
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Efficient and Flexible First-Order Optimization Algorithms

Sadeghi, Hamed

2022

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Sadeghi, H. (2022). Efficient and Flexible First-Order Optimization Algorithms. [Doctoral Thesis (compilation),
Department of Automatic Control]. Department of Automatic Control, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/f7e20e00-0d5f-4891-a68d-13c91802aabe

Efficient and Flexible
First-Order Optimization Algorithms

Hamed Sadeghi

Department of Automatic Control

PhD Thesis TFRT-1139
ISBN 978-91-8039-468-0 (print)
ISBN 978-91-8039-467-3 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by Hamed Sadeghi. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2022

To my wonderful children:
Mohammadhossein and Mahya.

Abstract

Optimization problems occur in many areas in science and engineering. When the
optimization problem at hand is of large-scale, the computational cost of the op-
timization algorithm is a main concern. First-order optimization algorithms—in
which updates are performed using only gradient or subgradient of the objective
function—have low per-iteration computational cost, which make them suitable for
tackling large-scale optimization problems. Even though the per-iteration computa-
tional cost of these methods is reasonably low, the number of iterations needed for
finding a solution—especially if medium or high accuracy is needed—can in prac-
tice be very high; as a result, the overall computational cost of using these methods
would still be high.

This thesis focuses on one of the most widely used first-order optimization algo-
rithms, namely, the forward–backward splitting algorithm, and attempts to improve
its performance. To that end, this thesis proposes novel first-order optimization al-
gorithms which all are built upon the forward–backward method. An important fea-
ture of the proposed methods is their flexibility. Using the flexibility of the proposed
algorithms along with the safeguarding notion, this thesis provides a framework
through which many new and efficient optimization algorithms can be developed.

To improve efficiency of the forward–backward algorithm, two main approaches
are taken in this thesis. In the first one, a technique is proposed to adjust the point at
which the forward–backward operator is evaluated. This is done through including
additive terms—which are called deviations—in the input argument of the forward–
backward operator. The deviations then, in order to have a convergent algorithm,
have to satisfy a safeguard condition at each iteration. Incorporating deviations pro-
vides great flexibility to the algorithm and paves the way for designing new and
improved forward–backward-based methods. A few instances of employing this
flexibility to derive new algorithms are presented in the thesis.

In the second proposed approach, a globally (and potentially slow) convergent
algorithm can be combined with a fast and locally convergent one to form an effi-
cient optimization scheme. The role of the globally convergent method is to ensure
convergence of the overall scheme. The fast local algorithm’s role is to speed up the
convergence; this is done by switching from the globally convergent algorithm to

5

the local one whenever it is safe, i.e., when a safeguard condition is satisfied. This
approach, which allows for combining different global and local algorithms within
its framework, can result in fast and globally convergent optimization schemes.

6

Acknowledgements

I would like to begin by expressing my immense gratitude and regards to my su-
pervisor, Pontus Giselsson. Thank you Pontus, for your fantastic job on guiding me
through my research and studies, for your continuous support, for so many fruit-
ful meetings and discussions, and for always having a positive attitude; I learned
a lot from you and enjoyed working under your supervision. Next, I would like to
deliver my deep respect and appreciation to Anders Rantzer, my former supervisor
and current co-advisor, who gave me the opportunity of pursuing a PhD at the Au-
tomatic Control department. Thank you Anders for guiding me through my studies
and research and also for giving me the freedom to change my research direction.
I want to thank my co-advisor, Sebastian Banert. I am eminently grateful to you,
for all the meetings and scientific discussions we had, for your support during the
past few years, and particularly for your detailed and constructive comments on the
manuscripts.

I also would like to express my appreciation to Anton Cervin for handling my
ISP meetings and yearly employee development sessions; it was joyful working
with you as a TA. Bo Bernahrdsson, I am grateful to you for your input on my
manuscripts prior to my preparatory seminar. Mahdi Ghazaei Ardakani, Carolina
Bergeling, and Richard Pates, my sincere thanks to you for helping me, particularly
when I started my PhD journey. I also deliver my gratitude to the administrative
staff, Eva Westin, Mika Nishimura, Monika Rasmusson, and Cecilia Edelborg, for
making the department run smoothly. Thanks to all my other former and present
colleagues, faculty members, administrative staff, and research engineers at the de-
partment for making such a positive, vivid, and friendly workplace. It was a pleasure
to be a member of the Automatic Control department for the last years.

A big thanks to my family for their continuous support and encouragement
throughout my life and in all my highs and lows. And finally, I would like to ex-
press my heartfelt emotions to my lovely children, Mohammadhossein and Mahya;
having you beside me has always been a source of joy, energy, and motivation; love
you!

