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Background: Quantification of tumor burden from bone scan in the form of automated bone scan index (aBSI) has
been validated as an imaging biomarker for patients with prostate cancer. Positron emission tomography combined
with computed tomography (PET/CT) is more sensitive and accurate compared to conventional imaging such as bone
scan. The evaluation of medical images including PET/CT is challenged by time-consuming and subjective analysis, and
issues with intra- and inter-reader agreement. An objective and quantitative method for analysis of PET/CT, similar to
aBSI for bone scan, is an unmet need. Artificial intelligence (Al) has the potential to meet this need.

Aim: The aim of this thesis was to develop Al-based models for automated quantification of skeletal tumor burden,
and for detection of pelvic lymph node lesions, in PET/CT scans from patients with prostate cancer.

Methods: In paper |, standardized uptake value (SUV)-based PET indices reflecting the whole-body tumor burden in
["®F]fluoride PET/CT scan were calculated in a group of patients with prostate cancer, and compared to aBSI. For proof
of concept, the association of PET index with overall survival was investigated. In paper II, convolutional neural
networks (CNNs) were trained to segment the axial skeleton in CT scans. In paper Ill, CNNs were trained to segment
bone lesions in ["®F]fluoride PET for automated quantification of the skeletal tumor burden. The PET indices in paper |
and IIl were also compared to a SUV threshold for lesion segmentation. In paper IV, a CNN was trained and tested to
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against readers used as reference.

Results: Paper | showed that the SUV-based PET index was associated with overall survival. In paper II, the Al model
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Conclusions: Al-based models for automated assessment of PET/CT were developed. Tumor burden measured from
PET/CT carries prognostic information in patients with prostate cancer. The difficulty in achieving high inter-reader
agreement emphasizes the need for automated and objective scan interpretation. Al-assisted quantification of tumor
burden holds potential as a future prognostic imaging biomarker for patients with prostate cancer. Increasing the
amount and variety of training data should further enhance the performance of the proposed models.
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Preface

Over the course of this PhD study, the field of prostate cancer imaging has rapidly
evolved. At the time when study I was initiated, there was increasing evidence in
support of the high sensitivity of ['®F]fluoride PET/CT. As it was speculated to
eventually replace bone scan as the first-line modality for the depiction of bone
metastases in prostate cancer patients, ['*F]fluoride PET/CT is the predominantly
studied radiopharmaceutical in this thesis. Since then, PSMA-targeting
radiopharmaceuticals have emerged as the most promising for prostate cancer imaging.
At Skane University Hospital, ['**FIPSMA-1007 PET/CT has been available for clinical
use since 2019, enabling the inclusion of this scan type in paper IV.
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Introduction

Prostate Cancer

Prostate cancer is the second most common cancer and the fifth leading cause of cancer
death in men worldwide, with approximately 1.4 million new cases and 375,000 deaths
annually." Australia/New Zealand, North America, and Europe have the highest
incidence rates, while mortality rates are highest in Southern Africa, the Nordic
countries, and parts of South America (Fig. 1). In Europe, an estimated 473,000 new
cases and 108,000 deaths were diagnosed in 2020. The cumulative risk of being
diagnosed with prostate cancer is 16% over a lifetime, while the risk of prostate cancer
death before the age of 75 is 1% in Europe. A rapid increase in prostate cancer detection
rates was seen in several high-income countries during the early to mid-1990s, with the
introduction of prostate-specific antigen (PSA) testing.” After increasing for several
years, prostate cancer incidence trends have been stabilizing or decreasing during the
last 5-10 years. This is likely due in part to caution of PSA testing, given the possibility
of unnecessary diagnosis of clinically insignificant disease.” Contrarily, mortality rates
have decreased in several European countries, likely reflecting the advancements in
treatment.”’

Histopathological Grading

Prostate cancer is commonly suspected based on an elevated serum PSA level, and/or
an abnormal digital rectal examination. The final diagnosis depends on
histopathological examination of prostate tissue biopsies. Grading of prostatic
adenocarcinoma using the International Society of Urological Pathology (ISUP) 2014

5 in which growth pattern and degree of differentiation of

modified Gleason system,
the tumor cells are assessed and assigned a score, is a prognostic factor for clinical
behavior and treatment response (Table 1).” The ISUP grade is calculated as the sum
of the most prevalent, plus the highest Gleason grade among the remaining tumor areas,
in the biopsy sample. The resulting value ranges from 1-5, and with an increasing grade,

the risk of prostate cancer-related mortality increases.®
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Fig. 1. Estimated age-standardized incidence rates (top, blue) and mortality rates (bottom, red) of prostate cancer in the
world in 2020. Reprinted with permission.®

Table 1. International Society of Urological Pathology 2014 grading of prostate cancer.*

ISUP Grade Group Gleason Score
1 <6
2 7 (3+4)
3 7 (4+3)
4 8
5 9-10
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Staging

Clinical and pathological staging are approaches to evaluate the prognostic
characteristics of prostate cancer. Clinical tumor (cT) staging is used at initial diagnosis
based on the findings during digital rectal examination and results from prostate cancer
biopsies, while pathological tumor (pT) staging is evaluated in surgically removed
tissues (Table 2). The 2022 European Association of Urology (EAU) guidelines on
prostate cancer'’ recommend the use of multiparametric magnetic resonance imaging
(mpMRI), which provides information on tissue density, microvascular blood flow and
vessel permeability, prior to prostate biopsy to reduce overdiagnosis and allow targeted
biopsies of detected lesions. The value of mpMRI for staging primary prostate cancer
is still to be established. A meta-analysis showed a sensitivity of only 61% (95% CI
[confidence interval] 54-67%), and a specificity of 88% (95% CI 85-91%) for T3
tumors (see below for T3 definition)."! However, MRI can provide valuable
information for planning local therapy.'’

Prostate cancer is staged according to the eighth edition of the Union for International
Cancer Control (UICC) tumor, node, metastasis classification of malignant tumors
(TNM)."* Regional lymph node metastases (N1) are defined as spread to the nodes of
the true pelvis, located below the bifurcation of the common iliac arteries. They include
pelvic, hypogastric, obturator, iliac, and sacral nodes. Distant metastases (M1) include
lymph nodes outside the true pelvis including paraaortic lumbar, common iliac,
superficial and deep inguinal and retroperitoneal lymph nodes, as well as bone and
visceral metastases.

The European Association of Nuclear Medicine (EANM) recently proposed a
molecular imaging TNM (miTNM), taking into account findings on prostate-specific
membrane antigen positron emission tomography with computed tomography (PSMA
PET/CT, see under PSMA PET/CT’)."* Unlike the UICC TNM classification,
miTNM considers common iliac lymph nodes regional lymph nodes (miN1). As such,
the N1/M1a definition is a matter of debate and is expected to be addressed in the
coming ninth edition of the UICC TNM classification."

15



Table 2. The Union for International Cancer Control tumor, node, metastasis (TNM) classification of prostate cancer.™

Clinical Tumor (cT) Stage

X Primary tumor cannot be assessed
TO No evidence of primary tumor
T1 Clinically inapparent tumor that is not palpable
Tla Tumor incidental histological finding in <5% of tissue resected
Tlb Tumor incidental histological finding in >5% of tissue resected
Tlc Tumor identified by needle biopsy found in one or both sides, but not palpable
T2 Tumor is palpable and confined within the prostate
T2a Tumor involves one-half of one lobe or less
T2b Tumor involves more than one-half of one lobe, but not both lobes
T2c Tumor involves both lobes
T3 Extracapsular tumor that is not fixed and does not invade adjacent structures
T3a Extracapsular extension (unilateral or bilateral)
T3b Tumor invades seminal vesicle(s)
T4 Tumor is fixed or invades adjacent structures other than seminal vesicles such as external

sphincter, rectum, bladder, levator muscles, and/or pelvic wall

Pathological Tumor (pT) Stage

T2 Organ confined

T3 Extraprostatic extension
T3a Extraprostatic extension (unilateral or bilateral) or microscopic invasion of bladder neck
T3b Tumor invades seminal vesicle(s)

T4 Tumor is fixed or invades adjacent structures other than seminal vesicles such as external

sphincter, rectum, bladder, levator muscles, and/or pelvic wall

Regional Lymph Node (N) Stage

NX Regional lymph nodes not assessed
NO No regional lymph node metastasis
N1 Regional lymph node metastasis

Distant Metastasis (M) Stage

MO No distant metastasis

M1 Distant metastasis
Mila Non-regional lymph node(s)
M1b Bone(s)
Mic Other site(s) with or withour bone metastasis

NOTE: There is no pathological T1 classification.

Risk Stratification

Newly diagnosed patients with prostate cancer without known metastases are stratified
according to their risk of biochemical recurrence (BCR) following local treatment with
curative intent. According to the EAU guidelines,'” patients are categorized into low,
intermediate-, and high-risk groups depending on PSA levels, ISUP grade (Gleason
score), and cT stage (Table 3). A higher risk group is associated with a more aggressive

cancer and poorer prognosis.® ®
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Table 3. European Association of Urology risk groups for biochemical recurrence of localized and locally advanced prostate

cancer.'®

Low-risk

Intermediate-risk

High-risk

PSA <10 ng/mL
and

PSA 10-20 ng/mL
or

PSA >20 ng/mL
or

Any PSA

ISUP grade 1 ISUP grade 2/3 ISUP grade 4/5 Any ISUP grade
and or or

cT1-2a cT2b cT2c cT3-4 or cN+
Localized Locally advanced

ISUP: International Society of Urological Pathology; PSA: Prostate-specific antigen.

Maetastatic Prostate Cancer

Lymph Node Metastases

The detection of regional lymph node metastases (N1) is important for prognosis and
follow-up in patients with newly diagnosed prostate cancer, as they are associated with
distant metastases and negatively correlated with survival.” The gold standard for
diagnosing pelvic lymph node spread is through histopathological analysis of tissue
obtained from an extended pelvic lymph node dissection (ePLND) and is
recommended in high-risk localized and locally advanced disease.'’ It is an invasive
procedure, with up to 20% of patients experiencing postoperative complications, with
lymphocele being the most common adverse event.'® Different nomograms have been

developed and validated based on systemic random biopsies,"”** and more recently

based on MRI-guided biopsies,*" ** that help calculate the individual risk of lymph node
metastases in a patient prior to treatment. However, these nomograms do not identify
the presence of lymph node metastases and cannot replace diagnostic modalities.

