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Abstract 

Innovative engineering methods are needed to 

enhance the adaptability and agility of industrial control 

procedures and concurrently manage their rising 

complexity. Service-oriented Architecture (SOA) 

constitutes a promising paradigm to meet these 

challenges. To apply the rather abstract SOA principles 

to industrial automation, a model-driven engineering 

method is presented in this paper. Therefore, a reference 

architecture is introduced providing a framework to 

structure and define services for control tasks in a 

convenient way. The application of the engineering 

method is supported by an implementation concept. It 

uses SysML during the design phase and the process 

modeling and control language Grafchart for the 

execution of service-oriented control procedures. 

1. Introduction 

The complexity of industrial control procedures is 

steadily increasing. This is mainly due to rising demands 

on highly flexible and high quality production processes 

as well as to technologically upgraded production 

equipment and products. Additionally, production 

processes are constantly optimized and reconfigured, 

which implies that the control procedures need to be 

adaptable and reusable. 

Programmable logic controllers (PLCs) are the 

established control devices in industry used for 

executing the control procedures. Although, PLCs were 

technologically improved over the time, their low-level 

programming style has not changed. This implies that 

PLC programs are often hardware-dependent, 

complicated, and monolithic and thus error-prone and 

difficult to adapt or reuse [1]. Besides old-fashioned 

programming techniques, there is no well-documented 

design procedure that is fluently connected to previous 

engineering domains, in particular the process planning. 

Thus today, the control system development requires a 

high effort during the initial engineering as well as 

during reconfiguration of production plants. 

To improve the current situation new methods for 

efficient development of control software are needed. A 

promising approach is to apply the paradigm of Service-

oriented Architecture (SOA) to design control 

procedures as cooperating building blocks that are easy 

to reuse or rearrange. The SOA approached applied 

within Automation is referred to as SOA-AT [11]. The 

foundation of SOA is the encapsulation of functionality 

to services which in turn help to design control 

procedures in a more abstract way. Thus, SOA can be 

combined with Model-Driven Development (MDD) and 

Model-Driven Engineering (MDE) techniques in order to 

develop control software in the various concretization 

steps.  

The presented work is based on the concept MDE for 

SOA-AT which describes an MDE procedure for the 

design of service-oriented control architectures (section 

2). Then, the concept is detailed regarding a reference 

architecture for the definition of services for service-

oriented control procedures (section 3) and their model-

driven design using SysML (section 4). After that, the 

application of Grafchart as executable service 

orchestration language and a transformation concept 

from the SysML design model to Grafchart is presented 

(section 5). Finally, the application of the overall concept 

is illustrated by the design and implementation of a 

service-oriented control architecture at a practical 

demonstration system (section 6). 

2. State of the art 

To improve the generation and verification of control 

procedures, various approaches have emerged that make 

use of modeling. Most of them focus on the automatic 

generation of PLC code by means of MDD using 

different formal and non-formal modeling languages, 

e.g. UML [2], SysML [3,4], Petri Nets [5], and State 

Charts [6]. Another approach is the direct execution of 

the models without additional transformations. Despite 

lower reliability and real-time guarantees, executing on 

ordinary computers means a much larger freedom in 

choosing programming language and execution platform. 

One particular language designed for both control and 
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modeling is Grafchart [7]. It is based on the IEC 61131-3 

[8] language Sequential Function Charts (SFC). 

Grafchart has been extended with support for reusability 

and exception handling and it also has support for formal 

verification. 

Existing applications of SOA in the automation 

domain focus on the realization of distributed 

automation system as networked services that are mostly 

implemented with Web service technologies. In this 

context the EU projects SIRENA, SOCRADES, and the 

currently running IMC-AESOP play an important role 

[9–11]. 

In previous work the SOA-AT concept is presented, 

which describes the idea of networked automation 

systems that work in a service-oriented way [12]. This 

approach was then combined with the process modeling 

language Grafchart in order to implement and execute 

control logics as service orchestrations [13]. For MDE of 

service-oriented control architectures the method MDE 

for SOA-AT was developed including several 

concretization steps [14]. The designed control 

architecture can then be implemented in various ways, 

for example in a highly distributed way on embedded 

devices in form of a cyber-physical system [15]. 