7

Financial Support
This work was partially supported by the Wallenberg AI, Autonomous Systems, and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

8

Contents

1. Introduction 11
1.1 Outline . 13
1.2 Notations and basic definitions 13

2. Background 17
2.1 Fixed-point iterations . 17
2.2 Convex optimization . 18
2.3 Monotone inclusions . 20
2.4 Overview of papers . 26

3. Publications 29
Bibliography 31
Paper I. Forward–Backward Splitting with Deviations for Monotone

Inclusions 35
1 Introduction . 36
2 Preliminaries . 38
3 Forward–backward splitting with deviations 39
4 Convergence analysis . 43
5 Special cases . 53
6 A novel inertial primal–dual splitting algorithm 57
7 Numerical experiments . 59
References . 62

Paper II. Incorporating History and Deviations in Forward–Backward
Splitting 67
1 Introduction . 68
2 Preliminaries . 70
3 Proposed algorithm . 70
4 Convergence analysis . 74
5 Special cases . 84
6 Deferred results and proofs . 89
References . 106

9

Contents

Paper III. DWIFOB: A Dynamically Weighted Inertial
Forward–Backward Algorithm for Monotone Inclusions 109
1 Introduction . 110
2 Problem statement and preliminaries 112
3 Dynamically weighted inertial FB scheme 116
4 Primal–dual variant of DWIFOB 116
5 Numerical experiments . 120
6 Conclusion . 126
References . 129

Paper IV. Hybrid Acceleration Scheme for Variance Reduced
Stochastic Optimization Algorithms 133
1 Introduction . 134
2 Preliminaries . 136
3 Problem formulation and basic method 137
4 Hybrid acceleration scheme . 139
5 Convergence results . 141
6 Numerical experiments . 143
7 Conclusion . 146
References . 158

10

1
Introduction

Mathematical Optimization, which is a branch of applied mathematics, appears in
many areas in science and engineering such as artificial intelligence [Le et al., 2011;
Sra et al., 2012], statistics [Everitt, 2012], finance [Gilli et al., 2019], control [Darup
et al., 2019; Giselsson and Rantzer, 2014], and transportation [Perea-Lopez et al.,
2003; Yin, 2002], to mention a few. Due to the advancements in providing compu-
tational power, methods for large-scale mathematical optimization play a vital role
in many applications involving massive amounts of data. Nowadays, mathematical
optimization is viewed as a pivotal element in many modern machine learning and
data science applications.

Mathematical optimization can be used to effectively answer decision-making
or prediction questions; whether it is tuning the weights of a deep neural network
to find a predictive model, route planning for logistic trucks, or devising the relative
weights of a selection of equities in an investment portfolio to maximize the return
while maintaining a tolerable risk level.

A mathematical optimization problem consists of an objective (loss) function
and decision or optimization variables (or simply variables) which are possibly
subject to some constraints. The objective function—which we wish to either mini-
mize or maximize—provides a means to quantitatively measure the performance of
a system under study. The objective function itself can consist of a combination of
various quantitative measures of performance and depends on particular attributes
or properties of the underlying system. Each of theses attributes can be represented
by a decision variable. The decision variables are often confined to take values from
certain ranges or sets. Such restrictions on the decision variables are called con-
straints. For instance, in a deep learning based classifier we may have a categorical
cross entropy error as the objective function, the weights (and biases) of the net-
work as variables, and enforcing the absolute values of the weights to be less than
a certain value as the constraint; in route planning for logistic trucks, the objective
function can be overall fuel consumption of the fleet of trucks, fuel consumption
and travelling time of each truck can be seen as decision variables, and restricting
the permissible fuel consumption of each logistic truck to a full tank may be con-
sidered as constraints; in an investment portfolio optimization, we may consider the

11

Chapter 1. Introduction

local/global minimum

local minimum

global minimum

Figure 1.1: (left) a convex function where local minimum is a global minimum
as well; (right) a non-convex function with a local minimum that is not a global
minimum.

expected return (profit) as the objective function, the weight (or number of units) of
each equity as the decision variables, and having the weighted sum of the monetary
value dedicated to each equity less than or equal to the total asset (capital) under
management as a constraint.

The goal in an optimization problem is to find the decision variables that opti-
mize the objective function while satisfying the constraints. Such a variable is called
a solution to the optimization problem. Depending on the formulation of mathe-
matical optimization problems, they can be categorized as convex or non-convex
optimization problems. For convex optimization problems, any local minimum (op-
timum) is a global minimum as well; however, this is not the case for non-convex
problems (a global minimum is a point at which the objective function value is less
than or equal to that of all other points; whereas, the function value at a local min-
imum needs to be merely less than or equal to that of its neighboring points; see
Fig. 1.1). The theory around convex optimization is vast and well-developed, as a
result, a convex optimization problem can often be solved to global optimality.

After formulating the optimization problem, an optimization algorithm can be
used to solve it. Most optimization algorithms are iterative. Given an initial guess
of where an optimal point is, iterative optimization algorithms generate a sequence
of iterates (points) that, under some conditions, converges to a solution of the op-
timization problem. There exist a variety of optimization algorithms that can be
used for solving an optimization problem. However, some may exhibit better per-
formance compared to the others. In fact, each class of optimization algorithms is
tailored towards particular categories of optimization problems. Selecting unsuit-
able algorithms for solving the problem at hand could result in a poor performance
and the algorithm may even fail to find a solution.

Many optimization algorithms for solving convex optimization problems can be
categorized as first- or second-order methods. A first-order algorithm uses merely
the first-order information, i.e., the information on the gradient or—in case of non-
differentiablity—subgradient of the objective function. On the other hand, second-
order algorithms require also second-order information, i.e., information on the
second derivative (Hessian) of the objective function. Therefore, generally speak-

12

1.1 Outline

ing, first-order optimization methods have lower computational complexity, which
makes them more suitable and efficient for solving large-scale optimization prob-
lems; however, smaller problems can be solved very efficiently using second-order
algorithms.

Monotone operator theory is an area of nonlinear analysis that has applications
in many fields such as partial differential equations, variational inequalities, math-
ematical economics and, in particular, optimization [Borwein, 2010; Combettes,
2018; Minty, 1969; Ryu and Boyd, 2016]. Many convex optimization problems can
be cast as finding a zero of a sum of monotone operators. The framework of mono-
tone operators provides a unifying tool for derivation, analysis, and understanding
of a variety of first-order convex optimization algorithms.

