonates who underwent CMR were included in Study II with ethical permits 
“2018/172” and “2009/616”.  

3.1.1.3 Animals 
The experimental part of Study I was performed in agreement with the guide for the 
care and use of Laboratory Animals (213) and was approved by the Swedish Board 
of Agriculture and the Malmö/Lund Ethics Committee on Animal Testing; DNR 
M94-14 and 5.8.18-05681/2017, respectively. 
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3.1.2 Inclusion  

3.1.2.1 Adolescents  
Inclusion for this thesis was conducted at Skåne University Hospital, Lund, Sweden, 
between 2014-2019. The study population was born between 1998-2004 at Skåne 
university Hospital, Lund Sweden and were for this thesis prospectively included 
for follow-up in adolescence (Figure 3.1).  

The index group consisted of fetuses with early onset fetal growth restriction, 
defined in line with current guidelines (3,41). Fetuses had a birth weight > 2 standard 
deviations below the Swedish reference standard (40), absent or reversed end-
diastolic blood flow in the umbilical artery (blood flow class II-III) assessed with 
Doppler velocimetry, and were actively delivered on fetal indication before 30 
gestational weeks. Forty-two live born fetuses with early onset fetal growth 
restriction (preterm FGR) were delivered and included in a retrospective 2 year 
outcome study (16). A control group consisting of all children born in the same 
period (1998-2004) of all live born infants (n =371) admitted to the neonatal 
intensive care unit in Lund during this time period was included. A subgroup (n 
=42) of this control group was matched to the index group for sex, gestational age 
at birth and year of birth (preterm AGA). The causes for premature birth in this group 
were ablatio placentae, preterm premature rupture of the membranes 
chorioamnionitis and being delivered as the healthy same sex twin to an individual 
in the preterm FGR group. Thirty-four individuals in the preterm FGR group were 
available for follow-up in childhood and were included together with the matched 
pair from the preterm AGA group. A third control group, born vaginally after a 
healthy pregnancy, with birth weight appropriate for gestational age, born at the 
same time-period were included (term AGA). Studies on 2-year morbidity and 
mortality outcomes and follow up studies in childhood including neurocognitive, 
pulmonary and cardiovascular outcome have previously been reported (16,214–
216).  

All participants (n = 102) that were studied in childhood were asked to participate 
in this follow-up study in adolescence.  

3.1.2.2 Inclusion flow chart 
Figure 3.1 shows a flow chart of the inclusion of adolescents included in Studies I – 
V. Of those infants presenting with fetal growth restriction at Skåne University 
Hospital, Lund, Sweden, during 1998-2004, four died in utero and a total of 42 live 
born fetuses were admitted to the NICU, of these, four died during the admission. 
Of all fetuses born <30 weeks of gestation during the same time-period 24 were 
stillborn and four died during delivery.  

At prospective inclusion in childhood, four of the 38 children in the preterm FGR 
group choose not to participate, finalizing the number of children born preterm due 
to FGR available for follow up, to 34 individuals, with a total of 102 children in the 
three matched groups.  
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At prospective inclusion in adolescence, two individuals in the preterm FGR 
group and one in the preterm AGA group were unreachable. Eight individuals in the 
preterm FGR group, six in the preterm AGA group and five in the term AGA group 
choose not to participate. Although initially accepting to participate several 
participants chose to abort examinations and one individual in the preterm FGR 
group were 19 years old at the time of MRI examination.  

3.1.2.3 Study overlap 
Table 3.1 shows overlap in study participants between studies. Study I included 
study participants born term AGA (i.e., healthy controls). Study II included all 
participants who underwent MRI from the three groups. Study III included all 
participants who underwent either MRI or 24-hour ABPM. Study IV-V included all 
participants who underwent MRI examination, excluding the individual who were 
19 years old at MRI examination.  

Table 3.1. Overlap in study participants between studies included in the thesis.  
 Study I Study II Study III Study IV Study V 

Study I - 24 24 24 24 
Study II 24 - 71 70 70 
Study III 24 71 - 70 70 
Study IV 24 70 70 - 70 
Study V 24 70 70 70 - 

 

3.1.2.4 Neonates  
Study II included 15 neonates (14 (6 – 45 days old) born at Skåne University 
Hospital, Lund, Sweden, between November 2018 and October 2020 with surgically 
corrected aortic coarctation but without associated major congenital heart disease. 
Neonates underwent CMR 5 days [IQR 4–8] after surgery. 
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Figure 3.1 Inclusion flow chart.  
GW=gestational weeks, SD=standard deviations, ARED=arrested or reversed blood flow in the umbilical artery, 
NICU=neonatal intensive care unit, FGR=fetal growth restriction, AGA=birth weight appropriate för gestational age, 
MRI=Magnetic Resonance Imaging, 24-hour ABPM=24-hour ambulatory blood pressure measurements.  
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3.1.2.5 Animals 
Six pigs (weight 44 – 47kg) were included for validation of renal cortical and 
medullary volume quantification. Animals were premedicated with Ketamine 15 
mg/kg (Ketaminol, Intervet, Danderyd, Sweden) and Midazolam 0.5 mg/kg 
intramuscularly (Dormicum, Roche AB, Stockholm, Sweden). Animals were held 
fasting overnight with free access to water. General anesthesia was induced with 
Propofol 20 mg/kg (Propofol Sandoz AS, Copenhagen, Denmark) and maintained 
using Isoflurane (Isoflurane, Baxter Medical AB, Kista, Sweden) using a disposable 
administration system (Anaconda, Sedana Medical AB, Uppsala, Sweden). Animals 
were intubated and mechanically ventilated using volume-controlled mode 
regulated towards a pCO2 of 5–6 kPa. A 5% glucose infusion, 0.9% NaCl infusion, 
norepinephrine, and fentanyl were administered as needed. Following MRI, still 
under general anesthesia, the animals were euthanized with a rapid infusion of 
potassium chloride, whereafter the renal vessels and ureter were clamped, and 
kidneys excised. Cortical and medullary tissue were dissected and quantified 
separately using the reference standard water displacement method (100 mL 
volumetric flask with 2 mL increments, tolerance ±2.0 mL at 20°C) according to 
Archimedes’ principle.  

3.2 Magnetic resonance imaging 

3.2.1 MR image acquisition  
Animals, neonates, and adolescents underwent non-contrast-enhanced MRI and 
were imaged in supine position. Neonates were positioned in a vacuum infant 
immobilizer. In all five studies, a 1.5T Philips Achieva, (Best, the Netherlands) or 
a 1.5T Magnetom Aera (Siemens Healthineers, Erlangen, Germany) with a 32-
channel coil (Philips) or an 18-channel and spine coil combination (Siemens) was 
used. For neonates, a small flexible coil was chosen. For adolescents, cardiac and 
kidney images were acquired during the same session. Imaging of kidney volumes 
were not performed in neonates. 

Neonates were imaged using “feed and sleep” (217) and more detailed information 
about the management of the neonates is described by Sjöberg et al. (218).  

3.2.1.1 Kidney volumes  
Fast low angle shot (FLASH) MR images were acquired as transaxial stacks during 
breath hold for humans and with free breathing for animals. Typical parameters 
were 1.3 x 1.3 x 6 mm, TR/TE = 152/5.57 ms, FA = 80°, bandwidth = 270 Hz/px, 
GRAPPA = 2 with 24 reference lines, water excitation and 50 mm saturation bands 
head/foot with gap 10 mm. 
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3.2.1.2 Renal T1 and T2* imaging  
Renal coronal T1 maps were based on a modified Look-Locker inversion recovery 
(MOLLI) sequence using a 5(3)3 scheme, with typical parameters: 1.4 x 1.4 x 8 
mm, TR/TE = 281/1.12 ms, FA = 35°. Renal coronal T2* maps were based on a 
multi-echo gradient recalled echo sequence using 10 echoes with first echo 1.07 ms 
and step 1.36ms (i.e., range 3–13.3 ms). Typical parameters were 3.1 x 3.1 x 8 mm, 
TR = 200 ms, FA = 20°. 

3.2.1.3 Flow measurements 
For quantitative flow measurements, a 2D phase-contrast gradient recalled echo 
sequence with retrospective ECG gating were used. Typical image parameters for 
flow measurements in the renal arteries were TR/TE = 9.84/2.67 ms; flip angle = 
20°; in-plane resolution 1.5 x 1.5 x 5 mm and VENC = 100 cm/s.  

For adolescents, typical image parameters for the flow measurements in the 
ascending aorta and descending aorta at diaphragm level were TR/TE = 9.15/5.54 
ms, FA = 15°, 1.2 x 1.2 x 6 mm (Philips); and TR/TE = 4.92/2.67 ms, FA = 20°, 1.5 
x 1.5 x 5 mm (Siemens), VENC = 200 cm/s.  

For neonates, typical image parameters for the quantitative flow phase-contrast 
sequence were TR/TE = 4.92/2.67 ms, FA = 20°, 1.5 x 1.5 x 5 mm (Siemens).  

3.2.1.4 Pulse wave travelling distance  
For the pulse wave travelling distance in adolescents, two separate sets of images 
were used: 1) “Coronal overview” coronal slices covering the entire thorax based 
on a bSSFP sequence with in plane resolution 1.66 mm and slice thickness 8 mm 
and slice gap 2.64 mm, and 2) “3D angiography“ with oblique sagittal slices 
covering the thoracic aorta based on a clinical routine T2-prepared bSSFP with 
isotropic resolution 0.88 mm (Philips) or 0.55 mm (Siemens). Respiratory gating 
using navigator echoes was used for the 3D angiography. The apex of the 
diaphragm, i.e., the liver-diaphragm border, was used as tracking point for the 
navigator. Only images acquired within a pre-specific acceptance window, based on 
a previously acquired scout, are saved; the rest are discarded.  

In neonates a clinical routine 3D black-blood T1-weighed non-contrast-enhanced 
angiography sequence was used with isotropic resolution 1.04 mm (Siemens).  

3.2.1.5 Cardiac volumes 
Short axis cine images were acquired using a balanced steady state free precession 
(bSSFP) sequence with retrospective ECG gating. For short axis images, typical 
parameters were 30 reconstructed time frames per cardiac cycle, slice thickness 8 
mm; slice gap = 0 mm; FA = 60°; TR/TE = 3.1/1.5 ms; in-plane resolution = 1.1 x 
1.1 mm (Philips) or slice thickness = 6 mm; slice gap = 0 mm; FA = 51°; TR/TE = 
73/1 ms; in-plane resolution = 0.8 × 0.8 mm (Siemens). 
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3.2.1.6 Atrioventricular plane displacement 
Cine images were acquired in 2-, 3-, and 4-chamber long-axis views using a 
balanced steady state free precession (bSSFP) sequence with retrospective ECG 
gating. Typical image parameters were slice thickness = 8 mm; FA = 60°; TR/TE = 
3.1/1.6 ms; in-plane resolution =1.1 x 1.1 mm (Philips) or slice thickness = 6 mm; 
FA = 51°; TR/TE = 73/1 ms; in-plane resolution = 0.8 x 0.8 mm (Siemens).  