3. Services for process control 

The following section investigates how the SOA 

paradigm can help to achieve an efficient engineering of 

control procedures. Furthermore, a reference architecture 

for defining services to generate industrial control 

procedures is presented. 

3.1. Service-oriented process control 

Service-oriented architecture (SOA) describes a 

concept for distributed computing that originally stems 

from the business process domain with the objective to 

realize agile and flexible enterprise IT systems [16]. The 

basic idea of SOA is the encapsulation of functions to 

reusable services that serve as building blocks for the 

generation of new functionality [17]. SOA is a wide-

spread concept to enable the realization of adaptable 

business processes by using standardized software 

components provided by services. 

These principles can be transferred to the control 

system development where control procedures for 

production processes have to be generated. In the context 

of industrial automation, a service-oriented control 

procedure comprises automation functions that are 

exposed as reusable services [12]. To execute the desired 

production process the services are coordinated in a 

certain order according to the desired process flow.  

The major benefit of SOA is provided by the 

encapsulation principle. It permits to reduce the 

complexity of control procedures by splitting up the 

control software in reusable functional units and hiding 

implementation details. Thus, control procedures can be 

developed first in an abstract way so that the overall 

software structure can be defined independently of 

implementation and technological details. Furthermore, 

the development of control software can take place on a 

higher abstraction level so that the gap between the 

control system development and the previous process 

planning phase can be closed. Altogether, SOA is a 

promising concept to achieve high adaptability and 

reusability, comprehensible and clear software structure, 

and seamless connection to other engineering domains. 

3.2. Service levels and types 

For introducing SOA in a special application domain 

the definition of a reference structure is recommended 

that specifies conventions for the determination of 

services. The complexity of the overall application can 

be reduced by classifying services according to the 

application domain. By defining vertical layers the 

overall application can be split up in composition levels 

[17]. Furthermore, service types can be defined for 

grouping services with similar characteristics [16]. 

Today control procedures, typically implemented as 

PLC programs, are usually programmed directly in a 

bottom-up way without first designing the software 

structure. The programs comprise several aspects: 

Logics are needed to implement the field device 

functions and to establish the connection to the 

respective input/outputs and communication protocols of 

the controlled devices. Furthermore, control logic 

defining the process flow and additional control routines 

for initialization, safety, monitoring, scheduling, etc. of 

the process are needed [18]. How these aspects are 

structured in Function Blocks (FBs) and how these are 

named varies a lot depending on for example the 

programmer, the company, and the application domain. 

Derived from this, two service layers can be identified to 

structure service-oriented control procedures: the 

application-independent equipment layer and the 

superior process layer (Figure 1). 

 

Figure 1. Service layers of service-oriented 
control procedures. 
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The services of the equipment layer represent the 

functions of the production equipment that execute the 

technological process (Equipment layer in Figure 1). To 

achieve the desired behavior, the equipment services 

have to be executed in a certain order defined by the 

process logic (Process layer in Figure 1). This procedure 

of arranging services in a certain way to achieve new 

functionality is called service orchestration. Within the 

equipment layer the services are classified as basic 

services and composed services. The basic services 

constitute the elementary mechatronic functions of 

devices and machines that are encapsulated to services. 

Thus, basic services are the interface between the 

electromechanical hardware and the IT-based 

automation system. These basic services can be 

aggregated to create equipment services with coarser 

granularity for production modules, units, etc., to 

composed services. 

In the process layer the executable control procedure 

depending on the required production process and the 

available equipment services is generated. In order to 

achieve the desired process flow control services define 

the process logic and the required functions to execute 

the desired technological process. In order make the 

control service executable the binding of the required 

functions to available equipment services has to be 

established. Since these control services have to consider 

the physical structure of the production system 

(production components, material flow, etc.) as well as 

the current production tasks (product types and variants) 

they are highly specialized for the respective application. 

In order to provide reuse and clarity, parts of the overall 

control can be outsourced in separate services.  