In this thesis, the focus is on first-order algorithms for convex optimization prob-
lems which are viewed through the framework of monotone operators theory. This
framework is used to both develop families of novel optimization algorithms and
improve performance of some of the existing first-order optimization methods.

1.1 Outline

The thesis consists of two main parts. The first part provides a background for non-
experts in the field and the second part contains the collection of papers that is the
main part of the thesis.

The remainder of this chapter, as well as chapter 2, are dedicated to introduc-
ing basic notions and definitions along with some relevant fundamental algorithms.
Chapter 3 lists the papers that are included in the thesis along with the contributions
of the authors of each paper

1.2 Notations and basic definitions

In this section, after introducing the notations, we present some fundamental notions
related to convex analysis followed by basic concepts from set-valued analysis.

Notation
The set of real numbers and the d-dimensional Euclidean space are respectively
denoted by R and Rd . The extended real line is defined as R := R∪{+∞}. H and
K denote real Hilbert spaces that are equipped with inner products and induced
norms, which we denote by 〈x,y〉 and ‖x‖=

√
〈x,x〉, respectively.

The adjoint operator of a linear bounded operator L : H →K is denoted by
L∗ satisfying 〈Lx,y〉 = 〈x,L∗y〉 for all x ∈H and y ∈ K . A linear and bounded
operator L : H →H is called self-adjoint if 〈Lx,y〉 = 〈x,Ly〉 for all x,y ∈H .
A linear, bounded, and self-adjoint operator M : H →H is said to be strongly
positive if there exists some c > 0 such that 〈x,Mx〉 ≥ c‖x‖2 for all x ∈H . We

13

Chapter 1. Introduction

denote the set of linear, bounded, self-adjoint, and strongly positive operators on
H by M (H).

Convex analysis
A set S ⊆H is convex if x,y ∈ S implies θx+(1−θ)y ∈ S for all θ ∈ [0,1]. The
empty set /0, singletons (sets that contain only one element), and Rd are examples
of convex sets. For the convex set S, the line segment connecting any two points in
S, lies within S; see Fig. 1.2.

Figure 1.2: (left) a convex set; (right) a non-convex set.

The (effective) domain of a function f : H → R is defined as

dom(f) := {x ∈H : f (x)<+∞}.

A function f : H → R is proper if its effective domain is nonempty. The epigraph
of a function f : H → R is the set of points above its graph, which is formally
defined as

epi(f) := {(x,α) ∈H ×R : f (x)≤ α}.

A function is said to be closed or lower semi-continuous if its epigraph is a closed
set. A function f : H → R is a convex function if for all x,y ∈H and θ ∈ [0,1]

f (θx+(1−θ)y)≤ θ f (x)+(1−θ) f (y).

Alternatively, we say a function is convex if its epigraph is a convex set; see Fig. 1.3.

Figure 1.3: (left) epigraph of a convex function; (right) epigraph of a non-convex
function.

14

1.2 Notations and basic definitions

Set-valued analysis and operators
Let X , Y , and Z be nonempty subsets of the real Hilbert space H , and let 2X

denote the power set—the set of all subsets—of X . An operator T is said to be
a mapping or an operator from X to Y if it maps every point in X to a point
T x = T (x) in Y . This is denoted as T : X → Y .

In what follows we present some basic notions that are frequently used through-
out the thesis.

The set-valued operator A : X → 2Y maps every point x ∈X to a (potentially
empty) set Ax⊆ Y . For a given set S⊆X , we define A(S) :=

⋃
x∈S Ax. The graph

of an operator A : X → 2Y is defined by

gra(A) := {(x,u) ∈X ×Y : u ∈ Ax}.

An operator is uniquely characterized by its graph. The domain and range of an
operator A : X → 2Y are respectively defined by

dom(A) := {x ∈X : Ax 6= /0},
ran(A) := A(X).

Scaling, summation, and composition are other notions that are frequently used for
operators. Given A : X → 2Y , B : X → 2Y , and λ ∈ R, we define A+λB as

gra(A+λB) := {(x,y1 +λy2) ∈X ×Y : y1 ∈ Ax,y2 ∈ Bx}.

Given A : X → 2Y and C : Y → 2Z , the composition C◦A is defined via its graph
as

gra(C ◦A) := {(x,z) ∈X ×Z : ∃y such that y ∈ Ax,z ∈Cy},

or alternatively, it can be defined as (C ◦A)x =C(Ax) =
⋃

y∈Ax Cy for all x ∈H .
The identity operator is denoted by Id and defined as

Id := {(x,x) : x ∈H }.

The inverse operator of A : X → 2Y is denoted by A−1Y → 2X and defined via
its graph as

gra(A−1) := {(u,x) ∈ Y ×X : (x,u) ∈ gra(A)}.

Observe that, by this definition, we have (A−1)−1 =A, and thus, dom(A)= ran(A−1)
and ran(A) = dom(A−1). The zero set of an operator A : X → 2Y is defined as

zer(A) = A−1(0) := {x ∈X : 0 ∈ Ax}.

A mapping T : H →H is said to be L-Lipschitz continuous (with L > 0) if for
all x,y ∈H

‖Ty−T x‖ ≤ L‖y− x‖.