3.2.2 MR image analysis 
MR images were analyzed using the image analysis software Segment (Medviso, 
Lund, Sweden) (219). 

3.2.2.1 Kidney volumes  
Figure 3.2 shows delineations of renal cortical and medullary volumes in pig and in 
human. The renal cortex and medulla were manually delineated on transversal 
images covering the entire kidneys. Cysts, renal pelvis, and other non-parenchymal 
tissue were excluded. Volumes were then calculated by adding the respective slice 
volumes. Total kidney volume was defined as the combination of cortical and 
medullary volumes, excluding renal pelvis, blood vessels and other non-
parenchymal structures. The ratio between cortical and medullary volumes 
(corticomedullary ratio) was calculated as cortical volume divided by medullary 
volume. Kidney volumes were also normalized to BSA (220). 

 

Figure 3.2 Renal MRI images in pig and human. 
In-vivo renal MR images in pig (top row) and in human (lower row) without (left column) and with (right column) 
delineations of renal cortical and medullary borders. Cortical outer borders are depicted in solid black lines, medullary 
borders by solid white lines and non-parnehcymal tissue in dashed white lines. Image adapted from Liefke et al. (221), 
Sage, through a CC BY 4.0 License (https://creativecommons.org/licenses/by/4.0/). 



 

62 

3.2.2.2 Renal T1 and T2* mapping 
Figure 3.3 shows delineations for T1 and T2* maps. T1 maps were generated using 
motion-correction and a 3-parameter T1 fit with Look-Locker correction while T2* 
maps were generated using a 2-parameter mono-exponential fit (222). The region 
of interest (ROI) was drawn one pixel in from the outer contour of the respective 
parenchymal area and the renal column was not delineated all the way down to the 
renal pelvis. T1 values were acquired for renal cortex and medulla separately. 
Corticomedullary T1 differentiation, a marker of kidney dysfunction (223), was 
calculated as the ratio between cortical and medullary T1.  

T2* values were acquired for the renal cortex and for the entire renal parenchyma 
combined (cortex and medulla). It was not possible to accurately distinguish 
between cortical and medullary parenchyma in all echo images that were used for 
creating T2* maps.  

 

Figure 3.3 MR images with delineations for renal parenchymal T1 and T2* values.  
Coronal images of the left kidney for T1 mapping measurements (upper row) and for T2* measurements (lower row).  
The kidney is shown without delineations (left column), with delineations of cortical parenchyma (middle column) 
and delineations of medullary parenchyma and total kidney parenchyma, respectively (right column). For both T1 
and T2* values, delineations were placed to avoid partial volume effects. Both left and right kidneys were delineated. 
Adapted from accepted manuscript, Pediatric Nephrology. The article will be published under a CC BY 4.0 license, 
http://creativecommons.org/licenses/by/4.0/. 

3.2.2.3 Flow measurements  
Quantitative flow measurements were performed in the ascending aorta, the 
proximal descending aorta, the aorta at diaphragm level and in renal arteries. 
Delineations were performed in magnitude images throughout the cardiac cycle 
using an automated algorithm (224). Manual correction was used, and the phase-
contrast images guided delineations when needed. Linear background phase 
correction was performed (225). 
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Glomerular filtration fraction, a measure of  renal flow reserve (226), was 
calculated as eGFR divided by renal blood flow multiplied with 0.55 in boys and 
with 0.6 in girls to estimate the fraction of plasma in whole blood for the respective 
sex (227). The perfusion of the renal parenchyma was calculated as renal arterial 
blood flow divided by total kidney mass (density 1.05 g per 1 ml). 

3.2.2.4 Pulse wave velocity 
Figure 3.4 shows aortic PWV measurements in neonates and in adolescents for 
Study II. 

Pulse wave velocity was calculated as the pulse wave travelling distance between 
flow planes, i.e., vessel length, (Δd), derived from 2D coronal overview images and 
the reference standard 3D angiography images (Study II). For neonates, only the 3D 
black-blood sequence was used to calculate vessel length (Δd) (Study II). Figure 3.5 
shows the application in Study III, where only reference standard 3D angiography 
images were used. For both image types a manual frame-by-frame centerline vessel 
tracking method was used. Lengths reported are from the reference standard 3D 
angiography unless otherwise specified.  

Figure 3.4 Image delineations for aortic length and flow mesaurements.  
Neonatal black-blood (A) and adolescent white-blood (G) 3D angiography, and adolescent thoracic coronal overview 
image with white dotted lines outlining the aortic walls throughout the 2D image stack (F), all with length delineation 
(Δd) (dashed orange) and perpendicular flow imaging planes in the ascending aorta (blue), descending proximal 
aorta (green) and descending aorta at the level of the diaphragm (red). Magnitude and quantitative phase-contrast 
images at ascending and proximal descending aorta (B–C, H–I) and descending aorta at the level of the diaphragm 
(D–E, J–K), corresponding to the flow imaging planes localizations. Images from Lundström et al. (228), through a 
CC BY 4.0 license, SpringerNature. http://creativecommons.org/licenses/by/4.0/. 
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Figure 3.5 Application of pulse wave veloctity measurements using the time to foot method.  
Non-contrast-enhanced 3D angiography (a) of the thoracic aorta with flow measurement planes (solid lines) 
perpendicular to the ascending aorta and descending aorta at diaphragm level, and the aortic centerline distance (Δd; 
dashed line) between flow measurement planes. Delineations of the ascending aorta in a magnitude image (b1) and 
phase-contrast image (b2). Corresponding delineations of the descending aorta at diaphragm level (c1 and c2). Flow 
curves for the ascending aorta (d) (solid line) and descending aorta (dashed line) were used to assess pulse wave 
velocity using the time-to-foot method. Pulse wave travelling time (Δt) was calculated as the time between upslope 
tangents intersecting the baseline. Pulse wave velocity was calculated by dividing the aortic centerline distance (Δd) 
with the time difference (Δt). Manuscript accepted, Pediatric Nephrology. The article will be published under a CC BY 
4.0 license, http://creativecommons.org/licenses/by/4.0/. 

3.2.2.5 Computer phantom  
The computer phantom method from Dorniak et al. (229), was used to calculate the 
required temporal resolution needed for accurate PWV measurements. Vessel 
lengths, set to approximate the minimal lengths of the aortic arch and the entire 
thoracic aorta for neonates and adolescents, respectively, were used as input in the 
phantom. Image data from neonates but not adolescents had sufficient timeframes 
per cardiac cycle for construction of a high-resolution computer phantom. One 
additional adolescent individual was included to provide this data to the computer 
phantom. Computer phantoms with PWV velocities between 2-10 m/s were created, 
to include the physiological ranges of velocities in both cohorts (230). The 
ascending and descending flow curves were calculated and the delay between them 
calculated as vessel length divided by the respective pulse wave velocity, PWV. The 
flow profile was down sampled to between 20-60 time frames per cardiac cycle, to 
mimic different temporal resolutions. The time to foot method was used to calculate 
PWV at different combinations of reference PWV and time frames per cardiac 
cycle. Differences between time to foot measurements and reference PWV were 
presented as percent error. 

3.2.2.6 Aortic distensibility  
Distensibility in the ascending aorta and descending aorta at diaphragm level was 
calculated as     × ∆  . Amax denotes the maximum and Amin denotes the 
minimum cross- sectional areas during the cardiac cycle, and Δ𝑃 equals the brachial 
blood pressure difference between systole and diastole (231). Brachial blood 
pressure was acquired directly after the respective flow acquisition. 
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3.2.2.7 Cardiac volumes 
Ventricular and atrial volumes were planimetrically derived from manually 
delineated short-axis images and trabeculations and papillary muscles were included 
in the cavity volumes according to guidelines (183) (Figure 3.6). Left ventricular 
mass (LVM) was calculated as the left ventricular wall volume multiplied with the 
ventricular myocardial density (1.05g/ml). End-diastole and end-systole were 
defined as the time frames with the maximum and minimum mid-ventricular area, 
respectively. Left atrial and right atrial volumes were delineated in ventricular end 
diastole and end systole for left and right atrial maximal and minimum volume. 
Total heart volume (THV) was measured by manual delineation of the epicardial 
contours at end-diastole in short-axis cine images covering the entire heart (Figure 
3.6) (152). Cardiac volumes were indexed to BSA to enable group and sex 
comparisons. Ventricular and atrial volumes were also normalized to THV to assess 
the relation in size between atrial and ventricular volumes (232). Planimetrically 
derived stroke volume were calculated as EDV-ESV.  

 

Figure 3.6. Delineations of cardiac volumes. 
A 4-chamber view of the heart (left column) showing the corresponding imaging plane for the short-axis images in the 
other columns. Delineations for left and right ventricular volumes (middle column) and delineations for total heart volume 
(right column) are shown with white solid lines. Upper row shows end-diastole and lower row shows end-systole. For left 
and right ventricular volume assessment, short axis images for the entire myocardium were delineated and for total heart 
volume, short axis images fo the entire heart, including the greater vessels, were delineated.  
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3.2.2.8 Longitudinal contribution to stroke volume 
Figure 3.7 show atrioventricular plane displacement (AVPD). Atrioventricular 
plane displacement was measured using a validated automated method for time-
resolved AV-plane tracking, with manual correction as needed (184). In short, eight 
input points of the AV-plane position throughout the cardiac cycle were manually 
marked in 2-, 3-, and 4-chamber long axis views (Figure 3.7). Left ventricular 
AVPD was calculated using two input points from each of the long-axis views for 
the left ventricle whereas right ventricular AVPD was calculated using the mean of 
the two septal points together with the input points from the right lateral point of the 
4-chamber and the input point by the right ventricular outflow tract in the 3-chamber 
view as previously described (150,151,184). To calculate AVPD relative to the 
length of the ventricle, AVPD ratio, an input point was also placed at the apex in 
long-axis images (Figure 3.7). 

 

Figure 3.7 Measurement of atrioventricular plane displacement (AVPD).  
Cardiac MR long axis images showing the input points for the AVPD algorithm and a vizualisation of the AV-plane 
movement from end-diastole (upper row) to end-systole (lower row) in a 2-chamber view (left) a 3-chamber view 
(middle) and a 4-chamber view (right). In addition to the eight standard points, depicted as crosses at their 
respective position, apex were marked in order to calculate the AVPD ratio (AVPD divided by the length of the 
ventricules). Ant=anterior, inf=inferior, lat=lateral, RVOT=right ventricular outflow tract. 
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Figure 3.8 show a visualization of longitudinal stroke volume. Stroke volume 
generated by the AVPD was calculated for the left and right ventricle as the AVPD 
in centimeters multiplied by the mean epicardial area (cm2) of the short-axis slices 
(6 or 8mm depending on the scanner) within the AV-plane movement (184). 
Longitudinal contribution was calculated as stroke volume generated by the AVPD 
for the respective ventricle divided by the planimetrically derived stroke volume. 

 

Figure 3.8 Longitudinal contribution to stroke volume.  
Cardiac MR images showing a 4-chamber view of the heart in end-diastole (left) and in end-systole (right). The solid 
line represents the position of the AV-plane in end-diastole whereas the dashed line represents the AV-plane in end 
systole. The end-systolic AV-plane is transposed to the end-diastolic image. Longitudinal contributon to stroke volume 
for the respective ventricle is calculated as the blood volume transposed by the atrioventricular plane displacement. 
Longitudinal contribution to stroke volume is depicted in blue for the left ventricle and red for the right ventricle.   

