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Popular summary (in swedish)

Kvantmekaniken säger att energi och vågvibrationer är intimt relaterade. Det finns två typer
av energi: strålningsenergi (till exempel ljus) och bunden energi (materia). Den första typen
beskrivs av kraftbärande partiklar med heltalsspinn (bosoner) och den andra av partiklar
med halvtalsspinn (fermioner). Spinnet refererar till partiklarnas inre snurr. Två identiska
fermioner med samma spinnriktning kan inte befinna sig på samma plats (Pauliprincipen),
vilket ligger till grund för materians stabilitet mot självkollaps. Det finns många typer av
bosoner och fermioner, men tack vare att vågfenomenen de beskriver har vitt skiljda stor-
leksordningar och tidsskalor går det ofta att studera ett begränsat urval i taget.

Elektrodynamik begränsas till en typ av fundamentala bosoner vid namnet fotoner, och
till elektriskt laddade fermioner, vilka innefattar negativt laddade elektroner (fundamentala
fermioner) samt positivt laddade protoner (komposita fermioner) inuti atomkärnor. Atom-
kärnors massor, vilka är mycket större än elektronernas, påverkas även av laddningsneutra-
la neutroner, vilka indirekt påverkar elektrodynamiken när atomkärnornas vibrationer är
oförsumbara. En beskrivning baserad på elektroner och atomkärnor räcker för att förstå de
fyra makroskopiska tillstånden av materia: fast, flytande, gas och plasma. Fasta tillståndets
fysik fokuserar på den förstnämnda kategorin och kännetecknas av tätt packade kristaller av
joner¹ i vilka mer eller mindre bundna elektroner befinner sig, så att materialet i sin helhet
är laddningsneutralt. Trots att ett material är i sitt fasta tillstånd behöver inte elektronerna i
sig vara det. I isolatorer betér sig elektronerna, likt jonkristallen, som ett eget fast tillstånd,
medan de i metaller betér sig som en gas. Däremellan finns de flesta komplicerade material,
där elektronerna betér sig som en vätska. För att förstå makroskopiska egenskaper och fe-
nomenen i material krävs en mikroskopisk kvantmekanisk beskrivning. Anledningen är att
elektronernas och kristallvibrationernas tillåtna energinivåer förekommer i band åtskilda
med gap, vilket följer från den ovannämnda relationen mellan energi och vågvibrationer,
vilka är begränsade till en diskret uppsättning fundamentala vibrationsmoder.

Varje elektron i ett material har en laddning, ett spinn samt en hastighet relativt materialet
som helhet,² och dessa bidrar alla till att generera elektriska och magnetiska fält, i enlighet
medMaxwells fältekvationer. De genererade fälten från en elektron resulterar i en kraft age-
rande på de andra elektronerna, och vice versa. Detta betyder att alla elektroner i materialet
växelverkar, vilket leder till ett olösbart stort matematiskt problem. Exempelvis finns det
circa femtio miljoner miljarder miljarder kolatomer i ett kilogram kol, och fyra gånger fler
valenselektroner (aktiva elektroner). För att kringgå problemet krävs kunskap om materi-
alets kollektiva och emergenta makroskopiska egenskaper och fenomen, vilka förvisso är
konsekvenser av den komplicerade växelverkan men som kan vägleda en approximativ be-
skrivning. Mer specifikt gäller det att, baserat på empiri, göra antaganden kring vilka typer

¹Jonerna består av atomkärnor tillsammans med de hårdast bundna elektronerna.
²Elektronen kan liknas vid en laddad liten stavmagnet.
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av kollektiva excitationer som är viktiga för olika material, och därmed försumma de mind-
re viktiga. I denna avhandling studeras två viktiga kollektiva excitationer for elektronerna
i en kristall, nämligen laddnings- och spinnfluktuationer, med hjälp av Hedins ekvationer
för elektronernas så kallade Greensfunktion. Greensfunktionen ger den materialberoen-
de sannolikheten för en adderad elektrons samt borttagen elektrons (adderat håls) möjliga
rörelser, och kan användas för att beräkna de kollektiva excitationerna i materialet. Den
adderade partikeln är på grund av sin laddning, sitt spinn samt sin hastighet tvingad att
dra med sig ett moln (aggregat) av laddning, spinn och hastighet från materialets elektro-
ner. Molnet leder till en skärmad effektiv växelverkan med elektronerna i materialet, och
partikeln tillsammans med sitt moln kallas för en kvasipartikel.

I Artikel I studeras rums- och tidsberoendet av laddningsfluktuationers skärmningseffekt i
kupraterna La2CuO4 och HgBa2CuO4³ samt i den korrelerade metallen SrVO3. Den fullt
skärmade växelverkan jämförs med en delvis skärmad som agerar som effektiv växelverkan
vid låg energi. Stabila områden med negativ effektiv växelverkan finnes i kupraterna, vilket
är kännetecknande för bundna tillstånd och således kan ha en koppling till supraledning.
Dock krävs framtida studier som går bortom de antagna approximationerna och som inklu-
derar spinnfluktuationer. I Artikel II studeras elektronrörelsens bidrag till magnetism med
hjälp av Greensfunktionen för interagerande elektroner i en spinn-opolariserade tvådimen-
sionell modell. För en svag lokal repulsion mellan elektronerna visar sig laddningsfluktua-
tioner inom den kända GW approximationen leda till en ökning av magnetiseringen, givet
att energipotentialskillnaden mellan modellmaterialets två distinkta atomer dominerar över
den kinetiska energin härstammande från elektronhopp mellan grannatomer. I Artikel III
härleds enmikroskopisk formel för ett bidrag till kopplingenmellan spinnfluktuationer och
kristallvibrationer som hittills varit dåligt förstått. Detta bidrag härstammar från den ovan
nämnda Pauliprincipen. I Artikel IV används en ny Greensfunktionsmetod på en endimen-
sionell kedja av atomer, med en elektron per atom (halvfyllda Hubbardkedjan). Genom att
utnyttja den exakta lösningen för ett tvåatomsystem erhålls analytiska energispektra för den
oändliga kedjan som överensstämmer väl med de baserade på mer sofistikerade metoder.
Bandgapets växelverkansberoende visar sig dessutom vara väldigt likt det exakta resultatet.
I Artikel V generaliseras den så kallade Fierzambiguiteten, vilken har att göra med Pauli-
principen, till växelverkan med lång räckvidd. Ett spelfall i formalismen är en Greensfunk-
tionsmetod som behandlar fysiken vid kort och lång räckvidd olika. Detta specialfall, som
i sin enklaste form beror på en parameter α, är studerat för ett tvåatomsystem. Det visar
sig fördelaktigt att låta α avvika från sitt trivialvärde inom GW approximationen.

³När La2CuO4 och HgBa2CuO4 dopas med elektroner blir de supraledande upp till relativt höga tempe-
raturer. Dessa temperaturer betraktas dock inte som höga av livsformer.
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1

Introduction

The plurality and complexity of natural phenomena makes it quite remarkable that theories
about nature have been established which stand the test of time. Yet, the reason for this is
rather simple. Science does not ask unanswerable questions about the ultimate origin of
things or why the world looks the way it does. Physics, for example, was developed from the
marriage between observation and the use of mathematical language to express dynamical
equations, and can easily explain how a ball moves when thrown, without having to relate
it to events that took place before. The throwing of the ball is the cause, and the trajectory
is the effect. Physics can thus get away with quite few equations since specifics of a certain
system is not described by the dynamical equations, but by initial and boundary conditions
determined from observations.

1.1 The many-electron problem

Condensed matter physics is the study of the macroscopic properties of systems with many
strongly interacting particles, i.e. essentially solids and liquids. It does not explain how
the particles came together in the first place. Rather, it describes the physical processes
allowed by the geometric conditions set by the particular system. Solid state physics, which
is a subdivision of condensed matter physics, is primarily concerned with the electronic
properties in crystals described by a periodic lattice of atomic nuclei, which are assumed
fixed (unless lattice vibrations are important) due to their large mass and point-like due
to their small size. The electrons repel each other since they are all negatively charged but
are attracted by the nuclei, which are positively charged. The smallest repeating unit is
called the unit cell, and the geometric condition in solids is specified by the coordinates
and species of the atomic nuclei in the unit cell.
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The dynamical equations which govern the motion of the electrons are known and the
geometric conditions can easily be imposed. The difficulty of solid state physics is thus
computational rather than theoretical, and stems from the exponential growth of possible
many-body configurations as a function of the particle number N . A simple example is
the case when each particle only has two possible states, say ↑ and ↓. This results in 2N

many-body configurations, and since the calculations are based on quantum mechanics,
they require the summing over all paths.¹ Plugging in N = 1024 (approximately a mole)
particles yields 21024 many-body configurations. An insane number. In fact, the number
of configurations of this simple example reaches the number of atoms in the observable
universe for only N = 260, which shows that the many-body problem quickly becomes
too large to solve exactly, even on a supercomputer. The major task of modern solid-state
physics thus boils down to finding approximations to the many-body problem.

Many-body approximations are often guided by knowledge of the collective behavior of a
system, i.e. the emergent macroscopic properties caused by the interactions. A plasma, for
example, which is a minimal model for simple metals, is a dense gas of interacting charges,
both positive and negative. Due to interactions, however, it is not accurately viewed as
being comprised of individual particles, but as a whole, with the characteristic tendency of
striving for local charge neutrality. When adding an external electric field, the free charges
immediately strive to screen it. Collective behavior like this is described quantitatively by
specifying and calculating the collective excitations of the system. In this thesis, the most
important collective excitations are electronic charge and spin fluctuations (plasmons and
magnons) and nuclear charge fluctuations (phonons). Due to the charge screening, spin
screening² and spin twisting effects of these fluctuations, the particles are forced to carry
around a cloud (or aggregate) of charge and spin stemming from collective rearrangements
of the other particles. Such a particle together with its cloud is called a quasiparticle. Un-
fortunately, the collective one-particle excitations, which are described by the linear spin-
density response, are typically not sufficient to describe the electronic structure accurately
in strongly correlated systems, unless it is renormalized by many-particle excitations, i.e.
the non-linear spin-density response.

Due to the fundamental role of charge and spin fluctuations in solid state physics, the
common thread of this thesis is to investigate them through the use of Hedin’s Green’s
function formalism [2] (or tailored reformulations of it), based on Schwinger’s functional
derivative technique. These fluctuations will be studied either through their spectra, their
role in screening or other phenomena (such as orbital magnetization), or through their
interplay, at different levels of approximation.

¹A quantum mechanical particle is essentially described by its average motion, together with fluctuations
around it. This is a consequence of the necessity, for whatever reason, to describe particles probabilistically.

²The notion of spin screening is a bit misleading in ferromagnets, which favour alignment of spins, as
arguably would be better termed as antiscreening. Also, the absence of magnetic charges (monopoles) also
makes the notion of magnetic field screening fundamentally distinct from electric field screening.
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1.2 Thesis outline

This thesis consists of three parts. Part I gives the necessary introduction and background
theory to be able to describe charge and spin fluctuations and Part II introduces the papers
and summarizes their key results. These papers are appended in their published form in
Part III together with a description of the author’s individual contributions. The latter is
also included in the ‘List of publications and author’s contributions’ in the thesis preamble,
together with an overview of the papers.

In Paper I, electronic charge fluctuation effects are studied within the random-phase ap-
proximation through the spatiotemporal behavior of Hedin’s screened interactionW (and
the partially screened analog U ) in two cuprates (La2CuO4 and HgBa2CuO4) and in
SrVO3, from initial local density calculations. The 1- and 3-band models for the cuprates
produce, respectively, stable and short-lived regions with a negative effective interaction
U . In Paper II, the effect of electronic charge fluctuations on the orbital magnetization
is studied in the spin-1/2 Haldane-Hubbard model by computing it using the one-shot
GW Green’s function. The major finding is that, for a small local repulsion U , interb-
and charge fluctuations boost the orbital magnetization if the inversion symmetry break-
ing staggered potential ∆AB is larger than the nearest-neighbor hopping t1. In Paper
III, which comprises the major work of this thesis, a microscopic Green’s function for-
mula for the exchange-mediated contribution to the magnon-phonon interaction is de-
rived from the underlying electronic structure. Despite the absence of spin-orbit induced
magnon-phonon interconversion, the room-temperature renormalized magnon spectra ac-
quire splittings due to phonon absorption in a minimal three-dimensional model. In Paper
IV, a new formalism for the Green’s function [1], which relies on neither self-energy nor
Dyson’s equation and is based on a time delay-extended exchange-correlation potential
Vxc, is applied to the half-filled 1-band Hubbard chain. Vxc is approximated by that of the
Hubbard dimer, which is accessible analytically. The one-shot analytic spectra agree well
with the density-matrix renormalization group method, and the U -dependent band gap is
very close to the exact solution.

7





2

Electromagnetic field in a medium

In order to find the classical interaction between two particles it is necessary to know how
the charge, spin and motion of a particle generate electric and magnetic fields, through
Maxwell’s equations. This is the theme of this chapter. In vacuum, these fields propagate
with the speed of light c, and are quickly “felt” by surrounding particles. More precisely,
the fields caused by the charge, spin and motion of one particle translate into a (Lorentz-
Stern-Gerlach) force¹ acting on other particles, owing to the charge, spin and motion of the
latter. One particle thus affects another particle at a distance, and vice versa, i.e. they behave
collectively and are said to interact. This is discussed in more detail in Chap. 3. Central
to this thesis is the fact that only a fraction of the electronic spin-orbitals are typically of
interest. The remaining ones are then treated as a background medium, through which the
field propagation, and thereby the effective force and interaction, is altered.

2.1 Maxwell’s equations

∇ ·E(r, t) = 4πρ(r, t), (2.1)

∇×E(r, t) = −1

c

∂B(r, t)

∂t
, (2.2)

∇ ·B(r, t) = 0, (2.3)

∇×B(r, t) =
4π

c
J(r, t) +

1

c

∂E(r, t)

∂t
, (2.4)

constitute Maxwell’s equations in Gaussian units.² E and B are the electric and magnetic
fields and ρ and J the charge and current densities, all functions of space r and time t. ρ

¹The fields also translate into a torque acting on magnetic moments.
²In SI units, Maxwell’s vacuum is specified by the speed of light c = 1/

√
ϵ0µ0 and wave impedance

Z =
√
µ0/ϵ0, where the latter is hidden by the Gaussian units in Eqs. (2.1)-(2.4). The recently updated SI

units allow for Z to vary in the vicinity of particles. However, Eqs. (2.1)-(2.4) assume that it does not.
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and J are often treated as known sources to E and B, but in practice they are unknown
and Maxwell’s equations have to be combined with dynamical equations for the sources.

2.2 Polarization and magnetization

By decomposing the sources into free and bound components,³ i.e. ρ = ρb + ρf and
J = Jb + Jf , it is often advantageous to interpret the bound components as stemming
from a medium with polarization P and magnetization M, so that

ρb(r, t) = −∇ ·P(r, t), (2.5) Jb(r, t) = c∇×M(r, t) +
∂P(r, t)

∂t
. (2.6)

These yield Maxwell’s macroscopic equations for the free sources when plugged into Eqs.
(2.1)-(2.4). ρb is identified as the polarization charge density whereas Jb is the sum of a
magnetization current density and a polarization current density. While the external fields
Eext = E + 4πP and Bext = B − 4πM are the bare fields due to the free sources,
E and B are the total (screened) fields [3]. The terminology of screening, which usually
refers to the reduction of |E| compared to |Eext| in a materials, is in this thesis used rather
broadly to also include field twisting and antiscreening effects due toM and P. The latter
is important in ferromagnets, where |B| = 4π|M| is finite despite an absent |Bext|.⁴

2.3 Susceptibilities

The (non-linear) susceptibility tensors↔χe,↔χem,↔χme and↔χm are defined as memory func-
tions by the constitutive relations[

P(x)
M(x)

]
=

∫
dx′

[ ↔χe(x, x
′;E,B) ↔χem(x, x

′;E,B)
↔χme(x, x

′;E,B) ↔χm(x, x
′;E,B)

][
E(x′)
B(x′)

]
, (2.7)

where x = (r, t). The susceptibility tensors are causal and thus vanish unless x′ is in
the past light cone of x. If the particles in the medium move slowly, the non-relativistic
causality condition t′ < t suffices. The (tensorial) expansion coefficients in E and B of
the susceptibility tensors are intrinsic to the medium. In linear media, the susceptibility
tensors of Eq. (2.7) are independent of the fields, and thus given by the functional deriv-
atives ↔χe(x, x

′) = δP(x)/δE(x′), ↔χm(x, x
′) = δM(x)/δB(x′), and similarly for the

off-diagonal components. Hysteresis [4] and spontaneous polarization [5] and magnetiza-
tion [6, 7] are thus absent in linear media. The linear approximation fails in ferromagnets,

³All electrons in a solid, and the nuclei if necessary, should in principle be treated as bound, whereas the
free sources are the ones responsible for external fields.

⁴More precisely,M actually depends onBext in the past.
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but works in plasmas as well as in para- and diamagnets.⁵ In multiferroics, which can have
a strong magnetoelectric coupling, ↔χem and ↔χme are important. In isotropic materials,
↔χe = χeI, and likewise for the other componens, where I is the 3-by-3 identity matrix.
The spatio-temporal dependencies of the linear susceptibilities are related to dispersion,
i.e. how the angular frequency ω of a (low-intensity) collective mode of excitation de-
pends on its wave vector q. The dispersion thus dictates the transmission and absorption
properties of the medium. For long-wavelength excitations, the discrete translational sym-
metry of the periodic lattice can be replaced by a continuous symmetry. Consequently,
the spatio-temporal dependencies of the susceptibility tensors become independent of the
centre-of-mass 1

2(x+ x′) ⁶ and thus simple functions of x− x′. By Fourier transforming⁷
to wave vector q and angular frequency ω, the constitutive relation of Eq. (2.7) becomes
multiplicative, i.e.[

P(q, ω)
M(q, ω)

]
=

[ ↔χe(q, ω)
↔χem(q, ω)

↔χme(q, ω)
↔χm(q, ω)

][
E(q, ω)
B(q, ω)

]
. (2.8)

One could say that material science revolves around determining the susceptibility tensors.
In electric and magnetic insulators, for example, the bound sources are confined to their
respective unit cells, which makes the susceptibility tensors independent of q.

2.4 Screening: A spatial view

The electric andmagnetic fields are related to the electric scalar potentialϕ and themagnetic
vector potential A, through the relations

E(r, t) = −∇ϕ(r, t)− 1

c

∂A(r, t)

∂t
, (2.9) B(r, t) = ∇×A(r, t), (2.10)

A physical system described by the pair (ϕ,A) can also be described by (ϕ′,A′), where
ϕ′ = ϕ − 1

c
∂λ
∂t and A′ = A + ∇λ for an arbitrary scalar field λ(r, t). This is called

gauge freedom. When describing static field screening, the Coulomb gauge is convenient,
where ∇ · A = 0. The static limit of the Maxwell theory is obtained by removing all
time-derivatives. Dropping the time-variables, Eqs. (2.1)-(2.4) reduce to

−∇2ϕ(r) = 4πρ(r) = 4π ρf(r)− 4π∇ ·P(r), (2.11)

−∇2A(r) =
4π

c
J(r) =

4π

c
Jf(r) + 4π∇×M(r), (2.12)

⁵Paramagnets (diamagnets) have an average positive (negative) χm, but no spontaneous magnetic order.
⁶This also requires the absence of external fields.
⁷Fourier transform: f(q, ω) =

∫
drdte−i(q·r−ωt)f(r, t). Inverse: f(r, t) =

∫
dqdω
(2π)4

ei(q·r−ωt)f(q, ω).
The Fourier transform maps the operators ∇ and ∂/∂t to iq and −iω, respectively.
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where Eqs. (2.5)-(2.6) have been utilized. If the polarization and magnetization are neg-
lected, the external fields generated by the free source(s) in vacuum are obtained. If the free
source is a single impurity at the origin with charge q and spin magnetic moment µS, it
follows that ρf(r) = qδ(r) and Jf(r) = c∇× [µSδ(r)], where δ denotes the Dirac delta
function. It is then easy to solve for the external potentials and fields, with the result

ϕext(r) =
q

r
, (2.13)

Aext(r) =
µS × r

r3
, (2.14)

Eext(r) = q
r̂

r2
, (2.15)

Bext(r) =
8π

3
µSδ(r) +

3r̂(r̂ · µS)− µS

r3
, (2.16)

where r̂ = r/r. When the polarizable and magnetizable medium is taken into account,
the potentials and fields get modified. The simplest is to consider a non-magnetic system.
In this case, the effect of P(r) in Eq. (2.11) is to screen the external electric potential and
field. A minimal description of insulators (Eq. (2.17)) and conductors (i.e. metals and
thermally excited semiconductors; Eq. (2.18)) is to take

ρb(r) = −4πχeρ(r), (2.17) ρb(r) = − ϕ(r)

4πr20
, (2.18)

where χe > 0 and r0 > 0. Eq. (2.17) for simple insulators is obtained by taking the
divergence of the minimal constitutive relation P(r) = χeE(r), whereas the argument
behind Eq. (2.18) for simple conductors in the long-wavelength limit is described in the
footnote.⁸ The scalar potentials from the impurity at the origin then take the form

ϕ(r) =
q

(1 + 4πχe)r
, (2.20) ϕ(r) =

qe−r/r0

r
, (2.21)

where Eq. (2.20) and Eq. (2.21) describe insulators and conductors, respectively. While
the screening in insulators results in a simple rescaling of the external potential, the screen-
ing in conductors is characterized by a finite screening length r0. It can be shown that

⁸The bound charge density is thought of as the induced charge density due to ϕ, i.e.