15

Chapter 1. Introduction

An operator T : H →H is nonexpansive, if it is 1-Lipschitz continuous. If the
mapping T : H →H is Lipschitz continuous with Lipschitz constant L < 1, we
say that it is a contractive mapping or a contraction. We say that an operator T :
H →H is α-averaged with α ∈ (0,1) if

T = (1−α) Id+αN

for some nonexpansive operator N.

16

2
Background

This chapter, besides collecting some basic concepts and definitions that are needed
for the rest of the thesis, describes our approach towards solving convex optimiza-
tion problems. More specifically, some notions and definitions from the areas of
fixed-point theory, convex analysis, and theory of monotone operators which this
thesis relies on, are presented. This chapter merely touches upon the surface of
these subjects and to the extent that provides sufficient background for the rest of
the thesis. For a technically in-depth treatment of these subjects, interested readers
are referred to textbooks on convex optimization, monotone operator theory, and
iterative methods, for instance [Bauschke and Combettes, 2017; Boyd and Vanden-
berghe, 2004; Kelley, 1999; Rockafellar, 1970; Ryu and Yin, 2022].

2.1 Fixed-point iterations

We say x∈H is a fixed point of a mapping T : H →H if x = T x. The set of fixed
points of T is denoted by fix(T) and defined as

fix(T) = {x ∈H : x = T x}.

Observe that the fixed-point set of T is identical to the zero set of its fixed-point
residual mapping Id−T , that is, fix(T) = zer(Id−T).

The literature on iterative methods for finding a fixed point of a mapping
T : H →H is rich and extensive [Berinde and Takens, 2007; Kelley, 1995; Kel-
ley, 1999]. In this section, we consider Picard, Krasnosel’skiı̆–Mann, and Halpern
iterations, which are widely used iterations in optimization frameworks.

Picard iteration
Given x0 ∈H and a mapping T ,

xn+1 = T xn, for all n ∈ N

17

Chapter 2. Background

is called a fixed-point iteration which sometimes is referred to as the Picard it-
eration. This algorithm, in general, even for nonexpansive T is not guaranteed to
converge. A classical example to show that is the two-dimensional rotation operator

Rθ =

[
cosθ −sinθ

sinθ cosθ

]
,

with θ 6= 2kπ where k is an integer number. For Rθ , given x0 6= 0, its only fixed
point x? = 0 cannot be found using the Picard iteration. Nevertheless, if fix(T) is
nonempty, under some suitable assumptions on T , the Picard iteration is guaranteed
to find a fixed point x? ∈ fix(T). More specifically, the Picard iteration is guaranteed
to weakly converge to a fixed point of the mapping T if it is either a contractive or
an averaged mapping [Ryu and Boyd, 2016]. Note that contractivity is considered a
strong assumption in many optimization settings, however, averagedness is a milder
assumption and is quite common.

Krasnosel’skiı̆–Mann iteration
Given x0 ∈H and a nonexpansive operator T , the algorithm of Krasnosel’skiı̆–
Mann is given as

xn+1 = (1−αn)xn +αnT xn, for all n ∈ N

where αn ∈ [0,1]. If fix(T) is nonempty, under some appropriate assumptions on
(αn)n∈N, the sequence of iterates generated by this algorithm converges weakly
to a fixed point of T [Bauschke and Combettes, 2017, Theorem 5.15]. The Kras-
nosel’skiı̆–Mann iteration can be viewed as a generalization to the Picard iteration,
as with αn = 1 it reduces to the Picard iteration.

Observe that it is possible to find a fixed point of the nonexpansive operator
T by first α-averaging it—with α ∈ (0,1)—and then, using the Picard iteration
on the resulting averaged operator. This approach is equivalent to using T in the
Krasnosel’skiı̆–Mann iteration with αn = α and for all n ∈ N.

Halpern iteration
Given x0 ∈H and the nonexpansive operator T , the Halpern iteration reads as

xn+1 = (1−αn)x0 +αnT xn, for all n ∈ N

where αn ∈ (0,1). If fix(T) is nonempty, under some suitable assumptions on
(αn)n∈N, Halpern iteration converges strongly to a x? ∈ fix(T) [Bauschke and Com-
bettes, 2017, Theorem 30.1].

2.2 Convex optimization

An optimization problem of the form

minimize
x∈S

f0(x) (2.1)

18

2.2 Convex optimization

where f0(x) : H → R is a convex function and S ⊆H is a convex set is called a
convex optimization problem. The function f is called the objective function or the
cost function and x is referred to as the optimization variable or the decision vari-
able. We refer to the set S as the feasible set or the constraint set of the problem.
If the set S is the whole Hilbert space H , then the problem is said to be uncon-
strained, otherwise, the problem is constrained. A point x? ∈ S is a solution to the
optimization problem (2.1), if f0(x?) = p? where

p? = inf{ f0(x) : x ∈ S}.

The set of all solutions to the optimization problem (2.1) is called its solution set.
In this thesis, we consider a formulation of optimization problems that is slightly

different compared to the one given by (2.1). This formulation is known as the
composite form and is introduced in the following section.

Composite form of optimization problems
In this thesis, we consider optimization problems of the form

minimize
x∈H

f (x)+g(x), (2.2)

where f : H → R is a convex and smooth function and g : H → R is a convex
and potentially non-smooth function. The function f is said to be β -smooth, if its
gradient ∇ f is β -Lipschitz continuous. This formulation of convex optimization
problems is more common in the setting of first-order optimization algorithms. Note
that the optimization problem given in (2.1) can be cast in the form of (2.2) as well.
For that, we can encode the constraint x ∈ S into the formulation of problem (2.2)
using the notion of indicator function. The indicator function of a set S ∈H is
denoted by ιS : H → R and defined as

ιS(x) =

{
0, x ∈ S,
∞, x /∈ S.