Non-invasive diagnostic approaches for diagnosing lymph node metastases are
problematic. Conventional imaging with CT or MRI evaluates lymph nodes indirectly
by morphologic characteristics such as shape and size. A lymph node short axis of >8
mm in the pelvis and >10 mm outside the pelvis are suspicious of malignancy. In
prostate cancer, almost 80% of metastatic lymph nodes are too small to be detected
using conventional imaging.”* ** The performance for assessment of nodal metastasis is
therefore poor, with a pooled sensitivity of 42% (95% CI 26-56%) for CT, and 39%
(95% CI 22-56%) for MRI.*

17



Bone Metastases

In most cases, newly diagnosed prostate cancer are low-risk indolent tumors that may
exist for a long time without causing symptoms or death. Some patients present with
aggressive disease that grows rapidly and metastasizes to other parts of the body.
Advanced prostate cancer results from any combination of hematogenous, lymphatic
or contiguous local spread.

Identification of metastatic disease is essential for patient management, as distant
metastases imply that the disease is beyond cure. Bone metastases are also a significant
cause of morbidity due to skeletal-related events, including bone pain, pathologic
fractures, and spinal cord compression.”” Treatment with curative intent is only
indicated in patients with localized or locally advanced disease, while patients with
distant metastases are offered palliative systemic treatment with androgen deprivation
therapy (ADT), with or without docetaxel or next-generation androgen receptor-
targeted therapy.”**> With the increasing evidence that patients with low metastatic
burden at diagnosis may benefit from a combination of systemic and local therapy, the

demand for precise detection and localization of cancer spread is even higher.”?

Bone is the most common site of distant metastases in advanced prostate cancer.*
Approximately 13% of patients with newly-diagnosed disease present with bone
metastases.”” In metastatic castration-resistant prostate cancer (nCRPC), which is the
lethal form of the disease that eventually will develop during ADT, bone metastases
occur in up to 84% of patients.”® ** Spread of disease to the bone is associated with
poor prognosis, with five-year survival rates dropping to 35% or less for patients with
distant metastases at diagnosis, compared to >99% for localized disease.” Prostate
cancer spreads to the bone via the hematogenous route, whereby cancer cells first settle
in the bone marrow. Because the red marrow in adults is located in cancellous bone,
the axial skeleton is the primary site of skeletal metastases.”” There is a predominant
upregulation of osteoblastic activity in bone metastases from prostate cancer, which
causes the formation of sclerotic, mineralized woven bone seen with conventional
imaging. However, metastatic processes are present in the bone marrow prior to the
derangement of bone architecture.

Whole-body bone scintigraphy using technetium-99m (*’*Tc)-labeled diphosphonates
(bone scan) is the most widely used modality for bone imaging in prostate cancer both
in primary and recurrent disease.'” Suspicious metastases are visualized indirectly as
increased uptake of diphosphonates due to upregulated bone turnover. However,
increased bone turnover is not specific to malignancy but occurs in other conditions,
such as degenerative diseases and fractures in healing. Bone scan lacks detailed
anatomical information and cannot reveal lymph node or visceral metastases. On a

18



patient-level, the sensitivity is 79% (95% CI 73-83%), and the specificity 82% (95%
CI 78-85%), for diagnosing bone metastases.”’ If combined with single-photon

emission computed tomography and CT, the diagnostic accuracy increases.’

Of patients undergoing initial treatment with curative intent, between 20-30% will
develop BCR,™ * and of these, up to 70% will develop bone metastases within five
years.** © Accurate diagnosis of the site(s) and extent of BCR influences further
treatment planning and can be used in tailoring potential salvage treatments.

Conventional imaging modalities also have limitations in this regard, especially in cases
with low PSA levels. 447

Conventional imaging modalities, including bone scan, only carry indirect signs of
existing active tumor cells. In the case of bone metastases, the depicted changes may be
delayed concerning present tumor cell activity and may persist after the eradication of
metastatic cells. To improve the detection of lymph node and bone metastases in both
primary and recurrent prostate cancer, more modern modalities that provide
quantitative functional assessment have been introduced and represent a major advance

in prostate cancer imaging.*®

PET/CT Imaging

PET is an imaging modality that uses radioactive isotopes that decay with positron
emission. The emitted positron travels through the surrounding tissue until it reacts
with an electron. The positively and negatively charged elements annihilate and
produce a pair of 511 -keV gamma photons traveling in opposite directions and can be
detected by a PET scanner. To synthesize a diagnostic PET radiopharmaceutical, an
isotope, such as fluorine-18 ("*F), is bound to a biological compound. The resulting
radiopharmaceutical is injected intravenously into patients and can identify functional
processes within the body on a biochemical level. PET provides quantitative
information in the form of standardized uptake values (SUVs), which is the measured
activity normalized for volume of distribution (body weight/surface area) and injected
radiopharmaceutical dose.”® Combined with CT, an image of the functional
information from the PET scan and the structural information from the CT scan can

be obtained (PET/CT).

The advancement of PET from an instrument of research in the 1970s, the
commercialization of the first PET/CT for medical use in 2001, to its present-day wide
and increasing use in oncologic, cardiac, and neurological imaging has contributed
instrumentation that is making a significant clinical impact. The limitations of

19



structural imaging in early detection and response to therapy in most diseases have
become more apparent in the context of molecular imaging. As the future of healthcare
lies in precision medicine and personalized care, molecular imaging with PET/CT
aligns seamlessly with these concepts.

["*F]FDG PET/CT

The first and still most commonly used PET tracer in oncologic imaging is 2-
["*F]fluoro-2-deoxy-D-glucose (["*FIFDG).”" ["*F]FDG is a radioglucose analog that is
trapped by phosphorylation and accumulates in tumor cells as a sign of increased
metabolic activity. Despite the widespread utility in most cancers, ["*FIFDG PET/CT
does not play an important role in prostate cancer imaging due to its limited sensitivity
in localized and early metastatic disease.”’>* The sensitivity for detection of prostate
cancer bone metastases is lower compared to bone scan.’® ["*FJFDG PET/CT may be
useful in specific disease scenarios with increased glycolytic activity, such as aberrant
histology (i.e., neuroendocrine) or very aggressive, poorly differentiated or
undifferentiated prostate cancer.’> ¢ In those scenarios, [*FJFDG PET/CT may have
a role in monitoring response to treatment in conjunction with bone scans. A recent
randomized phase 1II trial comparing PSMA-targeted radionuclide therapy to
cabazitaxel in patients with progressive mCRPC also used ['*F]JFDG PET/CT to ensure
that only patients with disease concordant across ['*F]JFDG and PSMA PET/CT scans
were recruited. The rationale was that ["*F]FDG-avid areas with low PSMA expression
are unlikely to benefit from therapy highly targeted towards PSMA.*’

['®F]fluoride PET/CT

["®F]sodium fluoride (['®F]fluoride) was introduced in the 1960s and is one of the oldest
radiopharmaceuticals. It is a bone-seeking compound and depicts sites of increased
bone turnover similar to *"Tc-labeled diphosphonates used for bone scan. The then-
available gamma cameras initially restricted the clinical use of ['*F]fluoride as a bone
imaging agent. In the 1970s, it was largely replaced by *"Tc-labeled compounds
because of their favorable physical characteristic, such as longer half-life and lower
photon energy, and the widespread availability of *™Tc generators.’® > With the
introduction of PET technology, it became possible to obtain high-resolution and high-
contrast imaging using ['®F]fluoride, and its use has been increasing during the last

decades.”

Compared to ""Tc-labeled diphosphonates, ['*Ffluoride has higher bone uptake,

faster blood clearance, and a higher target-to-background ratio. The low protein
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binding and decreased background uptake allow ['*F]fluoride PET/CT scanning to be
performed 1 hr after intravenous radiopharmaceutical injection, compared to " Tc-
labeled diphosphonate scanning, which is typically performed 3-4 hrs after
administration.” In comparison to bone scan, ["*F]fluoride provides superior image
quality and has a higher overall sensitivity in lesion detection (Fig. 2), which is especially
helpful for detecting lesions in the spine.’® These properties, combined with increasing
access to PET/CT, have led to the replacement of bone scan with ['*F]fluoride PET/CT
in several institutions. However, it remains to be seen how small findings on PET/CT
that raise the suspicion of bone metastases should affect patient management. A
prospective study showed no added value of ["*F]fluoride PET/CT over bone scan for
initial staging in patients with newly diagnosed intermediate- or high-risk prostate
cancer and a negative bone scan.

>

Fig. 2. Comparison of ["®FIfluoride PET versus bone scan in a patient with metastatic prostate cancer. PET demonstrates
more focal lesions than planar imaging. Left-right: PET maximum intensity projection, bone scan anterior projection, bone
scan posterior projection. Reprinted with permission.*
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PSMA PET/CT

PSMA, or folate hydrolase 1, is a transmembrane glycoprotein, and its expression and
localization in the prostate are associated with the cytoplasm and apical side of the

epithelium surrounding the prostatic ducts.®’

PSMA is strongly overexpressed,
approximately 100-1,000-fold, on almost all prostate cancer cells compared to normal
prostatic tissues.”> However, 5-10% of primary prostate cancer lesions are shown to be
PSMA-negative.®* PSMA expression correlates with tumor aggressiveness and increases
with higher tumor grade and stage.“’66 Contrarily to its name, high physiological
uptake of PSMA radiopharmaceuticals is also seen in ganglia, salivary and lacrimal
glands, liver, kidneys, spleen, and small intestines (Fig. 3).® Increased PSMA
expression is also seen in other malignancies such as renal cell, urothelial, and colon

carcinomas.®

PSMA ligands bind to the active site in the extracellular domain of PSMA and are
internalized and endosomally recycled, leading to enhanced tumor uptake and
retention and subsequent high image quality.”” Both gallium-68- (*Ga) and '*F-labeled
PSMA radiopharmaceuticals are available for PET imaging. ®Ga-labeled PSMA-
targeting compounds are the most widely studied, but '*F-labeled agents such as
["*F]IPSMA-1007 and 2-(3-{1-carboxy-5-[(6-["*F]fluoro-pyridine-3-carbonyl)-amino]-
pentyl}-ureido)-pentanedioic acid (['"*F]DCFPyL) have an average lower positron
energy due to a shorter positron range and higher positron yield, leading to higher
inherent spatial resolution. Additionally, '*F is a cyclotron product with a longer half-
life, which allows large-scale production and transportation.”* Currently, there are no
conclusive data about the comparison of “Ga- and '*F-labeled PSMA
radiopharmaceuticals.