ρb(r) = −e
∫
dED(E)

(
nF(E − µ0 − eϕ(r))− nF(E − µ0)

)
, (2.19)

where−e is the electron charge, nF(x) = 1/(exβ+1) the Fermi occupation, β =1/kBT the inverse thermal
energy and µ0 the chemical potential in the absence of ϕ. The density of states D(E) is defined so that
D(E)dE is the number of states per unit volume with energy between E and E+ dE.

In metals, the change in occupation (which appears in Eq. (2.19)) can be expanded in ϕ to linear order,
and since thermal effects are typically negligible T can be put to zero. Since µ0 equals the Fermi energy EF

in metals, it follows from the Fermi statistics that ρb = −e2D(EF)ϕ, which leads to the Thomas-Fermi
screening length r0 = 1/(4πe2D(EF))

1/2. Since metals are characterized by D(EF) ̸= 0 they acquire a
finite screening length. In a free-electron gas with density n,D(EF) ∝ n1/3 and consequently r0 ∝ 1/n1/6.

In non-degenerate semiconductors, the conduction electrons can be described by classical Boltzmann occu-
pations. To linear order in ϕ, it follows that ρb = −e2nβϕ, where n =

∫
dED(E)e−(E−µ0)β . This yields

the Debye screening length r0 = (kBT/4πe
2n)1/2.
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aggregates larger than r0 display organized behavior. The potential in Eq. (2.21) is known
as the Yukawa potential, and can be thought of as being mediated by massive photons,⁹
where the mass is acquired from the medium. This is understood by the continuous ab-
sorption and re-emission of light throughout the medium, which effectively slows it down
below its vacuum speed c. In real metals, the decaying Yukawa potential of Eq. (2.21) is
modulated by radial Friedel oscillations [8] with a length scale determined by the Fermi
surface.¹⁰ The reason for this is that the static impurity implies that electronic scattering is
elastic. Since electrons cannot occupy the same state, only electrons on the Fermi surface
can scatter elastically. The argument is similar for semiconductors at finite temperature.

2.5 Screening: A temporal view

Apart from the spatial characteristics of field screening, which was discussed quite generally
in Sec. 2.4 for non-magnetic systems, there are also temporal characteristics. The discussion
of the latter will be restricted to non-magnetic insulators, for which the Lorentz model is
suitable,¹¹ but the extension necessary for conductors is mentioned as a comment. The
Lorentz model assumes a driven electric fieldE(t)which is homogeneous but time-varying,
and thus the opposite of the electric field caused by the impurity in Sec. 2.4. Owing to
the homogeneity, the polarization can in a minimal description be takes as the total electric
dipole moment divided by the volume V of the system, i.e. P(t) = −ner(t), where
n = N/V is the valence electron density and r(t) the displacement, which is assumed
the same for all valence electrons. Newton’s force law for an arbitrary valence electron
then implies that m ∂2

∂t2
r(t) = F(t), where F(t) is the Force acting on it. By including a

spring force−kr(t) (k: material-specific spring constant), a friction force−mΓ ∂
∂tr(t) (Γ:

material-specific friction coefficient) and the electric force −eE(t) (the first term in Eq.
(3.4) of Sec. 3.1), Newton’s force law implies the Lorentz polarization dynamics

∂2

∂t2
P(t) + Γ ∂

∂tP(t) + ω2
0P(t) =

ω2
P

4π
E(t), (2.22)

where ω0 =
√
k/m is the stiffness and ωP =

√
4πne2/m the plasma frequency. Fourier

transforming to frequency domain yields

P(ω) = χe(ω)E(ω), (2.23) χe(ω) =
1

4π

−ω2
P

ω2 + iΓω − ω2
0

. (2.24)

Since the external field is defined as Eext = E+ 4πP, it takes the form

⁹Photons are the (bosonic) particles of electromagnetic radiation.
¹⁰The Fermi surface is the set of wave vectors for which the energy dispersion crosses the Fermi energy EF .
¹¹The Lorentz model is not applicable to conductors, since assuming electron conservation in each unit cell.
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Eext(ω) = ϵr(ω)E(ω), (2.25) ϵr(ω) = 1 +
−ω2

P

ω2 + iΓω − ω2
0

, (2.26)

where ϵr = 1+4πχe is the relative permittivity.¹² By writing Eext(ω) = Eext(ω)ex and
E(ω) =E(ω)ex, it follows that the field strength is reduced in the material by the factor

ϵ−1
r (ω) =

E(ω)

Eext(ω)
= 1 +

ω2
P

ω2 + iΓω − ω2
0 − ω2

P

, (2.32)

which in the static limit ω → 0 becomes ω2
0/(ω

2
0 + ω2

P). This means that when there
are no valence electrons, i.e. when ωP = 0, the static field is not screened. On the other
hand, if the spring constant is small, i.e. if ω0 � ωP, the field is screened very efficiently.
In general, Eq. (2.32) has to be extended to account for occupation factors, quantum
mechanical transition rates and disparities in the effective oscillator parameters for different
valence states. Despite the breakdown of the oscillator model for conduction electrons in
metals, ϵ−1

r for a given crystal momentum k still has the form of Eq. (2.32).¹³

¹²The relative permittivity is formally introduced through the relation

Eext(x) =

∫
dx′↔ϵ r(x, x

′;E)E(x′), (2.27)

in the absence of magnetoelectric coupling. Eq. (2.7) and the definition Eext = E+ 4πP then implies that

↔ϵ r(x, x
′;E) = δ(x− x′)I+ 4π↔χe(x, x

′;E) (2.28)

Similarly, the inverse relative permeability is formally introduced through the relation

Bext(x) =

∫
dx′↔µ

−1
r (x, x′;B)B(x′), (2.29)

in the absence of magnetoelectric coupling. Eq. (2.7) and the definitionBext = B−4πM then implies that

↔µ
−1
r (x, x′;B) = δ(x− x′)I− 4π↔χm(x, x′;B). (2.30)

Eq. (2.30) differs from Eq. (2.28) in that the relative permeability enters through its inverse, and the magnetic
susceptibility with a minus sign. This is simply a matter of definition and a historical coincidence. Nonetheless,
for small magnetic susceptibilities, a form is obtained which agrees with Eq. (2.28):

↔µ r(x, x
′;B) ≈ δ(x− x′)I+ 4π↔χm(x, x′;B). (2.31)

¹³The magnetization dynamics not discussed here requires the use of the famous Landau–Lifshitz equation,
or extensions to it. The most general extension is the Landau–Lifshitz–Gilbert–Slonczewski equation [9].
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3

Classical force and Hamiltonian

In this chapter, the force that acts on a moving classical point particle with charge and spin
magnetic moment is briefly reviewed along with the associated Hamiltonian. The latter
is used to derive the classical interaction between two particles, which carries over to the
second quantized formalism of Sec. 4.2.

3.1 The force acting on charges and magnetic moments

For a non-relativistic point particle i, the Lorentz force density reads

Fi(r, t) = ρi(r, t)Ei(r, t) +
1

c
Ji(r, t)×Bi(r, t), (3.1)

with (bound) charge and current densities¹

ρi(r, t) = qiδ(r− ri(t)), (3.2)

Ji(r, t) = qivi(t)δ(r− ri(t)) + c∇×
(
µS
i (t)δ(r− ri(t))

)
(3.3)

in terms of the charge qi, spin magnetic moment µS
i (t), position ri(t) and velocity vi(t).

The fields Ei and Bi in Eq. (3.1) depend on i since they exclude the self-induced field of
particle i. The force acting on particle i is obtained by integrating Fi over r, yielding (the
missing steps are presented in App. A)

Fi(t) = qi

(
Ei(t) +

1

c
vi(t)×Bi(t)

)
+∇

(
µS
i (t)·Bi(r, t)

)∣∣∣
r=ri(t)

, (3.4)

¹Eqs. (3.2)-(3.3) can be thought of as describing a moving and rotating charge distribution with total
charge qi in the zero-volume limit.

15



where Ei(t) is brief for Ei(r=ri(t), t) andBi(t) is defined analogously. The first term is
the usual Lorentz force for particles without local magnetic moments and the second term
is the Stern-Gerlach force named after the Stern-Gerlach experiment, where particles are
accelerated in different directions in the presence of magnetic field gradients depending on
the orientation of the intrinsic magnetic moment. It is also possible to derive the famous
Zeeman torque, whose spin contribution² is τi(t) = µS

i (t)×Bi(t), and which leads to
precession of the magnetic moment around the direction of the magnetic field.

The intrinsic spinmagnetic moment of fundamental particles (fermions) stems fromDirac’s
relativistic quantummechanics, and the contribution to the current density may be thought
of as a macroscopic consequence of that theory. The theory up until Sec. 4.1 is thus
referred to as classical, which is true in the sense that the coherent phase information in
the quantum mechanical wavefunction is neglected but false in the sense that it relies on
a purely quantum relativistic (zero-point) contribution to angular momentum. The total
magnetization is a sum of the spin magnetization and the orbital magnetization, where the
latter stems from Amperian loops of the velocity current (first term of Eq. (3.3)) caused by
electronic orbits around the ions in the medium. Both the orbital and spin magnetization
require quantum mechanics to be understood properly.

3.2 Hamiltonian formulation

The classical minimal coupling Hamiltonian for a nonrelativistic particle i with mass mi,
charge qi, position ri(t) and canonical momentum pi(t) reads

Hi(t) =
mivi(t)

2

2
+ qiϕi(t), (3.5)

with kinematic velocity

vi(t)=
pi(t)

mi
− qiAi(t)

mic
. (3.6)

The total Hamiltonian is obtained by summing over i. As explained in Sec. 3.1, the po-
tentials depend on i not only through ri(t) but also explicitly because particle i cannot
experience its self-induced field. This explains the difficulty of dealing with many-body
systems and why mean-field treatments are not exact. “Minimal coupling” means the in-
clusion of charge qi but not spin magnetic moment µS

i (t). Using one of Hamilton’s two
equations, Eq. (3.5) leads to the Lorentz force, i.e. the first term of Eq. (3.4). The second
“Stern-Gerlach” term is not captured, as should not be surprising since the presence of spin
stems from Dirac’s theory of relativistic quantum particles. Yet, with a simple intuitive

²It also has an orbital contribution.
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trick, spin can be sneaked into the Hamiltonian. The particle is simply allowed to fluctuate
around ri with probability Pi(r, t). Eq. (3.5) then extends to

Hi(t) =
mi

2qi

∫
dr Ji(r, t)·vi(r, t) +

∫
dr ρi(r, t)ϕi(r, t), (3.7)

where ρi(r, t) = qiPi(r, t) and Ji(r, t) = qiPi(r, t)vi(r, t). By replacing ρi and Ji by
Eqs. (3.2)-(3.3), the spin moment µS

i (t) is assimilated. In fact, this should enter into Eq.
(3.7) with a factor of two since also the velocity acquires a contribution. The result is the
Pauli coupling Hamiltonian (the missing steps are presented in App. B)

Hi(t) =
mi

2
vi(t)

2 + qiϕi(t)− µS
i (t) ·Bi(t), (3.8)

which reproduces the full Lorentz-Stern-Gerlach force of Eq. (3.4). If the particles move
quickly, relativistic corrections are necessary, such as the spin-orbit effect. The terms in-
volving the vector potentialAi when expanding out the square are necessary for describing
orbital magnetization. The total magnetic moment is the sum of the orbital and the spin
moments, i.e.³

µtot
i (t) =

1

2c

∫
dr r× Ji(r, t) =

qi
2mic

(
Li(t) + giSi(t)

)
, (3.9)

where Eq. (3.3) for Ji has been used. Li(t) = miri(t)× vi(t) is the orbital angular
momentum of particle i and the associated term the orbital magnetic moment, which con-
tains a paramagnetic contribution (the pi-term) due to partially filled electronic subshells
and diamagnetic contribution (the Ai-term) which is always present yet typically small.
The last term follows from the relation µS

i (t) = γiSi(t), where Si(t) is the intrinsic spin
angular momentum, γi = giqi/2mic the gyromagnetic ratio and gi the g-factor, which
is 1 for a classical Amperian loop and approximately 2 for electrons. Classically, the mag-
netization is obtained by summing up Eq. (3.9) for all particles i together with factors of
δ(r− ri(t)). In para- and diamagnets, the thermally fluctuating orientations of the mag-
netic moments are independent in the absence of an external magnetic field, which yields a
vanishing magnetization. However, in permanent magnets, the energy gained by aligning
the moments is too high for thermal fluctuations to uncorrelate their orientations, yielding
a net magnetization even without an external magnetic field.

In most magnetic solids without 4f rare earth ions, the orbital magnetization is quenched
and thus small compared to the spin magnetization [11]. For such materials, the vector
potential in the Pauli Hamiltonian of Eq. (3.8) can be ignored, so that

Hi(t) =
p2i (t)

2mi
+ qiϕi(t)− µS

i (t) ·Bi(t), (3.10)

³The first equality is not general since, just like ρi cannot generally specify the polarization Pi, Ji cannot
generally specify the magnetizationMi [10]. Nonetheless,µtot

i (t) = qi
2mic

(
Li(t)+giSi(t)

)
holds generally.
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which corresponds to the Lorentz-Stern-Gerlach force of Eq. (3.4) but without the velocity
term. This is theHamiltonian of interest in the following, but the orbital magnetic moment
will be revisited in Chap. 7.

3.3 Interacting point charges and magnetic moments

Eqs. (2.13) and (2.16), i.e. the Coulomb gauge scalar potential and magnetic field gener-
ated in quasi-steady state by a point particle in vacuum, can be plugged into Eq. (3.10).
Adding up the contributions from all particles j 6= i yields

ϕi(t) = ϕexti (t) +
∑
j ̸=i

qj
rij(t)

, (3.11)

Bi(t) = Bext
i (t) +

∑
j ̸=i

(
8π

3
δ
(
rij(t)

)
I+

3r̂ij(t)r̂ij(t)− I
rij(t)3

)
· µS

j(t), (3.12)

where rij(t) = ri − rj , and r̂ij(t) = rij(t)/rij(t). The Hamiltonian for particle i (Eq.
(3.10)) thus takes the form

Hi(t) =
p2i (t)

2mi
+ qiϕ

ext
i (t)− µS

i (t) ·Bext
i (t) +

1

2

∑
j ̸=i

H int
ij (t), (3.13)

H int
ij (t) =

qiqj
rij(t)

− µS
i (t) ·

(
8π

3
δ
(
rij(t)

)
I+

3r̂ij(t)r̂ij(t)− I
rij(t)3

)
· µS

j(t), (3.14)

where H int
ij is the pairwise interaction between particles i and j, and the factor of 1/2 in

Eq. (3.13) is needed to not count particle pairs twice.⁴ The first term of (3.14) is the
Coulomb interaction and the second is the short-range dipole-dipole interaction. In most
solids, both the electronic and nuclear dipole-dipole interaction energies are small so that
the pair-wise interaction of Eq. (3.14) can be approximated as

H int
ij (t) ≈ qiqj

rij(t)
. (3.15)

In this classical theory, the neglect of the dipole-dipole interaction uncorrelates the mag-
netic moments. By transitioning to a quantum formulation, this correlation is recovered
through the exchange interaction, which is a consequence of the Pauli exclusion principle.
The exchange interaction is typically several orders of magnitude larger than the dipole-
dipole interaction. For this reason, the Coulomb interaction of Eq. (3.15) is responsible
for essentially all collective properties in solids, as long as the spin-orbit effect is negligible.

⁴More precisely, the factor of 1/2 is only needed after summing over i. Since the last term in Eq. (3.13)
is only half of the actual potential felt by particle i, Hi(t) should be thought of as demanding a sum over i
rather than being the Hamiltonian for particle i.
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4

Quantization for identical particles

Quantum mechanics is needed to explain the discrete spectra of atoms. A proper descrip-
tion of solids, which are comprised of atoms, thus requires quantum mechanics. This
chapter starts with a brief summary of first and second quantization for one and many
identical particles and continues by making connections to the charge, magnetization and
current densities introduced in Chap. 2. It also introduces the orbital representation
used later in this thesis and ends by reviewing the Fierz ambiguity, which stems from the
quantum mechanical indistinguishability of two identical (fermionic) particles.

4.1 First quantization for a single particle

The Liouville equation¹ describes the classical phase-space evolution of a system. For a
single particle in an external field the phase-space distribution can be written as n =
n(r,p, t), and the Liouville equation reads(

∂

∂t
+
dr

dt
· ∂
∂r

+
dp

dt
· ∂
∂p

)
n(r,p, t) = 0. (4.1)

Since the magnetic vector potential is neglected in the classical Hamiltonian of Eq. (3.13),
Hamilton’s equations yield that dr/dt = p/m and dp/dt = F(r, t) = −q∇ϕ(r, t) +
γ∇1

(
S(r, t)·B(r1, t)

)∣∣
r1=r

, where∇1 = ∂/∂r1. The quantization procedure, which has

¹The Liouville equation is based on Liouville’s theorem, which states that the phase-space distribution
function is constant along particle trajectories. This assumption is violated in systems with non-zero Berry
phase [12], which stems from what can be thought of as a generalization of the Aharonov-Bohm effect to an
extended parameter space. A vanishing Berry phase will be assumed throughout this thesis, except in Chap. 7.
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Eq. (4.1) as its starting point, is outlined in App. C. It results in the famous Schrödinger-
Pauli equation (σi = ↑ or ↓)

i~
∂Ψσ1(r, t)

∂t
=

∑
σ2

Ĥσ1σ2(r, t)Ψσ2(r, t), (4.2)

where Ψσi is the σi-component of the spinor wavefunction and²

Ĥσ1σ2(r, t) = δσ1σ2

(
− ~2∇2

2m
+ qϕ(r, t)

)
− γSσ1σ2 ·B(r, t) (4.3)

the σ1σ2-component of the Hamiltonian operator Ĥ . ~ is Planck’s constant and S the
spin operator, defined in Eq. (C5) of App. C. The quantized theory is seen to be obtained
by the prescription H 7→ Ĥ = i~∂/∂t, r 7→ r̂= r and p 7→ p̂=−i~∇, where classical
observables O are replaced by hermitean operators Ô = Ô†.³ Hermiticity ensures real-
valued eigenvalues, as is necessary since these comprise the possible measurement outcomes.
Eq. (4.2) is a one-body equation since it depends on a single spin index σ and spatial
coordinate r, and can be used in many-body systems (in solids) only when interactions
can be modelled by mean fields ϕMF(r, t) andBMF(r, t), but this comes with the penalty
of turning the effective mass m in Eq. 4.3 into a tensor field [13], so that ∇2/m 7→
∇·↔m−1

σ1σ2
(r, t)∇. Also the gyromagnetic ratio γ, which depends onm, becomes a tensor

field.⁴ These fields have to be computed from a more fundamental theory, as provided by
a many-body extension of Eqs. (4.2)-(4.3). In the following, Dirac’s bra-ket notation is
used, where state vectors |Ψ〉 are used instead of wavefunctions Ψσ(r)= 〈r,σ|Ψ〉.