Note that if the set S is convex, then ιS is a convex function. Therefore, setting
f (x) = f0(x) and g(x) = ιS(x) in the optimization problem (2.2) makes it equivalent
to problem (2.1).

The optimality condition of problem (2.2) can be defined based on the notion
of subdifferential operator. The subdifferential of a proper function f : H →R at a
point x ∈H is denoted by ∂ f (x) and defined as

∂ f (x) = {s ∈H : f (y)≥ f (x)+ 〈s,y− x〉, for all y ∈H }.

Observe that by definition, ∂ f is a set-valued operator, which is defined from H to
its power-set 2H . For a differentiable function f , ∂ f (x) is equal to {∇ f (x)}, and
thus, it is a single-valued operator.

19

Chapter 2. Background

By Fermat’s rule [Bauschke and Combettes, 2017, Theorem 16.3], a point x? is
a solution to the optimization problem (2.2) if and only if it satisfies the optimality
condition

0 ∈ ∂ (f +g)(x). (2.3)

2.3 Monotone inclusions

In this section, after introducing some notions, the general definition of a monotone
inclusion problem and an approach to solve it are presented. Next, a specific class
of monotone inclusion problems that is studied in this thesis, a standard approach
for solving it, and examples of its applications are presented.

DEFINITION 1—MONOTONE OPERATOR

An operator A : H → 2H is said to be monotone if for all (x,u),(y,v) ∈ gra(A),

〈u− v,x− y〉 ≥ 0. 2

For instance, the identity operator and the subdifferential of a proper function are
monotone operators.

DEFINITION 2—MAXIMAL MONOTONICTY

A monotone operator A : H → 2H is maximally monotone if there exists no mono-
tone operator B : H → 2H such that gra(B) properly contains gra(A). 2

A monotone operator A : H → 2H is maximal if and only if ran(Id+A) = H .
This is known as Minty’s theorem [Minty, 1962]. For example, the subdifferential
of a convex, closed, and proper function is maximally monotone.

DEFINITION 3—COCOERCIVE OPERATOR

An operator T : H → H is 1
β

-cocoercive with respect to the metric ‖·‖M with
β > 0 and M ∈M (H), if for all x,y ∈H ,

〈T x−Ty,x− y〉 ≥ 1
β
‖T x−Ty‖2

M−1 . 2

Since cocoercive operators are monotone and Lipschitz continuous [Giselsson,
2021], they are maximally monotone, as well [Bauschke and Combettes, 2017,
Corollary 20.28]. When the cocoercivity is considered with respect to the canon-
ical norm, i.e., when M = Id, we do not mention the underlying metric; that is, it
is merely said that the operator at hand is 1

β
-cocoercive (note that cocercivity with

respect to one metric implies cocoercivity with respect to other metrics, as well).
For instance, the gradient of a smooth convex function is a cocoercive operator. In
fact, a convex differentiable function f is β -smooth if and only if its gradient ∇ f is
1
β

-cocoercive. This result is recognized as the Ballion–Haddad theorem [Bauschke
and Combettes, 2017, Corollary 18.17].

20

2.3 Monotone inclusions

DEFINITION 4—PROXIMAL OPERATOR

Given a function f : H → R, the proximal operator of f at z ∈H is defined as

prox f (z) = argmin
x∈H

{
f (x)+

1
2
‖z− x‖2

}
. 2

For a convex, closed, and proper function f , the argmin uniquely exists, and thus,
the proximal operator is single-valued.

DEFINITION 5—RESOLVENT OPERATOR

The operator (Id+γA)−1 is called the resolvent operator of A and is denoted by
JγA. 2

The resolvent of a maximally monotone operator A is single-valued and 1
2 -averaged.

In addition, if A is maximally monotone its resolvent has a full domain, that is,
dom(JγA) = ran(Id+γA) = H . For a convex, closed, and proper function f we
have proxγ f = Jγ∂ f .

Monotone inclusion and proximal point algorithm
The problem of finding x ∈H such that

0 ∈ Ax, (2.4)

where A : H → 2H is a monotone operator, is called a monotone inclusion prob-
lem. This type of problem is closely related to convex optimization problems. For
instance, the optimality condition of problem (2.2) is a monotone inclusion prob-
lem of the form above with A = ∂ (f +g). Therefore, the techniques that are used to
solve monotone inclusions, can be utilized to find solutions to convex optimization
problems.

The problem of finding zeros of the maximally monotone operator A can be cast
as the problem of finding fixed points of an associated mapping. For that, letting
γ > 0 and x ∈H , from the monotone inclusion (2.4), we obtain

0 ∈ Ax ⇐⇒ 0 ∈ γAx

⇐⇒ x ∈ x+ γAx = (Id+γA)x

⇐⇒ x = (Id+γA)−1x = JγA(x)

where in the first equivalence, both sides of the inclusion are scaled by γ; in the
second equivalence, x is added to both sides; and in the last one, the single-valued
operator (Id+γA)−1 is applied to both sides of the inclusion.