3.2.2.9 Radial contribution to stroke volume 
Figure 3.9 show a visualization of radial contribution to stroke volume. Radial 
contribution to left and right ventricular stroke volume, respectively, was defined as 
the volume difference caused by the inward displacement of the epicardial border 
from end-diastole to end-systole divided by the planimetrically derived stroke 
volume. The right ventricular insertion points towards the left ventricle were 
manually marked and used to subdivide the radial contribution of the left ventricular 
stroke volume into septal and lateral contributions (233).  
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Figure 3.9. Radial contribution to stroke volume. 
Cardiac MR images of the heart in a midventricular short axis view in end-diastole (left) and in end-systole (right). 
Solid lines indicate epicardial borders and dashed lines indicate endocardial borders.The black circles with white 
borders indicate RV insertion points. The end-diastolic volumes are marked with blue and green and the end-systolic 
volumes are marked in red and yellow to the right. The end-diastolic contours to the left are interpolated to the end-
systolic image to the right. The green area in the image to the right represents the lateral contribution to stroke volume 
for the right ventricle, the darker red area between the solid and dashed lines between the RV insertion points 
represents septal contribution to stroke volume and the blue area between the solid and dashed lines around the left 
ventricle represents lateral contribution to left ventricular stroke volume. The respective areas were summed from all 
short-axis slices to calculate the respective volume.  

3.3 24-hour ambulatory blood pressure measurements 
Systolic, diastolic, and mean arterial blood pressure were measured every 20 
minutes over 24 hours as per clinical routine (SpaceLabs Medical ABP-monitor 
model 90207 or Ultralite TM 90217A, Issaquah, USA). Activity and potential 
symptoms were reported. Generally, >80% of successful readings was deemed 
sufficient for inclusion.  

Reference values for children and adolescents are based on sex, age, and height 
(234). Daytime and nighttime periods were reviewed both separately and in 
combination and related to the activity diary for evaluation, in line with ESC 
guidelines (175,234). Mean systolic and diastolic blood pressures were graded as 
normal (<90th percentile), prehypertension (≥90th to <95th percentile) or 
hypertension (≥95th percentile) for daytime and nighttime separately. A day-to-
night ratio of mean arterial blood pressure <10% was graded as pathological. 
Normal values for adult blood pressure were defined for 24 hours as <130/80 
mmHg, for daytime <135/85 mmHg, and for nighttime <120/70 mmHg (175). 
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Blood pressure above these values were, in addition to reference values for 
adolescents, graded as hypertension.  

3.4 Biochemical markers in blood and urine  
Sampling of blood and urine was performed in conjunction with MRI or with 24-
hour ambulatory blood pressure measurements. Due to logistics, participants were 
not instructed to be in a fasted state and the sampling could have been performed 
any time during the day. Blood was collected in EDTA test tubes whereas urine was 
collected in sterile test tubes. Samples were directly centrifuged (Thermo Scientific 
Megafuge 8, Thermo Fisher Scientific, Waltham, USA) for ten minutes at 1,500 G, 
pipetted into cryotubes and stored at -80°C.  

Plasma concentrations of cystatin C, N-terminal pro B-type natriuretic peptide 
(NT-proBNP), creatinine and renin as well as urine samples of creatinine, albumin, 
IgG, kappa, and lambda were quantified at the hospital laboratory. Cystatin C 
concentration was quantified using a Atellica Solution immunoassay Analyzer 
(Siemens Healthineers, Erlangen, Germany). Plasma renin concentration was 
quantified using an automated Chemiluminescence Immunoassay (CLIA) (WHO 
International Standard for Direct Renin, 68/356).  

Urine was analyzed using standard protein electrophoresis, with quantification of 
creatinine, albumin, IgG, kappa, and lambda.  

Urine angiotensinogen (u-AGT), a potential biochemical marker of intra-renal 
RAAS activation (235), was quantified using a solid-phase sandwich enzyme-linked 
immunosorbent assay (ELISA) (Human Total Angiotensinogen Assay Kit -IBL, 
Cat. no.- 27412, 1091-1 Naka Aza-Higashida, Fujioka-Shi, Gunma 375-0005, 
Japan) on an ELISA absorbance microplate reader (Infinite F50 with software 
Magellan 7.2, Tecan Trading AG, Switzerland). Four samples had been remeasured 
and thus thawed twice, and as angiotensinogen is sensitive to temperature changes 
these four samples were removed from further analysis. 

The ratio of u-IgG, u-albumin, u-kappa, u-lambda and u-AGT to u-creatinine 
were calculated. Estimated glomerular filtration rate (eGFR) was calculated as per 
clinical routine for children and adolescents (<18 years of age), using the Caucasian, 
Asian, Pediatric and Adult (CAPA) equation based on Cystatin C (eGFRCystatin C) 
(159). For comparison, the updated Schwartz equation based on creatinine 
(eGFRCreatinine) (160) and the average of eGFRCystatin C and  eGFRCreatinine 
(eGFRAverage) were assessed. 
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3.5 Statistical analyses 
Statistical analyses were performed using SPSS versions 26 or 27 (IBM Corp, 
Armonk, NY) and/or GraphPad Prism 9 (GraphPad Software, La Jolla, California, 
USA). The open-source vector graphics editor Inkscape (https://inkscape.org/) were 
used for artwork.  

Nonparametric tests were generally performed as normal distribution could not 
be assumed for the greater parts of the variables investigated. Normal distributions 
were visually assessed using histograms. Continuous variables were expressed 
median (range) or median [interquartile range] where appropriate. Categorical 
variables were expressed as absolute numbers or proportion. Kruskal-Wallis with 
post hoc Dunn’s or Bonferroni’s multiple comparison test and Mann-Whitney U-
test assessed group differences. Pearson’s or Spearman’s correlation was used for 
correlation analyses as appropriate. Simple linear regression was used to calculate 
causation. Pearson’s chi square test or Fisher’s exact test was used for categorical 
variables as appropriate. The Jonckheere-Terpsta and Kendall’s Tau-b tests were 
used for assessing trends between groups. The Bland-Altman method evaluated 
intra-and interobserver differences as well as agreement between methods as 
appropriate. All tests were two sided and p-values < 0.05 were considered to show 
statistically significant differences.  
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4 Results and comments  

The major findings together with short comments of studies I–V are presented in 
this section. More detailed description of the study results for each paper are 
presented in part II at the end of the thesis summary.  

4.1 Study I: Validation of renal cortical and medullary 
volume assessment with MRI 

4.1.1 Agreement between MRI and ex vivo quantification 
Figure 4.1 shows agreement between MRI and ex-vivo quantification. Agreement 
between MRI and ex-vivo quantification of renal parenchymal volumes is presented 
as median and 95% limits of agreement (LoA; 2.5th–97.5th percentile) and shown 
for one observer with intermediate MRI experience (~3 years) and for two 
experienced observers in consensus (~15–20 years of MRI experience). Agreement 
was for total parenchymal volume -7ml (-10 to 0) ml, for cortical volume -4ml (-9 
to 3) ml and for medullary volume -2ml (-7 to 2) ml (Observer 1). The respective 
results for the consensus observers were for total parenchymal volume -3 (-9 to 4) 
ml, for cortical volume -2 (-9 to 4) ml and for medullary volume 0 (-4 to3) ml. The 
medullary fraction, i.e., medullary volume divided by total parenchymal volume 
was 15% (range 13–20%) in pigs 35% (range 27–38%) in human. 
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Figure 4.1. Agreement between MRI and ex-vivo reference standard for quantification of renal parenchymal 
volumes. Upper row shows observer I and lower row shows consensus observers. Dotted lines indicate median and 
dashed lines 95% Limits of agreement. Liefke et al. (221), under a CC  BY  4.0 License 
(https://creativecommons.org/licenses/by/4.0/) 

4.1.2 Intra-and interobserver variability  
Figure 4.2 shows intra- and interobserver variability of renal parenchymal volume 
quantification by non-contrast enhanced MRI in pig and in human. Median 
interobserver variability for both pig and human were < 5% whereas median 
interobserver variability were between < 4% for total parenchymal volume and 
cortical volume and between 6–12% for medullary volume quantification. 
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Figure 4.2. Intra- and interobserver variability of renal parenchymal volume quantification by non-contrast 
enhanced magnetic resonance imaging.  
Bland-Altman plots showing intra- (top row) and interobserver (bottom row) in pig (upper panels) and in human 
(lower panels). Dotted lines indicate median and dashed lines 95% limits of agreement. Adapted and reprinted from 
Liefke et al. (221), under a CC  BY  4.0 License (https://creativecommons.org/licenses/by/4.0/) 
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4.2 Study II: Validation of pulse wave velocity 
acquisition using MRI in neonates and in 
adolescents 

4.2.1 Computer phantom 
Figure 4.3 shows the computer phantom results for neonates and adolescents. The 
phantom experiment shows the required time frames per cardiac cycle needed for 
accurate assessment of pulse wave velocities at different aortic lengths, derived from 
actual flow curves from neonates and adolescents respectively. A cut off value, 
suggestive of the minimum required timeframes per cardiac cycle for minimum 
PWV errors, dependent on vessel length and pulse wave velocity are depicted and 
were 42 for the aortic arch and 41 for the thoracic aorta in neonates and 39 and 32 
for corresponding vessel segments in adolescents.  

 

Figure 4.3. Pulse wave velocity errors at different pulse wave velocities dependent on the acquired 
timeframes per cardiac cycle. Computer phantom based on neonatal (top row) and adolescent (bottom row) flow 
data for the aortic arch (left column) and the thoracic aorta (right column). Vessel lengths approximates the minimal 
lengths in the respective cohorts. Vertical red dashed lines denote the cut-off for required timeframes per cardiac 
cycle for all pulse wave velocities. Horizontal gray dotted lines denote the mean error (min–max) after the cut-off line. 
Shorter aortic lengths and higher pulse wave velocities independently increased the number of time frames per 
cardiac cycle needed for accurate estimation of pulse wave velocitiy. X-axis offset between neonatal and adolescent 
curves is likely related to the shorter diastolic period in neonates due to their higher heartrate. Reprinted with 
permission from Lundström et al. (228), under a CC BY 4.0 license, (http://creativecommons.org/licenses/by/4.0/). 
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4.2.2 Aortic length measurements  
Figure 4.4 shows aortic center-line measurements and agreement between coronal 
overview images and the reference standard 3D angiography. The current study 
investigated whether coronal overview images of the thoracic aorta, which is part of 
the standard clinical protocol for cardiac MRI, could be used interchangeably with 
the reference standard 3D angiography for calculations of vessel length. This would 
enable retrospective analysis of PWV in patients who has undergone cardiac MRI 
and would also lessen the need to add additional sequences, i.e., 3D angiography, to 
the clinical protocol. However, although showing a low median bias, the intra-
individual variation was (95% LoA) -16 to 18 mm for the aortic arch and -25 to 30 
mm for the thoracic aorta, indicating a low reliability. As non- contrast enhanced 
3D angiography can be acquired in a few minutes, adding this sequence to the 
standard clinical protocol is preferred if accurate PWV measurements are to be 
assessed.  