4.2 Second quantization for identical particles

An N -body state vector depends on N spin indices σi and spatial coordinates ri. The
discussion here is restricted to indistinguishable particles, like electrons, which means that
they have equal mass, charge and gyromagnetic ratio.⁵ It follows from causality (spin stat-
istics theorem) that a many-body eigenfunction to the Hamiltonian is either symmetric or
antisymmetric under permutation of two coordinates, ri, σi and rj , σj . It is symmetric for
integer spin particles (bosons) and antisymmetric for half-integer spin particles (fermions).
The antisymmetry of the fermionic wavefunction leads to the Pauli exclusion principle,
which forbids two identical fermions to occupy the same one-body state. The exclusion

²“Hat-symbols” denote quantum mechanical operators.
³Generally, one-body operators are written Ô =

∑
ij |i⟩Oij⟨j|. Thus, Ô† =

∑
ij |i⟩O

∗
ji⟨j|.

⁴The Koster equation is an additional non-linear extension to Eq. (4.3) for Brownian particles in a medium,
which due to friction couple to their own phase fluctuations (Eq. (32) in Ref. [14]).

⁵Zero temperature (T = 0) is also assumed. The imaginary time formalism for T > 0 is used in Chap. 8.
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principle plays a central role in Chaps. 8. Since electrons are spin-1/2 fermions, antisym-
metry is assumed in the following. For the purpose of generality, however, the electron
charge q = −e, mass m = me and g-factor g ≈ 2 are not assumed. Beyond adding
up the one-body Hamiltonians of the form of Eq. (4.3) for the N fermions, Coulomb
interaction (classically given by Eq. (3.15)) also has to be included. Since the interac-
tion is permutation-symmetric, the Hamiltonian commutes with permutation, so that the
antisymmetry of the fermionic N -body state is preserved under time-evolution.

In second quantization, creation and annihilation operators are used to represent state vec-
tors in Hilbert spaces of different particle numbers N . In position representation, the
annihilation operator is called a field operator, ψ̂σ(r). When acting on an N -body state
vector, ψ̂σi(ri) and ψ̂

†
σi(ri) respectively remove or add a particle at position ri with spin

σi. Annihilating the vacuum state |0〉, defined as the normalized zero-body state, yields a
state with zero norm; ψ̂σ(r)|0〉 = | null〉, where 〈null | null〉 = 0. TheN -body state with
one-body occupations ni = ni(t) (0 for unoccupied and 1 for occupied) can be written as

|n1, n2, ...〉 =
ni ̸=0∏

i

ψ̂†
σi
(ri)|0〉, (4.4)

where N =
∑

i ni and the product is ordered so that ψ̂†
σi(ri) with i < j ends up to the

left of ψ̂†
σj (rj). Skipping details, Eq. (4.4) allows for the expression of the antisymmetry

of the fermionic N -body state in terms of the anticommutation relations⁶

{ψ̂σi
(ri), ψ̂σj

(rj)} = {ψ̂†
σi
(ri), ψ̂

†
σj
(rj)} = 0, (4.5)

{ψ̂σi
(ri), ψ̂

†
σj
(rj)} = δij = δσiσjδ(ri − rj). (4.6)

From Eq. (4.5) it follows that ψ̂σi
(ri)

2 = 0 and ψ̂†
σi(ri)

2 = 0, where the first relation
states that a particle can only be removed once from an N -body state and the second that
a one-body state cannot be occupied by several identical particles (the Pauli principle).
The field operators can be used to represent the many-body Hamiltonian. Using the first
quantized Hamiltonian of Eq. (4.3) and the classical Coulomb interaction of Eq. (3.15),
the second quantized Hamiltonian Ĥ is defined by requiring that

Ĥ(t)|n1, n2, ...〉 =
∑
i

ni

(
− ~2∇2

i

2m
+ V̂ ext

i (t) +
1

2

∑
j ̸=i

njq
2

|ri − rj |

)
|n1, n2, ...〉, (4.7)

where V̂ ext
i (t) = qϕexti (t)−γSi(t)·Bext

i (t). By defining ψ̂ = [ψ̂↑ ψ̂↓]
T , theHamiltonian

that fulfils this is expressed by field operators as

Ĥ(t) =

∫
dr ψ̂†(r)

(
T̂ + V̂ext(r, t) +

1

2

∫
dr′ψ̂†(r′)

q2

|r− r′|
ψ̂(r′)

)
ψ̂(r), (4.8)

⁶{Â, B̂}= ÂB̂+ ÂB̂.
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where T̂ = −~2∇2/2m is the kinetic energy operator and

V̂ext(r, t) = qϕext(r, t)− γS ·Bext(r, t) (4.9)

is the external potential operator. ϕext includes the ionic (lattice) potential. Lattice vibra-
tions (phonons), which are discussed in Sec. 5.7, enter the description through ϕext.

4.3 Charge, magnetization and current densities

In the following, 〈Â〉t is short notation for the expectation value 〈Ψ(t)|Â|Ψ(t)〉 of an
operator Â in the time-dependentN -body state |Ψ(t)〉 of the system.⁷ The (bound) charge
and spin magnetization densities due to the indistinguishable fermions then read⁸

ρb(r, t) = q
〈
ψ̂†(r)ψ̂(r)

〉
t
, (4.10) M(r, t) = γ

〈
ψ̂†(r)Sψ̂(r)

〉
t
, (4.11)

and the (bound) Pauli current density reads

Jb(r, t) =
iq~
2m

〈
∇ψ̂†(r)ψ̂(r)− ψ̂†(r)∇ψ̂(r)

〉
t
+ c∇×M(r, t), (4.12)

which is the sum of the Schrödinger and spin current densities.⁹ If orbital motion is im-
portant, i.e. if the simplification in Eq. (3.10) does not hold, the Schrödinger current
density acquires an additional term − q

mcA(r, t)ρb(r, t) and the spin current density gets
accompanied by an orbital magnetization current density, also contained in c∇×M(r, t).
Eqs. (4.10) and (4.12) can be thought of as the sources to Maxwell’s equations in Eqs.
(2.1)-(2.4). However, ρb(r, t) and Jb(r, t) depend on the Hamiltonian operator, which
contains the fields and thus leads to a feedback between fields and sources.

4.4 Wannier basis for electrons in solids

In the remainder of this thesis, the identical fermions are assumed to be electrons. Hence,
q = −e,m =me and g ≈ 2 is assumed. Furthermore, Hartree’s atomic units are also used
from this point onwards, for which ~ =me = e = a0 = 1, where a0 is the Bohr radius.

The field operator can be expanded in an orthonormal orbital basis as¹⁰

ψ̂σ(r) =
∑
i

ϕi(r)ĉiσ, (4.13)

⁷This easily extends to a thermal expectation value at finite temperature.
⁸The time-dependencies originate from the state Ψ used to define the expectation values.
⁹The Pauli (Schrödinger) current density is the non-relativistic limit of the Dirac (Gordon) current density.
¹⁰The Wannier functions are, apart from in Chap. 7, kept spin-independent to simplify the notation.

22



where ĉiσ is the annihilation operator of a spin-σ fermion in orbital ϕi. The most common
and useful localized basis for periodic solids is the Wannier basis, where i = (R, n) is a
combination of a Bravais lattice vector R and a band index n. The Wannier functions are
constructed from Bloch functions ψkn, which fulfil Ĥ0ψkn(r) = ϵknψkn(r), where Ĥ0

is the mean-field Hamiltonian¹¹ and ϵkn the eigenvalues. Mathematically,

ϕRn(r) =
1

N

∑
k

e−ik·R ψ̃kn(r), (4.14) ψ̃kn(r) =
∑
m

ψkm(r)Smn(k), (4.15)

where N is the number of unit cells (number of k vectors in the Brillouin zone) and the
matrix Smn(k) guarantees that the band n is smooth in the Brillouin zone. This matrix can
be optimized to minimize the spread of the Wannier functions [19]. Using the combined
Wannier index i, the second-quantized Hamiltonian operator of Eq. (4.8) takes the form

Ĥ(t) =
∑
σ1σ2

∑
ij

hσ1σ2
ij (t) ĉ†iσ1

ĉjσ2
+

1

2

∑
σ1σ2

∑
ijkl

vijkl ĉ
†
iσ1
ĉ†lσ2

ĉkσ2
ĉjσ1

, (4.16)

where

hσ1σ2
ij (t) =

∫
dr ϕ∗i (r)

(
δσ1σ2

(
T̂ − ϕext(r, t)

)
+ 1

cSσ1σ2 ·Bext(r, t)
)
ϕj(r), (4.17)

vijkl =

∫
drdr′ϕ∗i (r)ϕj(r)

1

|r− r′|
ϕk(r

′)ϕ∗l (r
′). (4.18)

γ = −1/c has been inserted in the Zeeman term. The second ‘interaction Hamiltonian’
term of Eq. (4.16) is to be thought of as the two-electron scattering jσ1, kσ2 → iσ1, lσ2.
Both spins are conserved since the Coulomb interaction is non-magnetic.

4.5 Fierz ambiguity

By introducing the zeroth Pauli matrixσ0 as the 2-by-2 unitmatrix, the interactionHamilto-
nian in Eq. (4.16) takes the form (µ and ν run over 0, x, y, z)

Ĥint =
1

2

∑
σ1σ2
σ3σ4

∑
ijkl

vσ1σ2σ3σ4
ijkl ĉ†iσ1

ĉ†lσ4
ĉkσ3

ĉjσ2
, (4.19)

vσ1σ2σ3σ4
ijkl =

∑
µν

σµσ1σ2
vµνijkl σ

ν
σ4σ3

, (4.20)

provided that the electromagnetic interaction vµν is restricted to the electric sector:

vµνijkl = δµ0δν0 vijkl. (4.21)

¹¹Often, density functional theory [15, 16, 17, 18]. is used, which is a formally exact mean-field theory.

23



The absence of magnetic interaction has thus been expressed mathematically as the vanish-
ing of vµν unless µ = ν = 0. However, due to the fermionic anti-commutation relations
of Eqs. (4.5)-(4.6), which in the orbital representation take the form{

ĉiσ1
, ĉjσ2

}
=

{
ĉ†iσ1

, ĉ†jσ2

}
= 0 ,

{
ĉiσ1

, ĉ†jσ2

}
= δijδσ1σ2 , (4.22)

the interaction Hamiltonian in Eq. (4.16) can also be written as

Ĥint(t) = −1

2

∑
σ1σ2

∑
ijkl

vikjl ĉ
†
iσ1
ĉ†lσ2

ĉkσ1
ĉjσ2

, (4.23)

after a relabelling of the dummy variables j and k. Also this can be written in the form of
Eqs. (4.19)-(4.20), with electromagnetic interaction

vµνijkl = −δµν
2
vikjl. (4.24)

In the case of scattering between two electrons with opposite spins, this interaction treats
the vertex as a simultaneous flip of both spins so as to make the total spin conserved,
whereas the interaction of Eq. (4.21) instead treats it as a conservation of both spins. More
specifically, Eq. (4.24) has magnetic components (vxx, vyy and vzz) while Eq.(4.21) is
purely electric. The resolution of this apparent paradox, called the Fierz ambiguity [20],
is the indistinguishability of electrons, which implies that the exact solutions when using
Eq. (4.21) and (4.24) are the same. However, the exact solution is generally speaking
inaccessible, and approximate schemes are required. It then turns out that the choice plays
a role. An intriguing choice is to take the average of Eq. (4.21) and Eq. (4.24), so that

vµνijkl =
δµν
2

(
δµ0 vijkl − 1

2vikjl

)
. (4.25)

Using Eq. (4.20), this choice fulfils the crossing symmetry

vσ1σ2σ3σ4
ijkl = −vσ1σ3σ2σ4

ikjl , (4.26)

which imposes the Pauli exclusion principle in each individual scattering vertex by forbid-
ding two equal spins to interact in the same orbital, i.e. vσσσσiiii = 0. This is implicitly
assumed when working with the famous Hubbard model, which means that the extension
of such a treatment requires the choice in Eq. (4.25).
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5

Green’s function method

Finding the eigenstates to the many-body Schrödinger-Pauli equation (Eq. (4.7)) is an im-
possible task in solids. Therefore, this thesis focuses on Green’s function-based methods of
many-body perturbation theory. This framework was originally developed for weak correl-
ations, where perturbation theory is justified, but has turned out to provide a useful picture
also for strong correlations, where it can be combined with other methods if needed. This
chapter starts by introducing Dirac’s interaction picture, which will then be used when de-
fining the Green’s function and deriving its equation of motion. From this equation, the
coupled integro-differential equations known as Hedin’s equations [2] will be derived and
applied to the linear spin-density response, which contains the plasmons and magnons of
the system. Finally, the effect of phonons will be briefly discussed.

5.1 Dirac’s interaction picture

The quantum formalism in Chap. 4 was presented in what is known as the Schrödinger
picture. For closed systems, i.e. without external fields, this picture means that operat-
ors are time-independent and state vectors time-dependent. The time-dependence in the
Hamiltonian operator of Eq. (4.16) thus stems exclusively from the external fields. In
Sec. 5.3 and onwards, many-body correlations will be expressed as functional derivatives
with respect to external fields taken in the closed system, but this is more conveniently
formulated in Dirac’s interaction picture. To arrive at this picture, the Schrödinger picture
Hamiltonian¹ is split into two terms, ĤS = Ĥ0 + φ̂S(t), where Ĥ0 is given by Eq. (4.16)
due exclusively to the frozen background lattice, which is assumed spin-less, and φ̂S(t) is

¹The Fierz ambiguity is not utilized here, i.e. the trivial choice of Eq. (4.21) is implicitly assumed.
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the remaining contribution stemming from additional fields. More explicitly,

Ĥ0 =
∑
σ1

∑
ij

hij ĉ
†
iσ1
ĉjσ1

+
1

2

∑
σ1σ2

∑
ijkl

vijkl ĉ
†
iσ1
ĉ†lσ2

ĉkσ2
ĉjσ1

, (5.1)

hij =

∫
dr ϕ∗i (r)

(
T̂ − ϕlat(r)

)
ϕj(r), (5.2)

where ϕlat is the electric scalar potential due to the background lattice, and

φ̂S(t) =
∑
σ1σ2

∑
ij

φσ1σ2
ij (t) ĉ†iσ1

ĉjσ2
, (5.3)

φσ1σ2
ij (t) =

∫
dr ϕ∗i (r)

(
− δσ1σ2ϕext(r, t) +

1
cSσ1σ2 ·Bext(r, t)

)
ϕj(r), (5.4)

where ϕext and Bext are the external contributions to the electric scalar potential and the
magnetic field, respectively.² An interaction picture operator Ô is then defined from a
Schrödinger picture operator ÔS as [21]

Ô(t) = eiĤ0tÔS(t)e
−iĤ0t, (5.5)

and an interaction picture state vector Ψ from a Schrödinger picture state vector ΨS as

|Ψ(t)〉 = Û(t)|ΨS(0)〉, (5.6) Û(t) = T exp
(
− i

∫ t

0
dt1φ̂(t1)

)
. (5.7)

It follows that expectation values are picture independent, i.e.

O(t) = 〈Ψ(t)|Ô(t)|Ψ(t)〉 = 〈ΨS(t)|ÔS(t)|ΨS(t)〉, (5.8)

as should be the case. In fact, this is the reason for the possibility of residing to more than
one picture. The exponential in Eq. (5.7) is defined from its Taylor series, and the time-
ordering operator T ensures that operators in this series with the earliest times end up to
the right. The S matrix is now defined as the operator that time-evolves the wavefunction
in the interaction picture from time t2 to t1, i.e. |Ψ(t1)〉 = Ŝ(t1, t2)|Ψ(t2)〉. It is easily
shown that Ŝ(t1, t2) = Û(t1)Û

†(t2). From Eq. (5.7), it thus follows that

Ŝ(t1, t2) = T exp
(
− i

∫ t1

t2

dt3φ̂(t3)
)
. (5.9)

If Ψ is used to denote the ground state in the interaction picture and Ψ0 the ground state
of Ĥ0, then the important relation |Ψ(0)〉 = Ŝ(0,−∞)|Ψ0〉 follows, which means that
|Ψ(−∞)〉 = |Ψ0〉.

²This definition of external fields differs from that in Eq. (4.8), where the lattice contribution was included.
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5.2 The Green’s function for electrons

The electronic Green’s function can either be defined in or out of thermal equilibrium. The
discussion here is restricted to the zero-temperature (equilibrium) case. Extending it to
finite temperature is straightforward in the imaginary time formalism by Matsubara [22].
In the orbital representation, the Green’s function reads [23]

Gσ1σ2
ij (t1t2) =

〈Ψ0|T Ŝ ĉiσ1
(t1)ĉ

†
jσ2

(t2)|Ψ0〉
〈Ψ0|Ŝ|Ψ0〉

/
i, (5.10)

where Ŝ= Ŝ(∞,−∞). G is a correlator between adding an electron in one spin-orbital at
one time and removing an electron in another spin-orbital at another time. When t1 > t2
in Eq. (5.10), it describes the propagation of an added electron, and for t1 < t2 of a vacancy
(or hole). The ground state expectation value of an arbitrary one-body operator

Ô(t) =
∑
σ1σ2

∑
ij

Oσ1σ2
ij (t)ĉ†iσ1

(t)ĉjσ2(t) , (5.11)

where Oσ1σ2
ij (t) denotes a matrix element of an operator Ôσ1σ2(r, t), takes the form

〈Ô(t)〉 = 〈Ψ0|ŜÔ(t)|Ψ0〉
〈Ψ0|Ŝ|Ψ0〉

=
∑
σ1σ2

∑
ij

Oσ1σ2
ij (t)Gσ2σ1

ji (tt+)
/
i (5.12)

in terms of G, where t+ = t+ η for a positive infinitesimal η. For example, the electronic
(bound) charge and spin magnetization densities at r of Eqs. (4.10)-(4.11) are obtained
using Ôσ1σ2(r

′) = −δσ1σ2δ(r
′− r) and Ôσ1σ2(r

′) = −Sσ1σ2δ(r
′− r)/c:

ρb(r, t) = −
∑
σ1

∑
ij

ϕ∗i (r)ϕj(r)G
σ1σ1
ji (tt+)

/
i, (5.13)

M(r, t) = −
∑
σ1σ2

∑
ij

ϕ∗i (r)Sσ1σ2ϕj(r)G
σ2σ1
ji (tt+)

/
ic. (5.14)

In the absence of time-varying external fields,G depends on its two time variables t1 and t2
only through their difference τ = t1−t2. The Fourier transform ofG is obtained asG(ω) =∫
dτ eiωτG(τ), in terms of which the spectral function reads A(ω) = | ImG(ω)|/π. The

spectral function is the ‘many-body band structure’, with peaks at the electron addition
and removal energies of photoemission and inverse photoemission experiments.³ Renor-
malization from correlations lead to life-time broadening and shifting of the spectral peaks
compared to the mean field. G also yields the interacting ground state energy through the
Galitskii-Migdal formula [24].