As seen above, the zeros of A are the fixed points of the operator JγA, hence, in
order to find a solution to the inclusion problem (2.4), one can solve the associated

21

Chapter 2. Background

fixed-point problem x = JγAx, and any solution of this fixed-point problem would
be a zero of A. Since JγA is averaged, it is guaranteed that the Picard iteration,

xn+1 = JγA(xn),

converges to a fixed-point of JγA, if such a point exists.
In the iterative algorithm resulting from the Picard iteration, the step size γ has

to be a fixed positive value. However, it was shown in [Rockafellar, 1976], that we
can allow for a varying (iteration dependent) step size as in

xn+1 = JγnA(xn), (2.5)

where γn ≥ ε > 0 (n ∈ N) is the step-size. This algorithm is known as the proximal
point algorithm. Given x0 ∈H , if fix(JγnA) is nonempty, the sequence of iterates
generated by the proximal point algorithm converges weakly to a point in zer(A)
[Rockafellar, 1976].

EXAMPLE 1
We are interested in finding a minimizer of the non-smooth function g : H → R
which is convex, closed, and proper. An optimality condition for the underlying
optimization problem is given by 0 ∈ ∂g(x). Since g is convex, closed, and proper
its subdifferential operator is maximally monotone; hence, this optimality condition
is equivalent to the monotone inclusion (2.4) with A = ∂g. Substituting this in (2.5)
and using Jγ∂ f = proxγ f , yield

xn+1 = proxγng(xn). 2

If the solution set of the underlying optimization problem is nonempty, provided
that γn ≥ ε > 0, for all n ∈ N, the sequence of iterates generated by the proximal
point algorithm converges weakly to a minimizer of g.

Forward–backward splitting
Let us consider the problem of finding zeros of the operator A +C, that is, the
problem of finding x ∈H such that

0 ∈ Ax+Cx, (2.6)

where A is maximally monotone and C is a 1
β

-cocoercive operator with β > 0. Since
the operator C is maximally monotone and has full domain, i.e., dom(C) = H , by
[Bauschke and Combettes, 2017, Corollary 25.5], the operator A+C is maximally
monotone. Hence, this problem can basically be solved using proximal point algo-
rithm. However, in many cases, evaluation of Jγ(A+C) is computationally expensive
which rules out applicability of the proximal point algorithm for finding roots of

22

2.3 Monotone inclusions

A+C. In that case, we can use operator splitting algorithms. In simple words, split-
ting techniques enable us to decompose the maximally monotone operator at hand
to separate operators such that the resulting algorithm utilizes the decomposed oper-
ators at different steps of the algorithm, each of which can be evaluated at a reduced
computational cost. Below, it is shown how to arrive at the forward–backward op-
erator associated with problem (2.6).

Let γ > 0 and x ∈H . Then, from the monotone inclusion (2.6), we obtain

0 ∈ Ax+Cx ⇐⇒ 0 ∈ γAx+ γCx

⇐⇒ −γCx ∈ γAx

⇐⇒ x− γCx ∈ (Id+γA)x

⇐⇒ x = (Id+γA)−1(Id−γC)x = JγA(Id−γC)x

(2.7)

where in the first equivalence, both sides of the inclusion are scaled by the positive
coefficient γ; in the second and third equivalence, −γCx and x are added to both
sides of the inclusion; and in the last one, the single-valued operator (Id+γA)−1

is applied to both sides of the inclusion. As seen, the zero set of A+C is equal to
the fixed-point set of the mapping JγA(Id−γC). The mapping JγA(Id−γC) is called
the forward–backward operator. With γ ∈ (0, 2

β
), the forward–backward operator

is averaged [Bauschke and Combettes, 2017, Proposition 26.1]. Therefore, we can
use the Picard iteration to find a zero of A+C. The resulting iterative method reads
as xn+1 = JγA(Id−γC)xn, where γ is the step-size. This algorithm was introduced in
[Bruck Jr, 1975; Lions and Mercier, 1979] and is known as the forward–backward
splitting algorithm. To get its varying step-size variant, similar to the proximal point
algorithm, it is possible to replace γ with an iteration dependent step-size γn. Then,
we obtain

xn+1 = JγnA(Id−γnC)xn. (2.8)

If zer(A+C) is nonempty and γn ∈ [ε, 2
β
−ε] with small enough ε > 0, the sequence

of iterates generated by this algorithm converges weakly to a point in zer(A+C)
[Combettes, 2004].

The following example exhibits an application of the approach described above
for solving convex optimization problems.

EXAMPLE 2—PROXIMAL–GRADIENT METHOD
Consider the following problem

minimize
x ∈ H

f (x)+g(x)

where f : H →R is a smooth convex function and g : H →R is a convex, closed,
proper, and potentially non-smooth function. Then, x ∈H is a solution, if and only
if, it satisfies the optimality condition 0 ∈ ∂ (f +g)x. This optimality condition can

23

Chapter 2. Background

be cast as 0 ∈ ∇ f (x)+∂g(x). As ∇ f is cocoercive and ∂g is maximally monotone,
the monotone inclusion (2.6) with A = ∂g and C = ∇ f is equivalent to the desired
optimality condition. Substituting these in (2.10), we get

xn+1 = proxγng(xn− γn∇ f (xn)).

This algorithm is recognized as the proximal–gradient algorithm. Given x0 ∈H
and γn ∈ [ε, 2

β
− ε] (n ∈ N) for small enough ε > 0, the sequence of the generated

iterates of this algorithm converges weakly to a minimizer of the underlying opti-
mization problem, as long as such a point exists.