 

Figure 4.4. Aortic centerline measurements and agreement between coronal overview images and the 
reference standard 3D angiography. Aortic centerline measurements for the aortic arch (upper row) and the 
thoracic aorta (lower row) in neonates (left column) and in adolescents (middle column). Agreement between 
centerline measurements performed in the coronal overview images and the reference standard 3D angiography 
(n=49 adolescents) (right column). Solid circles represent males and open circles females. Red lines with error bars 
denote median (range). Solid black lines represent bias and dashed lines represent 95% limits of agreement. 
Reprinted with permission from Lundström et al. (228), under a CC BY 4.0 license, 
(http://creativecommons.org/licenses/by/4.0/). 
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4.2.3 Pulse wave transit time  
Figure 4.5 shows comparison of three methods for the assessment of pulse wave 
transit time: the time-to-foot method with automatic baseline correction (TTF), the 
maximum upslope method and the time-to -peak (TTP) method, based on flow and 
velocity curves, respectively. In neonates, there were no statistically significant 
difference between the thoracic aortic PWV based on flow curves for TTF (4.1 ± 
0.9 m/s) vs maximum upslope (6.4 ± 3.5 m/s) or the TTP method (5.3 ± 5.6 m/s); p 
≥ 0.43. The corresponding PWV based on velocity curves were 4.2 ± 1.0 m/s for 
TTF, 6.1 ± 2.4 m/s for maximum upslope, and 1.8 ± 5.4 m/s for TTP (p ≥ 0.19).  

In adolescents, thoracic aortic PWV based on flow curves were higher for TTF 
(3.8 ± 0.5 m/s) as compared to TTP (2.7 ± 1.0 m/s); p < 0.0001 and for maximum 
upslope (3.7 ± 0.6 m/s) as compared to TTP (2.7 ± 1.0 m/s); p <0.0001. There was 
no difference between the TTF and maximum upslope methods (p = 0.8). Pulse 
wave velocity measurements with the TTF and maximum upslope showed high 
agreement.  

Although not statistically different, the wide range of pulse wave velocities in 
neonates, between all methods, but especially for velocity based PWV and the TTP 
method, shows that PWV is highly dependent on the method used. The TTP method, 
showing a wide range of velocities, a low agreement between flow and velocity-
based flow curve derived values and showing negative values, cannot reliably be 
used for PWV assessment in neonates. For adolescents, the TTP method did not 
show negative values but was markedly lower as compared to the other method and 
showed higher variability between flow and velocity based PWV.  

The TTF method showed the lowest ranges and the highest agreement between 
flow and velocity based PWV.  
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Figure 4.5. Transit time measurements and method agreement. Method comparisons (panel A) for neonates 
(upper row) and adolescents (lower row). Thoracic aortic PWV for velocity and flow are shown for time-to-foot with 
automatic baseline correction, maximum upslope, and time-to-peak algorithms. Time-to-peak was lower for both 
velocity and flow curves. Solid circles represent males and open circles females. Red line with error bars denotes 
mean ± SD. Bland–Altman plots (panel B) for neonates (top row) and adolescents (bottom row) with comparison of 
thoracic aorta velocity and flow-based maximum upslope (left), time-to-foot with automatic baseline correction 
(middle), and time-to-peak (right) algorithms. Note the difference in y-axis ranges for neonates and adolescents. 
Negative PWV values are due to curve shapes with no definitive peak, which worked poorly with the TTP algorithm. 
Solid black lines represent bias and dashed lines represent 95% limits of agreement. Reprinted with permission from 
Lundström et al. (228), under a CC BY 4.0 license, (http://creativecommons.org/licenses/by/4.0/). 

4.2.4 Baseline correction 
Figure 4.6 shows agreement between baseline correction methods for neonates and 
adolescents. For both neonates and adolescents there was a high agreement between 
the manual and the proposed automatic baseline correction method, using the 
average from the 80th–95th % segment of the flow curve to approximate the 
ascending and descending curve.   
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Figure 4.6 Baseline correction comparison. Bland Altman plots showing comparison of thoracic aortic pulse wave 
velocity based on velocity and flow curves for neonates (panel A) and adolescents (panel B). Agreement between no 
baseline correction and automatic baseline correction (left), no and manual baseline correction (middle), and manual 
and automatic baseline correction (right) is presented in both rows. Manual and automatic baseline correction agreed 
for both velocity and flow curves, which indicates that these baseline correction methods can be used interchangeably 
in neonates and adolescents. Solid black lines represent bias and dashed lines represent 95% limits of agreement. 
Reprinted with permission from Lundström et al. (228), under a CC BY 4.0 license, 
(http://creativecommons.org/licenses/by/4.0/). 
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4.3 Study III: Blood pressure and arterial stiffness 
In this study, measures of blood pressure and arterial stiffness were assessed in 
adolescents born very preterm due to early onset fetal growth restriction and 
compared with the two control groups born with appropriate birth weight, one in 
similar gestation and one born at term. This study included the entire cohort, 
prospectively included for follow up in adolescence who underwent either 24-hour 
ambulatory blood pressure measurements (24-hour ABPM) or MRI. In addition to 
24-hour ABPM, the pulse wave velocity method proposed in study II were 
implemented.  

4.3.1 Study population 
A total of 79 adolescents (14 (13–17) years 52% girls were included. Table 4.1 
shows subject characteristics and neonatal morbidity. Preeclampsia (33% vs 4%; p 
<0.01), Cesarean section (100% vs 56%; p<0.0001), bronchopulmonary dysplasia 
(75% vs 26%; p = 0.001) and septicemia (54 vs 22%; p =0.02) were more prevalent 
in the preterm FGR group as compared to the preterm AGA group. Although not 
statistically different, smoking was almost three times as common for mothers in 
the preterm AGA group to smoke as compared to the preterm FGR group (22 vs 
8%; p = 0.3).  

Table 4.2 shows comparisons of perinatal characteristics and neonatal morbidity 
between those who participated in the current study and those included in the 
original cohort who opted out from follow-up in the current study. For the preterm 
FGR group, maternal age was higher for those who participated in the study vs those 
who opted out (33 vs 28 years; p = 0.01). For preterm AGA, median birth weight 
was higher (1100 vs 875g; p = 0.04), the incidence of ablatio placentae lower (12 vs 
57%; p = 0.03) and postnatal steroid treatment lower (15 vs 57%; p = 0.04) in the 
group who participated versus those who dropped out. There were no differences in 
the term AGA group.  
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4.3.2 Blood pressure 
Figure 4.7 and Tables 4.1 and 4.3 shows blood pressure data. There were no group 
differences in systolic (p = 0.37) or diastolic (p = 0.08) office blood pressure 
measurements (Table 4.1). The clinical evaluation of the 24-hour ambulatory blood 
pressure measurements revealed no group differences in the prevalence of pre-
hypertension, hypertension or pathological day-to-night ratio (all p ≥ 0.1) (Table 
4.3).  

For 24-hour ABPM, systolic blood pressure did not differ between groups for 
either sex (all p > 0.21). In boys, in addition to showing higher daytime mean arterial 
blood pressure (93 mmHg vs 86 mmHg; p=0.03) and 24-hour mean arterial blood 
pressure (88 vs 82 mmHg; p=0.03) in the preterm FGR group as compared to the 
term AGA group, trend analyses showed increasing diastolic and mean arterial 
blood pressures from term AGA to preterm AGA to preterm FGR for 24-hour and 
for daytime blood pressure (all p ≤ 0.03) (Figure 4.7). In girls, no group differences 
or trends were observed in any blood pressure variables (all p ≥ 0.1) (Figure 4.7). 

4.3.3 Arterial stiffness  
Figure 4.8 shows pulse wave velocity and distensibility in the ascending aorta and 
in the descending aorta at diaphragm level. There were no group differences in 
measures of arterial stiffness (all p ≥ 0.5). When stratifying for sex, girls born 
preterm AGA showed higher median PWV (3.9 vs 3.5 m/s; p = 0.04) as compared 
to the term AGA group.  

4.3.4 Renal function 
Cystatin C based eGFR were for the preterm FGR group 94 [IQR 78–109] 
ml/min/1.73m2, for the preterm AGA group 100 [IQR 85 – 118] ml/min/1.73m2 and 
for the 243 term AGA group 100 [IQR 89 – 110] ml/min/1.73m2 (p = 0.35). 
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Figure 4.7 24-hour ambulatory blood pressure measurements. Systolic (upper row), diastolic (middle row) and 
mean arterial blood pressure (lower row) in boys (left panel) and girls (right panel) for daytime (left column), nighttime 
(middle column) and for 24-hour measurements (right column). For boys, median daytime and 24-hour mean arterial 
blood pressures were higher in the preterm FGR group as compared to the term AGA group ((93 (88-101 mmHg) vs 86 
(76-101 mmHg); p = 0.03) and (88 (85-97 mmHg) vs 82 (73-93mmHg); p = 0.03, respectively)). FGR=fetal growth 
restriction, AGA=birth weight appropriate for gestational age. Lines indicate median. To be published in Pediatric 
Research. Accepted manuscript. The article will be published open access under a CC BY 4.0 license (Creative 
Commons Attribution 4.0 International license). 
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Table 4.3 24-hour ambulatory blood pressure measurements. 
Preterm FGR Preterm AGA Term AGA P values  
n=20 n=27 n=23 

Daytime 
Systolic blood pressure 
Prehypertensive (n (%)) 1 (5%) 2 (7%) 0 0.63 
Hypertensive (n (%)) 2 (10%) 4 (15%) 1 (4%) 0.48 
Diastolic blood pressure 
Prehypertensive (n (%)) 2 (10%) 1 (4%) 1 (4%) 0.68 
Hypertensive (n (%)) 0 0 0 N/A
Night-time  
Systolic blood pressure  
Prehypertensive (n (%)) 2 (10%) 0 0 0.08
Hypertensive (n (%)) 3 (15%) 1 (4%) 0 0.1 
Diastolic blood pressure 
Prehypertensive (n (%)) 1 (5%) 0 0 0.29 
Hypertensive (n (%)) 1 (5%) 0 1 (4) 0.52 
Nocturnal dip (<10%) 3 (15%) 3 (11%) 2 (9%) 0.9 

Data are presented as number (%). FGR=fetal growth restriction, AGA=birth weight appropriate for gestational age, 
N/A=not applicable. To be published in Pediatric Research. Accepted manuscript. The article will be published open 
access under a CC BY 4.0 license (Creative Commons Attribution 4.0 International license). 