³Energy and angular frequency are interchangeable in quantum mechanics, through the relation E = ~ω.
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5.3 Equation of motion

The relation ĉiσ1(t1) = eiĤ0t1 ĉiσ1e
−iĤ0t1 yields Heisenberg’s equation of motion⁴

i∂t1 ĉiσ1(t1) = eiĤ0t1
[
ĉiσ1 , Ĥ0

]
e−iĤ0t1 , (5.15)

where ∂t1 is compact notation for ∂/∂t1. Using Ĥ0 of Eq. (5.1), the anticommutation
relations of Eq. (4.22) and Einstein’s summation convention then leads to

i∂t1 ĉiσ1
(t1) = hij ĉjσ1

(t1) + vijkl ĉ
†
lσ2

(t+1 )ĉkσ2
(t1)ĉjσ1

(t1). (5.16)

The Green’s function definition of Eq. (5.10) then yields the equation of motion

δ(t1−t2)δijδσ1σ2 = g−1
ik (t1)G

σ1σ2
kj (t1t2)− iviklmG2

σ3σ1σ2σ3
lkjm (t1t1; t2t

+
1 ), (5.17)

where g−1
ik (t1) = i∂t1δik−hik has been introduced for convenience and

G2
σ1σ2σ3σ4
ijkl (t1t2; t3t4) = −〈T ĉiσ1

(t1)ĉjσ2
(t2)ĉ

†
lσ4

(t4)ĉ
†
kσ3

(t3)〉 (5.18)

is the two-electron Green’s function. G2 is thus required when solving forG, and similarly,
G3 is needed to findG2, leading to a hierarchy problem ofmany-electronGreen’s functions.
This issue is cured by utilizing Schwinger’s functional derivative method, where

G2
σ4σ1σ2σ3
lijk (t3t1; t2t

+
3 ) =

δGσ1σ2
ij (t1t2)

δφσ3σ4
kl (t3)

−Gσ1σ2
ij (t1t2)G

σ4σ3
lk (t3t

+
3 ), (5.19)

as can be verified by combining Eqs. (5.3), (5.5), (5.9) and (5.10).

5.4 Hedin’s equations and the GW approximation

From Eqs. (5.17) and (5.19) and the chain rule δGG−1 +GδG−1 = 0, it follows that

G−1σ1σ2

ij (t1t2) = G−1
H

σ1σ2

ij (t1t2)− Σσ1σ2
ij (t1t2), (5.20)

G−1
H

σ1σ2

ij (t1t2) = δ(t1−t2)
((
g−1
ij (t1)−V H

ij (t1)
)
δσ1σ2 −φ

σ1σ2
ij (t1)

)
, (5.21)

Σσ1σ2
ij (t1t2) = −iviklm(t1t3)G

σ1σ4
kn (t1t4)

δG−1σ4σ2

nj (t4t2)

δφσ3σ3
ml (t3)

, (5.22)

⁴[Â, B̂] = ÂB̂− B̂Â.
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where vijkl(t1t2) = vijkl δ(t1−t2). G−1
H is the inverse Hartree Green’s function andΣ the

self-energy, which contains the exchange and correlation effects of the electronic system.
G−1

H contains the (classical) Hartree potential⁵

V H
ij (t1) = −ivijklGσσ

kl (t1t
+
1 ) = vijklnlk(t1). (5.23)

Eq. (5.20) can be reformulated as

Gσ1σ2
ij (t1t2) = GH

σ1σ2
ij (t1t2) +GH

σ1σ3
ik (t1t3)Σ

σ3σ4
kl (t3t4)G

σ4σ3
lj (t4t2), (5.24)

known as Dyson’s equation. Hedin’s formalism [2] uses the potential V = φ+ V H in the
chain rule, so that Eq. (5.22) takes the form

Σσ1σ2
ij (t1t2) = iσµσ3σ2

Gσ1σ3
kl (t1t3)Wmnki(t4t1)Λ

µ0
ljmn(t3t2t4), (5.25)

where

Λµν
ijkl(t1t2t3) = −1

2
σµσ2σ1

δG−1σ1σ2

ij (t1t2)

δV σ3σ4
kl (t3)

σνσ3σ4
(5.26)

is the three-leg vertex and⁶

Wijkl(t1t2) = ϵ−1
H ijmn(t1t3)vmnkl(t3t2), (5.27) ϵ−1

H ijkl(t1t2) =
δVij(t1)

δφkl(t2)
, (5.28)

are, respectively, Hedin’s screened interaction⁷ and the inverse (Hartree) dielectric function.
Only the µ0-component of Λ enters into Eq. (5.25). The chain rule implies that

Λµν
ijkl(t1t2t3) = δµν δikδjlδ(t1−t2)δ(t1−t3) (5.29)

+
1

2
σµσ2σ1

σησ7σ8

δΣσ1σ2
ij (t1t2)

δGσ5σ6
mn (t5t6)

Gσ5σ7
mo (t5t7)G

σ8σ6
pn (t8t6)Λ

ην
opkl(t7t8t3),

Wijkl(t1t2) = vijkl(t1t2) + vijmn(t1t3)Pmnop(t3t4)Wopkl(t4t2), (5.30)

Pijkl(t1t2) = −iGσ1σ3
im (t1t3)G

σ3σ1
nj (t4t

+
1 )Λ

00
mnkl(t3t4t2), (5.31)

where P is the density polarization propagator and iδΣ/δG is a four-point correction to
the Coulomb interaction due to exchange and correlations. Since the Hamiltonian con-
tains no explicit spin-spin interaction, this is exclusively contained in this quantity. Since
W = W 00, the closure of Eq. (5.30) follows from the decoupling between charge-charge
and spin-spin interactions in the absence of the spin-orbit effect. Eqs. (5.24), (5.25),

⁵Potentials V without spin variables denote the charge components 1
2
φσσ and 1

2
V σσ .

⁶The reader is encouraged to prove that ϵ−1
H is an approximation to the inverse relative permittivity of Sec.

2.5, but also to relate other quantities in Chap. 5 to those in Chap. 2.
⁷W has dimension of energy in frequency domain and power in time domain.
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(5.29), (5.30) and (5.31) are called Hedin’s equations [2], which in principle yield the ex-
act electronic structure. However, approximations are required in practice, and the most
famous is the GW approximation, justified for weakly correlated metals. In this approxim-
ation, only the first term of Eq. (5.29) is kept, which leads to the self-energy

ΣGW
σ1σ2
ij (t1t2) = iGσ1σ2

kl (t1t2)Wljki(t2t1), (5.32)

where Eq. (5.30) forW is unchanged but Eq. (5.31) for P is simplified to P = −iGG,
schematically. The argument behind the GW approximation is that, when the screening
is strong, it should work to expand Σ to linear order in W . However, this argument is
flawed for the short-range components ofW , which are big. To accurately describe short-
range correlations, the GW approximation is often combined with other methods, such as
dynamicalmean-field theory [25, 26, 27] and configuration interaction [28]. An alternative
route is to include vertex correction in Eq. (5.29) stemming from δΣ/δG [29].

5.5 Charge and spin fluctuations

The spin-density operator n̂σ1σ2
ij (t) = ĉ†iσ1

(t)ĉjσ2(t) can be split into an expectation value
n and a fluctuation ∆n̂, i.e. n̂ = n+∆n̂. It can then be shown that

Rσ1σ2σ3σ4
ijkl (t1t3) =

δnσ2σ1
ji (t1)

δφσ3σ4
kl (t3)

= 〈T∆n̂σ3σ4
kl (t3)∆n̂

σ2σ1
ji (t1)〉

/
i, (5.33)

i.e. that the (time-ordered) linear spin-density response R equals the correlator between
two spin-density fluctuations. It is intrinsic to the system, and so are the higher-order
responses. In four-vector representation, Rµν = σµσ2σ1R

σ1σ2σ3σ4σνσ3σ4
takes the form

Rµν
ijkl(t1t3) =

δnµji(t1)

δφν
kl(t3)

= 〈T∆n̂νkl(t3)∆n̂
µ
ji(t1)〉

/
i. (5.34)

Importantly, this contains δM/δBext since nµ = −2cMµ (µ > 0) in the absence of or-
bital magnetization and φν = Bν

ext/2c (ν > 0), and it is left as an exercise to show that
δM/δBext =

↔χm(I−4π↔χm)
−1, in terms of↔χm of Sec. 2.3. Themagnetoelectric suscept-

ibility components, however, vanish without spin-orbit interaction. The µν-components
|ImRµν(ω)|/π are spectral functions containing the charge (µ = 0, ν = 0) and spin
(µ> 0, ν > 0) (electron-hole) excitation energies, i.e. the plasmon and magnon spectras.

5.6 Bethe-Salpeter equation

To treat charge and spin fluctuations equally, the Hedin chain rule behind Eq. (5.25)
should be avoided, and the mass operator M = V H + Σ take over the role of V H. By
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writingR as a two-time contraction⁸ of its four-time extensionRIJKL = −i δGIJ
δφKL

, where
the combined index I = (i, σi, ti) has been introduced, the modified chain rule implies
the Bethe-Salpeter equation [30, 31]

RIJKL = PIJKL + PIJMN VMNOP ROPKL, (5.35)

where

PIJKL = −iGIKGLJ , (5.36) VIJKL = i
δMIJ

δGKL
. (5.37)

P is vertex-free, contrary to P in Eq. (5.31). The information from the vertex is in-
stead absorbed in the electromagnetic interaction V , which contains both charge-charge
and spin-spin components. In many situations, like when computing magnon spectra, it
is customary to split the mass operator between the Hartree-Fock potential⁹ and the cor-
relations, i.e. M = V HF + Σc, where Σc is the correlation part of Eq. (5.25). This split
is used in Sec. 8.2, and turns the Bethe-Salpeter equation into two equations

RIJKL = RHF
IJKL + RHF

IJMN ∆MNOP ROPKL, (5.38)

RHF
IJKL = PIJKL + PIJMN VHF

MNOP RHF
OPKL , (5.39)

where

VHF
IJKL = i

δV HF
IJ

δGKL
, (5.40) ∆IJKL = i

δΣc
IJ

δGKL
. (5.41)

The typical strategy is to first find reference magnons and plasmons, by computing RHF

of Eq. (5.39). This is possible since the Hartree-Fock interaction VHF of Eq. (5.40) is
known. While generally demanding, it gets rather simple in the context of the Hubbard
model. The interaction∆ of Eq. (5.41) can then be interpreted as the interaction between
the reference bosons in Eq. (5.38), i.e. as the magnon-magnon or plasmon-plasmon in-
teraction, depending on the particular component. Eq. (5.38) is to be thought of as the
bosonic analog of Dyson’s equation (Eq. (5.24)), and the task of finding good bosonic
spectra thus boils down to finding a good approximation to ∆.

5.7 Effect of phonons on the electronic structure

The clamped-nuclei assumption used so far is not justified for some lighter nuclei (or ions),
such as oxygen. Phonons are included by introducing operators for the nuclear positions.
Nucleus κ (with chargeZκ andmassMκ) in unit cell p is associated with a position operator

⁸Rσ1σ2σ3σ4
ijkl (t1t3) = limt2→t1 limt4→t3 R

σ1σ2σ3σ4
ijkl (t1t

+
2 t3t4)

⁹V HFσ1σ2
ij (t1t2) = −iδ(t1−t2)

(
δσ1σ2vijklG

σσ
kl (t1t

+
1 )− vljkiG

σ1σ2
kl (t1t

+
1 )

)
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τ̂κp(t1). If the equilibrium position is τ 0
κp, it follows that τ̂κp(t1) = τ 0

κp + ∆τ̂κp(t1),
where the last term is the nuclear displacement (or fluctuation) operator, with vanishing
expectation value. Eq. (5.2) for hij then extends to

hij(t1) =

∫
dr1 ϕ

∗
i (r1)

(
T̂ −

∫
dr2dt2

δ(t1−t2)
|r1−r2|

ρn(r2, t2)

)
ϕj(r1), (5.42)

where ρn(r, t) =
∑

κp Zκ〈δ(r− τ 0
κp −∆τ̂κp(t))〉 is the nuclear charge density and Ein-

stein’s summation convention temporarily has been abandoned. For small displacements,
the harmonic approximation is justified, in which [32, 33]

ρn(r, t) =
(
1 +

i

2
∇·

↔
Dκp,κp(t

+t)·∇
)
Zκδ(r−τ 0

κp), (5.43)
↔
Dκp,κ′p′(t1t2) = 〈T∆τ̂κp(t1)∆τ̂κ′p′(t2)〉

/
i, (5.44)

where
↔
D is the nuclear displacement-displacement correlation tensor. Skipping details,

phonons enter Hedin’s formalism through the extension [34, 35]

Wijkl(ω) 7→Wijkl(ω) +W ph
ijkl(ω) (5.45)

of Eq. (5.30) in frequency domain. The last term is a phonon contribution obtained by an
integral of the form of Eq. (4.18), but with 1/|r1−r2| replaced by

W ph(r1r2, ω) = ϵ−1
H (r1r3, ω)Fκp(r3)·

↔
Dκp,κ′p′(ω)·Fκ′p′(r4)ϵ

−1
H (r4r2, ω), (5.46)

where ϵ−1
H is the position representation of Eq. (5.28) and

Fκp(r1) = Zκ

r1 − τ 0
κp

|r1 − τ 0
κp|3

(5.47)

is the force from a clamped nucleus κ in unit cell p. In the adiabatic (Born-Oppenheimer)
approximation, which holds if the plasmon energies are much higher than the phonon
energies,¹⁰ ϵ−1

H (ω) is replaced by its static value. An important consequence is that the
phonon spectrum acquires sharp peaks that follow well-defined phonon dispersions ωqν

for the different phonon modes ν, which leads to the simple relation

↔
Dκp,κ′p′(ω) =

∑
ν

∫
dq

e−iq·(Rp−Rp′ )

√
MκMκ′

e∗qν,κeqν,κ′

ω2 − ω2
qν

, (5.48)

where Einstein’s summation convention has been abandoned. The phonon polarization
vector of mode ν at nucleus κ is denoted by eqν,κ. The phonons are treated as a perturb-
ation in this thesis. The phonon dispersions and polarization vectors are thus assumed as
known inputs, although they generally have to be computed self-consistently together with
the electronic structure, using the so-called Hedin-Baym equations [35].

¹⁰Adiabaticity fails in metals, but the metallic contribution can be separated out and treated analytically.
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6

Spatiotemporal view of screening

This chapter introduces and summarizes Paper I, titled “Position representation of effect-
ive electron-electron interactions in solids”. The screened interaction W and its partially
screened analogU enter into Hedin’s equations and low-energy models, respectively. In Pa-
per I, a formula is derived for obtaining the position representation ofW (U ) from matrix
elements of the linear density response R (Rr ) in a Bloch product basis. The causal inter-
action in time domain due to the insertion of an impurity at time τ = 0 is also derived. As
a test,W (U ) is computed within the (constrained) random-phase approximation for the
cuprate parent compounds La2CuO4 and HgBa2CuO4 and the correlated metal SrVO3,
based on the spin-unpolarized local density approximation. The major finding is the pres-
ence of spatial regions with a strong negative U in the cuprates, which are short-lived in
the 3-band model but stable in the 1-band model.

6.1 Fully and partially screened interaction

In the random-phase approximation (RPA), δΣ/δG is neglected, which simplifies the
three-leg vertex Λµν of Eq. (5.29) and the electromagnetic interaction Vµν of Eq. (5.37).
With short-hand notation R for the 00-component of Eq. (5.34), it follows that

Rijkl(ω) = Pijkl(ω) +
∑
mnop

Pijmn(ω)vmnopRopkl(ω), (6.1)

Pijkl(ω) = −i
∑
σ

∫
dω′

2π
eiω

′ηGσσ
ik (ω + ω′)Gσσ

lj (ω
′), (6.2)

in frequency domain. In practice, it is common to approximate the Green’s function G
by that computed using density functional theory (DFT) [15, 16, 17, 18]. For spin-
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unpolarized periodic systems, the DFT Bloch electrons are described by one-body eigen-
states ψkn and eigenvalues ϵkn, so that

Gσσ
ik (ω) =

occ∑
kn

Oi
knO

k∗
kn

ω − ϵkn − iη
+

unocc∑
kn

Oi
knO

k∗
kn

ω − ϵkn + iη
, (6.3)

where Oi
kn = 〈ϕi|ψkn〉. The two terms are restricted to occupied and unoccupied states,

respectively. Eq. (6.3) combined with Eq. (6.2) yields

Pijkl(ω) = 2

occ∑
kn

unocc∑
k′n′

(
Oi

k′n′Ok∗
k′n′Ol

knO
j∗
kn

ω + ϵkn − ϵk′n′ + iη
−

Oi
knO

k∗
knO

l
k′n′O

j∗
k′n′

ω − ϵkn + ϵk′n′ − iη

)
, (6.4)

known as the Lindhard formula [36]. By combining Eq. (5.30) and Eq. (6.1), the fully
screened interactionW can be written as

Wijkl(ω) = vijkl +
∑
mnop

vijmnPmnop(ω)Wopkl(ω) (6.5)

= vijkl +
∑
mnop

vijmnRmnop(ω)vopkl, (6.6)

in terms of R, which is used to find the position representation of W in Sec. 6.2. It is
also possible to construct a partially screened interaction U , which can be thought of as an
effective interaction in a low-energy subspace. Physically, U excludes the screening which
stems from transitions within the low-energy subspace itself. To define U , the one-body
(DFT) Hilbert space is split into a low-energy window d, and the rest r. It then follows
that P = P d +P r, where P d is restricted to the d subspace and P r contains all other
transitions. But the low-energy band structure is not always separated from the rest of
the band structure. In the disentanglement method [37], this issue is dealt with by fitting
suitable Wannier functions to the band structure in an energy window, which is restricted
but wide enough to yield convergence. The subspace spanned by theseWannier functions is
then chosen as the d subspace, in which the one-body (DFT) Hamiltonian is diagonalized,
yielding low-energy eigenfunctions ψ̄kn and eigenvalues ϵ̄kn, where kn ∈ d. These may
differ slightly from the original bands close to the edge of the energy window. P d is then
computed using the approximate band structure as

P d
ijkl(ω) = 2

occ∑
kn∈d

unocc∑
k′n′∈d

(
Ōi

k′n′Ōk∗
k′n′Ōl

knŌ
j∗
kn

ω + ϵ̄kn − ϵ̄k′n′ + iη
−

Ōi
knŌ

k∗
knŌ

l
k′n′Ō

j∗
k′n′

ω − ϵ̄kn + ϵ̄k′n′ − iη

)
, (6.7)

where Ōi
kn = 〈ϕi|ψ̄kn〉. By defining the d-subspace projector P̂ =

∑
kn∈d |ψ̄kn〉〈ψ̄kn|,

the r subspace is obtained by acting with the operator 1−P̂ on the full one-body Hilbert
space, so as to render it orthogonal to the d subspace. The resulting orthonormalized r-
subspace eigenvectors ψ̄kn, where kn ∈ r, are all orthogonal to those in the d subspace.
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The full polarization propagator of Eq. (6.4) is then approximated by the modified band
structure in the full Hilbert space, i.e. its expression is identical to Eq. (6.7) but without
restricting the summations to the d subspace. The replacement of Eq. (6.4) by this ap-
proximation is important in order to guarantee that P r = P −P d contains no low-energy
transitions. In analogy with the fully screened interaction W of Eq. (6.5), the partially
screened interaction U is defined as [38, 39, 40]

Uijkl(ω) = vijkl +
∑
mnop

vijmnP
r
mnop(ω)Uopkl(ω) (6.8)

= vijkl +
∑
mnop

vijmnR
r
mnop(ω)vopkl(ω), (6.9)

where Rr = P r +P rvRr. Eq. (6.9) is used to find the position representation of U in
Sec. 6.2. It follows that W = U +UP dW , which shows that U indeed is the effective
interaction in the d subspace. In fact, U is a dynamical and non-local extension of the U
of the famous Hubbard model. It is common to include effects beyond the RPA stemming
from δΣ/δG in the d subspace. Such an approach is known as the constrained RPA (cRPA),
and is justified when the correlations are strong only close to the Fermi energy.