PSMA PET/CT is currently the most sensitive imaging modality for diagnosing
metastases at any stage of prostate cancer.””’? There is growing evidence underscoring
the role of PSMA PET/CT imaging in BCR, especially in patients with PSA levels <
0.5 ng/mL.”>7 It is the reccommended modality for imaging in patients with rising PSA
after initial treatment,'” % and in patients with a persistent PSA after local treatment.'
PSMA PET/CT has also shown to be more accurate than CT, MRI, and/or bone scan
for the staging of primary prostate cancer, particularly in high-risk disease.® ¢ 7"7% 75
It is recognized that PSMA PET/CT bears potential in evaluating treatment effect.”®””
Even so, its role remains unclear as outcome data from randomized clinical trials
evaluating the management and outcome based on findings on PSMA PET/CT is

currently lacking but awaited."
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Fig. 3. ["®FPSMA-1007 PET/CT scan in a patient at initial staging showing locally advanced prostate cancer (T3b) with
regional (N1) and distant (M1a) lymph node metastases. Physiological radiopharmaceutical uptake is seen in the salivary
glands, kidneys, spleen, liver, gallbladder and intestines. Left-right: PET maximum intensity projection, coronal CT scan, and
fused PET/CT scans.

Other PET radiopharmaceuticals are available for prostate cancer imaging, such as
radiolabeled fluciclovine and choline. However, they are not within the scope of this
thesis since they have not been proven superior to PSMA-targeting

78,79

radiopharmaceuticals, and will therefore not be discussed further.
P

Imaging Biomarkers

The localization and extent of metastatic disease is crucial for personalized and nuanced
decisions to optimize clinical management strategy. Serum PSA levels do not provide
accurate information about the size and number of tumor lesions, limiting its use for
response assessment during treatment.** Due to the lack of serum biomarkers to
independently and accurately evaluate treatment effect, monitoring metastatic spread
relies on imaging. Quantitative analysis of tumor characteristics based on medical
imaging can provide information to improve prognostication and prediction, and
assessment and monitoring of response to therapy, through the development of imaging
biomarkers.
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A quantitative imaging biomarker can be defined as an objectively measured
characteristic derived from an image as an indicator of normal biological processes,
pathogenic processes, or response to a therapeutic intervention.®' The standard imaging
biomarker for assessment of tumor burden and response with conventional imaging is
the Response evaluation criteria in solid tumors (RECIST) version 1.1.%* In patients
with prostate cancer, they are far from sufficient as osteoblastic lesions are deemed non-
measurable.

Imaging biomarkers can also be semi-quantitative, for example, by using a scoring scale.
The Prostate Cancer Working Group (PCWG) criteria have been proposed in an effort
to make the interpretation of bone scan more standardized for clinical trials.* The most
recently updated PCWG3 criteria define bone progression as 22 lesions on the first
post-treatment scan, with >2 additional lesions on the next scan, and for scans after the
first post-treatment scan, at least >2 new lesions relative to the first post-treatment scan
confirmed on a subsequent scan. Thus, the PCWG3 criteria do not take into account
changes in the size of lesions as indicators of an increase in total disease burden during
treatment and are prone to subjective interpretation.

An objective and consistent methodology for quantifying the total skeletal tumor
burden in bone scan was lacking until the development of the bone scan index (BSI).**
BSI is a quantitative description of the total disease burden in the bone and represents
the tumor burden expressed as a percentage of the total skeletal mass judged from a
bone scan. When initially presented, the process of calculating the BSI was a manual
task. With the development of a software for automated calculation of BSI, the
acquisition time was reduced to seconds.”” The automated BSI (aBSI) has been

86, 87 and

analytically validated as a reproducible and accurate measure of disease burden,
to be an independent prognostic imaging biomarker in patients with mCRPC in a large
phase III study.®® However, a major limitation for aBSI, and for all the above-
mentioned methods, is the lack of sensitivity and specificity of the conventional

imaging modalities to which they are applied.

PET/CT Imaging Biomarkers

Similarly to RECIST 1.1 for conventional imaging, the PET response criteria in solid
tumors (PERCIST) were developed for a more standardized assessment of tumor
response in PET/CT.* Therapeutic response is categorized as complete response,
partial response, stable disease, or progressive disease based on SUV measurement of
the lesions with the highest radiopharmaceutical uptake and up to five lesions in total.
This requires visual examination and manual placement of a region of interest by a
reader, which is suboptimal for objective evaluation. Assessing changes in individual
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lesions may also be inadequate for determining the overall response. Further, PERCIST
has only been evaluated for [®F]JFDG PET/CT, which has limited value for the

assessment Of prostate cancer.

With the growing importance of PSMA PET/CT in prostate cancer, guidelines have
been developed with the aim of standardizing the reporting and harmonizing diagnostic

13, 90, 91

interpretation criteria. However, all encompass manual steps to various extents

and therefore do not eliminate the central issue of reader subjectivity.

Inspired by the concept of aBSI, different methods have been used to quantify the
skeletal burden and treatment response in both [*F]fluoride PET/CT?**° and PSMA
PET/CT.*® " Further, methods that also include extra-skeletal uptake suspicious of
metastatic disease in PSMA PET/CT have also been proposed.”'* In small patient
materials, these measures have shown a correlation to survival and promising results in
predicting treatment response to systemic treatment.”> '*' +1%1% Degpite their
computational approach, a common limitation is the built-in requirement of manual
interference. This makes the assessment of changes in response to treatment subjective
and time-consuming, especially in patients with widespread metastatic disease in
multiple localizations, thereby restricting their potential for clinical use. Recent
advancements include deep learning methods for fully automated assessment of tumor
burden in PSMA PET/CT,'"!'"" pointing to the potential of artificial intelligence (AI)

to assist in this development.

Artificial Intelligence

Al has been witnessing monumental growth in bridging the gap between machine and
human capabilities. Essentially, Al is the simulation of human intelligence processes by
machines, especially computer systems.''” One subfield of Al is machine learning,
where data-driven algorithms learn by prior examples or experience without being
explicitly programmed. In machine learning, data is used to train a model on that
specific information, and the trained model is subsequently used to make predictions
on a new set of data. The training is an iterative process where the model is exposed to
new, unfamiliar data step by step. At each step, the model makes predictions and gets
feedback regarding how accurate those predictions are. The feedback is then used to
correct the previous prediction errors. This predict-and-adjust process continues until
the predictions of the model no longer improve.

Machine learning algorithms require data, such as medical images, to be trained on.
Available data are typically split into a training, a validation (tuning), and a test set,
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though variations occur (Fig. 4). A training set is used to train a network, while a
validation set is used to evaluate the model under the training process. A test set is used
once at the end to evaluate the performance of the final model that was fine-tuned and
selected during the training process. It is important that the validation and test sets are
kept separate, as some information about the validation data always leaks into the
model itself during training, risking so-called overfitting. A separate, unseen test set is
therefore needed to evaluate the true performance of the model and its
13

generalizability.

Monitoring Evaluation of
model final model
performance performance
. l
Training process Hyperparameter
tune

Model selection

Fig. 4. Data is typically split into a training, a validation, and a test set. A training set is used to train a network, while a
validation set is used for monitoring the model performance, fine-tuning hyperparameters, and model selection during the
training process. A test set is used once at the very end to evaluate the performance of the final model that is fine-tuned
and selected during the training process on the training and validation sets."'*

A Brief Introduction to Convolutional Neural Networks

Convolutional neural networks (CNNs) are deep learning models that have become
dominant in various computer vision tasks. Convolution is a mathematical operation
that essentially allows the network to learn features in the input image by overlapping
and combining restricted portions of it. The network is thereby able to identify patterns
even when they are not clearly stated in the training dataset. The most important
building blocks of a CNN are convolutional layers, pooling layers, and activation
functions. The term deep learning refers to the number of layers in a network, although
a definition of how many layers constitute ‘deep’ is lacking. A common architecture for
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a CNN model used for image classification consists of convolution and pooling layers

stacked one after the other (Fig. 5).""

Convolutional layer

Pooling layer

1x1
Output

Fig 5. An overview of the architecture of a convolutional neural network (CNN) used for image classification.

Convolution is a mathematical operation in itself. One important aspect is that the
same filter/kernel is applied to all parts of the input image by shifting its position. The
output of the filters in the convolutional layer creates feature maps. Activation
functions are added after each convolutional layer to apply a nonlinear transformation.
This enables the network to learn nonlinear functions and recognize complex patterns
in the data. The pooling layers are used to reduce the dimensions of the feature maps
and the learnable parameters, hence reducing the amount of computing performed in
the network. This is done by aggregating the features present in a region of the feature
map so that further operations are not performed on precisely positioned but on
aggregated features generated by the convolution layer. This makes the model more
robust to variations in the position of features in the input image, which avoids
overfitting. The resulting features feed into a final layer that drives the decision, such
as tumor or not, or predicts the best label to describe an image, for example, vertebra
or rib.!*

In medical imaging, CNN models are commonly trained to accomplish three main
tasks; classification, detection, and segmentation. The designation of one of these labels
to a task is, however, not always clear-cut. Before the start of training, data preparation
is an important step. The images are often annotated or labeled by a reader, which is a
time-consuming task. Depending on the images and the task, different annotations are
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required. Segmentation of an organ or an abnormal feature requires pixel-wise
segmentation, which is laborious when performed manually and especially in three-
dimensional (3D) images such as PET/CT. This may limit the use of a large data set.
Classification of chest radiographs as normal or not only requires image labeling, which
may allow for larger training material.'”