Observe that setting g = 0 in the proximal–gradient algorithm, results in

xn+1 = xn− γn∇ f (xn),

which is the well known gradient (descent) algorithm. 2

Preconditioned forward-backward algorithm
Let us consider the problem of finding x ∈H such that

0 ∈ Ax+Cx, (2.9)

where A is maximally monotone and C is a 1
β

-cocoercive operator (β > 0) with
respect to the metric ‖·‖M (M ∈M (H)). To find an associated operator whose
fixed-points are solutions to (2.9), we can take similar steps as in (2.7). However,
in the third equivalence in (2.7), instead of adding x, Mx has to be added to both
sides of the equivalence. Hence, the resulting operator would be of the form (M +
γA)−1(M− γC) and is known as the preconditioned forward–backward mapping.
An appropriate choice of the preconditioning M can improve the rate of convergence
compared to the non-preconditioned case. In addition, if due to a particular structure
in A the evaluation of (I + γA)−1 is expensive, the preconditioning can be used to
make the evaluation of (M+ γA)−1 computationally cheaper.

Given x0 ∈H and M ∈M (H), the preconditioned forward–backward algo-
rithm reads as

xn+1 = (M+ γnA)−1(M− γnC)xn, (2.10)

where γn > 0 is the step-size. Given γn ∈ [ε, 2
β
−ε], for all n ∈N, with small enough

ε > 0, and provided that zer(A+C) is nonempty, the sequence of iterates generated
by this algorithm converges weakly to a point in zer(A+C) [Combettes and Vũ,
2014]. With M = Id, the algorithm (2.10) reduces to the standard forward–backward
algorithm (2.8).

In the rest of this section, we study a family of monotone inclusion problems that
are not of the form (2.9) but can be transformed to that form using a primal-dual
trick.

24

2.3 Monotone inclusions

Monotone inclusions involving composition with linear operator
Let us consider the problem of finding x ∈H such that

0 ∈ Ax+L∗BLx+Cx, (2.11)

where A : H → 2H and B : K → 2K are maximally monotone operators, L :
H →K is a linear and bounded operator, and C : H →H is 1

β
-cocoercive. Let

us assume that due to the presence of L and L∗ there is no easy way to evaluate the
resolvent of A+L∗BL; thus, we cannot directly use the forward–backward method
to solve this problem. However, it is possible to reformulate the monotone inclusion
(2.11) such that the preconditioned forward–backward splitting can be used to find
its zeros. To that end, by introducing an auxiliary variable µ ∈ B(Lx), that is called
a dual variable, the monotone inclusion (2.11) can be cast as

0 ∈A w+C w, (2.12)

where w = (x,µ) ∈H ×K and (with slight abuse of notation)

A =

[
A L∗

−L B−1

]
, C =

[
C 0
0 0

]
,

where A is maximally monotone by [Bauschke and Combettes, 2017, Proposition
26.32] and C is 1/β -cocoercive with respect to the metric ‖·‖M , with

M =

[
I −τL∗

−τL τσ−1I

]
.

Given σ ,τ > 0 such that στ‖L‖2 < 1, the operator M is strongly positive. With
this translation, the resulting monotone inclusion (2.12) can be solved using the
preconditioned forward–backward algorithm (2.10). Inserting A , C , and M into
this algorithm, after some simplifications, the following algorithm is obtained:

xn+1 = JτA (xn− τL∗µn− τCxn) ,

µn+1 = JσB−1 (µn +σL(2xn+1− xn)) .
(2.13)

This algorithm is the basic form of the Condat–Vũ algorithm [Condat, 2013; Vũ,
2013]. Given (x0,µ0) ∈H ×K and σ ,τ > 0 such that στ‖L‖2 < 1, the sequence
(xn)n∈N converges weakly to a point in zer(A+L∗BL+C).

In what follows an application of the algorithm above in solving convex opti-
mization problems is presented.

In some optimization problems, the objective function consists of two non-
smooth convex functions one of which has its input argument mapped by a linear
and bounded operator L. Hence, due to presence of L, evaluation of the proximal
operator of this function might be expensive. This case is covered in Example 3.

25

Chapter 2. Background

This example uses the notion of conjugate function; the conjugate function of a
convex, closed, and proper function h : H → R, is denoted by h∗ : H → R and,
for all s ∈H , defined as

h∗(s) := sup
x∈H
{〈s,x〉−h(x)} .

Given proxh(·), the proximal operator of h∗, for all z ∈H , can be found using

σ proxσ−1h(z/σ)+proxσh∗(z) = z,

where σ > 0. This identity is known as the extended Moreau decomposition [Beck,
2017].

EXAMPLE 3—PRIMAL–DUAL HYBRID GRADIENT METHOD

We are interested in solving

minimize
x ∈ H

g(x)+h(Lx) (2.14)

where g : H → R and h : K → R are convex, closed, proper, and potentially non-
smooth functions and L : H →K is a bounded and linear operator. Under some
assumptions [Bauschke and Combettes, 2017, Theorem 27.2], the optimality con-
dition of this problem can be given by

0 ∈ ∂g(x)+L∗∂h(Lx).