6.2 From product basis to position representation

In position representation, the screened interactionW of Eq. (5.30) reads¹

W (r1r2, ω) =
1

|r1−r2|
+W c(r1r2, ω), (6.10)

W c(r1r2, ω) =

∫
dr3dr4

R(r3r4, ω)

|r1−r3||r4−r2|
, (6.11)

where the known spatial dependence of the bare Coulomb interaction v has been writ-
ten explicitly. The correlated part W c, which physically is the potential at r1 due to the
screening hole created by an added test charge at r2, contains all the material-specific spatial
dependence ofW . Fig. 6.1 gives two simplified sketches, for weak and strong screening,
of v, W c and W as a function of the distance between two electrons in an isotropic and
homogeneous medium. Notably, while v and W c decay algebraically at long distances,
W decays exponentially.² The strong-screening case illustrates that W can turn negative
at short distances, indicating a bound state. The task is to find the spatial dependence of
W c in Eq. (6.11) from the components Rijkl(ω) of Eq. (6.1), which comprise a com-
mon output from first-principle codes. R, contrary to W c, decays exponentially at long

¹All results forW carry over to U by replacing R by Rr.
²U decays algebraically, contrary toW .

37



Figure 6.1: Position representation of v, staticW c and staticW in an isotropic and homogeneous system, for weak (left) and strong screening
(right). A local (radial) minimum of W is possible when the screening is strong.

distances and can thus be expanded in a workably small basis. More precisely, the (Bloch)
product basis Bkα (= ϕiϕ

∗
j ) used for P is also complete for R since the v’s in Eq. (6.1)

are sandwiched between P ’s. Consequently, [41]

R(r1r2, ω) =
∑
αβ

∑
k

Bkα(r1)Rαβ(k, ω)B
∗
kβ(r2), (6.12)

whereR is diagonal in wave vector due to the discrete translational symmetry of the lattice.
Combining Eq. (6.11) and Eq. (6.12) finally yields

W c(r1r2, ω) =
∑
αβ

∑
k

Ikα(r1)Rαβ(k, ω)I
∗
kβ(r2), (6.13)

Ikα(r1) =

∫
dr2

Bkα(r2)

|r1−r2|
. (6.14)

This has the same form asR in Eq. (6.12), but withBkα replaced by the convolution Ikα.
The task of Sec. 6.2, which is included in the flowchart of Fig. 6.2, is thus reduced to
computing all convolutions Ikα and using them together with Rαβ(k, ω) in Eq. (6.13).

6.3 Time-domain picture: Impulse and step response

In Sec. 6.2, W (ω) is the Fourier transform of the time-ordered W (τ).³ To access the
causalW (τ) fromW (ω), the imaginary part of the latter has to be multiplied by sign(ω),
as can easily be verified. Here, this factor is absorbed intoW (ω) for convenience, making
its real and imaginary parts even and odd functions of ω, respectively. All information is

³In the absence of external fields,W (t1t2) depends only on the time-difference τ = t1 − t2.
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thus contained in the ω > 0 components. The causal W (τ) is then obtained from the
inverse Fourier transform (see Fig. 6.2)

Wδ(r1r2, τ) =

∫
dω

2π
e−iωτW (r1r2, ω). (6.15)

Subscript δ highlights that it, in linear response theory, is the change of potential V (r1, τ)
of Sec. 5.4 due to an impulse density perturbation at position r2 and time 0 (φ(r1, τ) =
δ(τ)/|r1−r2|). If instead, a frozen impurity is added (φ(r1, τ) = θ(τ)/|r1−r2|, where
θ is the Heaviside step function), the induced change of V (r1, τ) reads

Wθ(r1r2, τ) =
θ(τ)

|r1−r2|
+

∫
dr3dr4dt

R(r3r4, τ−t)θ(t)
|r1−r3||r4−r2|

, (6.16)

The factor θ(t) in the last term requires that t > 0, whereas the causality of R requires that
t < τ . From the variable change τ − t 7→ t, it then follows that (see Fig. 6.2)

Wθ(r1r2, τ) =

∫ τ

0−
dtWδ(r1r2, t) =

∫ τ

−∞
dtWδ(r1r2, t), (6.17)

where the last equality follows from causality. Wθ is thus the anti-derivative ofWδ. While
Wδ has dimension of power,Wθ has dimension of energy, likeW (ω). It has the limits

Wθ(r1r2, τ) =

{
1/|r1−r2| , τ → 0+

W (r1r2, ω = 0) , τ → ∞.
(6.18)

To the best of the author’s knowledge, this quantity has not been studied before. Physically,
it implicitly assumes that the impurity has a large mass to render it frozen. Yet, it provides
a minimal way to study semi-bound states since it is possible thatWθ is negative after some
finite time-delay τ even though both limits in Eq. (6.18) turn out to be positive.

Figure 6.2: Flowchart for obtainingW and U in position representation and time domain, from an initial density functional calculation.
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6.4 Results: Cuprate superconductors versus SrVO3

The schemes of Secs. 6.2-6.3 are applied to the cuprate superconductor parent compounds⁴
La2CuO4 [42] and HgBa2CuO4 [43] and to the correlated metal SrVO3 [44]. G is com-
puted using the full-potential linearized augmented plane-wave DFT code FLEUR [45]
from the band structure of the (spin-unpolarized) local density approximation (LDA), see
Fig. 6.3. Product basis matrix elements of R and Rr are obtained from the code SPEX
[46], which enter a project-specific code used to findW and U of Eqs. (6.5) and (6.8) in
position representation and time domain. Low-energy models are constructed using the
disentanglement method of Sec. 6.1. For the cuprates, the 3-band and 1-band models are
used to define two alternative d subspaces for computing U within cRPA (see Sec. 6.1),
whereas the t2g model is applied to SrVO3. The 3-band model consists of two occupied
bands with mainly oxygen 2px and 2py characters and an antibonding band with mainly
copper 3dx2−y2 character.⁵ The 3-band model thus assumes that the low-energy physics

⁴The parent compounds are by definition undoped, and Mott insulating (of charge transfer type) due to
the strong repulsion between the low-energy 3d electrons (principal quantum number n = 3; orbital angular
momentum l = 2). In the local density approximation they are described by a spurious metallic band crossing
the Fermi energy, which sometimes is used as a minimal model of the doped cuprates.

⁵Here, x, y, xy, yz, xz and x2−y2 specify “real harmonics” Y1,1, Y1,−1, Y2,−2, Y2,−1, Y2,1 and Y2,2.

Figure 6.3: LDA band structures of SrVO3 (black), La2CuO4 (green) and HgBa2CuO4 (red). For SrVO3, the t2g model bands are shown
with blue dotted lines. For the cuprates, the 3-band and 1-band model bands are shown with blue and magenta dotted lines,
respectively. Γ= (0, 0, 0), X = (π/a, 0, 0) and K = (π/a, π/a, 0).
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Figure 6.4: StaticW (top) andU (bottom) in position representation in a CuO2 plane of La2CuO4 and HgBa2CuO4 and in a VO2 plane
of SrVO3. The test charge coordinate r2 is at the (copper or vanadium) atom to the left and at the oxygen atom to the right.
Both the 1- and 3-band U are presented for the cuprates.

takes place in the CuO2 planes.⁶ The 1-band model further simplifies the picture by only
keeping a single antibonding band of copper 3dx2−y2 character. The t2g model for SrVO3

approximates the three bands across the Fermi energy as stemming from the hybridization
of vanadium 3dxy, 3dyz and 3dxz orbitals. The screening from the spurious metallic LDA-
band in the cuprates is excluded from U , which partially justifies the LDA calculation. The
schemes of Secs. 6.2-6.3, however, are applicable to arbitrary DFT energy functionals.

The position representations of the staticW and U obtained from the band structures of
Fig. 6.3 are presented in Fig. 6.4 in a CuO2 plane of the cuprates and in a VO2 plane of
SrVO3.⁷ The r1-dependence is studied in two cases: with the test charge coordinate r2 at
the transitionmetal atom (copper and vanadium) and at the oxygen atom. For the cuprates,

⁶If a is the lattice constant in the CuO2 planes, the unit cell copper coordinate is (0, 0) whereas the oxygen
coordinates are (a/2, 0) and (0, a/2). In SrVO3, the VO2 planes have the same geometry.

⁷The convolution of Eq. (6.14) is achieved using Ewald summation and Gaussian integration, as is ex-
plained in Paper I along with computational details regarding unit cell specifications [42, 43, 44], the product
basis, convergence and the treatment of the contribution to Eq. (6.13) from the Γ point (k = 0).
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Figure 6.5: W c(ω) in La2CuO2, HgBa2CuO4 and SrVO3 with r1 = r2 at the same (copper or vanadium) atom.

both the 1-band and the 3-band U ’s are presented. With r2 at copper, U goes from exclus-
ively positive in the 3-band model to including a negative (bound) region in the 1-band
model. The negative region is caused by transitions between the occupied oxygen 2px and
2py bands and the unoccupied part of the copper 3dx2−y2 band, which leads to a slightly
reduced screening close to the neighboring oxygen sites but a drastically enhanced screening
close to the copper site with the test charge. The shape of the negative region is shown in
Paper I, which also shows that it overlaps to a large extent with that of the 1-band electron
density. In SrVO3, a 1-band model cannot be constructed, and the t2g interaction remains
essentially positive. The existence of a negative 1-band (charge-charge) interaction in the
cuprates is curious, since the pairing mechanism of the doped superconducting cuprates is
known to involve the electron spin [47]. The findings would most probably be modified
by going beyond cRPA or by including spin-orbit interaction. Indeed, at weak coupling,
the charge and spin fluctuations affect each other perturbatively, which could eliminate the
negative regions seen in Fig. 6.4 but also convert the effect to the spin-spin interaction.
The SCDFT (DFT for superconductors) gap equation [48, 49] is used in Paper I to show
that a sufficiently negative W should open up a d-wave superconducting gap. However,
W is not very reliable and requires vertex corrections since it includes unphysical metallic
screening from the LDA band structure.

W c(ω) is presented in Fig. 6.5 in the three compounds, with r1 and r2 at the same
transition metal atom (copper or vanadium). The causal Wδ(τ), which is obtained from
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W c(ω) using Eq. (6.15), is presented in Fig. 6.6. The latter looks similar in all three
compounds. Shortly after the repulsive impulse (not shown in the plot since described by a
delta function at τ = 0) the interaction becomes negative due to the build-up of a screening
hole caused by the repulsion. This hole then attracts some electrons back into the region,
and the cycle is repeated, albeit damped. The time-scale is set by the dominating spectral
features in Fig. 6.5, as can be understood in a simplified picture ifW c(ω) is approximated
by a train of infinite-lifetime plasmons, with weightsWi > 0 and frequencies ωi > 0. Eq.
(6.15) applied to this approximation yields

Wδ(τ) = − 2

π

∑
i

Wi sin(ωiτ)θ(τ). (6.19)

The short-time behavior in the three compounds is determined byW c(ω) in a broad range
of frequencies whereas, due to destructive interference, the long-time behavior is predom-
inantly determined by the structure ofW c(ω) at low frequencies. The bulk plasmon, seen
in all three compounds as a broad structure in the imaginary part of W c(ω) in Fig. 6.5,
therefore strongly influences the short-time behavior in Fig. 6.6. Since the bulk plasmons
are similar in the two cuprates, their short-time behaviors are also similar.

Fig. 6.7 presents U3,θ(τ) for the cuprates, i.e. the analog of Eq. (6.17) due to an impurity,
but for U of the 3-band model. To avoid the divergence stemming from the bare Coulomb
interaction, r1 and r2 are placed close to each other but not at the same place. r1 is placed

Figure 6.6: Wδ(τ) in La2CuO2, HgBa2CuO4 and SrVO3 with r1 = r2 at the same (copper or vanadium) atom.
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at the copper atom and r2 a quarter along the path between the copper and oxygen atom.
Despite the positivity of both the short- and long-time (static) limits, time-intervals are
found with a negative interaction. La2CuO4 shows a single negative time-interval while
HgBa2CuO4 shows two. It is most likely a coincidence that HgBa2CuO4 also has the
highest critical temperature when doped (95 K [50] compared to 38 K [51]).

Figure 6.7: U3,θ(τ) in La2CuO2 and HgBa2CuO4 with r1 at copper and r2 moved a quarter towards oxygen from copper.
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7

Correlations in orbital magnetism

This chapter introduces and summarizes Paper II, titled “Influence of correlations on the
orbital magnetization of the spin-1/2 Haldane-Hubbard model”. The orbital magnetiza-
tion has been accessible in the mean-field approximation for general solids for less than
two decades. In Paper II, the recent extension to correlated electron systems [52] is used to
study the effect of charge fluctuations on the orbital magnetization, by applying it to the
spin-1/2 Haldane-Hubbard model within the one-shot ¹ GW approximation. For a small
local repulsion U , the charge fluctuations are shown to boost the orbital magnetization if
the staggered potential ∆AB of the model is larger than the nearest-neighbor hopping t1.
This boost stems from interband correlations and occurs for all time-reversal symmetry-
breaking phases φ of the next-nearest neighbor hopping t2.

7.1 Orbital magnetization using the Green’s function

The classical orbital magnetic moment for a particle i reads µorb
i = qi

2cri×vi, as follows
from Eq. (3.9). In a second quantized description of electrons, the expectation value of Eq.
(5.12) can be applied to the total orbital magnetic moment. By dividing by the volume V
of the system, the spatially averaged orbital magnetization Morb = 〈µ̂orb〉/V is obtained.
Choosing a spin-dependent Wannier basis, then yields

Morb =
i

2Vc

∑
R1R2

〈ϕσR1n1
|r̂× v̂|ϕσR2n2

〉Gσ
R2n2,R1n1

, (7.1)

whereGσ =Gσσ(tt+). Einstein summation is used only for band and spin indices, ni and

¹The one-shot GW approximation is not self-consistent but uses an approximate mean-field G in the self-
energy as well as in the polarization used to computeW .
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σ. App. D summarizes the derivation [52] forMorb in periodic insulators with vanishing
Chern invariant² (defined in Eq. (7.5)), without residing to Hartree’s atomic units. It splits
into a local part ML due to self-rotation of the Wannier functions and an itinerant part
MI due to rotation of the Wannier functions around the origin:

ML=
−1
2c

∫
dk

(2π)3
〈ũ′σ

kn1
|×

(
Ĥk|ũ′σ

kn2
〉+ ϵ̃σkn3n2

|ũσkn3
〉∇k

)
Gσ

n2n1
(k), (7.2)

MI =
−1
2c

∫
dk

(2π)3
〈ũ′σ

kn1
|×

(
δn1n4 ϵ̃

σ
kn2n3

|ũ′σ
kn2

〉−δn1n2 ϵ̃
′σ
kn4n2

|ũσkn3
〉
)
Gσ

n3n4
(k). (7.3)

The ingredients are defined in the footnote.³ Despite that the itinerant contribution is often
viewed as a surface property, as in Eq. (3.9), it is expressed solely by bulk quantities in Eq.
(7.3). Eqs. (7.2)-(7.3) contain one-body information from |ũσkn〉 and ϵ̃σkn1n2

and correla-
tion effects from the Green’s function. They can be applied to systems with band crossings
since the unitary matrix Sσ

mn(k) ensures that the Bloch states vary smoothly. Without
interactions and band crossings, Sσ

mn(k) = δmn and Gσ
n1n2

(k) = inF(ϵ
σ
kn)δn1n2 , where

nF is the Fermi occupation,⁴ and it follows that

Morb =
1

2c

∫
dk

(2π)3
nF(ϵ

σ
kn)Im〈u′σ

kn|×(Ĥk+ϵ
σ
kn)|u′σ

kn〉 . (7.4)

7.2 Heuristic extension to metals and Chern insulators

Eqs. (7.2)-(7.3) can be extended to metals and Chern insulators, like Eq. (7.4) was by
Ceresoli et al. [53], by introducing a chemical potential µ. ∂Morb/∂µ = 0 in a normal
insulator at zero temperature, but for Chern insulators with non-zero Chern invariant⁵

C =
1

2π

∫
dk nF(ϵ

σ
kn)Ω

σ
kn, (7.5)

whereΩσ
kn = i〈u′σ

kn|×|u′σ
kn〉=− Im〈u′σ

kn|×|u′σ
kn〉 is the Berry curvature [54],⁶ it should

hold that ∂Morb/∂µ ∝ C due to the presence of surface states. With regards to Eq. (7.4),
this is achieved by enforcing energy shift invariance by extending it to

Morb =
1

2c

∫
dk

(2π)3
nF(ϵ

σ
kn)Im〈u′σ

kn|×(Ĥk+ϵ
σ
kn−2µ)|u′σ

kn〉 . (7.6)

²In Chern insulators, the Chern invariant of Eq. (7.5) does not vanish.
³ũσ

kn (uσ
km) is the Bloch-periodic part of ψ̃σ

kn (ψσ
km) in Eq. (4.15),Gσ

n2n1
(k)=

∑
R e

−ik·RGσ
Rn2,0n1

,
|ũ′σ

kn⟩ = |∇kũ
σ
kn⟩ and ϵ̃′σkn1n2

= ∇kϵ̃
σ
kn1n2

, where ϵ̃σkn1n2
= Sσ†

n1n3
(k)ϵσkn3

Sσ
n3n2

(k). The eigenvalues
ϵσkn fulfil Ĥ|ψσ

kn⟩= ϵσkn|ψσ
kn⟩ and Ĥk|uσ

kn⟩= ϵσkn|uσ
kn⟩, where Ĥk = e

−ik·r̂Ĥeik·r̂.
⁴Since the zero-temperature Green’s function is used, nF(ϵkn) is 1 (0) for (un-)occupied states.
⁵C stems from non-conservation of charge and (parallel) momentum on the edge of the system, which is

equal and opposite to the bulk non-conservation. C is thus simultaneously an edge and bulk quantity.
⁶The Berry curvature is a gauge-independent geometric property of the band structure.

46



The correction from the 2µ-term in Eq. (7.6) can be written as

∆Morb =
µ

c(2π)2
C. (7.7)

This has been shown [55] to yield the correct linear µ-dependence for Chern insulators.
Numerical tests have also confirmed Eq. (7.6) for metals, making it valid for all solids. It
constitutes the core of the modern theory of orbital magnetization,⁷ developed in the early
2000s [56, 57, 53, 12, 58, 55, 59, 60, 61, 62]. This theory drastically outperforms the
famous atomic sphere approximation in metals. Chern insulators acquire a non-vanishing
C due to a spontaneously broken time-reversal (T) symmetry, which stems either from
magnetic ordering, orbital ordering or both. This is understood from Eq. (7.5), which
shows that the crucial quantity is the Berry curvature, which can be written in the “magnetic
field form” Ωσ

kn =∇k ×Aσ
kn, where the vector potential A

σ
kn = i〈uσkn|∇k|uσkn〉 is the

gauge-dependent Berry connection.⁸ Ω↓
−kn = −Ω↑

kn for T symmetric systems [59], so
that C= 0 after integration in Eq. (7.5).