Classtfication

In classification, an image is assigned to any of predetermined classes. Different tasks
can include the classification of the presence or absence of an abnormality in an image,
the classification of abnormalities as benign or malignant, or the classification of

malignant lesions according to their features, such as histopathological grade.''®

Detection

Detection refers to the task of recognizing and approximately localizing an object such
as an organ, or an abnormality, such as a tumor or fracture, with, for example, a point
or a bounding box. The object is given a label to help determine its exact location and

orientation in relation to other structures.''* '

Segmentation

Segmentation is the process of dividing an image into different parts or regions
according to its features and properties. In medical images, segmentation of organs or
lesions is a common application, often as a pre-processing step for feature extraction
and classification."'® It can also help in the quantitative assessment of lesions or other
abnormalities.""* A CNN model performs segmentation by processing the whole or
large parts of the image at the same time and produces an output map of labels for all
pixels instead of individually labeling each pixel like previous methods. An example is
the 3D U-Net, which has been very successful in solving many different segmentation
tasks.'"” For segmentation of 3D data, 2D slices are often processed and then combined
into a 3D map to reduce the amount of computational data.
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Rationale for Quantitative PET/CT Assessment

The interpretation of PET/CT scans is performed by a reader through visual
examination, and findings are typically conveyed in a written clinical report. Despite
criteria to help standardize assessment and reporting in research settings, intra- and
inter-reader disagreement remains an issue even among experienced readers in single-
center studies."® '"” There is an unmet need for an objective method to analyze
PET/CT scans to increase reproducibility. The number of PET/CT examinations is
expected to largely increase, especially for PSMA PET/CT, and there is a deficit of
radiologists and nuclear medicine specialists to interpret these investigations. Al could
help with the increasing volumes by speeding up the interpretation time and reduce
intra- and inter-reader disagreement by providing standardized reporting and decision
support to physicians.

The current subjective approach to scan evaluation does not allow full extraction of the
information in a PET/CT scan, which inherently is a quantitative modality.
Quantification of tumor burden from bone scan has been shown to correlate with
overall survival (OS) in patients with advanced prostate cancer.® Al has the potential
to help in the development of automated measurements reflecting the tumor burden
in PET/CT which, if validated as imaging biomarkers, could be used for risk

stratification and response prediction and as surrogate endpoints in clinical trials.

It has also been shown that tumor burden in PSMA PET/CT, and the corresponding
therapeutic radionuclide dose received by the tumor, correlate with the treatment
response of PSMA-directed radionuclide therapy.'” Additionally, dose planning in a
disease extent adapted fashion requires calculation of tumor volume. PSMA-directed
radionuclide therapy is typically offered to patients with multiple metastases where it is
impractical to manually segment all lesions. Therefore, there is a need for fast,
automated, objective, and reproducible image analysis. Al has the potential to fill this
need.
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Aims

The overall aim of this thesis was to develop an Al-based model for automated detection
and quantification of PET/CT tumor burden in patients with prostate cancer. In a first
step, an Al model for quantification of ['*F]fluoride PET/CT skeletal tumor burden
was developed (paper I-11I). In a second step, an Al model for the automated detection
of pelvic lymph node lesions was developed (paper IV). The specific aims of each paper

are listed below.

Paper I

To develop a PET index reflecting the skeletal tumor burden, to compare this PET
index to aBSI, and to investigate the association of the PET index with OS. A secondary
aim was to compare the PET index to a threshold-based model for the calculation of
tumor burden.

Paper 11

To develop an Al model for automated segmentation of bones in CT scans and to
evaluate the Al model’s accuracy and reproducibility.

Paper III

To develop an Al model for automated calculation of PET index and to compare the
model’s performance to physicians, as well as to a threshold-based model.

Paper IV

To develop and evaluate an Al-based model for the detection of pelvic lymph node
lesions in ['**F]PSMA-1007 PET/CT scans.
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Tabel 4. Study design to address the aims and objective of each study supporting this thesis (paper I-IV).

Aims

Design

Assessment

To calculate the skeletal tumor
burden from PET/CT (PET index)
reflecting the visual interpretation
by a reader

To assess the agreement of PET
index with aBSI

To explore the prognostic value
of PET index

To assess the agreement of PET
index and PET index based on a
SUV threshold (PET1s index)

Calculation of tumor burden in

PET:

* Segmentation of bone lesions
by application of different SUV
thresholds chosen by a reader
(PET index), and

e based on a SUV 15 threshold
(PET3s index)

Calculation of bone volume in CT:

e CNN-based bone segmentation

Calculation of skeletal tumor

burden:

e PET and PETjs indices: Total
volume of segmented lesions in
PET/total bone volume in CT

e aBSI from bone scan

Kaplan-Meier estimates and log-
rank test to explore the presence
of a survival difference between
patients with high and low index
values

Univariate Cox proportional
hazards regression to assess the
association between indices and
(e

C-index to assess the
discriminatory strenghts of the
different indices

Bland-Altman plots to assess
index agreement

To develop an Al model for bone
segmentation in CT

To evaluate the Al model’s
accuracy and reproducibility

CNN training with manual
segmentations of 49 bones

Evaluation of the Al model in two
CT scans (CT1 and CTi) from the
same patient for reproducibility
assessment

Subgroup analysis of five bones
in five patients for accuracy
assessment between Al model
and manual segmentations by a
reader

SDI to asssess segmentation
accuracy between Al model and
reader

SD and CoV to assess the
difference in bone volume
calculation between Al model and
reader

Bland-Altman plots to assess
bone volume reproducibility for
the Al model

To develop an Al model for
automated calculation of PET
index

To compare the Al model’s
performance to reader
performance, and to a threshold-
based model

Calculation of tumor burden in

PET:

e CNN-based segmentation of
bone lesions (PET index), and

e based on a SUV >15 threshold
(PETj1s index)

Calculation of bone volume in CT:

e CNN-based bone segmentation

Calculation of tumor burden:

e PET and PETs indices: Total
volume of segmented lesions in
PET/total bone volume in CT

Bland-Altman plots to assess
index agreement

Spearman rank correlation to
assess index correlation

TP, FP and FN number of
lesions, and sensitivity and PPV,
for lesion detection

To develop an Al model for the
detection of pelvic lymph node
lesions in PET/CT

To compare the Al model’s
performance to reader
performance

Training with manual
segmentations by three readers

Evaluation against three readers

TP, FP and FN number of
lesions, and sensitivity and PPV,
for lesion detection

aBSI: Automated bone scan index; C-index: Concordance index; CNN: Convolutional neural network; CoV: Coefficient of
variation; FN: False negative; FP: False positive; OS: Overall survival; PPP: Positive predictive value, SD: Standard deviation;
SDI: Sgrensen-Dice index; TP: True positive.
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Methods

Study Populations

Paper I-1V include patients from Odense University Hospital, Odense, Denmark, and
patients from Sahlgrenska University Hospital, Gothenburg, Skine University
Hospital, Lund and Malmé, and Uppsala University Hospital, Uppsala, Sweden. The
patients from the Odense, Skine, and Uppsala study groups have been used in previous
studies comparing different scan types for the detection of metastatic disease in patients
with prostate cancer.'”""'* The PET/CT scans from the previous studies were used
retrospectively to train, validate and test the Al models presented in this thesis.

Odense Group

A study group from a previous prospective single-center study at Odense University
Hospital'*' was used in paper I, II, and III. The objective of the original study was to
compare the diagnostic accuracy of bone scan, [*Flfluoride PET/CT, and
["*F]fluorocholine PET/CT using MRI as reference in the detection of spine metastases.
The inclusion criteria were (1) biopsy-proven prostate cancer, (2) bone scan consistent
with =1 malignant lesion, (3) ability to undergo MRI, and (4) ability to safely postpone
the initiation of ADT until after all scans were completed. Exclusion criteria were (1)
current or previous treatment with ADT and (2) pain or suspicion of medullar
compression due to bone metastases. A total of 50 patients were recruited between May
2009 and March 2012. Patient characteristics are presented in Table 5.

Table 5. Patient characteristics for the Odense group (n=50).

Age, years

Mean (SD) 73 (8.6)
PSA, ng/mL

Median (range) 84 (4-5740)
Gleason Score, n

<6

7 (3+4)

7 (4+3) 10

8 6

9-10 19

SD: Standard deviation. NOTE: Information about Gleason score was missing in one patient.
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Paper 1

A bone scan, a ['*F]fluoride PET/CT scan, and available follow-up data at the time of
data analysis were required. A total of 48 patients were included in the study group
used to test the AI model.

Paper I1

CT scans from the ["®F]fluoride PET/CT (CT)) and the ["®F]fluorocholine PET/CT
(CT>) scans were used. A total of 46 patients were included in the group used to test
the Al model.

Paper 11T

["*F]fluoride PET/CT scans were used. Five patients were excluded due to incorrect
image labeling resulting in inaccurate SUVs or due to extremely high metastatic
burden, disabling segmentation of individual foci. A total of 45 patients were included
and the scans were divided into a training set (7=29), a validation set (7=8), and a test
set (7=8), combined with patients from other centers.

Sahlgrenska Group

A study group of 100 patients from Sahlgrenska University Hospital were used to train
the Al models in paper I and Il in automated segmentation of the skeleton. The patients
were included retrospectively and had performed ["*F]JFDG PET/CT examinations
between 2008 and 2010. The indications for the scans were known or suspected
malignant disease. The mean age was 62 (SD [standard deviation] 12) years, 40% were
female, and 60% were male.

Paper [

CT scans from 25 patients were randomly selected and used as a training set.

Paper 11

CT scans from all 100 patients were used as training set.

Uppsala Group

Patients from a previous prospective study at Uppsala University Hospital'*’ were used
for training the Al model in paper III. The aim of the previous study was to evaluate

the accuracy of diffusion-weighted MRI and ['*F]fluoride PET/CT for the detection of

bone metastases in patients with high-risk prostate cancer. The inclusion criteria were
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biopsy-proven prostate cancer and Gleason score 28. The exclusion criteria were (1)
history of a second cancer and (2) contraindications for performing MRI. A total of 49
patients were recruited between October 2009 and March 2011. The median age was
67 (range 57-80) years.

In paper II1, the absence of pathological skeletal uptake on ['*F]fluoride PET/CT was
required, as the material was used for training the Al model's ability to handle non-
suspicious radiopharmaceutical uptake. Scans from 34 patients were included in the
training set, combined with patients from other centers.

Skane Group

['*F]fluoride PET/CT scans from a previous study at Skine University Hospital, Lund
and Malmé,'** were used retrospectively for training, validating, and testing the Al
model in paper III. The objective of the previous study was to investigate whether
combining information from ['*F]fluorocholine and ["*F]fluoride PET/CT added
clinically relevant information for a group of patients with high-risk prostate cancer
planned for treatment with curative intent after a normal or inconclusive bone scan.
The inclusion criteria for the original scudy were (1) biopsy-verified high-risk prostate
cancer, defined as PSA 220 ng/mL and/or Gleason score 8, considered for curative
treatment, and (2) a bone scan with normal or inconclusive findings. Exclusion criteria
were (1) previous or current ADT and (2) PSA 2100 ng/mL. A total of 90 patients were
included between March 2008 and June 2010. Patient characteristics are presented in

Table 6.