Figure 4.8 Thoracic aortic pulse wave velocity and aortic distensibility. Pulse wave velocity (left graph), 
distensibility in the ascending aorta (middle graph) and distensibility in the descending aorta at diaphram level (right 
graph). Closed circles indicate boys and open circles indicate girls. For girls, median pulse wave velocity was higher 
in preterm AGA group as compared to the term AGA group (3.9 m/s vs 3.5 m/s; p = 0.04). FGR=fetal growth 
restriction, AGA=birth weight appropriate for gestational age. Lines indicate median. To be published in Pediatric 
Research. Accepted manuscript. The article will be published open access under a CC BY 4.0 license (Creative 
Commons Attribution 4.0 International license). 
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4.4 Study IV: Cardiac morphology and function 
In this paper measures of cardiac morphology and function were assessed in 
adolescents born very preterm due to early onset fetal growth restriction and 
compared with the two control groups born with appropriate birth weight, one in 
similar gestation and one born at term. Twenty-two participants in the preterm FGR 
group, 22 in the preterm AGA group and 26 in the term AGA group were included 
for analysis.  

4.4.1 Cardiac volumes 
Figure 4.9 and Table 4.4 shows cardiac volumes. Adolescents born very preterm 
AGA showed smaller left (80 vs 88 ml/m2; p = 0.02) and right (85 vs 97 ml/m2; p = 
0.03) ventricles compared to term AGA. No differences were observed between 
preterm FGR and term AGA for the left or right ventricle, respectively (82 vs 88 
ml/m2; p = 0.39, and 94 vs 97 ml/m2; p = 0.82). Left ventricular mass was not 
different between preterm FGR, preterm AGA, and term AGA (47 vs 43 vs 47 
ml/m2; p=0.22). The preterm FGR group showed smaller median right atrial end-
diastolic volumes (46 vs 54 ml/m2; p = 0.045) as compared to the term AGA group.  

Total heart volume did not differ between groups (all p ≥ 0.2) and simple linear 
regression showed that THV was dependent on BSA in the respective group; 
preterm FGR (R2 = 0.70, p < 0.0001), preterm AGA (R2 = 0.74, p < 0.0001), and 
term AGA (R2 = 0.71, p < 0.0001).  

Sex stratification indicated that differences in cardiac volumes as shown above 
for the whole group might be driven by differences in girls. Girls born preterm AGA 
had smaller left ventricular end-diastolic volumes (80 ml/m2 (71 – 88 ml/m2) vs 88 
ml/m2 (73 – 101 ml/m2); p = 0.04) and right ventricular end-diastolic volumes (84 
ml/m2 (74 – 92 ml/m2) vs 96 ml/m2 (80 – 113 ml/m2); p = 0.01) and end-systolic 
volumes (38 ml/m2 (32 – 51 ml/m2) vs 44 ml/m2 (39 – 55 ml/m2); p = 0.03) as 
compared to the term AGA group, and smaller right ventricular end-systolic 
volumes as compared to the preterm FGR group (38 ml/m2 (32 – 51 ml/m2) vs 45 
ml/m2 (30 – 62 ml/m2);p = 0.04). 

For boys, left ventricular mass normalized for THV were higher in the preterm 
FGR group (0.15 g (0.13 – 0.18g) as compared to the term AGA group (0.13 g (0.11 
– 0.14g); p < 0.001). No other differences were observed for boys. 
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Figure 4.9 Cardiac volumes. 
Absolute cardiac volumes (upper row) and BSA-adjusted values (lower row) for the three groups. Closed circles 
indicates boys and open circles indicates girls. Left and right end-diastolic BSA-adjusted volumes were lower in the 
preterm AGA group as compared to term AGA group (80 vs 88 ml/m2;p=0.03, and 85 vs 97 ml/m2;p = 0.03, 
respectively). FGR=fetal growth restriction, AGA=birth weight appropriate for gestational age. Lines indicate median. 

4.4.2 Cardiac function 
Table 4.4 shows planimetrically derived cardiac functional measures and Table 4.5 
and Figure 4.10 shows measures of left and right cardiac function. Ejection fraction 
for the left and right ventricle was for preterm FGR (55% and 51%), for preterm 
AGA (56% and 52%) and for the term AGA group (54% and 52%), with no 
differences between groups for the left (p = 0.33) or right (p = 0.46) ventricle, 
respectively. 

Atrioventricular plane displacement and longitudinal and radial contribution to 
stroke volume did not differ between groups for the left (all p ≥ 0.17) or right 
ventricle (all p ≥ 0.07) (Figure 4.10). 

4.4.3 NT-proBNP 
NT-proBNP was for preterm FGR 26 ng/l (5 – 80 ng/l), for preterm AGA 28 ng/l 
(14 – 87 ng/l) and for term AGA 18 ng/l (5 – 87 ng/l) with no difference between 
groups (p = 0.73).
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Figure 4.10 Measures of cardiac function. 
Left ventricular function (upper row) and right ventricular function (lower row) in the three groups. Closed circles 
indicates boys and open circles indicates girls. There were no differences in any measure of cardiac function (all p ≥ 
0.07) FGR=fetal growth restriction, AGA=birth weight appropriate for gestational age. Lines indicate median. 
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Table 4.5 Longitudinal and radial contribution to stroke volume. 
Preterm FGR Preterm AGA Term AGA P between  
n = 22 n = 22 n = 26 groups 

Left ventricle
LVAVPD (mm) 14 (9 – 17) 14 (11 – 18) 15 (12 – 17) 0.24 
LVAVPD (ratio) 0.15 (0.11 – 0.17) 0.15 (0.11 – 0.21) 0.16 (0.12 – 0.18) 0.77 
SVLong (ml) 44 (27 – 71) 42 (30 – 67)  48 (33 – 78) 0.08 
SVLong (%) 65 (51 – 81) 61 (48 – 82) 64 (50 – 77) 0.17 
SVSept (ml) 5.2 (0.2 –15.9) 6 (0.2 – 9.6) 5.2 (0.43 – 13.8) 0.91 
SVSept (%) 8 (0 – 18) 8 (0 – 14) 7 (1 – 14) 0.78 
SVLat (ml) 21 (9 – 32) 22 (9 – 41) 19 (10 – 35) 0.84 
SVLat (%) 32 (20 – 39) 31 (12 – 59) 24 (17 – 42) 0.14 

Right Ventricle
RVAVPD (mm) 20 (10 – 25) 20 (16 –25) 22 (14 – 26) 0.13 
RVAVPD (ratio) 0.22 (0.13 – 0.29) 0.22 (0.17 – 0.3) 0.24 (0.16 – 0.27) 0.35 
SVLONG (ml) 54 (16–76) 50 (30 – 83) 56 (32 – 85) 0.22 
SVLong (%) 71 (51 –82) 64 (53 – 90) 68 (50 –85) 0.71 
RVLat (ml) 21 (14 – 37) 22 (11 – 30) 29 (11 – 41) 0.81 
RVLat (%) 28 (19 – 50) 29 (16 – 41) 25 (15 –40) 0.07 

FGR=fetal growth restriction, AGA=birth weight appropriate for gestational age, LV=Left ventricle, 
AVPD=atrioventricular plane displacement, SV=stroke volume, long=longitudinal contribution to stroke volume, 
sept=septal contribution to stroke volume, lat=lateral contribution to stroke volume, RV=right ventricle. 
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4.5 Study V: Kidney volumes and function   
In this study, measures of kidney volume and function were assessed in adolescents 
born very preterm due to early onset fetal growth restriction and compared with the 
two control groups born with appropriate birth weight, one in similar gestation and 
one born at term. In this study, the newly validated non-contrast-enhanced MRI 
method from study I was implemented and biochemical markers in blood and urine 
of kidney function and RAAS-activation were sampled. 

4.5.1 Kidney volumes  
Figure 4.11 and Table 4.6 shows total kidney-, cortical- and medullary volumes in 
absolute and BSA-adjusted values. Total kidney volume and medullary volume 
were smaller in the preterm FGR group as compared to the term AGA group, (66 vs 
75 ml/m2; p = 0.01) and (19 vs 24 ml/m2; p < 0.0001), respectively. Further, 
medullary volume was smaller in the preterm FGR group as compared to the 
preterm AGA group (19 vs 23 ml/m2; p = 0.02). Trend analyses showed a decrease 
in median total kidney volume (75 vs 73 vs 66 ml/m2; p = 0.02) and medullary 
volume (24 vs 23 vs 19 ml/m2; p = 0.001) from term AGA to preterm AGA to 
preterm FGR.  

The preterm FGR group showed a higher corticomedullary volume ratio as 
compared to the term AGA group (2.4 vs 1.9; p = 0.01). The corticomedullary 
volume ratio decreased from preterm FGR (2.4) to preterm AGA (2.2) to term AGA 
(1.9; p=0.004) for both sexes combined and for boys (p = 0.02) and girls (p = 0.04), 
separately.  

When stratifying for sex, no group differences in kidney volumes were observed 
after adjusting for BSA in boys (all p ≥ 0.08). Girls born preterm FGR had smaller 
median total kidney volume (65 vs 76 ml/m2; p = 0.001), smaller cortical volume 
(44 vs 50 ml/m2; p = 0.03), and smaller medullary volume (19 vs 26 ml/m2; p < 
0.0001) as compared to the term AGA group. Further, in girls, trend analyses 
showed smaller total (65 vs 72 vs 76 ml/m2; p=0.004), cortical (44 vs 47 vs 50 
ml/m2; p=0.045) and medullary (19 vs 23 vs 26 ml/m2; p=0.001) volumes for 
preterm FGR vs preterm AGA vs term AGA, respectively.  

BSA adjusted kidney volumes were compared within the respective group and 
sex differences was only observed in the preterm FGR group, with girls showing 
smaller median total kidney volume (95 vs 116 ml; p = 0.049), cortical volume (66 
vs 86 ml; p = 0.003) and BSA-adjusted cortical volume (44 vs 51 ml/m2; p=0.02) 
compared to boys. No sex differences were observed in either absolute or BSA-
adjusted kidney volumes in the other groups (all p ≥ 0.13). 
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Figure 4.11 Kidney volumes adjusted for body surface area. 
Total kidney volume (left column), cortical volume (middle column) and medullary volume (right column) for all 
individuals (upper row), and stratified for boys (middle row) and girls (lower row) in adolescents born very preterm 
due to fetal growth restriction (preterm FGR), very preterm with appropriate birth weight (preterm AGA) and at term 
after a healthy pregnancy (term AGA). Fetal growth restriction was assoiated with smaller total kidney volumes as 
compared to the term AGA group and smaller medullary volumes as compared to the preterm and term AGA groups, 
mostly driven by lower volumes in girls. FGR=fetal growth restriction, AGA=appropriate for gestational age. 
Manuscript accepted, Pediatric Nephrology. The article will be published under a CC BY 4.0 license, 
http://creativecommons.org/licenses/by/4.0/. 
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4.5.2 Renal T1 and T2* mapping 
Table 4.6 shows renal T1 and T2* mapping values for the three groups. There were 
no differences in renal T1 or T2* mapping values between groups (all p ≥ 0.34) or 
for corticomedullary T1 differentiation (all p ≥ 0.08). When stratifying for sex, girls 
born preterm AGA showed higher cortical T1 values (1086 ms) as compared to the 
preterm FGR group (1037 ms; p = 0.02) and to the term AGA group (1027 ms; p = 
0.03). Girls born preterm AGA also showed higher median corticomedullary T1 
differentiation compared to the preterm FGR group (67 vs. 64%; p = 0.005). With 
no group differences observed for boys (all p ≥ 0.29). 