The same argument can be made for interacting many-body systems by replacing Ĥ by
Ĥ−µ in the velocity formula of Eq. (D1) in App. D. The extensions of Eqs. (7.2)-(7.3)
to general solids then take the form (ξ̃σkn1n2

= ϵ̃σkn1n2
−µδn1n2 and ξ̃′σkn1n2

= ϵ̃′σkn1n2
)

ML=
−1
2c

∫
dk

(2π)3
〈ũ′σ

kn1
|×

(
(Ĥk−µ)|ũ′σ

kn2
〉+ ξ̃σkn3n2

|ũσkn3
〉∇k

)
Gσ

n2n1
(k), (7.8)

MI =
−1
2c

∫
dk

(2π)3
〈ũ′σ

kn1
|×

(
δn1n4 ξ̃

σ
kn2n3

|ũ′σ
kn2

〉−δn1n2 ξ̃
′σ
kn4n2

|ũσkn3
〉
)
Gσ

n3n4
(k). (7.9)

7.3 Anomalous Hall effect

The Berry curvature Ωσ
kn modifies the wave packet group velocity ∂ϵσkn/∂k by an addi-

tional “Luttinger anomalous velocity” dk/dt × Ωσ
kn, which violates Liouville’s theorem

[59]. In T symmetry breaking systems, the anomalous velocity underlies the intrinsic
(scattering-free) quantum anomalous Hall effect (QAHE) [63]. To understand the QAHE,
it is imperative to first understand the (classical) anomalous Hall effect (AHE),⁹ since
the effect of quantum mechanics is merely to yield a discretized Hall conductivity (see
Sec. 7.4). A simple classical picture starts by revisiting the Lorentz-Stern-Gerlach force
of Eq. (3.4), but boosting it from the material’s to the (slowly) moving electron’s rest

⁷The modern theory also covers electric polarization due to spontaneously broken inversion symmetry [6].
⁸Ωσ

kn andAσ
kn generalize the magnetic field and vector potential to extended coordinate spaces, and yield

the Berry phase — a path-dependent phase contribution accumulated during adiabatic time-evolution. Ωσ
kn

becomes singular at points of degeneracy.
⁹AHE is used to probe magnetic order in solids, and is more convenient than optical methods.
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frame. The boost is obtained by the replacements Ei(t) 7→ Ei(t) +
1
cvi(t) × Bi(t),

Bi(t) 7→Bi(t)− 1
cvi(t)×Ei(t) and vi(t) 7→ 0, and results in the force

Fi(t) =−
(
Ei(t)+

1

c
vi(t)×Bi(t)

)
+∇

(
µS
i (t) ·Bi(r, t)

)∣∣∣
r=ri(t)

(7.10)

− 1

c
∇
(
µS
i (t) ·

(
vi(t)×Ei(r, t)

))∣∣∣
r=ri(t)

.

The Lorentz force alone is not altered by the boost but the Stern-Gerlach force results in
the spin-orbit force in the second line,¹⁰ which sets in if the magnetic moment is not in
the plane spanned by the velocity and the electric field, provided that the latter varies at
the position of electron i. The ordinary Hall effect (OHE) originates from the Lorentz
force terms in Eq. (7.10), due to a constant external magnetic field Bext

i (t) = H and
average driven current density 〈J(t)〉 = −n〈v(t)〉 = − n

N

∑
i vi(t) (n: average electron

density). Adding a Drude relaxation term 1
nτ 〈J(t)〉 to the average Lorentz force, where τ

is the relaxation time, results in the steady-state condition

OHE : 〈P〉=− 1

4πnτ
〈J〉+ 1

4πnc
〈J〉×H, (7.11)

where 〈P〉 is the average electric polarization, with a component perpendicular to 〈J〉 and
H. In the AHE,H is replaced by 4π times the spontaneous magnetization 〈M〉, so that¹¹

AHE : 〈P〉=− 1

4πnτ
〈J〉+ 1

nc
〈J〉×〈M〉. (7.12)

The usual definition of AHE requires that 〈J〉, 〈M〉 and 〈P〉 are established without ex-
ternal fields. To get a finite 〈M〉, the magnetic moments have to correlate due to dipole-
dipole or exchange interaction. The spin-orbit force term in Eq. (7.10) correlates the ve-
locity and magnetic moment of an electron, but if different magnetic moments correlate,
different velocities correlate too. This ‘spin Hall effect’ (SHE) is needed to get a spontan-
eous current density 〈J〉 in Eq. (7.12).¹² All terms in Eq. (7.10) are thus required to obtain
a finite AHE, which relies on the SHE. However, Eq. (7.12) is generally incomplete, since
it does not include the Stern-Gerlach and spin-orbit force terms in steady state.

7.4 The Haldane-Hubbard model

The QAHE is important in two-dimensional systems, say in the xy plane, with Berry
curvature along the z-axis . The Chern invariant of Eq. (7.5) then reads C=Cez , where

¹⁰Despite being derived in the electron’s rest frame, Eq. (7.10) will be assumed to hold also in the material’s
rest frame. Under this assumption, the total force in Eq. (7.10) is not altered by the boost.

¹¹More generally, ⟨J⟩× ⟨M⟩ is replaced by ⟨J×M⟩, as is important in frustrated spin liquids, where AHE
can exist without a macroscopic magnetization ⟨M⟩ [64].

¹²SHE does not require T symmetry breaking, contrary to AHE.
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Figure 7.1: The Haldane (honeycomb) lattice, where sublattice A (B) is shown in gold (bronze) and fluxes (Φa, Φb and Φc) are indicated
for different regions of a Wigner-Seitz unit cell. The arrows between next-nearest neighbors indicate the hopping direction with
positive phase accumulation due to the broken T symmetry.

ez is the z-axis unit vector and C the Chern number (integer). C counts the magnetic
vortices in the Brillouin zone, and the quantum anomalous Hall conductivity equals the
von Klitzing constant 1/2π times C. The difference ∆C between two adjacent materials
is the number of gapless chiral edge states propagating on their shared boundary.

The Haldane model [65] is the simplest model of QAHE, where T symmetry is broken
due to a periodic magnetic field B(r), albeit without a net magnetic flux in the unit cell,
allowing for a periodic gauge¹³ and the use of Bloch functions. The model is a generaliz-
ation of graphene and consists of a honeycomb lattice with hexagonal Wigner-Seitz unit
cells, depicted in Fig. 7.1, with two sublattices A and B. Since the unit cell, with vanishing
magnetic flux, can be enclosed by repeated nearest-neighbor (NN) hoppings, the NN hop-
ping integral t1 can be chosen as real-valued. However, the next-nearest-neighbor (NNN)
hopping cannot. To see this, it is helpful to define (for sublattice A and similarly for sub-
lattice B) the NNN hopping integral t12 = |t12|eiϕαβ between atoms 1 and 2 in Fig. 7.1,
and similarly t23 and t31, all with magnitudes t2. With S denoting the triangular surface
enclosed by the path 1→ 2→ 3→ 1, it follows from the Aharonov-Bohm effect that

t12t23t31 = (t2)
3ei(ϕ12+ϕ23+ϕ31) = (t2)

3e−
i
c

∫∫
S dS n̂·B(r), (7.13)

where the unit normal vector n̂ = −ez due to the right-hand rule. As pointed out by
Haldane [65], the physical origin of the magnetic field can be the presence of magnetic
moments in the z direction located at the centres of the hexagonal Wigner-Seitz unit cells.
While each hopping phase is gauge-dependent, the total accumulated (Berry) phase in Eq.
(7.13) is not. If the latter is denoted as 3ϕ, the simplest gauge choice is to choose the phase
ϕ for each hopping, so that t12 = t23 = t31 = t2e

iϕ. If the path is reversed, the normal
vector and thus the phase flips, which results in complex conjugated hopping integrals.
The total magnetic flux through S is Φ = 6Φa + 3Φb, as verified from Fig. 7.1, in terms

¹³In the periodic gauge, both the scalar potential and the vector potential are lattice-periodic.
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of which the total phase reads 3ϕ = Φ/c, which implies that ϕ = (2Φa+Φb)/c. In the
half-filled spin-1/2 Haldane model, each unit cell (which contains two sites, A and B) has
two electrons. The magnetic field B(r) generally leads to Zeeman splitting between the
spin-up and -down states, but this effect is neglected here and magnetically unpolarized
electrons are assumed. This is possible despite a non-zero NNN hopping phase ϕ, since
the latter depends on B(r) in the entire region S whereas the Zeeman effect depends on
it only where the electronic orbitals have a high amplitude.¹⁴ Having laid the groundwork
for the spin-1/2 Haldane model, the Hamiltonian can be written down. It reads

ĤH = t1
∑
σ

∑
⟨ij⟩

ĉ†iσ ĉjσ + t2
∑
σ

∑
⟨⟨ij⟩⟩

eiϕij ĉ†iσ ĉjσ +∆AB

∑
σ

∑
i

ξi ĉ
†
iσ ĉiσ, (7.14)

where 〈ij〉 (〈〈ij〉〉) restricts the summation to NN (NNN) sites, ϕij = ϕ (−ϕ) for hoppings
parallel (anti-parallel) to the arrows in Fig. 7.1 and ∆ABξi, where ξi∈A = 1 and ξi∈B =
−1, is an inversion symmetry-breaking staggered potential present if sublattices A and B
contain different atoms. For small t2, a mass-less Dirac semimetal is obtained if ∆AB = 0
and ϕ = 0 (mod π), a normal insulator with C = 0 if ∆AB 6= 0 and ϕ = 0 (mod π)
and a Chern insulator with C = 1 (per spin channel) if ∆AB = 0 and ϕ 6= 0 (mod π).
The Haldane-Hubbard model extends the model to correlated electrons [66, 67] . If the
important Coulomb integrals are the (site-independent) on-site and NN interactions U
and U ′, Eq. (7.14) extends to (with n̂iσ = ĉ†iσ ĉiσ)

ĤHH = ĤH + U
∑
i

n̂i↑n̂i↓ +
U ′

2

∑
σ1σ2

∑
⟨ij⟩

n̂iσ1
n̂jσ2

. (7.15)

¹⁴This most likely requires more than one background magnetic moment per unit cell, to cancel out B(r)
in the electronic orbitals. An alternative, not considered here, is to assume that the electrons are fully spin
polarized, which results in the spinless version of the model.

Figure 7.2: Orbital magnetization Mσ (black) for the non-interacting Haldane model with t1 = Eh, t2 = t1/3 and ϕ = π/4 as a
function of staggered potential∆AB, with average and minimum band splittings (red and gold) included for comparison. White
background: C = 2. Lavender background: C = 0.
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7.5 Results: Orbital magnetization with GW correlations

The orbital magnetization Morb = Morbez (Eqs. (7.8)-(7.9)) is computed for the half-
filled Haldane-Hubbard model (Eq. 7.15), with the G computed within the GW and
Hartree approximations, i.e. with and without exchange and correlations due to electronic
charge fluctuations. The GW self-energy (Eq. (5.32)) is computed at the one-shot level
from a self-consistent Hartree reference,¹⁵ as is customary but leads to spin-unpolarized
solutions. Since GW self-consistency is avoided, also the Hamiltonian Ĥσ

k used in Eqs.
(7.8)-(7.9) is computed in the Hartree approximation. Future topics involve the study of
the spin-polarized and spinless (fully polarized) cases as well as the extension to the self-
consistent GW approximation, where not onlyG is self-consistent but where also the 2×2
Hamiltonian in Eqs. (7.8)-(7.9) reads Ĥσ

k = −Gσ(k, ω = 0)−1. The spin-unpolarized
treatment of this work implies that Morb gets equal contributions Mσ = Morb/2 from
spin ↑ and ↓. The same holds forC, which thus equals 0 or 2 (1 requires spin polarization).
Sσ
mn(k) is reduced to δmn since the employed k ·p perturbation formula [68]

|u′σ
kn1

〉=
∑

n2 ̸=n1

|uσkn2
〉〈uσkn2

|∇kĤk|uσkn1
〉

ϵσkn1
− ϵσkn2

(7.16)

requires no smooth gauge, as is convenient since diagonalizing Ĥσ
k yields random phases

for each k. G is computed with a small numerical temperature (kBT = 0.025t1) using the
Matsubara formalism [22] and the one-shot GW calculation includes a shift of µ needed
to conserve the electron number. The plots forMσ below also specify C and the average
and minimum band splittings, avk{ϵσk21} and mink{ϵσk21} (the direct gap). In the GW
approximation, these splittings are obtained from the eigenvalues of −Gσ(k, ω = 0)−1,
mentioned above. Computational details are found in Paper II.

The dependence ofMσ on∆AB in the absence of interactions is presented in Fig. 7.2 for
the values t1 =Eh (Hartree energy unit), t2 = t1/3 and ϕ = π/4 of the seminal paper by
Thonhauser et al. of Ref. [56], in units of µB/A, where µB = 1/2c is the Bohr magneton
and A the unit cell area. The monotonic decrease of Mσ with |∆AB| is understood by
the increase of avk{ϵσk21} caused by the latter. More specifically, inserting Eq. (7.16) into
Eq. (7.6) shows that Mσ picks up a factor of (ϵσk21)

−2 for each k. If mink{ϵσk21} is
not too small, this factor can roughly be approximated by (avk{ϵσk21})−2. The reciprocal
relationship betweenMσ and avk{ϵσk21} is evident from Fig. 7.2. The system is a Chern
insulator with C = 2 below∆AB ≈ 1.2t1, but a normal insulator above this value. When
crossing the transition, the gap mink{ϵσk21} is closed and reopened, yielding a semimetal
at the transition point, as expected. The value ofMσ at∆AB = 2t1 agrees with Ref. [56].

¹⁵An erratum to Paper II is to be published. The results are correct but based on a Hartree rather than
Hartree-Fock reference, as stated in the paper. It also states that the intersite exchange potential vanishes,
which is incorrect but not assumed in the code. A Hartree-Fock reference yields spin ordering for largeU [66].
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Figure 7.3: Orbital magnetization Mσ (black) for the spin-1/2 Haldane-Hubbard model with t1 = Eh, t2 = t1/3, ∆AB = 2t1 and
ϕ = π/4 as a function of on-site and intersite interactionsU andU ′, with average and minimum band splittings (red and gold)
included for comparison. White background: C = 2. Lavender background: C = 0. Top: Hartree approximation. Bottom:
GW approximation.

The Hartree and GW approximations for Mσ are compared in Fig. 7.3 for different U
and U ′ of the spin-1/2 Haldane-Hubbard model (Eq. (7.15)), with ∆AB = 2t1. In the
Hartree approximation, U counteracts ∆AB, which is observed through the reduction of
avk{ϵσk21}. Mσ thus increases with U and approaches its value for ∆AB = 0 in Fig. 7.2.
U ′ has the opposite effect. Charge fluctuations contained in the GW approximation are
seen to boostMσ additionally. This boost, however, has nothing to do with the splitting
avk{ϵσk21}, which essentially is the same as in the Hartree approximation. Instead, the
boost is attributed to the two terms of Eqs. (7.8)-(7.9) that vanish in the mean field and
are switched on by interband correlations.

Fig. 7.4 presents the analogous results for ∆AB = 0. The U -independence of Mσ in
the Hartree approximation is a consequence of the electrons already being delocalized at
U = 0. On the other hand, increasing U ′ beyond a certain threshold has a localizing effect
and leads to charge segregation. All electrons end up on one of the sublattices, which breaks
the inversion symmetry of the U ′ = 0 solution. An effective∆AB is thus generated, which
drastically reduces Mσ. Contrary to the findings for ∆AB = 2t1, the additional charge
fluctuations of the GW approximation are seen to reduce Mσ. The reason for this is a
suppression of the interband correlations when ∆AB = 0, which previously were shown
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to boost Mσ. Instead, the important effect is the reduction of the band splitting due to
intraband correlations, which from the arguments made earlier leads to a reduced Mσ.
A general finding common to Figs. 7.2-7.4 is that Mσ typically is large in the Chern
insulating phase and small in the normal insulating phase. Paper II contains figures not
included here, including a plot that presents the change ofMσ due to charge fluctuations
in the plane of U and ∆AB, for U ′ = 0. For small U it is found that a boost occurs
essentially for ∆AB > t1, i.e. if the staggered potential dominates the nearest-neighbor
hopping. For large U , boost occurs essentially if ∆AB >U/3.

As a final result, the dependence ofMσ on the complex hopping phase φ is shown in Fig.
7.5 for the non-interacting system as well as the on-site interacting system with U = 5t1,
within both the Hartree and the GW approximation. The staggered potential∆AB = 2t1
is used. The non-interacting results agree with Ref. [56]. Apart from the rescaling ofMσ

due to U , the overall shapes of all three curves are very similar. Importantly, the maximum
is still close to φ= π/4, as in the non-interacting system.

Figure 7.4: Orbital magnetization Mσ (black) for the spin-1/2 Haldane-Hubbard model with t1 = Eh, t2 = t1/3, ∆AB = 0 and
ϕ = π/4 as a function of on-site and intersite interactionsU andU ′, with average and minimum band splittings (red and gold)
included for comparison. White background: C = 2. Lavender background: C = 0. Top: Hartree approximation. Bottom:
GW approximation.
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Figure 7.5: Orbital magnetization Mσ for the spin-1/2 Haldane-Hubbard model with t1 = Eh, t2 = t1/3 and ∆AB = 2t1 for
vanishing U (left) and U =5t1 in the Hartree approximation (middle) and GW approximation (right).
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8

Ab initio exchange-mediated
magnon-phonon interaction

This chapter introduces and summarizes Paper III, titled “Magnon-phonon interaction and
the underlying role of the Pauli exclusion principle”. The magnon-phonon interaction A
is crucial in many solid-state devices and technologies. It enters spin caloritronics since it
affects the interplay between heat and spin currents [69] and acoustic spintronics since it
can be used for spin pumping [70, 71]. It also yields phononic spin [72, 73, 74] and a
mechanism for the thermal Hall effect [75]. The non-relativistic exchange contribution is
less understood than the spin-orbit contribution and therefore derived in Paper III from the
underlying electronic structure. First, the finite-temperature interaction ∆ between refer-
ence (Hartree-Fock) magnons is derived by utilizing the Fierz ambiguity and Schwinger’s
functional derivative method. After a Hubbard approximation, ∆ is iterated, contracted
to a two-point quantity and extended to account for phonons. The result indirectly yields
a microscopic formula for A and is applied to a three-dimensional model with isotropic
magnon dispersion and a dispersion-free optical phonon. Increasing A from zero induces
a magnon band splitting at finite temperatures by phonon absorption, which increases the
low-energy magnon density of states and thus decreases the Curie temperature.

8.1 Independent magnons and phonons

As discussed in Sec. 5.5, the dynamical information contained in the linear spin-density
response Rµν of Eq. (5.34) can be used to find the collective charge and spin excitation
spectra of the electrons in a solid. The collectivity stems from the pairwise interaction
between the electrons. For the spin part of the response, the dominant interaction is the
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Figure 8.1: Simple illustration in two dimensions of how a magnetic ground state is altered by a magnon excitation (left) and how a lattice
ground state is altered by a phonon excitation (right).

exchange interaction, which stems from the Coulomb interaction and the Pauli exclusion
principle of electrons. The transverse components R+− and R−+, where σ+ = σx +
iσy and σ− = σx − iσy, describe right- and left-handed circularly polarized magnons,
i.e. quantized spin waves. The focus here is on right-handed magnons, which reduce the
total spin of the system by 1.¹ These are bosonic low-energy spin excitations in (z-axis)
ferromagnets [76, 77, 78], antiferromagnets [79], ferrimagnets [80], multiferroics [81, 82]
and in more complicated set-ups, such as magnetic nano devices, and play a key role in
spintronics. From Eqs. (5.33)-(5.34), it follows that the right-handed spin response reads

R+−
ijkl(t1t2) = 4R↓↑↓↑

ijkl(t1t2) = 4R↓↑↓↑
ijkl(t1t

+
1 t2t2), (8.1)

The left panel of Fig. 8.1 depicts a magnonmode in a two-dimensional ferromagnet. Simil-
arly, a two-dimensional phonon mode is depicted in the right panel. Phonons, which were
discussed in Sec. 5.7, are bosonic quasiparticles that describe low-energy lattice excitations,
i.e. quantized lattice vibrations, and acquire their collectivity from the Coulomb interac-
tion between the ions. In addition to magnons and phonons, the most important bosonic
quasiparticles are plasmons, contained inR00, which describe electronic charge fluctuations
and acquire their collectivity from the Coulomb interaction between electrons.