Table 6. Patient characteristics for the Skane group (n=90).

Age, years

Mean (SD) 66 (5.5)
PSA, ng/mL

Mean (SD) 28 (20)
Gleason Score

5-6 4

7 (3+4) 17

7 (4+3) 11
8-10 58

cT Stage

Tic 14

T2 30

T3 46

SD: Standard deviation.
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In paper III, one patient was excluded due to incorrect image labeling of the
['®F]fluoride PET/CT scan. This resulted in the inclusion of 89 patients that were
divided into a training group (#=53), a validation group (7=18), and a test group
(n=18), combined with patients from other centers.

PSMA Group

Paper IV included patients with high-risk prostate cancer who were referred for initial
staging with ["*F]PSMA-1007 PET/CT at Skine University Hospital, Lund and
Malmé. A total of 211 patients were included and divided into a training group
(n=125), a validation group (7=36), and a test group (7=50).

An overview of all study groups and the combinations of patients used for training,
validating and testing the Al models in Paper I-IV is presented in Table 7.

Table 7. Overview of the number and combinations of patients from the different study groups used for training, validating,
and testing the Al models in this thesis.

Paper Training Study Group Validation Study Group Test Study Group
Set (n) Set (n) Set (n)

| 25 Sahlgrenska 20% of training Sahlgrenska 48 Odense

1l 100 Sahlgrenska 20% of training Sahlgrenska 46 Odense

11l Skane (n=53) Skéne (n=18) Skane (n=18)
116 Odense (n=29) 26 Odense (n=8) 26 Odense (n=8)

Uppsala (n=34)
\% 125 PSMA 36 PSMA 50 PSMA

NOTE: In paper | and Il, 20% of the patients in each training set were used for validation.

Image Acquisition

Odense Group

Bone Scans

Bone scans were acquired 3 hrs after intravenous injection of 600 MBq
[*Tc]hydroxymethylene diphosphonate. Whole-body planar scans with anterior and
posterior views (scan speed 14 cm/min, 256x1024 matrix) were obtained using a dual-
head gamma camera (SKYlight or PRISM XP2000, Philips Healthcare) equipped with
low-energy high-resolution collimators. Energy discrimination was provided by a 20%
window centered on the 140 keV of " Tc.
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PET/CT Scans

PET/CT scans were obtained by a Discovery VCT 64 (GE Healthcare) 1 hr after
intravenous injection of 3 MBq/kg of ["*Flfluoride, with 2.5 min per bed position from
the base of the skull to the midthigh. PET images were reconstructed using ordered
subset expectation maximization (OSEM) (2 iterations, 28 subsets) with a 128x128
matrix, pixel size of 5.47 mm, and slice thickness of 3.27 mm. A low-dose CT scan was
acquired using tube current modulation (30-150 mA, 140 kV) and was reconstructed
in a field of view (FoV) of 50 cm, 512x512 matrix, slice thickness of 3.75 mm, and
spacing of 3.27 mm. Within 3 weeks of the ["*F]fluoride PET/CT, a diagnostic
contrast-enhanced CT scan using tube current modulation (80-400 mA, 120 kV) was
acquired as part of a ['*F]fluorocholine PET/CT scan from the base of the skull to the
midthigh. The CT images were reconstructed in a FoV of 50 cm, 512x512 matrix, slice
thickness of 3.75 mm, and spacing of 3.27 mm.

Sahlgrenska Group

CT scans were acquired as part of ['*FJFDG PET/CT scans obtained by a Biograph 64
TruePoint (Siemens Healthineers). A low dose CT scan was acquired using tube
current modulation (30-110 mA, 120 kV) from the base of the skull to the midchigh.
CT images were reconstructed in a FoV of 70 ¢cm, 512x512 matrix, slice thickness of 5
mm, and spacing of 3 mm.

Uppsala Group

PET/CT scans were acquired with a Discovery ST (GE Healthcare) 1 hr after
intravenous injection of 3 MBq/kg body weight of ["*F]fluoride, with 2 min per bed
position, from the vertex to the proximal 1/3 of the femur. PET images were
reconstructed using OSEM (2 iterations, 21 subsets), a matrix size of 128x128, pixel
size of 3.9 mm, and slice thickness of 3.27 mm. A low-dose CT was performed
immediately before the PET using tube current modulation (10-80 mA, 140 kV) and
reconstructed in a FoV of 50 cm, 512x512 matrix, slice thickness of 3.75 mm, and
spacing of 2 mm.

Skane Group

PET/CT scans were acquired using a Gemini TF (Philips Medical Systems) 1-1.5 hr
after intravenous injection of 4MBq/kg (max dose 400 MBq) of ["*Flfluoride, with 2
min per bed position, from the vertex to the midthigh. The PET images were
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reconstructed using the BLOB-OS-TOF algorithm (3 iterations, 33 subsets) to a
144x144 matrix with pixel size and slice thickness of 4 mm. A low dose CT using tube
current modulation (30-160 mA, 120 kV) was obtained for attenuation correction and
image fusion and reconstructed in a FoV of 60 cm, 512x512 matrix, slice thickness of
5 mm, and spacing of 5 mm. A diagnostic CT with intravenous and peroral contrast
was performed 1-24 days previously as part of a ['®F]fluorocholine PET/CT scan.
Images were reconstructed in a FoV of 70 cm, 512x512 matrix, slice thickness of 5
mm, and spacing of 5 mm.

PSMA Group

PET/CT scans were obtained using a Discovery MI (GE Healthcare) 2 hrs after
intravenous administration of 4 MBq/kg (max dose 500 MBq) ["*F]PSMA-1007, with
4 min per bed position, from midthigh to base of the skull. The PET images were
reconstructed using a block-sequential regularization expectation maximization
algorithm (Q.Clear, GE Healthcare) with a 256x256 matrix, pixel size 2.7 mm, slice
thickness 2.8 mm, and a beta factor of 800."** A diagnostic CT with intravenous and
oral contrast was performed for attenuation correction of the PET scans and anatomic
correlation. Scans were acquired using tube current modulation (80-480 mA, 100 kV,
or for patients with body mass index 230, 80-560 mA, 120 kV) and reconstructed using
an adaptive statistical iterative reconstruction technique (ASiR, GE Healthcare) in a
FoV of 70 cm, 512x512 matrix, slice thickness 5 mm, and spacing of 5 mm.

Manual Segmentations

In paper I and 1II, the Al model was trained using manual segmentations of the
following 49 bones in CT, comprising approximately 33% of the total skeletal mass;'*
12 thoracic vertebrae, 5 lumbar vertebrae, sacrum, 2 hip bones, 24 ribs, 2 scapulae, 2
clavicles, and the sternum. The manual segmentations were performed by three

experienced readers in paper I and by a single reader in paper II1.

In paper 11, manual segmentations by an experienced reader were also performed in five
patients in the validation group of the following five bones; seventh thoracic vertebra
(Th7), third lumbar vertebra (L3), sacrum, right seventh rib, and sternum. These bones
were segmented by the same physician in both CT and CT5, which generated a total
of 25 paired segmentations of the same five bones in the five patients.

In paper III, manual segmentations of bone lesions in ["*F]fluoride PET scans were
performed by a reader based on the original clinical written reports. From the full set
of 168 scans, 116 scans were used for training, and 26 scans were used for validation.
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The remaining 26 scans were used as test set wherein three specialists in nuclear
medicine (readers A, B, and C) also performed segmentations of bone lesions.

In paper IV, three physicians (readers A, B, and C) independently segmented suspected
lymph node metastases below the aortic bifurcation (defined in this thesis as ‘pelvic’
[miN1]) in [*F]PSMA-1007 PET/CT scans. Lymph nodes were graded according to
E-PSMA guidelines.'”® Grade 1-2 lymph nodes were considered benign, while grade
4-5 were considered pathological. Grade 3 was considered pathological when deviating
from known patterns of unspecific uptake, such as low to intermediate uptake along
the external iliac vessels. From the full set of 211 scans, 50 scans with three manual
segmentations each were used as a test set. The remaining 161 scans were divided into
a training set (#7=125) and a validation set (#=30).

127(

The tools used for segmentation include the TurtleSeg software'”” (paper 1), the cloud-

based segmentation tool eScan Research (eScan Academy AB) (paper II), and the cloud-
based annotation platform Research consortium for medical image analysis

(RECOMIA)'% (paper III and IV).
pap

Al Models

Al Model Structure

In all studies, CNNs with architectures inspired by the 3D U-Net were used.'"” Fig. 6
shows the structure of the CNN in paper II used for bone segmentation.
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Fig. 6. Structure of the fully convolutional neural network used in paper Il. All convolutions are 3x3x3 except the last one.
For the dilated convolutions, the first ones have a dilation rate (1,2,2), whereas all the other have (2,4,4). The difference in
the first dimension is due to lower spatial resolution in the images. The numbers on the lines indicate the number of data
channels after each operation. The number of channels after the last convolution is the number of output labels for each
network.
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In paper III and 1V, the Al models consisted of two CNNs, one which segmented
organs (Organ CNN) and one which segmented bone lesions (Lesion CNN, paper I11)
or lymph node lesions (Detection CNN, paper IV). Both networks had the same
structure (Fig. 7).
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Fig. 7. The structure of the convolutional neural network (CNN) used both for the Organ CNN and the Lesion/Detection
CNN. Blue boxes are 3x3x3 convolutional layers, and the number indicates the number of filters. Pink boxes are 2x
upsampling layers, and green boxes are average pooling, where the number indicates the pool size. The effect of the
pooling layers is that the network works on four different resolutions. This allows for a large receptive field with low
memory cost during training. All convolutional layers use rectified linear unit activations, apart from the last one that uses
a softmax activation to produce final output probabilities.
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Al Model Training

Paper I and 11

The training the of the Al models for bone segmentation in paper I and II was based
on a combination of simple geometric models and learned CNNs. For training the
network in paper I, manual segmentations in 25 CT scans were used and for training
in paper II, manual segmentations from 100 CT scans were used. The process can be
divided into three steps:

1. Landmark detection

A CNN was trained to detect a set of anatomical landmarks and a second network
to detect centerlines for clavicles and ribs (paper II) (Fig. 8), as well as humeri and
sternum (paper I). The CNN detects types of landmarks such as rib joints and
vertebral processes, but due to the limited receptive field, it cannot detect their
identity, such as which rib it belongs to. To determine this and to remove possible
spurious detections, classical active shape models were used to find plausible
relative positions for groups of landmarks. The second network was trained to
detect centerlines for elongated bones such as ribs, and an iterative tracking scheme
was used to track each bone.
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Fig. 8. Maximum intensity projection of the CT scan together with the annotated landmarks (left) and detected center
lines for ribs and clavicles (right). Landmarks with identical markers belong to the same class and are not separated
by the detector.