If various product types are produced with the same 

production plant, the definition of product services is 

useful. They specify the sequence of production steps to 

produce the respective product type. Thereby, the 

required equipment services can already be bind 

concretely or be still abstract so that the binding has to 

be done in the control service (Figure 2). Furthermore, 

other parts of the control program according to [18] can 

be implemented in separate services, here summarized as 

supporting services. Altogether, on process level the 

control service works as a central orchestrator that uses 

the product and supporting services as building blocks 

and establishes the missing bindings to the available 

equipment services.  

Figure 2 illustrates the defined service types and how 

they interact. For example, the composed service “c2” 

uses the basic service “b1”. Within the control service 

“cr1” a supporting service “s1” and the product service 

“p1” are called. To define high-level functionality 

independently of the current equipment layer, the service 

allocation can be done first in an abstract way so that the 

respective services are bound in the control service. 

 

Figure 2. Interaction between the service 
types. 

3.3. Service definition and naming scheme 

As Figure 2 depicts, the allocation of services is very 

important to build new functionality in a flexible way. 

Therefore, a mapping between the required functionality 

and suitable services has to be made. How fluently and 

uncomplicated this mapping procedure is depends on the 

level of detail of the control services and the granularity 

of the equipment services. The granularity influences the 

abstraction level where the mapping between process 

and equipment services takes place (Figure 3). 

As a rule, the coarser the granularity of the equipment 

services, the less detailed the specification of the control 

service can be. Since the deep technological details of 

the production process are hidden then, the service 

orchestration of the control service is rather simple. 

However, coarse-grained services lead to a lower 

adaptability because they hide most of the details which 

can only be influenced via service parameters from the 

outside. Furthermore, their reusability is rather low 

because their implementation relies strongly on the 

current production system. Consequently, a higher 

flexibility and reusability of the whole SOA system can 

only be achieved with more fine-grained equipment 

services. 

To avoid this trade-off the basic services are defined 

on a low technological level as the functions of the 

individual field devices. They offer the possibility to 

specify and influence the technological process in detail. 

By defining composed services, built upon the basic 

services, coarse-grained services can be created that help 

to increase the abstraction level of the mapping 

procedure. 
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Figure 3. Mapping between process and 
equipment services. 

Thus, a crucial issue during the SOA design is to 

determine the equipment services by considering their 

granularity and scope in the best way. Since the 

functionality of the service is encapsulated the service 

interface exposes the service to the outside. Therefore, 

the name of the service and its related operations have to 

be defined. First of all, the names of the equipment 

services have to express the mechatronic function of the 

production equipment independently of its respective 

use. For example, a pneumatic cylinder receives the 

service “translate” because it executes a translational 

motion and an inductive sensor provides the service 

“detect”. 

However, this definition might be too general because 

the plant engineer needs to know how the functionality is 

executed technologically. The addition of the type of 

energy for actors and the operating principle of sensors 

can help to reduce the risk of technological 

incompatibilities. By naming the service of a pneumatic 

cylinder “translatePneumatic” the engineer knows that 

additional devices are needed to supply compressed air. 

The inductive sensor has the service “detectInductive” 

which clarifies that the service is suitable for a metallic 

work piece but not for a wooden one. 

This naming scheme can be applied independently of 

the respective realization by concrete devices. This helps 

to support the mapping procedure by specifying the 

required functions in the process services as abstract 

services that can be bound later to concrete services of 

various field devices. Ideally the interfaces of the 

abstract and concrete services are exactly the same. 

However, the exact functional scope and how the 

functions are controlled can vary for different devices, 

especially for more complex ones. In this case, another 

concretization level is needed where the name of the 

vendor or a type identifier is added to indicate that the 

service is tailored to a special device, for example 

“translatePneumaticSF101” (Figure 4).  

How the functionality of the service can be accessed 

is defined by the operations of the service. During the 

concretization steps the operations and/or their 

parameters have to be adjusted or added respectively 

(Figure 4). How abstract or specific the service 

interfaces should be depends on the characteristics of the 

devices and the application. As a rule, the service 

definition should be as general as possible and as 

concrete as necessary. 

 

Figure 4. Concretization steps during the 
definition of equipment services. 