4.5.3 Biochemical markers  
Table 4.7 shows biochemical markers of kidney function and RAAS activation. 
When stratifying for sex, boys in the preterm AGA group showed a lower median 
IgG/creatinine index compared to the term AGA group (0.35 vs 0.78 g/mol; p = 
0.04).  

Table  4.7  Biochemical markers  

 
Preterm 

FGR Preterm AGA Term AGA P 
Between Reference values 

 n = 17 n = 15 n = 23 groups  
eGFR (Cystatin C) 
ml/min/1.73m2 

91  
(68 – 114) 

102  
(76 – 133) 

100  
(76 – 122) 0.2 86 – 134 

ml/min/1.73m2 
eGFR (Creatinine) 
ml/min/1.73m2 

97  
(76 – 127) 

89  
(64 – 126) 

99  
(74 – 140) 0.31 86 – 134 

ml/min/1.73m2 
eGFR (Average) 
ml/min/1.73m2 

92  
(81 – 119) 

92  
(75 – 127) 

99  
(85 – 125) 0.46 86 – 134 

ml/min/1.73m2 

P-Renin [mIE/L] 31  
(10 – 74) 

28  
(6 – 68) 

31  
(8 – 72) 0.75 5 – 80 [mIE/L]1 

 n = 19 n = 17 n = 23   
U-Albumin/Creatinine 
[g/mol] 

0.61  
(0.13 – 7.35) 

0.34  
(0.08 – 7.53) 

0.9  
(0.05 – 14.54) 0.09 < 3.0 g/mol1  

U-Albumin/Creatinine 
[mg/g] 

54  
(11 – 650) 30 (7 – 666) 79  

(5 – 1285) 0.09 < 30 mg/g1 

U-IgG/Creatinine 
[g/mol] 

0.43  
(0.16 – 2.11) 

0.33  
(0.18 – 0.76)* 

0.57  
(0.23 – 2.56) 0.051 < 0.8 g/mol 

U-Kappa/Creatinine 
[g/mol] 

0.09  
(0.03 – 0.57) 

0.12  
(0.03 – 0.59) 

0.14  
(0.07 – 0.84) 0.14 < 0.6 g/mol 

U-Lambda/Creatinine 
[g/mol] 

0.01  
(0 – 0.18) 

0.02  
(0 – 0.06) 

0.02  
(0 – 0.3) 0.64 < 0.6 g/mol 

U-AGT/Creatinine 
([ng/ml/ [µmol/L]) 

0.73  
(0.24 – 2.29) 

0.48  
(0 – 1.6) 

0.55  
(0 – 7.5) 0.53 N/A 

 

Data are presented as median (range).1 Indicates reference values for morning samples. * Indicates lower values for 
boys born preterm AGA compared to term AGA (0.35 (0.23 – 0.74) vs 0.78 (0.23 – 1.74); p=0.04. GFR=glomerular 
filtration rate, IgG=Immunoglobulin gamma, AGT angiotensinogen, FGR=fetal growth restriction, AGA=appropriate for 
gestational age. Manuscript accepted, Pediatric Nephrology. The article will be published under a CC BY 4.0 license, 
http://creativecommons.org/licenses/by/4.0/. 
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5 Discussion 

5.1 Study I 
The current study validated the proposed non- contrast enhanced MRI method and 
showed that it is accurate and precise in quantifying cortical and medullary volumes 
in pigs and that intra- and interobserver variability is low in both pigs and in humans.  

The method is widely available, and accuracy and precision were similar between 
observers with intermediate and high level of experience. The method could thus be 
implemented clinically and in research where ionizing radiation or contrast is 
preferred to be avoided. This might be especially important in pediatric populations 
or populations who either have renal failure or who will undergo serial assessment 
of kidney volumes.  

This study enabled Study V in which the non-contrast enhanced MRI method was 
implemented to investigate whether very preterm birth due to fetal growth 
restriction (FGR) verified by abnormal fetal blood flow velocimetry is associated 
with alterations in kidney structure in adolescence.  

5.1.1 Method comparison 
This study is the first to validate quantification of medullary parenchymal volumes 
using non-contrast enhanced MRI. The current study shows similar or lower 
variability in quantification of total parenchymal and cortical volumes as compared 
to previous studies using contrast-enhanced MRI or advanced post-processing 
techniques (236,237). The current study thus adds to the previous studies in that 
MRI can be used for accurate volumetric quantification of kidney volumes, also 
when applying a widely available sequence without contrast administration.  

For accurate and precise quantification of kidney volumes using MRI, the gold 
standard volumetric method should be used (206,236,238). The method is similar to 
cardiac volumetry, using planimetry for volume assessment (183) (study IV). 
However, ultrasound is commonly used for the assessment of kidney volumes in 
both in the clinical setting and in research. The acoustic window of ultrasound does 
not enable visualization and quantification of the entire kidney parenchyma. Instead, 
kidney length and width are used to estimate kidney volume using the ellipsoid 
shape as reference. Although group comparisons might be made with this method, 
the accuracy and precision is limited and repeatability is substantially lower as 
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compared to the gold standard MRI method, also when input variables are measured 
with MRI (204,206).  

Intra and interobserver variability were in the current study low for both pig and 
human kidney volume assessment. Previous studies, also using non-contrast 
enhanced MRI, show similar observer variability for total kidney volume and 
cortical volume assessment, while medullary measurements showed slightly higher 
variability using an automated algorithm (204,208,239). The study strengthens the 
findings of these previous studies and further enables the use of MRI for both 
cortical and medullary volume quantification in the clinical setting.  

Manual delineations of cortical and medullary boundaries for the assessment of 
volumes are used in the current study. The use of semi- or fully automated methods 
for parenchymal volume assessment show higher variability but may, if widely 
available, increase the applicability of kidney volume quantification using non-
contrast enhanced MRI clinically, mainly by lessening time for analysis (239,240). 
New methods for automatic analysis are being developed and a study, using a fully 
automated method, based on a convolutional neural network for total kidney volume 
quantification in CKD patients, showed high agreement with manual assessment 
and higher repeatability as compared to manual assessment, although assessing 
images <10s (241). However, for accurate and precise quantification of cortical and 
medullary volumes, manual delineation is at present time the only available option.  

5.1.2 Clinical aspects 
The worldwide prevalence of CKD is 11-13%, with diabetes and hypertension being 
the main contributors (164). Both of these diseases impact kidney volumes as well 
as function, and the prevalence is rising steadily (165,166). Kidney volume change 
has been observed in several diseases and often shows prognostic value, also in the 
absence of kidney dysfunction. Diabetic nephropathy induces initial renal 
hypertrophy and large diabetic kidneys have indeed been shown to be prognostic of 
future renal functional decline (242,243). Total kidney volume is suggested to be a 
valuable biomarker in measuring CKD progression, often showing smaller kidneys 
with declining function, and in renal transplant sequele where hypertrophy of the 
renal parenchyma is associated with increased renal function of the remaining 
kidney  (238,244). In addition, studies also show that prematurity with or without 
birth weight deviation, associate with smaller kidney volumes from infancy 
(201,245) throughout life (108,109,113,114,246). A major limitation is the use of 
ultrasound for volume assessment, showing low accuracy and repeatability 
(204,206) and lacking the ability to quantify cortical and medullary volumes.  

In summary, the current study shows that cortical and medullary volumes can 
be quantified using a widely available non-contrast enhanced MRI method with high 
accuracy and precision. As cortical and medullary volumes associate differently 
with age, kidney function and common risk markers of chronic kidney disease 
(CKD) (198), separate quantification of cortical and medullary volumes might well 
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be warranted. This validation work thus increases availability of separate cortical 
and medullary quantification and can be directly implemented both clinically and in 
research.  

5.2 Study II  
This study showed the required temporal resolution needed for accurate 
measurements of pulse wave velocity (PWV) in neonates and adolescents, 
respectively. The study further showed that a dedicated 3D angiography of the aorta 
should be used for vessel length measurements and that the time-to-foot method 
should be used to calculate the transit time for accurate and reliable measurements 
of PWV.  

This study enabled Study III in which the method was implemented to investigate 
whether very preterm birth due to FGR verified by abnormal fetal blood flow 
velocimetry is associated with alterations arterial stiffness in adolescence.  

5.2.1 Method comparison 
Although PWV measurement’s using MRI agrees with invasive measurements 
(186), lack of standardization hinders widespread clinical implementation 
(229,247). And further, for comparison with reference values, several potential 
differences in methodology need to be considered. In the validation study by 
Grotenhuis et al. (186), flow measurements were acquired with a temporal 
resolution of 6-10ms, and PWV was calculated using the time to foot method 
without baseline correction based on oblique sagittal images covering the entire 
aorta (186).  

The current study showed that 3D angiography, similar to the images used in the 
validation paper by Grotenhuis et al. (186), should be used to calculate pulse wave 
travelling distance. The time to foot method, also used in the validation paper, 
showed the lowest limits of agreement of the compared and commonly used 
methods. The study further showed the temporal resolution needed for accurate 
PWV assessment, depending on vessel length and the pulse wave velocity. Pulse 
wave velocity varies depending on both age and thus biometry of the patient and 
also depending on which segment of the aorta that is being measured, e.g., the aortic 
arch or the entire thoracic aorta. Flow measurements should be acquired with at least 
42 and 41 timeframes per cardiac cycle in the neonatal aortic arch and thoracic aorta, 
respectively, and 39 and 32 timeframes per cardiac cycle for corresponding vessel 
segments in adolescents. This corresponds to typical temporal resolutions of 10 ms, 
11 ms, 21 ms, and 26 ms, respectively. 

For clinical implementation, normal values for PWV are needed, and have been 
published for both children and young adults (247,248). Both studies used one 
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imaging plane for acquisition of blood flow in the ascending and descending aorta, 
respectively, but used different transit time methods for PWV measurements. Voges 
et al. publishing reference values throughout childhood to young adulthood (247), 
used the maximum upslope method while Caterini et al. assessing PWV in 
adolescents (248), used the time to half peak method. In the current study, although 
showing wider limits of agreement, the maximum upslope method showed similar 
pulse wave velocities compared to the time to foot method indicating that these 
measures can be used interchangeably. The PWV values acquired with the time to 
peak method was similar to the values presented for the time to half peak by Caterini 
et al. (248). As this method showed unphysiological values for the neonate 
population and significantly different PWV values as compared to the other 
methods, this method might not be reliable for all age ranges and is not 
interchangeable with the other two tested methods.  

Data not published for the current study suggest that PWV is higher in the 
segment between the ascending and descending aorta as compared to measurements 
in the ascending to abdominal aorta. As the current study and the other two studies 
uses different segments of the aorta, the actual pulse wave velocities are likely not 
completely interchangeable. Further, applying a dedicated flow acquisition for the 
respective vessel is preferable as flow quantification is most accurate when the 
imaging plane is perpendicular to the flow (249,250).  