2. Voxel-wise segmentation

The output landmarks from step 1 were fed as auxiliary input to a CNN that
performed the final bone segmentation. In paper I, a rough segmentation based on
an atlas registered using the aligned landmarks was used as input in addition to the
CT scan. In paper I1, a five-dimensional image mask was used as input to the final
CNN, together with the original CT scan, to provide the network additional
information used to correctly differentiate between similar bones, such as adjacent
ribs.

3. Post-processing
To remove spurious voxels, extraction of the largest component connected to a

landmark was performed and filling holes in that component.

Paper Il and 1V

As a first step, the Organ CNN segmented different organs using a CT scan from the
test set as input (Fig. 9). The output from the Organ CNN was used to create a label
mask that was added as input to the Lesion/Detection CNN to facilitate the
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differentiation between malign and benign high uptake regions. Hence, the organs
marked were either organs where malignant uptake or physiological high uptake is
common, or that contribute relevant information for anatomical orientation. In paper
II, the marked organs in the label mask included bones, joints, kidneys, lungs, brain,
skull, spleen, heart, aorta and liver. In paper IV, the marked organs in the label mask
included the prostate and urinary bladder, the gastrointestinal tract, and bone.

The label mask was used as input to the Lesion/Detection CNN, together with the CT
and PET data. The different input modalities were concatenated across the feature, or
channel, dimension. The convolutional layer had a two output channels with softmax
activation. For each voxel, the output value describes the estimated probability of that
voxel belonging to a bone (paper I1I) or a lymph node (paper IV) lesion, or background.

PET :
Lesion/ y
Detection —
// CNN
Lesion/
Detection
\ Mask mask
Organ

CNN

Fig. 9. Schematic of the Al models trained for segmentation of bone lesions (Lesion CNN), and detection of pelvic lymph
node lesions (Detection CNN), respectivly. The Lesion/Detection CNN segments suspected metastatic uptake in the scan with
a CT, PET scan and a label mask produced by the Organ CNN as input.

As post-processing in paper 111, all connected components <0.1 mL and areas where
the high uptake regions were deemed to originate from joints were removed as a post-
processing step. In paper IV, pixels above the aortic bifurcation were set to background.

Al Model Application

Bone Segmentation

In paper I, the Al model was applied for automated bone segmentation in the CT part
of the ["®F]fluoride PET/CT scans in the test group. In paper II, the Al model was
applied to the validation group for automated bone segmentation in the two CT scans,
CT1 and CT;, performed in the same patient. In paper I11, the Organ CNN was applied

for automated whole-body skeletal segmentation in the test group. Bone volumes were
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calculated based on the segmentations. Individual volumes of segmented bones were
summed to obtain the volume of the axial skeleton (paper I) and the entire imaged

skeleton (paper I1I).

Segmentation of Bone Lesions

In paper I1I, the Al model was applied for fully automated segmentation of bone lesions
in the test set. No manual corrections were made.

Detection of Lymph Node Lesions

In paper IV, the Al model was applied to the test set for automated detection of pelvic
lymph node lesions.

Quantification of Skeletal Tumor Burden

Automated Bone Scan Index (aBSI)

In paper I, EXINIbone®' version 2 (EXINI Diagnostics AB) was used for aBSI
calculation from each patient in the test and study group, respectively. The details of
the automated BSI calculation and platform have been described in previous
studies.®'® First, the different anatomical regions of the skeleton, except the distal
parts of the extremities, are segmented. Secondly, abnormal hotspots are detected and
classified as metastatic lesions. The volumes of all hotspots are then summarized and

divided by the total skeletal mass, generating the aBSI.

Calculation of PET Index

The general principle for calculating PET indices was to divide the total volume of
segmented suspicious uptake in the PET scan by the skeletal volume measured from
the CT scan. In paper I, two methods were used to segment bone lesions in the
["*F]fluoride PET scans from the patients in the test group:

1. Manual approach
An individual SUV threshold was selected based on the visual interpretation by a

nuclear medicine specialist. This approach aimed to reflect the clinical
interpretations as closely as possible. The choice of threshold was made so that all
lesions interpreted to have possible metastatic origin were segmented. After
selecting a threshold, each segmented uptake was classified as caused by metastatic
disease or not, based on the interpretation of the same nuclear medicine specialist.
Lesions classified to originate from non-malignant conditions such as degeneration,
inflammation, or fractures were excluded from the analysis. Selected thresholds
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ranged between SUV 6-9. The physician was blinded to the patients’ bone scans,
BSI values, and survival data.

2. Threshold-based approach
A fixed threshold was applied to segment lesions with SUV >15.

The volume of each lesion located in the segmented skeletal regions in the
corresponding CT scan was calculated. A PET index was then calculated by dividing
the sum of all lesion volumes by the total volume of the 49 segmented bones. Two
indices were calculated from each patient’s scan, one based on the manual approach
(PET index) and one based on the automated approach (PET s index). In order to be
comparable to aBSI in the same patient, all PET indices were multiplied by 0.33 since
the included bones comprised approximately 33% of the total skeletal mass.

In paper III, PET indices were obtained by dividing the total volume of all bone lesions
segmented by the Al model by the total imaged skeletal volume of each patient in the
test group. A threshold of SUV 15 was also applied in this study, and PET}s indices
were calculated by dividing the volume of all segmented lesions by the total skeletal

volume.

Statistical Analysis

Data were analyzed on a patient-level in paper I, I1, and I1I. Lesion-based analyses were
performed in paper Il and IV.

Survival Analysis

In paper I, Kaplan-Meier estimates of the survival function and the log-rank test were
used to explore the presence of a significant difference in OS between high and low
aBSI, and between high and low PET index groups. The group with high indices was
defined as those with values above the median value, and the group with low indices as
those with values below the median value. Due to the exploratory nature of the study,
the choice of a median split was made as there were no known cut-offs to stratify
patients based on PET indices. Univariate Cox proportional hazards regression was
used to evaluate the association between the index and OS. The discriminatory
strengths of the different indices were assessed using concordance index (C-index).
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Index Comparison

Bland-Altman plots were used to assess the agreement between the different indices in
paper | and III. The correlations between the different indices in paper I1I were assessed
using Spearman rank correlation.

Assessment of Al Model Performance

In paper II, the accuracy of the Al model compared to a reader was investigated through
a comparison of bone segmentation overlap and by calculation of the resulting volume
differences. Segmentations by one reader performed of the same five bones in both CT;
and CT5, in the subset of five patients from the test set, acted as a reference standard.
The automated bone segmentations by the Al model were compared to the manual
segmentations, and the accuracy between these segmentations was evaluated using
Serensen-Dice index (SDI)."”* The SDI evaluates how well two segmentations, A and
B, of the same object agree by analyzing the overlap. A voxel is defined as belonging to
the overlap of two segmentations if, in the case of paper 11, it is classified as bone in
both segmentations. The SD1 is defined as two times the number of overlapping voxels
divided by the sum of the total amount of voxels that are classified as bone in both
segmentations according to the following formula. The resulting value ranges between
0-1, where 1 reflects a perfect segmentation:

2|A N B

The percentage difference between the two Al-based volume measurements of the same
bone in CT; and CT, was calculated, as well as the SD and coefficient of variation.

To assess the reproducibility, which in paper II was defined as the agreement in Al-
based bone volume calculation in two CT scans from same patient, Bland-Altman plots
were used.

Lesion-level Analysis

For the lesion detection in paper I1I and IV, the sensitivity was evaluated as the percent
of suspected lesions (bone or lymph node) detected by the Al model, threshold model,
or a reader, respectively, out of those detected by a reader used as reference. True
positive lesions for the Al model, threshold model, or a reader, were defined as either

45



full or partial segmentation overlap with another reader used as reference, or else they
were considered false negative. Lesions detected by the Al model, threshold model or
reader without segmentation overlap with another reader used as reference were
considered false positive. Fig. 10 shows an example, where reader A is first used as a
reference, followed by reader B, giving different values of sensitivity. The positive
predictive value was calculated as the proportion of true positive lesions for the Al
model, threshold model or reader, when compared to another reader used as reference,
divided by true positive plus false positive lesions when compared to the same reference
reader. The specificity and negative predictive value cannot be calculated on a lesion
basis since it is not possible to calculate non-malignant lesions not detected by either
model or reader.

For all analyses in paper IlI, bone segmentations by each of the four readers were
alternately used as a reference and pairwise compared to the Al model, the threshold
model, or another reader. The average and range of all pairwise combinations were
calculated for Al model versus reader, threshold model versus reader, and reader versus
reader. In paper 1V, the segmentations of lymph node lesions by each of the three
readers were alternately used as a reference and pairwise compared to either Al model
or another reader in the same manner as in paper II1.
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Fig. 10. Example of how sensitivity was calculated using different readers as a reference. In this case, reader B detects 2/3
of the lesions marked by reader A, giving a sensitivity of 67 %, whereas reader A detects both lesions marked by reader B,
giving a sensitivity of 100%. Similarly, the Al model has a sensitivity of 67% with reader A as a reference and 50% with
reader B as a reference.

Ethical Considerations

Ethical approval was granted by the local research ethics committee at Lund University
for the studies in paper I-IV, at Odense University Hospital for the studies in paper I-
II1, at Sahlgrenska University Hosptial for the studies in paper [ and II, and at Uppsala
University for the study in paper III.
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All scans were acquired as part of previous study, or because clinically indicated. No
examinations were performed only for current research purposes in paper I-IV. Before
transferred from a center for image analysis, all scans were pseudonymized so that they
could no longer be linked to a single subject. The code key was stored separately.
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Results and Comments

Quantification of Skeletal Tumor Burden

A measure reflecting the skeletal tumor burden in ["*F]fluoride PET/CT, coined the
PET index, was introduced in paper I. A higher PET index was associated with shorter
OS (hazard ratio 1.17 [95% CI 1.06-1.29]), providing proof-of-concept of its
prognostic potential. The most common divergence between the indices on a patient-
level was a higher PET index than aBSI, likely reflecting the superior sensitivity of
["*F]fluoride PET/CT. An example of aBSI and PET index calculated from the same

patient is shown in Fig. 11.
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Fig. 11. Segmented lesions (red) in bone scan (aBSI 0.4%) and ['*F]fluoride PET scan (PET index 7.9%) from a patient in the
test set in paper |. Left-right: Anterior bone scan projection, posterior bone scan projection, PET maximum intensity
projections.