Besides the degree of concretization the 

standardization of service and operations names are 

essential to enable an automatic detection and binding of 

suitable services and the exchangeability between 

devices of different vendors. However, experiences from 

business process SOAs have shown that the organization 

of company-wide services constitutes a highly complex 

task. A first approach for a standardized naming of 

equipment services makes use of existing automation 

standards. Promising candidates are field device profiles 

like the PLCopen Motion Control Specification that 

comprises the standardized definition of motion control 

functions [19]. Additionally, the international eCl@ss 

product classification system which, among other things, 

comprises a comprehensive library of all types of 

production equipment [20]. eCl@ss comprises four 

hierarchical levels where the third and fourth level can 

help to derive a service name for a field device. For 

example, a flowmeter is assigned to the group “27-20-04 

Meas. istr. flow, volume” where the general function 

“flowmeasure” can be deduced. The fourth level 

comprises several types of flowmeters, e.g. “27-20-04-

01 Flowmeter (magn.-induct.)” so that the operating 

principle can be selected. The name of the service is then 

determined to be “flowmeasureInductive”. 

4. Model-driven design with SysML 

So far, MDE for SOA-AT has been defined in a 

general way [14, 15]. It describes how a fluent 

information flow can be achieved from process planning 

to executable control procedures by using service-

orientation and modeling. Therefore, the planning model 

comprises several parts: the Hardware Structure, the 

Service Structure, and the Service Orchestration 

(Figure 5). To apply the method the general modeling 

instructions have to be transferred to an existing 

modeling language. Therefore, SysML is chosen because 

it is a wide-spread modeling language for systems 

engineering [21]. 
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Figure 5. Overview of the MDE for SOA-AT 
method [14]. 

In the Service Structure the services are defined 

according to their interface specification so that it gives 

an overview of all available services in the current 

system. In SysML a service is represented as block and 

the service operations are added as operations of the 

block for which input and output parameters can be 

assigned. Within a Block Definition Diagram the 

individual services can be designed and relations 

between services can be added to express their 

dependencies. The “use” relation indicates that a service 

is using another one for providing its own functionality. 

To indicate its service type stereotypes are defined that 

can be assigned to each block. In Figure 6 a section of 

the Service Structure of the use case (section 6) 

comprising four services is illustrated. The three basic 

services “TranslatePneumatic” (of a pneumatic cylinder) 

and “DetectMagnetic1/2” (of two reed switches) are 

composed to the service “VerifyingTranslate 

Pneumatic1” that is used by another composed service 

“AssemblyPneumatic”. 

 

Figure 6. Example of a service structure. 

The Service Orchestrations that determine the inner 

behavior of process services are modeled as activities. In 

an Activity Diagram the logic of an activity can be 

designed by using actions, representing single process 

steps, and control flow elements. The call of an 

equipment service can be inserted by a 

CallOperationAction that links to the operation of the 

block that represents the required service. To insert a 

process logic that is outsourced to another service 

(product/supporting service) a CallBehaviorAction is 

used that links to the respective activity. If the control 

flow is bound to conditions either localPre/ 

Postconditions of actions or eventActions can be used. 

Figure 7 illustrates how a service orchestration is 

modeled as an Activity Diagram. The activity 

“Cr_Production” comprises the action “Supply new 

product base” that calls the operation “supply” of the 

service “ControlStorage1”. The next action “Transport 

new product base from storage to assembly module” is 

not activated until the event “Product base ready” 

happens. This action calls the service “PickAndPlace1” 

and uses the input parameter “motionID” to adjust the 

operation “motion”. After the condition “motion 

finished” is fulfilled the activity “Pr_KeyFinder” is 

called that represents the product service. 

 

Figure 7. Service orchestration of the 
service “Cr_Production”. 

5. Process implementation with Grafchart 

The designed control architecture in SysML is 

completely independent of how the services and the 

service orchestrations are implemented. In previous 

work, an implementation concept with Grafchart as a 

suitable process modeling language for the development 

and execution of service orchestrations in combination 

with the Devices Profile for Web Services (DPWS) 

service technology was introduced [13] which is 

connected to the SysML modeling in the following. 