8.2 Deriving the magnon-phonon interaction

Magnons, phonons and plasmons are in general interdependent, but since plasmon ener-
gies are typically higher than that of magnons and phonons, it often suffices to study the
magnetoelastic excitations steeming exclusively from the interplay between magnons and
phonons, as can be imagined from Fig. 8.1 as a situation where the spin solid angles cor-
relate with the lattice displacements. More specifically, reference magnons and phonons
are initially computed separately, followed by the inclusion of a magnon-phonon interac-
tion between the two. This approach is suitable if the interaction is sufficiently weak. The
magnon-phonon interaction has two origins: the spin-orbit interaction [83, 84] and the
exchange interaction [85]. The former, which leads to magnon-phonon interconversion²

¹Left-handed and right-handed magnons are connected by the relation R−+
ijkl(t1t2) =R+−

lkji(t2t1).
²Magnon-phonon interconversion means that magnons can propagate into phonons, and vice versa.
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and avoided crossing between the magnon and phonon spectra, enters through a relativ-
istic extension of the random-phase approximation, and is thus well-understood. Less un-
derstood is the latter, which forbids magnon-phonon interconversion (i.e. conserves the
magnon number) due to the non-relativistic spin conservation requirement and stems from
the dependence of the exchange interaction between two spins on their positions relative to
the background lattice, and thus on lattice vibrations. The main goal of Paper III is to de-
rive this contribution from the underlying electronic structure. A good starting point is to
consider the well-known [86] form for the phonon-induced magnon-magnon interaction
in a model with a single magnon and phonon band. Its Fourier space expression is³

∆↓↑↓↑(k, ω) =

∫
dq

ΩBZ

∣∣Aq

∣∣2( nP
q−nM

k−q

ω+ωP
q−ωM

k−q+ iη
+

1+nP
q+n

M
k−q

ω−ωP
q−ωM

k−q+ iη

)
, (8.2)

where ωP
q is the phonon dispersion, ωM

q the magnon dispersion and nPq and nMq the associ-
ated Bose occupations. Most importantly, Aq is the exchange-mediated magnon-phonon
interaction, which enters to second order. The goal is thus to derive Eq. (8.2) using the
Green’s function formalism of Chap. 5, and by doing so also to derive the magnon-phonon
interaction Aq. If the reference magnons are obtained from the Hartree-Fock interaction
(see Eqs. (5.39)-(5.40)), the starting point of the derivation is the magnon-magnon com-
ponent of the four-point interaction ∆ of Eq. (5.41), namely

∆↓↑↓↑
ijkl(t1t2t3t4) = i

δΣc↓↑
ij(t1t2)

δG↓↑
kl(t3t4)

, (8.3)

where Σc is the correlation part of Eq. (5.25). By expressing ∆ in terms of the screened
interactionW of Eq. (5.30), phonons can be accounted for at the end by deformingW as
in Eq. (5.45). While details are found in Paper III, the derivation involves the steps:

1. Sincemagnons and phonons are excited thermally, the zero-temperature formalism is
replaced by a finite-temperature formalism, where the Hamiltonian Ĥ0 of Eq. (5.1)
is replaced by the grand canonical Hamiltonian Ĥ0 − µN̂ (N̂ : number operator)
and the real-time G by the imaginary-time Green’s function G.

2. The Fierz ambiguity of Sec. 4.5 is utilized to turn the Coulomb interaction into the
crossing symmetric spin-dependent interaction of Eq. (4.26), schematically denoted
by v below. Crossing symmetry is important in order to treat charge and spin on
equal footing, as shows to be essential to derive the magnon-phonon interaction.

3. Σc is expressed in terms of a crossing-symmetric four-point generalization of W ,
denoted by W . Schematically, Σc = −vG3W where W = V + VPW , V =
δM/δG and P = GG. M is the finite-temperature extension of the mass operator
M = V HF+Σc. Factors of i are lacking due to the finite-temperature formalism.

³Term one (two) describes phonon absorption (emission). In the T → 0 limit, only the emission survives.
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4. This step is included for simplicity and can be skipped. v is assumed to be diagonal
in theWannier basis i= (R, n) to mimic the short-range interaction in a low-energy
model. Mathematically, this means taking⁴

vσ1σ2σ3σ4
ijkl =

Ui

2
(δσ1σ2δσ3σ4 − δσ1σ3δσ2σ4)δijδjkδkl. (8.4)

5. The magnon-magnon interaction δΣc↓↑/δG↓↑ acquires three categories of terms con-
taining W↑↑↑↑, W↓↑↓↑ and δW↓↑↑↑/δG↓↑, respectively. With W = V+Wc (Wc =
VPW), V is replaced by the Hartree-Fock interaction (2×Eq. (8.4)) and Wc by

W c σ1σ2σ3σ4
ijkl = δijδklWc

σ1σ2σ3σ4
ik − δikδjlWc

σ1σ3σ2σ4
ij , (8.5)

where Wc = 2vRHF2v and RHF is the Hartree-Fock two-point spin-density re-
sponse. Using crossing symmetry, the (second) exchange term is written as a spin-
permuted direct term. Particle-particle contractions of P are neglected.

Figure 8.2: The four terms in the four-point magnon-magnon interaction ∆↓↑↓↑ amenable to phonons in such a way as to lead
to Eq. (8.2). Green’s function arrows point from the first to second time argument.

6. The resulting four-point magnon-magnon interaction ∆↓↑↓↑ is contracted to a two-
point direct (i.e. ‘bubble-bubble’) interaction. This involves imaginary time integ-
ration of G, for which an accurate yet simple approximation is proposed (details
in Paper III). Out of the three categories of terms in ∆↓↑↓↑, only that containing
δW↓↑↑↑/δG↓↑ (which is comprised of the the four terms depicted in Fig. 8.2) retains
spatiotemporal dispersion effects after contraction. The others (which include the
screened T matrix [87]) reduce to point interactions and are dropped since they can
be absorbed in a parameter used to enforce the Goldstone criterion for the magnons.⁵

⁴Here and in Eq. (8.5), the time variable is absorbed in the orbital index.
⁵The Goldstone criterion requires that the magnon energy vanishes in the long-wavelength limit.
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In a 1-band model, the band index drops out and (the finite-temperature extension
[22] of ) Eq. (5.38) for the renormalized magnons reduces to⁶

R↓↑↓↑(k, iωm) =
R↓↑↓↑

HF (k, iωm)

1−R↓↑↓↑
HF (k, iωm)∆↓↑↓↑(k, iωm)

, (8.6)

∆↓↑↓↑(k, iωm) = − 1

Nβ

∑
qωn

∑
σ1σ2

Gσ1Gσ2W ↓↑↓↑
c (k−q, iωm− iωn) (8.7)

×W σ1σ1σ2σ2
c (q, iωn),

in Fourier space, where ωm = 2πm/β (withm ∈ Z) are bosonic Matsubara freqi-
encies and β = 1/kBT is the thermodynamic beta. With mean-field [88] electronic
dispersion (Fermi occupation) ϵσk (nσk), the approximate contraction of G reads

Gσ =
1

N

∑
k

nσk − 1/2

|ϵσk − µ|
. (8.8)

7. The spin-conserving part of Wc in Eq. (8.7) is deformed by phonons through a
finite-temperature version of the replacement scheme by Hedin and Lundqvist [34,
35] outlined in Sec. 5.7. Eq. (5.46) is extended to account for spin through the
replacement r 7→ (r, σ). The deformation for a single phonon mode reads

W σ1σ1σ2σ2
c (q, iωn) 7→W σ1σ1σ2σ2

c (q, iωn) + gσ1
q D(q, iωn)g

σ2∗
q , (8.9)

where the last term is the spin-dependent extension ofW ph, gσq the one-momentum
electron-phonon interaction⁷ and

D(q, iωn) =
2ωP

q

(iωn)2 − (ωP
q)

2
(8.10)

the adiabatic phonon propagator, with phonon dispersion ωP
q. Eqs. (8.7) and (8.9)-

(8.10) and the (usually valid) quasiparticle ansatz R↓↑↓↑
HF (k, iωm) = 1/(iωm − ωM

k )
lead to the desired expression (i.e. Eq. (8.2)) for the phonon-induced magnon-
magnon interaction after Matsubara summation and analytic continuation (iωm 7→
ω + iη),⁸ but with an ab initio exchange-mediated magnon-phonon interaction⁹

Aq = U
∑
σ

Gσgσq. (8.11)

⁶In practice, Eq. (8.7) is complemented by a shift to enforce the Goldstone criterion.
⁷In Ref. [35], gσq is shown to be related to the screened force of Sec. 5.7.
⁸The first (plasmonic) term in Eq. (8.9) is dropped and the continuous limit 1

N

∑
k →

∫
dq

ΩBZ
is taken.

⁹U is the Hubbard interaction of Eq. (8.4) with dropped band index.
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8.3 A minimal three-dimensional model

To illustrate how a typical magnon spectrum is renormalized (and shifted) by the magnon-
phonon interaction Aq of Eq. (8.11), a minimal model is considered. Future studies
should aim at computing Aq in real materials. The renormalized magnon spectrum is ob-
tained by analytically continuing Eq. (8.6) and inserting the magnon-magnon interaction
∆ of Eq. (8.2), which depends on Aq only through its squared magnitude∣∣Aq

∣∣2 = U2
((

G↑)2∣∣g↑q∣∣2 + (
G↓)2∣∣g↓q∣∣2 + 2G↑G↓Re

(
g↑qg

↓∗
q

))
. (8.12)

From this expression it follows that the usual momentum average approximation [89] for
the electron-phonon interaction, i.e. for

∣∣g↑q∣∣2, ∣∣g↓q∣∣2 and 2Re
(
g↑qg

↓∗
q

)
, also implies a

momentum average approximation for the magnon-phonon interaction, so that
∣∣Aq

∣∣2
reduces to A2 for some positive ‘magnon-phonon interaction strength’ A. A minimal
three-dimensional model with a wave vector-independent∆ is obtained by assuming a flat
optical phonon dispersion ωP

q = ωP and isotropic magnon dispersion ωM
q = ωM

q . By ap-
proximating the Brillouin zone by a sphere with radius K =

(
3ΩBZ
4π

)
1/3, the momentum

integral in Eq. (8.2) reduces to a radial momentum integral, resulting in

∆↓↑↓↑(ω) = A2

∫ K

0

4πq2dq

ΩBZ

(
nP−nM

q

ω+ωP−ωM
q + iη

+
1+nP+nM

q

ω−ωP−ωM
q + iη

)
. (8.13)

Figure 8.3: Real and imaginary parts (red and blue) of the phonon-induced magnon-magnon interaction ∆↓↑↓↑(ω) with A = 32meV,
ωP=50meV, ωM

q =100 sin2
( πq
2K

)
meV,K= π

a (a=7a.u.) and convergence parameter η=0.3meV. Dark colors: T = 0
K. Bright colors: T = 300K.
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Figure 8.4: Magnitude of the renormalized magnon spectral function,AM(k, ω), for three values ofA (8meV, 16meV and 32meV) with
ωP = 50meV, ωM

q = 100 sin2
( πq
2K

)
meV, K= π

a (a=7 a.u.) and convergence parameter η = 0.3meV. Left: T = 0K.
Right: T = 300K.

8.4 Results: Renormalized magnons

The phonon-induced magnon-magnon interaction ∆↓↑↓↑(ω) of Eq. (8.13) is presented
at both zero temperature (T = 0 K) and room temperature (T = 300 K) in Fig. 8.3,
with magnon-phonon interaction strength A = 32 meV, a typical optical phonon en-
ergy of ωP = 50meV and quadratic (ferromagnetic) isotropic magnon dispersion ωM

q =
100 sin2

( πq
2K

)
meV.The representative value ofK = π

a (a= 7 a.u.) is chosen. The domin-
ant dispersion feature centered at the sum energy ωM

K+ωP = 150meV stems from phonon
emission, which is present at T = 0 K. The two low-energy features at T = 300 K are
due to phonon absorption and centered at the difference energies ωM

K−ωP = 50meV and
ωM
0 −ωP =−50meV, where the latter stems from a large Bose occupation factor. Since the

phonon energy is chosen in the middle of the magnon band, the positive difference energy
equals the phonon energy. The magnitude of the renormalized magnon spectral function,

AM(k, ω) = 1
π

∣∣ImR↓↑↓↑(k, ω)
∣∣= 1

π

∣∣Im∆↓↑↓↑(ω)
∣∣(

ω−ωM
k −Re∆↓↑↓↑(ω)

)2
+
(
Im∆↓↑↓↑(ω)

)2 , (8.14)

is shown in Fig. 8.4 for the same parameters except with a variable magnon-phonon in-
teraction strength A.¹⁰ At T = 0 K, phonon emission leads to magnon line broadening
in the ‘sum energy interval’ [ωM

0 +ωP, ωM
K +ωP] = [50, 150]meV, for which the second

¹⁰The magnitude is presented since bosonic spectral functions turn negative for ω < 0. Strictly speaking,
the last equality in Eq. (8.14) only holds if η → 0.
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term in the denominator of Eq. (8.14) dominates, and to a satellite feature above the max-
imum sum energy ωM

K + ωP = 150 meV, for which the first term in the denominator
of Eq. (8.14) dominates, provided that ω ≈ ωM

k +Re∆↓↑↓↑(ω). For A = 32meV, Fig.
8.3 can be used to understand the satellite energy graphically. At T = 300 K, phonon
absorption leads to additional magnon line broadening in the ‘difference energy interval’
[ωM

0 − ωP, ωM
K − ωP] = [−50, 50] meV and, in particular, to a suppression of spectral

density at the dominant difference energy ωM
K −ωP = 50meV. While the magnon dens-

ity of states does not vanish, the effect approximates to a splitting of the magnon band,
typically attributed to spin-orbit interaction [90]. Integrating the product of the Brillouin
zone-averaged AM and the absolute value of the Bose occupation factor over ω yields the
z-axis magnetization reduction due to magnons in units of γ/V = −gµB/V , where V
is the unit cell volume. Assuming the magnetization 0.5 γ/V at T = 0 K yields the T -
and A-dependent z-axis spin magnetizationM of Fig. 8.5. Deviations from the famous
T 3/2 law is observed when increasing A from 0, together with a reduction of the Curie
temperature TC (except for very large A), whose A-dependence is also included in Fig.
8.5. This reduction stems from the increased low-energy magnon density of states, caused
by the thermal splitting due to phonon absorption, as observed in Fig. 8.4.

Figure 8.5: Top: MagnetizationM as a function of T and A. Bottom: Curie temperature TC as a function of A.
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9

Dynamic exchange-correlation
method for the Green’s function

This chapter introduces and summarizes Paper IV, titled “Spectral functions of the half-
filled one-dimensional Hubbard chain within the exchange-correlation potential formal-
ism”. The Green’s function G is a useful tool to determine, among other things, the Fermi
surface in conductors and band gap in semiconductors and insulators. Unlike the wave-
function, it depends on only two spatial (and spin) coordinates in many-electron systems.
Since the emergence of Green’s function theory in the 1950s, self-energy methods based
on Dyson’s equation [23, 91] have been the standard for computing G. It was recently
shown [1] that the equation of motion for G is naturally reformulated so as to replace
the convolution term ΣG by a multiplicative term VxcG, where Vxc is the time-dependent
exchange-correlation potential, caused by the exchange-correlation hole density nxc. In Pa-
per IV, the formalism is applied to the spectral function of the half-filled 1-band Hubbard
chain, using the exact Vxc of the Hubbard dimer. At the one-shot level, analytic spectra are
available and found to be close to those of the more sophisticated dynamic density-matrix
renormalization group method, and the U -dependent band gap is similar to the exact one,
found using the Bethe ansatz.

9.1 Time-dependent exchange-correlation potential

The Hierarchy problem refers to the fact that in order to solve the equation of motion
for the one-electron Green’s function G, the two-electron Green’s function G2 is needed,
which in turn requires G3, and so on. This is cured with Schwinger’s functional derivative
method, as described in Sec. 5.3. Combining Eqs. (5.17) and (5.19) and changing to
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position representation, with brief notation r = (r, σ), yields δ(τ)δ(r1r2)

=
(
i
∂

∂τ
− h(r1)− VH(r1, τ)

)
G(r1r2, τ)− i

∫
dr3v(r1r3)

δG(r1r2, τ)

δφ(r3, τ)
, (9.1)

where VH(r1, τ) =
∫
dr3v(r1r3)n(r3, τ) is the Hartree potential, written in terms of the

electron number density n(r3, τ). Eq. (9.1) uses that G only depends on the relative time
τ = t1 − t2 in the absence of time-varying fields.¹ While Eq. (9.1) formally solves the
Hierarchy problem, it does not do so in practice. This is where the self-energy Σ enters.
First, imagine ignoring the δG/δφ term. This immediately yields G as the inverse of the
parenthesis in the first term, i.e. as the Hartree Green’s function GH. When including
δG/δφ, G can be solved for in exactly the same way by factorizing out a factor of G, as is
achieved by defining the self-energy Σ from the convolution

−
∫
dr3dτ

′Σ(r1r3, τ − τ ′)G(r3r2, τ
′) = −i

∫
dr3v(r1r3)

δG(r1r2, τ)

δφ(r3, τ)
. (9.2)

This turns Eq. (9.1) into a matrix equation (G−1
H −Σ)G = I, known as Dyson’s equation,

which is more commonly written in the formsG−1 = G−1
H −Σ andG = GH+GHΣG.

Despite being one of the most important many-body tools, Σ does not have a clear phys-
ical interpretation, unlike the exchange-correlation potential in density functional the-
ory, which acts locally rather than non-locally in space and time. A new way of express-
ing Schwinger’s Hierarchy truncation was recently found [1], where the time-dependent
exchange-correlation potential² Vxc is defined from the alternative relation

−Vxc(r1r2, τ)G(r1r2, τ) = −i
∫
dr3v(r1r3)

δG(r1r2, τ)

δφ(r3, τ)
, (9.3)

so that

δ(τ)δ(r1r2) =
(
i
∂

∂τ
− h(r1)− VH(r1, τ)− Vxc(r1r2, τ)

)
G(r1r2, τ), (9.4)

Eq. (9.3) is similar to yet different from Eq. (9.2), since Vxc is defined from a product
rather than a convolution. It is useful to think of r2 in Eq. (9.4) as fixed so that the
equation is equivalent to a Schrödinger equation for the Green’s function if τ 6= 0 and
r1 6= r2. Due to Coulomb interaction, Vxc is generally non-Hermitian, which leads to a
time-decaying Green’s function and thus to line broadening. The multiplicative property
of Vxc separates the equation of motion into one for the hole (t < 0) and another for
the electron (t > 0). This is in contrast to the self-energy approach in which solving
for the hole Green’s function requires explicit knowledge of the electron Green’s function

¹The field φ is to be regarded as vanishing, but not derivatives with respect to it.
²This time-dependence is not a dependence on absolute time but on relative time (time delay).
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and vice versa. On the other hand, the self-energy formalism is more natural in frequency
domain, since Dyson’s equation can be solved for each frequency separately whereas the
exchange-correlation potential formalism involves a frequency convolution. Thus, the two
approaches complement one another. It follows from Eqs. (9.2)-(9.3) that Vxc and Σ are
related through the relation

Vxc(r1r2, τ)G(r1r2, τ) =

∫
dr3dτ

′Σ(r1r3, τ − τ ′)G(r3r2, τ
′). (9.5)

In contrast to the self-energy approach, which can be extremely time consuming for large
systems, a universal exchange-correlation potential with the ground-state density as input
would allow for applications to large systems. The self-energy approach was recently called
into question in the context of the half-filled two-dimensional Hubbard model [92], yield-
ing a metal rather than an insulator due to the implicit summation of reducible diagrams
when solving Dyson’s equation, so that it differs from the direct expansion at each order.
The exchange-correlation potential formalism, on the other hand, does not rely on Dyson’s
equation but rather on direct construction based on known results of model systems and
on exact properties of the exchange-correlation hole.