Whole-body tumor burden measured from bone scan can stratify patients according to
y p g

symptomatic progression and OS.*® Skeletal cumor burden measured from PET/CT
has been shown to correlate with OS in patients with advanced prostate cancer.’® ' 1%

In line with these studies, the results from paper I supported the prognostic value of a
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measure of skeletal tumor burden in PET/CT but warranted further development of
an automated method for more efficient and accurate estimation of suspicious uptake,
as judged by visual interpretation.

To be comparable to aBSI, the PET index presented in this thesis was based on both
uptake in the PET scan and on the skeletal volume information from the CT scan.
Theoretically, an indexed measure of tumor burden allows for inter-patient comparison
by considering patient size. However, it requires the inclusion of the same bones, or
parts of bones, in the scans, which was only sometimes the case. The development of
an indexed measure of tumor burden that is comparable between patients, similar to
aBSI, would benefit from standardized PET/CT scanning that consistently includes the
same bones, or parts of bones, in the FoV.

In paper 11, an Al model was trained for automated bone segmentation. It took the Al
model approximately 2 min per CT scan to segment 49 bones (Fig. 12). The intra-
reader volume difference was less with the Al-based than with the manual approach.
For example, the volume difference for an Al-based segmentation of Th7 was 2% versus
14% for a physician. The segmentation of different vertebrae as Th7 in the two CT
scans from the same patient explained the intra-reader disagreement for the reader. The
potential to reduce intra- and inter-reader disagreement, combined with much faster
segmentation time, points to the advantage of using Al for automated bone and organ
segmentation. A limitation of this study was that the Al model only was validated in
five bones due to the time-consuming task of performing manual segmentations. Since
the publication of paper II, the model has been further developed to segment the entire
skeleton,'*® and was used in paper III.
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Fig. 12. A representative reconstruction of the Al-based segmentations of 49 bones from one patient in the test set in
paper IlI.

In paper III, a fully Al-based model for automated segmentation of bone lesions in
["*F]fluoride PET/CT was developed. Patient examples of segmentations by both the
Al model and reader with resulting indices are shown in Fig. 13. The study showed
that even among experienced specialists working at the same center, agreement on a
patient-level regarding the prevalence of suspicious uptake was <75%. The Al model
did not rule out the presence of suspicious uptake in any patient where the readers
agreed on prevalence which was encouraging but identified 21 uptake in six patients in
whom all readers agreed on the absence of suspicious uptake. For example, the Al model
could not discriminate between suspected malignant uptake and uptake due to spinal
surgery (Fig. 13). These results highlight the issue with a limited training set; an easy
task for an experienced physician can be unachievable for Al due to the lack of similar
training examples. More extensive and varied training material with different uptake
patterns would probably improve the model’s performance in this regard.
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Fig. 13. Two patient examples from paper Il of segmented bone lesions (red) by the Al model and reader in [**FIfluoride
PET/CT scan. Top left: The Al model identifies several lesions in the right ribcage, pelvis,, right hip, and left arm. PET index
1.34%. Top right: Reader D identifies additional lesions in the skull, spine and, pelvis in the same patient (arrows). PET index
1.42%. Bottom left: The Al model detects lesions in the lumbar spine and a small lesion in the cervical spine (arrow). PET
index 0.57%. Bottom right: None of reader A-D identifies any lesions in the same patient. Of note, the patient had previously
undergone lumbar spinal fusion surgery.
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Current Results in Relation to Present Status for Tumor Volume
Quantification

Other measures of tumor burden in both ["*F]fluoride and PSMA PET/CT have been
presented, such as total lesion uptake (TLU) and total tumor volume (TLV). These
measures have shown promising results for risk stratification, prediction of survival, and
assessment of treatment response in small patient materials. *> 7% 190-10% 106 107 TV and
TLU only include the PET information and neglect the volumetric information in the
CT scan. The presented methods are threshold-based and require manual correction
before a final measure is determined. Therefore, their potential to alleviate the workload
is limited, especially in patients with a high number of lesions, until fully automatic
methods are available. In summary, different measures of quantifying tumor burden in
PET/CT are currently being investigated, but there is so far no univocal evidence in
favor of one. However, recent leaps forward in methodology include fully automated

CNN-based models for quantification of whole-body tumor burden in PSMA
PET/CT.109-111, 131

Current Results in Relation to Present Status for Al-based Bone Lesion
Detection

Analytical validation of an Al model is the first step toward its qualification as an
imaging biomarker. It encompasses understanding the risk of detecting false positive or
false negative lesions, which needs to be managed and minimized. In paper III, the
average number of false positive bone lesions was 2.6 per patient, and the number of
false negatives was 2.0 per patient compared to physicians. Hence, the number of false
positive and false negative lesions was acceptable and relatively balanced, which should
be the aim if the purpose of an Al model is to quantify the total tumor burden.

For an Al-based software for lesion detection in ["*F]DCFPyL PET/CT, the number
of false positive bone lesions was 8.3 per patient.'"’ The sensitivity was higher (87%)
than for the model in paper III (71%). In another study where an Al-based model for
segmentation of lesions in [®*Ga]Ga-PSMA-11 PET/CT was presented, the overall false
positive number of lesions was 1 in every 4.3 patients, but the sensitivity was only 58%
for the detection of bone lesions.'” A third recent study showed an agreement of 62%
in M stage assignment and 77% for identification of any distant metastases (MO vs.

MI1) when compared to expert assessment."”’
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Detection of Pelvic Lymph Nodes

As a step towards the assessment of total prostate cancer spread, an Al model for
identifying pelvic lymph node lesions in ["*F]PSMA-1007 PET/CT was developed in
paper IV. The sensitivity of the Al model (mean 82% [range 76-90%]) was within the
inter-reader range of three specialists in nuclear medicine (mean 77% [range 55-98%]).
Inter-reader agreement among the specialists was not perfect despite the use of E-PSMA
guidelines. Similarly, other studies have shown that even when applying criteria for
standardized reporting of PSMA PET/CT, inter- and intra-reader disagreement still
exists among experienced physicians.'"® '"? This highlights one of the implications of
Al which is the potential to help standardize scan interpretation and act as decision
support to physicians.

If the aim of an Al model is to act as decision support or second opinion, it is important
that it recognizes potentially metastatic uptake. At the same time, the identification of
a large number of false positive lesions makes the interpretation time-consuming,
thereby defeating its purpose. The effort of keeping the number of false negatives low
in paper IV (0.2 per patient) came at the expense of a slightly higher number of false
positives (1.8 per patient) for detecting pelvic lymph node lesions. An example of a true
positive and a false negative detection is shown in Fig. 14.

Current Results in Relation to Present Status for Al-based Lymph Node
Lesion Detection

The number of false positives in paper IV was lower compared to another Al-based
software developed in ["*F]DCFPyL PET/CT, for which the average number of false
positive regional and distant lymph node lesions was 19.5 and 90.8 per patient,
respectively.'” Another recent study showed a sensitivity of 90% in the automated
detection of regional lymph node lesions, but the number of false positives was not
stated and the patients had considerably more metastases than in paper IV, making the
two studies difficult to compare.""" In a third study, where an automated method for
segmentation of lesions in [®*Ga]Ga-PSMA-11 PET/CT was presented, the overall false
positive number of lesions was only 1 in every 4.3 patients, but the sensitivity was only
58% for bone lesions and 68% for regional lymph node lesions.'” Another CNN-based
method for [®Ga]Ga-PSMA-11 PET/CT showed an agreement of 81% with expert

assessment for the identification of pelvic nodal involvement (N1)."!
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Figure 14. Patient example of a ["®FIPSMA-1007 scan in paper IV. The long arrow shows a lymph node metastasis detected
by all readers and the Al model (true positive). The short arrow shows a lymph node metastasis marked by all readers but
not detected by the Al model (false negative). Left-right: axial CT scan, fused PET/CT scans.

Role of SUV Thresholds for Lesion Segmentation

In both paper I and III, a SUV threshold was applied for automated segmentation of
bone lesions to compare to reader-based segmentations. In paper 1, the threshold-based
PET s index reflected, on average, 1/3 of the tumor burden as defined by the PET index
based visual interpretation. In paper III, agreement with readers regarding the
prevalence/absence of bone lesions was lower for the threshold model than the Al
model. Application of a global SUV threshold for segmentation of suspected metastatic
in ["®F]fluoride PET/CT is problematic, as the uptake levels in malignant disease and

benign conditions are known to overlap.'*

SUV thresholds have been used in recent studies for detecting lesions in PSMA
PET/CT,” ' and have found drops in sensitivity for both lymph node and bone
lesions compared to readers.'"” In paper IV, applying a SUV threshold of 3.0 resulted
in a very high number of false positive lesions that the readers did not select, on average
19.9 per patient (range 19.6-20.1 depending on which reader was used as reference).

In summary, simple SUV thresholds without manual corrections do not accurately
represent tumor burden. It is also known that using different PET/CT scanners,
acquisition protocols, and reconstruction algorithms result in different SUVs, especially
in small lesions.'” The results in paper I, IIl and IV support the application of Al for
more accurate calculation of the skeletal tumor burden compared to a global SUV

threshold.
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Aspects of Ground Truth

For the training and testing of the Al models in this thesis, methodological limitations
can be discussed in view of three aspects; the segmentation of suspicious lesions, the
classification of such lesions as benign or malignant, and the amount of annotated data.

Manual segmentations are commonly used when training and testing a CNN to detect
or segment abnormal features such as suspected metastatic uptake in PET/CT scans.'”
However, manual segmentations are not a perfect reference standard as there is a known
propensity for inter-reader delineation differences.'” Additionally, due to partial
volume effect, the voxel contours do not match the exact contours of the pathological
abnormalities. In theory, only histopathology can provide ground truth for diagnosis
and information on boundaries. A limitation throughout this thesis is the lack of
verification of metastases by the gold standard. Given the widespread disease in many
patients (Fig. 11), it would have been practically and ethically impossible to obtain a
histopathological diagnosis for every bone lesion in paper I and III. In paper IV, only
27 patients in total, 6 of which in the test group, underwent eLND following PSMA
PET/CT scanning, which impeded histopathological verification in most patients.