5.1. Introduction to Grafchart 

Graphical programming languages are popular in the 

automation industry. Some advantages are simplicity and 

providing a better overview of the applications than 

textual languages. Visualization of a graphical 

application is also straightforward and more intuitive 

compared to textual languages. 

Grafchart is a graphical programming language based 

on Sequential Function Charts (SFC), one of the IEC 
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61131-3 PLC standard languages, and uses the same 

graphical syntax with steps and transitions [7]. Steps 

represent the state of the application and transitions 

represent the change of state. Associated with the steps 

are actions which specify what to do at certain occasions. 

Associated with each transition is a Boolean guard 

condition. By using additional concepts like several 

action types, alternative and parallel paths, hierarchical 

structuring (macro steps), reusable functions 

(procedures), exception handling (exception transitions), 

it is convenient to implement large applications that are 

maintainable and possible to overview. 

5.2. Service-oriented control with JGrafchart 

The tool JGrafchart (JG) is a free Grafchart 

implementation that supports numerous graphical 

elements to make it possible to create rich and 

interactive operator interfaces. It also supports various 

customizable IO to make it possible to connect 

applications to practically any external environment with 

only a small or moderate effort. Since version 2.1.0 JG 

also has support for DPWS. JG depends on the DPWS 

mandatory web service extensions WS-Discovery, 

WS-MetadataExchange, and WS-Addressing to enable 

automatic discovery of DPWS devices, retrieving 

available services and operations, and connecting to 

devices as a client. It also has generic support for 

interacting with the devices. Writing a JG application 

using DPWS devices is done by binding a portType in a 

discovered DPWS device to a DPWS Object element in 

JG. No device specific glue code is required to interact 

with the device. Once the binding has been specified, the 

operations are called on the DPWS Object, see Figure 8. 

In the figure, a device called “Kitchen light” has been 

automatically discovered and device metadata and 

available services and operations have been added to the 

service registry. To use the operations in the 

“SwitchPower” portType a DPWS Object called 

“myDPWSObj” has been added to the application and 

bound to this portType. “myDPWSObj” is then used to 

call the operations “Switch” and “GetStatus”. The 

function dpwsSubscribe initiates a subscription and 

dpwsHasEvent is used to check if an event of type 

“StatusChanged” has been received. 

In recent versions of JG the DPWS feature has been 

further improved. In version 2.2.0 it is possible to detect 

if a service call failed using the new functions 

dpwsHasFault and dpwsGetFault and handle this in the 

application. In version 2.3.0 it will also be possible to 

start the execution without all devices being present and 

to manually specify a binding for a device that will be 

available later. This is especially useful in the beginning 

of the implementation phase since all devices might not 

yet exist. The possibility to have comments in transition 

conditions has also been added to make it possible to 

have text strings like the ones in a SysML activity 

diagram as comments specifying the intended transition 

conditions in natural language. 

Figure 8. Integration of DPWS in JGrafchart. 

5.3. Transformation of SysML to Grafchart 

For realizing service-oriented control procedures the 

chosen implementation concept uses DPWS as service 

technology for the equipment services and JG to 

implement the process services. Within JG the individual 

services in the process layer are not implemented as 

DPWS services but as independent Grafchart 

Procedures. To reduce the effort of developing the 

executable control applications the tool “SysML2JG” 

automates the transformation of service orchestrations 

specified as Activity Diagram to JG programs. The most 

important transformation rules are listed in Table 1. 

Table 1. Transformation rules from SysML to 

JGrafchart 

S dpwsSubscribe(myDPWSObj, "PT10M"); 
S myDPWSObj.Switch("ON"); 

S newStatus = myDPWSObj.GetStatus(); 

dpwsHasEvent(myDPWSObj, "StatusChanged"); 

myDPWSObj 

SysML Grafchart 

Action Step 

Activity Procedure 

Link to service block in 
CallOperationAction 

DPWS object + action with 
service call in step 

link to service block in 
CallOperationAction 

procedure object + procedure 
step 

Input pins Variable 

Event or Pre/Post-condition 
of an action 

Transition condition 

InterruptibleActivityRegion 
with ExceptionHandler 

Marco step with exception 
transition 

Initial/Final node Enter/Exit step 

Fork/JoinNode Parallel Split/Join 

Additional information (input 
parameters, etc.) 