9.2 Time-dependent exchange-correlation hole

When an electron is added it induces a density fluctuationnxc called an exchange-correlation
hole, which generates an exchange-correlation potential

Vxc(r1r2, τ) =

∫
dr3v(r1r3)nxc(r1r2r3, τ) (9.6)

that acts back on the electron. Eq. (9.3) then yields³

nxc(r1r2r3, τ)G(r1r2, τ) = i
δG(r1r2, τ)

δφ(r3, τ)
. (9.7)

G2 in the equation of motion (Eq. (5.17)) can be written in terms of nxc as

〈T [n̂(r3, τ)ψ̂(r1, τ)ψ̂†(r2, 0))]〉 = iG(r1r2, τ)
(
n(r3) + nxc(r1r2r3, τ)

)
, (9.8)

but also naturally defines the correlator g from the ansatz

〈T [n̂(r3, τ)ψ̂(r1, τ)ψ̂†(r2, 0))]〉 = iG(r1r2, τ)g(r1r2r3, τ)n(r3), (9.9)

³nxc can be deformed and set to fulfil nxc(r1r2r3, τ t3)G(r1r2, τ) = iδG(r1r2, τ)/δφ(r3, t3). The
relation δG = −GδG−1G then yields an expression in terms of the screening ϵ−1 = −δG−1/δφ.
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which implies the relation

nxc(r1r2r3, τ) =
(
g(r1r2r3, τ)− 1

)
n(r3) (9.10)

between the exchange-correlation hole and the correlator. It is left as an exercise to show
that by integrating G2 over r3, first for τ < 0 and then for τ > 0, leads to the sum rule⁴∫

dr3nxc(r1r2r3, τ) = −δσ1σ3θ(−τ), (9.11)

which justifies the hole terminology. Locally, nxc can be complex, but the imaginary
part integrates to zero. g is independent of the Coulomb interaction v, and does there-
fore not lump it together with other quantities, like Σ does. The exchange-correlation
formalism can therefore exploit the simple distance-dependence of v, which implies that
only the spherical average of the exchange-correlation hole is relevant [93, 17], which sim-
plifies the search for a good approximation for the exchange-correlation potential. The
time-dependent exchange-correlation hole of Eq. (9.10) generalizes the static exchange-
correlation hole. The latter, which is obtained when τ → 0− and r2 → r1, determines the
exchange-correlation energy [94, 17, 18] in density functional theory [15, 16, 17, 18]. The
connection to density functional theory suggests that some very successful approximations
may be applied also to the time-dependent formalism based on the Green’s function, such
as the local density approximation [94].

9.3 Results: From the dimer to the chain

In the previous work [1], the formalism was illustrated by deriving the exact Vxc of the
Hubbard dimer analytically by means of reverse engineering. In Paper IV, the formalism is
applied by using this dimer Vxc to calculate G in the one-dimensional half-filled Hubbard
chain. The exact Bethe ansatz provides a good benchmark for the dispersion and yields
two (holon and spinon)⁵ branches of collective excitations [95, 96]. Spinons and holons
are also found in real materials, such as SrCuO2 [97, 98]. In addition to the dispersion,
dynamical density-matrix renormalization group spectra [99] furnish a benchmark for the
spectral distributions. The Hamiltonian of the Hubbard dimer reads

Ĥ = −∆
∑
i ̸=j

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓, (9.12)

⁴For t > 0 (addition of an electron), nxc integrates to zero. Indeed, there is no hole created and the added
electron is not part of the electron density that generates the Hartree potential, in contrast to the electron-
removal case, in which the system has lost one electron and necessitates the removal of self-interaction.

⁵The electron can be thought of as a bound state of spinons, holons and orbitons, which carry spin, charge
and orbital degrees of freedom. Systems with strong confinement can display spin-charge separation, which
means that the spinons and holons behave rather independently.
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Figure 9.1: Real and imaginary parts of the two distinct time-dependent components of the exchange-correlation potential of the Hubbard
dimer, V xc and ∆V xc, for different values of U/∆.

where i, j = 1, 2. The exact Vxc components in the bonding and anti-bonding orbitals,
V xc
aaaa and V xc

bbbb,⁶ are both given by (α defined in the footnote⁷) [1]

V xc(t > 0) =
αU

2

1− α2e−i4∆t

1− α4e−i4∆t
, (9.13)

and the other non-vanishing components, V xc
abab and V xc

baba, by

∆V xc(t > 0) =
αU

2

(1− α2)e−i2∆t

1− α4e−i4∆t
. (9.14)

From particle-hole symmetry, V xc(−t) = −V xc(t). The two complex time-dependent
functions of Eqs. (9.13)-(9.14) are plotted in Fig. 9.1 for different relative interaction
strengths U/∆. High-amplitude oscillations are shown to be attributed to strong correl-
ations, and low-amplitude oscillations to weak correlations. This is expected since weakly
correlated systems are known to be well-described by a static mean field. Another feature,
which is shared by the static exchange-correlation potential of density functional theory
[100], is the discontinuity in V xc at t = 0, equal to the difference between the electron

⁶The components V xc
ijkl are ordered like vijkl of Eq. (4.18).

⁷α= (1−x)/(1+x) is the ratio between the gap and the interactionU and x = (
√
U2 + 16U2−U)/4∆

the relative weight of double-occupancy configurations in the ground state.
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Figure 9.2: The total spectral functions of the 1D Hubbard chain for U/∆ = 2, 4, 6 and 8 obtained using the approximations described
in the text. A broadening of 0.1∆ is used.

(t = 0+) and hole (t = 0−) values. The time dependence is seen to be dictated by the
excitation energies of the (N ±1) systems. For many-electron systems, this should include
collective excitations, like plasmons with a field variation eiωPt, exchanging plasmon en-
ergy ωP with the system. This expectation is confirmed in Paper IV when considering the
Holstein Hamiltonian (not included here).

In the Hubbard chain, the Hamiltonian is the same but with unrestricted i and j. The
equation of motion in the Bloch functions ψk(r) reads⁸(

i∂t − εq
)
G(q, t)−

∑
k

V xc(qk, t)G(k, t) = δ(t), (9.15)

where εq = −2∆cos qa and a is the lattice constant of the chain. The constant Hartree
potential is absorbed into the chemical potential. An approximation is made where the
exactVxc components of theHubbard dimer, Eqs. (9.13)-(9.14), are employed by replacing
V xc(qq, t) by V xc(t) and, for q 6= k, V xc(qk, t) by∆V xc(t)/N , so that(

i∂t − εq − V xc(t)
)
G(q, t)− 1

N

∑
k

∆V xc(t)G(k, t) = δ(t) (9.16)

for large N . The second term is written as −∆V xc(q, t)G(q, t), with

∆V xc(q, t) =
1

N

∑
k

G(k, t)

G(q, t)
∆V xc(t) ≈ 1

N

∑
k

e−i(εk−εq)t∆V xc(t). (9.17)

⁸V xc(qk, t) = V xc
qkqk(t). Other components vanish.
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In the last step, a non-interacting G has been assumed as a first approximation. Further-
more, V xc and ∆V xc in Eqs. (9.13)-(9.14) can be expanded to linear order in α as⁹

V xc(t) ≈ αU

2
, (9.18) ∆V xc(t) ≈ αU

2
e−i2∆t. (9.19)

The constant component in Eq. (9.18) shifts the one-particle energy whereas the excitation
term of Eq. (9.19) generates the main satellite through its time-dependence e−i2∆t. To
first order in ∆V xc, the hole Green’s function takes the form (in t and ω domain)

Gh(q, t) = iθ(−t)e−i(εq−αU
2

)t

(
1− αU

2N

∑
k

e−i(εk−εq−2∆)t−1

εk − εq − 2∆

)
, (9.20)

Gh(q, ω) =
Ah

0

ω −
(
εq − αU

2

)
− iη

− 1

N

∑
k

Ah(k)

ω − (εk − αU
2 − 2∆)− iη

, (9.21)

where Ah
0 = 1 + 1

N

∑
k A

h(k) and Ah(k) = αU
2 /(εk − φq − 2∆). In Paper IV and the

results below, the α3-correction to∆V xc(t) is kept, which changes the weights αU/2 into
αU(1− α2)/2. The α3-correction to V xc(t) is dropped, despite being of the same order,
since only the main (lowest-energy) excitation is of interest in this first study. A similar
derivation is carried out for the electron Green’s function in Paper IV. For the electron/hole
case it is understood that both εk and εq correspond to unoccupied/occupied states.

The total hole spectral functions with U/∆ = 2, 4, 6 and 8 are shown in Fig. 9.2 and
the k-resolved spectra with U/∆ = 7.74 in Fig. 9.3, at k points for which dynamical
density-matrix renormalization group results are available [99]. Due to the approximation
of replacing G by the non-interacting value in Eq. (9.17), there is no spectral weight

⁹α2 remains small for quite big U/∆. For example, it is 0.172 for U/∆=4 and 0.382 for U/∆=8.

Figure 9.3: Thek-resolved spectral functions of the 1DHubbard chain forU/∆ = 7.74. U andk have been chosen to facilitate comparison
with Fig. 11 of Benthien and Jeckelmann [99]. A broadening of 0.1 is used.
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above the chemical potential for the hole Green’s function. Despite the simplicity of the
approximation used, the k-resolved spectra in Fig. 9.3 are in favorable agreement with Ref.
[99]. A notable discrepancy is the dispersion widths for both the spinon and the holon
branches, which results in small-k peaks with lower energy compared to Ref. [99]. This is
a consequence of using the non-interactingG and the Hubbard dimer V xc, which neglects
long-range correlations and thus suppresses band dispersion. The advantage of analytical
calculations is that the structure of the k-resolved hole spectra in Fig. 9.3 can be understood
from Gh of Eq. (9.21). The first term yields the main peak centered at ω = εq − αU

2 ,
interpreted as the spinon excitation. The second term with the weight Ah(k) set to unity
yields the non-interacting occupied density of states shifted by −(αU2 + 2∆). A more
detailed explanation is in Paper IV. The calculated band gap, which is given by αU , is
displayed in Fig. 9.4 and compared with the exact result [101],

Egap =
16∆2

U

∫ ∞

1

ds
√
s2−1

sinh
(
2π∆s
U

) , (9.22)

obtained from the Bethe ansatz. The agreement between the analytically calculated gap
and the exact gap is quite striking, considering the simple approximations used. In the
limit of large U the calculated gap approaches the exact gap. Importantly, a gap opens
up for all positive U . It should be noted that in the widely used dynamical mean-field
theory (DMFT) [102] within the single-site approximation, the gap is not opened up until
U/∆> 6. Only within the cluster DMFT with an even number of sites does the gap form
for all positive U [103].

Figure 9.4: The calculated band gap, αU , compared with the exact gap obtained from the Bethe ansatz as a function of U . The calculated
gap approaches the exact result as U increases.
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Appendices (Parts I-II)
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A: Deriving the Lorentz-Stern-Gerlach force

Integrating Fi of Eq. (3.1) yields

Fi(t)= qi

(
Ei(t)+

1

c
vi(t)×Bi(t)

)
+

∫
dr

(
∇×

(
µS
i (t)δ(r−ri(t))

))
×Bi(r, t), (A1)

where the fields Ei(t) andBi(t) are evaluated at the time-dependent position ri(t) of the
particle. Vector calculus the yields (with ∇·Bi(r, t) = 0)∫

dr
(
∇×

(
µS
i (t)δ(r−ri(t))

))
×Bi(r, t)

= µS
i (t)

∫
dr

(
Bi(r, t)·∇δ(r− ri(t))

)
−
∫
dr

(
µS
i (t)·Bi(r, t)

)
∇δ(r− ri(t)) (A2)

=−µS
i (t)

∫
dr

(
∇·Bi(r, t)

)
δ(r− ri(t))+

∫
dr∇

(
µS
i (t)·Bi(r, t)

)
δ(r− ri(t)) (A3)

= ∇
(
µS
i (t)·Bi(r, t)

)∣∣
r=ri(t)

. (A4)

The force thus takes the form of Eq. (3.4).

B: Deriving the Pauli coupling Hamiltonian

Vector calculus and the divergence theorem yields (with Bi(r, t) = ∇×Ai(r, t))

Hi(t) = HMC
i (t) +

mic

qi

∫
dr

(
∇×

(
µS
i (t)δ(r− ri(t))

))
· vi(r, t) (B1)

= HMC
i (t) +

mic

qi

∫
dr

(
µS
i (t)δ(r− ri(t))

)
·
(
∇× vi(r, t)

)
(B2)

= HMC
i (t)−

∫
dr

(
µS
i (t)δ(r− ri(t))

)
·
(
∇×Ai(r, t)

)
(B3)

= HMC
i (t)− µS

i (t) ·Bi(t), (B4)

neglecting the term quadratic in the magnetization current. HMC
i (t) is the minimal coup-

ling Hamiltonian of Eq. (3.5). Eq. (B4) is the Pauli coupling Hamiltonian of Eq. (3.8).

C: Deriving the Schrödinger-Pauli equation

Based on Ref. [104]. Quantities n(rr′, t) and S(rr′, t) are defined from the Fourier trans-
forms n(r,p, t) =

∫
dr′e2ip·r

′/~n(rr′, t) and S(r, t)n(r,p, t) =
∫
dr′e2ip·r

′/~S(rr′, t),
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where ~ (Planck’s reduced constant) has dimension of action. Eq. (4.1) then takes the form(
i~
∂

∂t
− ~2

2m

∂2

∂r·∂r′
+q∇ϕ(r, t)·2r′

)
n(rr′, t)−γ

∑
i

Si(rr
′, t)∇Bi(r, t)·2r′ = 0. (C1)

If ~ is treated as small it follows that n and S are non-zero only for small values of r′. The
terms of the form∇f(r) ·2r′ can then be replaced by f(r+)−f(r−), where r+ = r+r′

and r− = r− r′. With ∂2

∂r·∂r′ =
∂2

∂r2+
− ∂2

∂r2−
, it follows that

i~
∂

∂t
n(rr′, t) =

(
~2

2m

∂2

∂r2+
− qϕ(r+, t)

)
n(rr′, t) + γB(r+, t) · S(rr′, t) (C2)

−
(
~2

2m

∂2

∂r2−
− qϕ(r−, t)

)
n(rr′, t)− γB(r−, t) · S(rr′, t).

Searching for solutions to Eq. (C2) of the form

n(rr′, t) = Ψ†(r+, t)Ψ(r−, t), (C3) S(rr′, t) = Ψ†(r+, t)SΨ(r−, t), (C4)

where Ψ(r, t) =
(
Ψ↑(r, t) Ψ↓(r, t)

)T is the two-component spinor wavefunction¹⁰ and

S =
~
2
σ =

~
2
(σx, σy, σz) =

~
2

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
(C5)

is the spin operator (σi are Pauli matrices), yields

Ψ†(r+, t)

(
i~
∂

∂t
+

~2

2m

∂2

∂r2−
−qϕ(r−, t)+γS·B(r−, t)

)
Ψ(r−, t)−(r+↔r−)

∗= 0. (C6)

The non-trivial solution Ψ fulfils the Schrödinger-Pauli equation of Eq. (4.2).

D: Deriving the orbital magnetization

Heisenberg’s equation of motion, exemplified by Eq. (5.15), can be applied to the position
operator to define the velocity operator. In the Schrödinger picture, it then follows that

v̂ =
i

~
[
Ĥ, r̂

]
, (D1)

where Ĥ is the Hamiltonian without external fields. For periodic systems, the one-body
Bloch eigenstates |ψσ

kn〉 = eik·r̂|uσkn〉, where uσkn(r) = 〈r|uσkn〉 is lattice-periodic, fulfil

¹⁰The spinor follows from Dirac’s relativistic quantum mechanics, where it has four components. In the
non-relativistic limit, particle-antiparticle decoupling results in an effective two-component spinor.
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Ĥ|ψσ
kn〉 = ϵσkn|ψσ

kn〉 and are related to the Wannier states |ϕσRn〉 by Eqs. (4.14)-(4.15).
The momentum-average 1

N

∑
k is replaced by a continuous integral

∫
dk

(2π)3/Ω
, where Ω =

V/N is the unit cell volume. It is also useful to introduce |ũσkn〉= e−ik·r̂|ψ̃σ
kn〉. The states

are normalized to 〈ψ̃σ1
k1n1

|ψ̃σ2
k2n2

〉 = (2π)3

Ω δ(k1−k2)δn1n2δσ1σ2 and 〈ϕσ1
R1n1

|ϕσ2
R2n2

〉 =
δR1R2δn1n2δσ1σ2 . The unitary matrix Sσ

mn(k), which is a spin-dependent generalization
of that in Eq. (4.15), guarantees that the Bloch states vary smoothly at k points with
degeneracies. It is thus crucial for obtaining exponentially localizedWannier functions, and
is optimized by minimizing their spread [19]. It is here assumed that |ψ̃σ

k+G,n〉= |ψ̃σ
kn〉,

where G is a reciprocal lattice vector, as applies to periodic solids with a vanishing Chern
invariant (see Eq. (7.5)).

The cross product of Eq. (7.1) can be split into (r̂−R1)× v̂ andR1× v̂. For the diagonal
components (|ϕσR1n1

〉 = |ϕσR2n2
〉), the former describes a local contribution associated

with the self-rotation of the Wannier functions and the latter an itinerant contribution
stemming from the rotation of the centre-of-mass of the Wannier functions around the
origin. Morb will thus be written as the sum ML +MI, where L and I denote the local
and itinerant contributions, respectively. The local contribution can be written as

ML =
i~e
2Ωc

∑
R

〈ϕσ0n1
|r̂× v̂|ϕσRn2

〉Gσ
Rn2,0n1

(D2)

=
−e
2Ωc

∑
R

〈ϕσ0n1
|r̂×Ĥ r̂|ϕσRn2

〉Gσ
Rn2,0n1

(D3)

=
−e
2c

∫
dk

(2π)3
〈ũ′σ

kn1
|×

(
Ĥk|ũ′σ

kn2
〉+ ϵ̃σkn3n2

|ũσkn3
〉∇k

)
Gσ

n2n1
(k), (D4)

with the definitions ϵ̃σkn1n2
=Sσ†

n1n3(k)ϵ
σ
kn3

Sσ
n3n2

(k),Gσ
n2n1

(k)=
∑

R e
−ik·RGσ

Rn2,0n1
,

|ũ′σ
kn〉= |∇kũ

σ
kn〉 and Ĥk = e−ik·r̂Ĥeik·r̂ (Ĥk|uσkn〉= ϵσkn|uσkn〉). Einstein summation

is used for the band and spin indices. Eq. (D2) holds since the local part of Eq. (7.1) is
independent of R1 and Eq. (D3) follows from Eq. (D1). Eq. (D4) uses the relation

r̂|ϕσRn〉 = i

∫
dk

(2π)3/Ω
eik·r̂∇k

(
e−ik·R|ũσkn〉

)
, (D5)

which is verified by partial integration. The itinerant contribution can be written as

MI =
i~e
2Vc

∑
R1R2

R1×〈ϕσR1n1
|v̂|ϕσR2n2

〉Gσ
R2n2,R1n1

(D6)

=
−e
2Ωc

∑
R1R2

R1×
(
〈ϕσR1n1

|Ĥ|ϕσ0n3
〉〈ϕσ0n3

|r̂|ϕσR2n2
〉−Ĥ↔ r̂

)
Gσ

R2n2,R1n1
(D7)

=
−e
2c

∫
dk

(2π)3
〈ũ′σ

kn1
|×

(
δn1n4 ϵ̃

σ
kn2n3

|ũ′σ
kn2

〉−δn1n2 ϵ̃
′σ
kn4n2

|ũσkn3
〉
)
Gσ

n3n4
(k), (D8)
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where ϵ̃′σkn1n2
=∇kϵ̃

σ
kn1n2

. Eq. (D7) utilizes Eq. (D1), the completeness relation and the
fact that both G+ and the matrix elements of Ĥ only depend on the difference between
the lattice vectors. This first yields Eq. (D7), but with R1j replaced by R1j+R3j and r̂k
by r̂k+R3k. However, sinceR3×R3 = 0, the terms containingR3jR3k vanish, and since
for eachR3 there is an associated −R3, also the terms linear in either R3j or R3k vanish.
Eq. (D8) is obtained by first making use of the relations

〈ϕσR1n1
|r̂|ϕσR2n2

〉=R1δR1R2δn1n2− i
∫

dk

(2π)3/Ω
eik·(R1−R2)〈ũ′σ

kn1
|ũσkn2

〉, (D9)

〈ϕσR1n1
|Ĥ|ϕσR2n2

〉 =
∫

dk

(2π)3/Ω
eik·(R1−R2)ϵ̃σn1n2

(k), (D10)

where Eq. (D9) follows from Eq. (D5), and performing partial integration. The boundary
term vanishes since |ψ̃σ

k+G,n〉= |ψ̃σ
kn〉 is assumed.
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