5.2.2 Clinical aspects 
Pulse wave velocity is a surrogate marker of arterial stiffness and is an independent 
predictor of cardiovascular morbidity and mortality (103,251,252). Arterial stiffness 
is in turn dependent on the atherosclerotic process in the vessel walls, gradually 
developing with increasing age. The atherosclerotic process begins in childhood and 
adolescence but the prevalence and extent increases with age and in the presence of 
well-known risk factors of increased arterial stiffness, such as smoking and diabetes 
(153–155). In addition, preterm birth and low birth weight are associated with 
increased arterial stiffness and increases can be observed already in childhood and 
adolescence (91,253–255). Applanation tonometry can be used to assess PWV (256) 
but lacks the ability to accurately measure vessel length resulting in non-
interchangeable values as compared to MRI (248,257–259). 

In summary, this study shows how commonly used methods influence PWV 
values by MRI in neonates and adolescents. The study proposes that 3D 
angiography and the time to foot method should be used for accurate PWV 
measurements and show the required temporal resolution needed for reliable 
assessment of pulse wave velocity in the respective group. The study thereby 
enables implementation of PWV assessment in the clinical setting.  
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5.3 Study III 
The current study implemented the newly validated pulse wave velocity method 
from Study II to investigate whether very preterm birth due to fetal growth 
restriction (FGR) verified by abnormal fetal blood flow velocimetry is associated 
with alterations in arterial stiffness in adolescence. Adolescents also underwent 24-
hour ambulatory blood pressure measurements (24-hour ABPM) and assessment of 
renal function. 

The current study shows that very preterm birth due to early onset FGR is 
associated with higher blood pressure in adolescent boys and that a similar trend 
was observed in boys born very preterm with appropriate birth weight. The increase 
in blood pressure was not associated with increases in arterial stiffness. Although 
not showing increases in arterial stiffness on a group level, girls born preterm AGA 
showed increased PWV as compared to the term AGA group. These changes were 
not associated with differences in renal function, which was within normal levels in 
all groups.  

5.3.1 Blood pressure 
The clinical evaluation of the 24-hour ABPM showed no differences in either 
prehypertension or hypertension between groups. This is similar to the recent study 
by Rakow et al. (113), showing normal 24-hour ambulatory blood pressures in 
young children born extremely preterm. However, in the study by Rakow et al. 
(113), the prevalence of non-dippers in mean arterial blood pressure were higher 
than in the current study. Differences between the studies might be explained by a 
lower day-to-night ratio in mean arterial blood pressures in infants and young 
children as compared to older subjects (260). As the clinical evaluation of the 24-
hour ABPM is based on age, sex, and height it can be seen as an adjusted comparison 
of blood pressures across groups.  

In boys, a stepwise increase in diastolic and mean arterial blood pressures was 
observed from term AGA to preterm AGA to preterm FGR. No such trend 
statistically or visually was observed in girls. This sex-specificity, showing higher 
blood pressures for boys born preterm was also recently observed in the ’Extremely 
Preterm Infants in Sweden Study’ (EXPRESS) cohort’ although using office blood 
pressure (261). The prevalence of FGR was however not known.  

The current and these two recent studies indicate that preterm birth and fetal 
growth restriction are associated with higher but still normal blood pressure in 
childhood and adolescence (113,261). It is however important to note that both 
preterm birth (5,81) and low birth weight (262,263) independently are associated 
with an increased long term risk for hypertension, although a possible lessened 
effect of preterm birth on blood pressure has been observed in individuals born after 
the 1990’s (81). Even a small increase or decrease in blood pressures might have a 
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substantial impact on long term cardiovascular morbidity (264,265). The association 
between increased blood pressure and preterm birth and low birth weight likely also 
contribute to the increased prevalence of CKD and cardiovascular disease in those 
born preterm (4,82,85). This association was however not observed for the current 
study population in adolescence, showing normal cardiac function (Study IV) and 
normal kidney function (Study V).  

Both standard office blood pressures and 24-hour ABPM are presented in this 
paper but only the 24-hour ABPM were sensitive enough to detect differences 
between groups. Ambulatory measurements have been shown to be more sensitive 
for detecting changes and also show higher predicative value as compared to office 
blood pressure (175–177). If the findings of the current and other recent studies, 
showing only subtle blood pressure increases in those born preterm with and without 
FGR, are generalizable and persistent throughout ages, assessment of future 
cardiovascular risk in these cohorts should be performed using 24-hour ABPM.  

5.3.2 Arterial stiffness  
Pulse wave velocity and aortic distensibility were similar between groups in the 
current study. The results are thus only partly in line with the hypothesis that FGR 
would exacerbate the effects of preterm birth on blood pressure and arterial stiffness, 
as previously observed by Cheung et al. (91). Preterm birth and low birth weight 
have been shown to be associated with increased arterial stiffness in childhood and 
adolescence (87,91,101,255). Increases in arterial stiffness are often accompanied 
with increases also in blood pressure (101,254,266). The current and other recent 
studies indicate a lessened effect on both arterial stiffness (267,268) and blood 
pressure in these recent cohorts, especially for girls (113,261,267).  

Arterial intima media thickness, pulse wave velocity, distensibility of the aortic 
wall and augmentation index are all proxies for arterial stiffness and are predictive 
of future cardiovascular disease (103,252,269–271). The association between these 
measures of arterial stiffness and preterm birth or low birth weight are well 
described (87,255,266,272). Anatomical differences in vessel size and the 
composition of the arterial walls have been suggested to contribute to these changes 
(144,145), where smaller vessels and increased intima media thickness would 
indicate increased afterload and arterial stiffness, respectively. Studies on intima 
media thickness, after preterm birth are incongruent but seem to indicate that 
preterm birth alone show increased intima media thickness (255,272) while FGR 
show a decreased thickness (216,273).  

A recent study by Mohlkert et al. (268), showed no differences in intima media 
thickness or vessel size after normalizing for BSA in children born extremely 
preterm. Similarly, in childhood, the preterm AGA group in the current study 
showed higher aortic stiffness as compared to the preterm FGR group while the 
preterm FGR group showed lower intima media thickness as compared to the term 
AGA group (216). When stratifying for sex in the current study, girls born term 
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AGA in the current study showed higher PWV as compared to term AGA. Similarly, 
Bonamy et al. (255), showed increased arterial stiffness in adolescent girls, with no 
additive effect of low birth weight to that of preterm birth. These studies thus 
suggest differences in vascular development and response to extrauterine life after 
very preterm birth and FGR, respectively. This effect might be influenced by sex.  

In summary, this study shows that very preterm birth due to early onset FGR is 
associated with higher, yet normal blood pressure in adolescent boys and also 
suggests alterations in arterial stiffness after very preterm birth in girls. These 
differences suggest an existing but limited impact of very preterm birth on 
cardiovascular risk in adolescence, possibly enhanced by male sex and FGR.  

5.4 Study IV 
The current study applied magnetic resonance imaging to investigate the effects of 
very preterm birth due to fetal growth restriction on cardiac morphology and 
function in adolescence.  

Left and right ventricular volumes but not total heart volume were smaller in the 
preterm AGA group as compared to the term AGA group. A visual trend in smaller 
volumes was observed also for the preterm FGR group, who showed smaller right 
atrial volumes as compared to the term AGA group. Left ventricular mass (LVM) 
and measures of left and right cardiac function including longitudinal and radial 
pumping, as well as plasma concentration of NT-proBNP, did not differ between 
groups.  

5.4.1 Cardiac volumes  
This study investigated the effects of very preterm birth and FGR on left and right 
ventricular and atrial volumes as well as total heart volume (THV). This 
comprehensive approach is usually not undertaken and studies investigating the 
long term effects of preterm birth and FGR have focused solely on the left or right 
side of the heart (83, 262–264).  

In line with previous studies, the preterm FGR group in the current study was 
shorter as compared to the term AGA group, indicating differing growth patterns 
with possible differences also in final height (202,265). Although a difference in 
height was observed, the preterm FGR group has gone through a partial catch up in 
both height and weight, as was observed already in childhood (214). Relating the 
different cardiac volumes to BSA might thus be important for comparison and also 
indicates whether the heart is proportional to the body. Relating cardiac volumes to 
THV indicates whether the respective volume is proportional in respect to the entire 
heart, which might indicate whether the ratios are physiological or 
pathophysiological (232,278). 
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The current study showed smaller left and right ventricular volumes, in absolute 
and BSA- but not THV adjusted volumes, in the preterm AGA group as compared 
to the term AGA group. A similar non-significant trend was also observed for the 
preterm FGR group. These findings are in line with previous studies showing 
smaller left ventricular volumes relative to BSA after preterm birth and after being 
born SGA (93,274). As ventricular volumes were smaller in the preterm groups, 
THV could be hypothesized to also be smaller, but no statistically significant 
differences in THV were observed, and BSA was a strong predictor of THV in all 
groups. The preterm FGR group showed smaller right atrial volumes as compared 
to the term AGA group, both in absolute values and when adjusted for BSA and 
THV. In a recent study of adolescents born very preterm during the same time period 
as the current population, Harris et al. (279), showed smaller cardiac volumes, 
including ventricular and atrial volumes, lower LVM normalized for BSA and 
preserved cardiac function using echocardiography. In addition, no differences in 
systolic or diastolic blood pressure were observed. Being born with modern neonatal 
intensive care was suggested as a contributing factor to these findings.  

The current study showed no group differences in LVM, either in absolute or in 
BSA adjusted values. Increases in LVM is a common finding after preterm birth and 
low birth weight (92,93,274), showing an inverse relationship with gestational age. 
Increased LVM in earlier studies may have been a result of increased blood pressure 
and arterial stiffness, which is commonly observed in these populations (5,7,266). 
These findings could also be an effect of an intrinsic alteration in cardiac structure 
after preterm birth and FGR as shown in both animal (139) and human (99,141) 
studies. Conversely, recent studies indicates a lessened effect on LVM, even 
showing smaller volumes in those born very- and extremely preterm (275,279). 

However, when stratifying for sex in the current study, boys in the preterm FGR 
group, who also showed higher blood pressures as compared to the other groups 
(Study III), showed increased LVM normalized to THV as compared to the term 
AGA group. This finding might be thus be indicative of increased blood pressure 
and afterload, as previously observed when comparing men and women, with men 
showing higher LVM/THV as compared to women (232). Left ventricular mass 
normalized to BSA were however within normal ranges (280). This finding might 
indicate that normalizing for total heart volume increases sensitivity for cardiac 
alterations as compared to normalizing for BSA. 

Differences observed for left and right ventricular volumes between preterm 
AGA and term AGA group in the current study seems to be driven mostly by girls, 
who generally showed comparatively smaller cardiac volumes. A similar finding 
was observed in Study V where preterm birth, and especially very preterm birth due 
to FGR, were associated with smaller kidney volumes (both absolute and BSA 
adjusted), a difference that was driven by smaller volumes in girls.  
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5.4.2 Cardiac function  
Although showing smaller cardiac volumes, neither very preterm birth nor FGR 
were associated with alterations in cardiac function in the current study. Both 
planimetrically derived functional measures such as stroke volume, cardiac index 
and ejection fraction as well as flow measurements were similar between groups. 
This is contrary to earlier studies of young adults born preterm showing smaller 
ventricles and lower ejection fraction for both left and right ventricles (274,281). 
However, as in the current study, Harris et al (279), showed smaller cardiac volumes 
without alterations in cardiac function in adolescents born very preterm during the 
same period as the current study population (279). Ejection fraction, measures of 
late- and early filling and measures of cardiac longitudinal pumping such tricuspid 
annular plane of systolic excursion (TAPSE) and left and right ventricular global 
longitudinal strain (GLS) were similar as compared to healthy controls (279).  