Comments in steps and 
transitions 
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The SysML model has to be exported to the 

standardized XMI format which serves as input for the 

“SysML2JG” tool. The tool analyses the XMI file and 

automatically generates a JG file that comprises all the 

information about the process services that was specified 

in the SysML model. To make the JG file executable it 

only needs to be detailed with implementation specific 

details and the service bindings. 

6. Use case 

6.1. Demonstration system 

The presented concept was applied to a real 

demonstration system of the SmartFactoryKL. It is a 

production unit that assembles several product parts to a 

finished product. It comprises three different assembly 

modules, a conveyor belt, a Pick&Place unit, two 

storages, and several other devices with a total of about 

50 field devices. In a first version the unit was controlled 

by a PLC that should be replaced by a distributed control 

system with service-oriented control. 

To employ the production equipment as mechatronic 

units that expose their functional capabilities directly as 

services, some enhancements have been made to the 

hardware. 13 so-called service gateways were installed 

which extend several production modules and some 

single field devices with computational power and an 

Ethernet interface. A service gateway is realized with a 

Digi Connect ME 9210 microcontroller and an I/O board 

to connect the device interfaces to the microcontroller. 

Figure 9 depicts the complete demonstration system and 

its pneumatic assembly module that is extended by a 

service gateway. 

 

Figure 9. Demonstration system (left), 
pneumatic assembly module (middle), 
microcontroller (right) 

6.2. Control system development 

The service-oriented control architecture was 

designed according to MDE for SOA-AT including the 

development of a SysML model of the complete 

demonstration system. The equipment services (40 basic 

services and 12 composed services) have been 

implemented as DPWS Web services on the micro 

controllers by using the DPWS Core toolkit [22, 23]. 

The implementation of the equipment services 

constituted the foundation to enable creation of high-

level process services. 

In addition to the control service, two product 

services were defined to produce two different product 

types. The SysML2JG tool was used to transform the 

SysML model to a JG program. The content of the 

control service was transferred to the top level of the JG 

program and the product services were transformed to 

Grafchart procedures. Then the natural language 

comments were replaced by actual service calls and 

transition conditions. Furthermore, some details 

concerning error handling were added. To receive the 

production orders, a connection to the ERP system was 

implemented by using the JG Socket IO capability. In 

the last step the service bindings were established. The 

DPWS Objects were bound to the available services in 

the automation network that could be selected via the JG 

service registry. The abstract service allocations in the 

product services were carried out with dynamic 

references that are allocated dynamically to the 

respective DPWS Object depending on the current order. 

This applies for deciding which assembly station to 

choose. 

The implementation and testing of the new control 

program were performed successfully and the complete 

production unit now runs on a service-oriented control 

architecture that replaces the PLC systems completely. 

7. Conclusions and outlook 

The presented MDE method provides an integrated 

procedure from design to implementation of service-

oriented control procedures. The tool for the automatic 

transformation from SysML to JG will be further 

developed and made freely available. The reference 

architecture constitutes a design guideline for a suitable 

structuring and definition of services. Here, further 

collaborating activities are needed to establish 

standardized and vendor-independent service libraries. 

The application of the method has shown that the 

development of the overall control procedures can be 

performed very easily and quickly as soon as the 

equipment services are established. Various extensions 

and changes to the control logic and enhancements on 

the equipment were made. Due to the raised clarity of 

the control structure and the high reusability of the 

services the control procedures could be adapted 

conveniently and with low efforts. The advantages and 

disadvantages compared to ordinary PLC engineering 

will be examined systematically in the future. 

Since the implementation of the equipment services 

on the embedded systems was the most complicated part 

there is much room for improvement. In future work the 

automatic implementation of the equipment services 
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based on the engineering models will be elaborated. The 

use of embedded devices as a computational platform 

selected here constitutes the basis for the development of 

future cyber-physical production systems. The vision 

contains the dynamic deployment of services on varying 

hardware platforms that are distributed in an automation 

network. Another possible solution to evince a migration 

path for today’s automation systems would be the 

implementation on ordinary PLCs. 
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