In the absence of gold standard information, study designs often use consensus readings
as a reference standard for detecting and classifying lesions in PET/CT. Consensus
readings are not optimal for several reasons, one being that they omit information on
interpretation discrepancies by overruling the minority opinion. In this thesis, using
one physician at a time as a reference and averaging the results over the choices of
reference avoids giving one physician’s interpretation more impact than another, and
allows for a more nuanced picture of reader interpretations. However, when
interpreting the results, one should bear in mind that the true information of lesion
numbers and origin in the patients cannot be known with certainty.

The type and amount of annotated data required to train a CNN depend on the images
and the task. Segmentation of an organ or an abnormal feature requires pixel-wise
segmentation, which is laborious when performed manually, especially in 3D data such
as CT and PET/CT."" Although there was a gradual expansion of the data sets with
cach study, the time-consuming and labor-intensive task of manually segmenting
suspected metastatic lesions (paper I, III, and IV) and bones (paper I and II) was a
limiting factor. As mentioned, the Al model could not distinguish between malignant
uptake and uptake secondary to spondylodesis in paper I1I, which was an easy task for
the physicians. In paper IV, lesions in presacral lymph nodes were the most commonly
missed by the Al model, as metastases in this station are rarer than in iliac lymph
nodes."” The performance of the Al model in correctly recognizing less common
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conditions and uptake patterns would most likely improve with larger training sets
containing more varied examples.

Since publication, the Al model in paper IV has been further developed to detect
primary prostate cancer tumors and distant lymph node and bone metastases."*® The
model was trained and validated using 540 scans, compared to 161 scans in paper IV,
from ["*F]JPSMA-1007 PET/CT scans performed both at initial staging and because of
suspected recurrent disease. A difference is that one expert reader performed the manual
segmentations used for training, compared to three readers in paper IV. In this recent
study, the results showed better overall performance of the Al model when using the
same reader (whose segmentations had been used for training) as a reference in the
evaluation, compared to the other readers used as reference. It underscores that manual
segmentations by several experts are essential in achieving general applicability and
avoiding bias when training a CNN, in addition to a more extensive training set.

Limitations of PET/CT Scanning

Inherent limitations exist for both ["*F]fluoride and PSMA PET/CT. ["®F]fluoride
PET/CT cannot detect lymph node or visceral metastases. High uptake of ['*F]fluoride
and PSMA-targeting radiopharmaceuticals in bone is seen in conditions other than
skeletal metastases. Increased ["*F]fluoride uptake due to high bone turnover occurs in
degenerative joint disorders, early stages of osteoarthritis, and fractures."”> '” Non-
specific bone uptake of ['*FIPSMA-1007 is also a common finding, especially in the

ribs and pelvis,® 1%

and high uptake is also seen in malignancies other than prostate
cancer.” The underlying response to therapy in prostate cancer tumor cells may not be
directly or linearly reflected in PSMA uptake. Flare phenomenon following the start of
ADT has been described,' ' and PSMA expression may vary depending on ADT
duration, although data are limited.'""'*® There are case reports of patients with
metastatic neuroendocrine differentiated metastatic prostate cancer where lesions do
not show uptake of PSMA-targeting radiopharmaceuticals."* ' As with visual
inspection, the diagnosis, possible ADT interferences, and timing of the scan have to
be taken into account if applying an automated method for image analysis during

therapy monitoring.
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Conclusions and Future Scope

In this thesis, CNNs were trained to segment bone lesions in ["*F]fluoride PET/CT to
measure whole-body skeletal tumor burden. This measure, coined the PET index, was
shown to more closely reflect the interpretation by a reader compared to applying a
SUV threshold for lesion segmentation. Another model was trained to detect pelvic
lymph node lesions in PET/CT scans obtained with ['**FIPSMA-1007 with a sensitivity

comparable to experienced readers.

Going forward, the development of one Al model for detection and quantification of
the primary tumor or local recurrence, as well as bone, lymph node, and visceral
metastases in PET/CT, could provide a complete measure of the overall metastatic
tumor burden. Adaption of the model’s ability to estimate wide ranges of
radiopharmaceutical uptake patterns at different stages of the disease would be required.
A key to developing an Al model that can qualify for clinical practice and use in trials,
is to enlarge the size and the variability of training data. Training a model on the
collective experience embedded in a data set created by many experts could potentially
elevate its performance over that of the average reader. Gathering images from different
insticutions obtained with different PET/CT scanners and imaging protocols,
including different accumulation times and reconstruction algorithms, and with
segmentations performed by multiple expert readers, are necessary for developing
robust models that are broadly applicable. With these necessities come logistic and legal
obstacles, which have to be overcome.

Given the limited availability of expert-annotated data, one possibility may be
combining scan types for leveraging information from different radiopharmaceuticals,
such as ['*Ga]- and ['*F]-labeled PSMA-targeting compounds, in model training. This
approach may also expedite the development of Al models for future novel PET
radiopharmaceuticals by not having to train them de novo. Adding external
information to the input when training, such as results from postoperative
histopathological examination after prostatectomy or eLND, may also elevate the Al
model’s performance by not limiting its skills to the readers used for training,

This work is part of a continuous effort to develop PET/CT imaging biomarkers as
indicators of prognosis and treatment efficacy in patients with prostate cancer.
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Validation in analytical and clinical studies is required to explore the true potential of
Al-based assessment of PET/CT. This process has been demonstrated with the
development of aBSI, and has resulted in a clinically applicable imaging biomarker.****
Ultimately, large prospective, multicenter clinical trials are needed to evaluate whether
Al-based assessment of PET/CT imparts valuable clinical information for prognosis,
prediction, and evaluation of treatment response and outcome in patients with prostate

cancer.
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Populirvetenskaplig ssammanfattning

Bilddiagnostik dr en hornsten i handliggningen av patienter med prostatacancer.
Bildtolkningen ar en tidskravande process och beroende av den enskilda tolkarens
erfarenhet och kunskap. Detta begrinsar effektiviteten och likvirdigheten i
diagnostiken, vilket i slutindan paverkar patienters behandling och prognos. I den hir
avhandlingen har artificiell intelligens tranats att tolka cancerns utbredning. Metoden
kan leda dll en standardiserad bildtolkning och dirmed bittre &vervakning och
uppfoljning av cancerbehandlingseffekeen.

Prostatacancer ir den vanligaste cancern hos min i vistvirlden. I Sverige uppticks cirka
10 000 nya fall varje ar. Risken att d i prostatacancer dr beroende av omfattningen av
sjukdomen. Nir cancern ir begrinsad till prostatan dor 4,5% av patienterna till f6ljd
av sjukdomen under de forsta 10 aren efter diagnos. Om cancern spritt sig utanfor
prostatan minskar den beriknade livslaingden kraftigt till cirka 3-4 ar. Vid behandling
av prostatacancer ir det ddrfor viktige bade ate uppticka spridning (s. k. metastaser)
tidigt och att tillforlitligt uppskatta risken for framtida metastaser, samt att kunna
utvirdera férindringar i metastasbérdan under behandling.

Positronemissionstomografi kombinerat med skikerontgen (PET/DT) ir idag ansedd
som den mest kinsliga avbildningsmetod for att undersoka spridning av prostatacancer.
Beddmningen av bilderna gors av en likare och fynden rapporteras i fritext, vilket gor
att tolkning och rapportering blir subjektiv och tidsédande.

Att tolkningen av PET/DT ir sd beroende av den enskilda likarens erfarenhet och
kunskap ir ett problem. Ett sitt att 16sa detta problem ir att utveckla automatiska
metoder som pa ett objektivt sitt beriknar de sjukliga férindringarna i en bild genom
en sd kallad bildbiomarkor. I sjukvirden kan bildbiomarkérer fa positiva konsekvenser
i utvecklingen mot mer personanpassad vard.

Artificiell intelligens har potential atc hjilpa tll i utvecklingen av en siddan metod.
Tekniken bygger pa en variant av maskininldrning, si kallad “deep learning” och ir
samma teknik som anvinds vid utvecklingen av till exempel sjilvstyrande bilar eller
ansiktsigenkdnning. Datorn trinas med ett stort antal bilder och lir sig pa sitt
identifiera strukeurer och eventuella avvikelser. Malet ar atc f3 datorn att tolka bilden
lika bra, om inte bittre, 4n en minniska.
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I den hidr avhandlingen trinades artificiell intelligens att tolka PET/DT-bilder och
berikna cancerutbredningen i kroppen pa enbart nigra sekunder. I en liten grupp med
patienter visades det hir méttet, som kallas PET index, vara kopplat till 6verlevnad. Att
storre tumdrutbredning 4r kopplat till simre 6verlevnad ir i sig inte férvanande, utan
styrkan ligger i att cancerspridningen kan presenteras pa ett objektivt sitt i sifferform,
snarare in i likarens svarstext.

Den hir avhandlingen visade att de 4r mojligt att anvinda artificiell intelligens for ace
hitta och berdkna cancerutbredning utifrin PET/DT-bilder. Artificiell intelligens
kommer inte ersitta behovet av likartolkning, men kan effektivisera arbetet och fungera
som ett beslutsstdd. De objektiva och mitbara matt som artificiell intelligens kan
producera utifrin medicinska bilder har potential att bidra med information om
forvintad 6verlevnad och limplig behandling, eller kombinationer av behandlingar.
Matten skulle ocksa kunna anvindas for att utvirdera hur patienter svarar pa given
behandling och f6r att utvirdera effeke i likemedelsstudier.
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Errata

Paper I
The energy window for the bone scan acquisition was 140 keV +10% and not +20%.

In the training group, the CT images were reconstructed with a slice thickness of 5
mm, not 3.27 mm as stated.

The CT scan in the study group was not obtained as a diagnostic contrast-enhanced

scan (80-400 mA, 120 kV), but as a low-dose scan (30-150 mA, 140 kV).

Fig. 3: The value of the lower limit of agreement is -4.79 as stated, but the line is
misplaced.

Fig. 4b: The PET index was 7.9%, not 2.6%.

Paper 11

A low dose CT scan was acquired using tube current modulation 30-110 mA, not 30
mAs.

The parameters for the low-dose CT scan acquisition in the validation group was 30-

150 mA, 140 kV, and not 80-400 mAs, 120 kV.

Paper IV

The CT images were reconstructed with a slice thickness of 5 mm and not 0.625 mm.
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