The effect of very preterm birth and FGR on atrioventricular plane displacement 
and longitudinal and radial contribution to stroke volume have not previously been 
investigated using MRI. However, none of these measures differed between groups 
in the current study. MRI derived AVPD has been shown to be similar in assessing 
longitudinal function to that of TAPSE and mitral annular late diastolic velocity 
(MAPSE) (185). Measures of longitudinal shortening, such as TAPSE, MAPSE and 
GLS, are predictive for future CVD in apparently healthy, albeit older populations 
(282–284). 

The AVPD ratio, the relative longitudinal shortening along the left and right 
ventricular length axis, respectively, showed no difference between groups in the 
current study. This measure is one way to study the relative longitudinal shortening 
of the ventricles and show some resemblance to GLS, measured as the longitudinal 
shortening of the myocardium as a percentage of the total length of the ventricle 
using echocardiography. Longitudinal strain has previously been shown to be 
affected after preterm birth and low birth weight (98,274). I line with the current 
study and the study by Harris et al. (279), Mohlkert et al., (275) also studying the 
EXPRESS (Extremely Preterm Infants in Sweden Study) cohort previously 
described, showed no differences GLS in children born extremely preterm. 
Mohlkert et al. did however show alterations in MAPSE and other makers of systolic 
and diastolic function for the left ventricle in those born extremely preterm. 

Cardiac MRI is sensitive to detect also small differences in cardiac structure and 
function (179,187,188). Although not including all of the potential individuals from 
the original cohort, resulting in a limited number of participants in each group, 
especially when stratifying for sex, the use of cardiac MRI decreases sample size 
compared to 2D echo between 55-95% in left and right ventricular variables (187–
189). It might thus be that the current study population, with only subtle and sex-
dependent differences in blood pressure and arterial stiffness (Study III) and normal 
renal function without signs of RAAS activation (Study V) are healthier than 
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previous cohorts investigated, as was indicated in the study by Harris et al. (279) 
and partly by the recent EXPRESS studies (261,268,275).  

In summary, this study shows that very preterm birth is associated with smaller 
ventricular volumes without alterations in longitudinal or radial pumping in 
adolescence. Sex-specific results suggested that changes in cardiac volumes were 
driven by girls born very preterm. Early onset FGR did not exacerbate the effects of 
very preterm birth suggesting that preterm birth rather than FGR is associated with 
smaller cardiac volumes.  

5.5  Study V 
This study implemented the newly validated MRI method from Study I to investigate 
the effects of very preterm birth due to FGR on kidney structure in adolescence. 
Renal parenchymal T1 and T2* values as well as biochemical markers of kidney 
function were also assessed.  

This study showed that FGR followed by very preterm birth is associated with 
smaller total kidney volumes and medullary volumes in adolescence. T1 and T2* 
did not differ between group and biochemical markers of kidney function and RAAS 
activation were within normal levels. 

5.5.1 Kidney volume 
As the method used for renal parenchymal quantification was just recently validated 
(Study I), this is the first study to quantify the effects of very preterm birth and early 
onset FGR on medullary and cortical volumes using non-contrast enhanced MRI. 
The current study confirms the previous ultrasound studies in that very preterm 
birth, especially when due to early onset fetal growth restriction, is associated with 
smaller kidney volumes in adolescence. Both cortical and medullary volumes were 
smaller in the preterm FGR group as compared to the term AGA group, but only 
medullar were significantly smaller. Differences were more pronounced in girls, 
showing smaller absolute and BSA adjusted cortical and medullary volumes as 
compared to the term AGA group. A similar finding was observed in study IV where 
group differences in left, and right ventricular size was driven by smaller volumes 
in girls born very preterm AGA. Studies have previously indicated smaller kidney 
volumes in females born preterm (113,246). Lillås et al. (246) showed that middle 
age women with smaller kidneys also showed lower kidney function (285). Whether 
smaller kidney volumes per se is a direct sign of pathology and thus a risk factor for 
future kidney disease is however not known and renal function was within normal 
levels in the current study.  

Several pathologies impact kidney volume (198,242,286) and although preterm 
birth and FGR are associated with a low nephron count at birth (108,109) and 
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smaller kidney volumes throughout life (113,117,246,287,288), the relationship 
between total kidney volume and nephron count can´t be inferred with certainty. 
The gold standard for quantification of the number of nephrons is however invasive 
(289), and is thus not widely used or applicable.  

5.5.2 Biomarkers of kidney structure and function 
The current study further investigated the effects of preterm birth and FGR on 
kidney structure and function using T1 and T2* mapping and biochemical markers 
of kidney function and RAAS activation. As in study III and study IV the current 
study indicates subtle and sex-specific differences between groups, with increased 
cortical T1 in the preterm AGA group as compared to the term AGA group for girls. 
No other group differences were observed.  

Congenital oligonephropathy, as observed in the preterm infant, has been 
proposed as a pathway towards adult hypertension through a process of increased 
glomerular pressure and subsequent glomerular hyperfiltration, hypertrophy and 
glomerulosclerosis (107,290,291). Cortical hypertrophy has indeed been suggested 
after preterm birth using ultrasound (115) and was indicated by the current study, 
where the ratio between cortical and medullary volumes increased from term AGA 
to preterm AGA to preterm FGR. Glomerulosclerosis, or renal fibrosis, could 
potentially be quantified using T1 mapping (211,292) and as increases in cortical 
T1 and loss of corticomedullary differentiation has been observed in patients with 
CKD and hypertension (210,223), T1 mapping could potentially also be used also 
for risk assessment in cohorts born preterm or with low birth weight (4,5). As the 
current study showed no differences in renal function or RAAS activation and the 
previous studies in adolescence showed normal cardiac function (study IV) and only 
subtle sex-specific changes in blood pressure (boys) and arterial stiffness (girls) 
(Study III) the subtle differences in renal T1 or T2* might be expected. 

In summary, this study shows that FGR with abnormal fetal blood flow followed 
by very preterm birth is associated with smaller total kidney and medullary kidney 
volumes, but not with markers of kidney dysfunction or RAAS activation in 
adolescence. The study further indicates that these changes are more pronounced in 
girls.  
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6 Conclusions 

This thesis is one of the first presenting cardiovascular and renal outcomes in a 
population of adolescents who were actively delivered very preterm due to early 
onset fetal growth restriction into a modern neonatal intensive care. This thesis 
concludes that adolescents born very preterm with and without preceding fetal 
growth restriction show alterations in cardiovascular and renal morphology. 
Changes were more pronounced in girls. Cardiovascular and kidney function were 
however normal, possibly indicating a lessened long-term effect of very preterm 
birth and fetal growth restriction on these organ systems compared to earlier studies, 
where clear signs of increased risk were observed already in childhood and 
adolescence. As indicated by increases in blood pressure, male sex and fetal growth 
restriction might increase cardiovascular risk in those born preterm. Morphological 
changes in both the heart and in the kidneys may still precede functional decline in 
this population, and the alterations observed could potentially be used as prognostic 
markers in the future.  

This thesis concludes that: 

I. The proposed non-contrast enhanced MRI method can be used for accurate
and precise measures of cortical and medullary volumes.

II. The validity of pulse wave velocity measurements is significantly
influenced by the acquired temporal resolution, the image used for
measurements and the method used for calculating the transit time.

III. Very preterm birth due to early onset FGR is associated with higher, yet
normal blood pressure in adolescent boys and increased arterial stiffness
after very preterm birth in girls is suggested.

IV. Very preterm birth is associated with smaller ventricular volumes without
alterations in longitudinal or radial pumping in adolescence. Early onset
FGR did not exacerbate the effects of very preterm birth, suggesting that
preterm birth rather than FGR is associated with smaller cardiac volumes.

V. Very preterm birth due to early onset FGR is associated with smaller total
kidney and medullary kidney volumes, but not with markers of kidney
dysfunction or RAAS activation in adolescence.
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7 Future aspects 

At the time of publication of this thesis, individuals with early onset fetal growth 
restriction born into an era of modern obstetric and neonatal care, have reached 
young adulthood. Follow-up studies on these cohorts to support or contrast the 
findings are needed. Whether these more recent cohorts are at a lower risk for future 
cardiovascular and kidney disease, as suggested in the current thesis remains to be 
confirmed.  

Several landmark improvements in both obstetric and neonatal management have 
been implemented during the last decades and have in concert drastically reduced 
morbidity and mortality in high-risk pregnancies (13,14,76). Early improvements 
include introduction of maternal and fetal surveillance programs and the wide use 
of ultrasound for fetal biometry and the use of Doppler velocimetry and CTG for 
identification and prediction of fetal demise (12). The criteria for both diagnosis and 
management of fetal growth restriction are however still up for debate and differ 
depending on site and country. However, with active management, perinatal 
morbidity and mortality is similar in infants born very preterm due to early onset 
FGR as compared to being born very preterm due to other causes (76,293).  

Antenatal corticosteroid administration and post-natal surfactant administration 
became widely available during the mid-1990s and has markedly lessened perinatal 
mortality and morbidity (9,10). Delayed umbilical cord clamping, better and age-
adjusted nutrition, development of ventilators to better suit the very preterm infant 
and implementation of kangaroo care are other factors that impact at least short-
term morbidity and mortality (32,294–296).   

The long-term effects and cardiovascular and renal outcomes following these 
improvements are yet to be fully elucidated, especially as several improvements 
have been implemented quite recently. It may however be hypothesized that long 
term outcomes in cohorts born during in the era of modern medicine will differ in 
many aspects as compared to earlier cohorts.  

As in all research, more and larger studies are needed but it is also important to 
use sound and robust methods and methodologies. To increase transparency and to 
enable comparison between studies, future work should include more detailed 
perinatal characteristics, including the obstetric and neonatal management, and 
whether guidelines for the definition of fetal growth restriction or SGA are being 
followed. 

This thesis validated and implemented assessment of renal cortical and medullary 
volumes using non-contrast enhanced MRI. Future studies should implement this 
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technique to increase the understanding of the separate processes in the renal cortex 
and medulla in various diseases. Not only for the long-term outcomes after preterm 
birth and FGR but also for other pathologies with known kidney changes, such as 
diabetic nephropathy and the sequele of nephrectomy. In the current study, 
apparently healthy adolescents with normal kidney function were imaged, and 
therefore the reliability in patients with manifest renal pathologies need further 
investigation.  

Preterm birth and early onset fetal growth restriction increase the risk of 
neurodevelopmental disorders and cognitive delay (45,214,293), but this was not 
within the scope of this thesis. Neurodevelopmental disorders (297,298) as well as 
preterm birth and low birth weight (28,299) are in turn associated with an increased 
risk for obesity and the metabolic syndrome. The association between cognitive 
function and future cardiovascular and renal disease burden in these cohorts remains 
to be studied.  
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