A point x∈H is a solution to the optimization problem under study if and only if it
satisfies the optimality condition above. Since ∂g and ∂h are maximally monotone
and L is a linear and bounded operator, the monotone inclusion (2.11) with A = ∂g,
B = ∂h, and Cx = 0 for all x ∈H is equivalent to the desired optimality condition.
Inserting these into (2.13), we get the iteration

xn+1 = proxτg (xn− τL∗µn) ,

µn+1 = proxσh∗ (µn +σL(2xn+1− xn)) ,

which is known as the primal–dual hybrid gradient method or the Chambolle–Pock
algorithm [Chambolle and Pock, 2011]. Given the initial point (x0,µ0) ∈H ×K
and σ ,τ > 0 such that στ‖L‖2 < 1, the sequence (xn)n∈N generated by this algo-
rithm converges weakly to a solution, if one exists, of the optimization problem at
hand. 2

2.4 Overview of papers

There are many ways to modify the algorithms presented in Section 2.3 to achieve
a better performance [Beck and Teboulle, 2009; Chambolle and Pock, 2011; Com-
bettes and Vũ, 2014; Condat, 2013; d’Aspremont et al., 2021; Giselsson et al., 2016;

26

2.4 Overview of papers

Kim, 2021; Nesterov, 1983; Themelis and Patrinos, 2019; Vũ, 2013; Walker and Ni,
2011; Zhang et al., 2020]. The focus of this thesis is to find new methods to improve
performance of these algorithms. In this thesis, two general approaches are taken to-
wards that end: a direct approach or the approach of nested scheme [d’Aspremont
et al., 2021].

Here a simple example is used to illustrate how the direct approach works. Let
Tfb be the forward–backward operator. Then, given x0 ∈H , the standard forward–
backward algorithm is of the form xn+1 = Tfb(xn). Now, in a direct approach, one
would alter the point at which Tfb is evaluated to change its convergence pattern. To
that end, given y0 ∈H , an iteration of the following form can be used

xn = Tfb(yn),

yn+1 = update equation of yn.

The update rule of yn can, for instance, be defined based on a linear combination of
the past iterates. If the update rule is devised appropriately, this strategy can result
in performance improvement. This approach have been used in various accelera-
tion techniques for optimization problems (Nesterov’s accelerated gradient method
[Nesterov, 1983] and FISTA [Beck and Teboulle, 2009]), monotone inclusions (ac-
celerated proximal point method [Kim, 2021]), or fixed-point iterations (Anderson
acceleration [Walker and Ni, 2011]).

The general idea of nested scheme is to combine two optimization algorithms.
One as the outer iteration inside which the other algorithm is run as the inner
loop. The nested optimization scheme switches between the two algorithms based
on some rule. If the switching strategy is designed appropriately, combining the
algorithms in this way can enhance the performance. This approach have been
used in acceleration techniques for optimization problems and fixed-point iterations
[Giselsson et al., 2016; Lin et al., 2015; Scieur et al., 2017; Scieur et al., 2016;
Themelis and Patrinos, 2019; Zhang et al., 2020].

In what follows, a concise overview of the papers that are included in the thesis
is presented. In Papers I-III, a direct approach is utilized to develop new algorithms,
and in Paper IV, a nested scheme is used for that purpose.

Paper I
This paper presents a weakly convergent extension to the standard forward–
backward splitting method to solve the monotone inclusion (2.9). In this paper, the
direct approach is used to improve performance of the standard forward–backward
algorithm. A simplified version of the proposed algorithm is given by

pn = (Id+ 1
β

A)−1 ◦ (Id− 1
β

C)(yn)

yn+1 = pn−un +un+1

where un is a deviation vector. The only requirement on the deviation vector to
guarantee convergence is that its norm has to be bounded by a quantity that can be

27

Chapter 2. Background

computed at each iteration. This approach gives great flexibility to the algorithm
and paves the way for designing new and improved forward–backward-based al-
gorithms, while retaining global convergence guarantees. For instance, using the
proposed algorithm, variations of the primal–dual hybrid gradient algorithm and
the Krasnosel’skiı̆–Mann iteration that incorporate deviations are presented.

Paper II
This paper is an extension to the work done in Paper I and presents a novel vari-
ation of the standard forward–backward splitting algorithm to solve the monotone
inclusion problem (2.9). This algorithm, in addition to including deviation vectors,
incorporates iterates from the past. The past information is incorporated in different
places of the algorithm in the form of momentum-like terms. Several new algo-
rithms can be derived based on the proposed method. For instance, for a particu-
lar choice of the deviations and the parameters of the algorithm, it reduces to the
Halpern iteration and the accelerated proximal point method that both converge as
O(1

n2) in squared norm of the fixed-point residual.

Paper III
This paper showcases an application of the algorithm proposed in Paper I. The pro-
posed algorithm uses the main algorithm of Paper I as the basis and combines it with
the extrapolation technique used in Anderson acceleration to improve local conver-
gence. In particular, the extrapolation technique of Anderson acceleration is used to
select a direction for the deviation vector whose norm is bounded by a quantity that
is computable based on available information. Combining these two methods leads
to a fast and globally convergent algorithm.

Paper IV
With the goal of alleviating the slow convergence rate of first-order optimization
algorithms, this paper proposes a framework for combining a family of stochastic
variance reduced algorithms such as SVRG with a fast locally convergent method
like Anderson acceleration, using a nested scheme. The variance reduced optimiza-
tion method is used as the outer loop whose role is to ensure global convergence of
the whole scheme. Within the outer loop, an iterative algorithm is used which has
the role of accelerating the convergence of the optimization scheme. The scheme
switches between the two based on a specific safeguarding condition. As a result
of such a combination, the resulting optimization scheme can exhibit good perfor-
mance while guaranteeing global convergence.

28

3
Publications

In what follows, a list of the papers that form the main part of the thesis is presented,
along with a statement on the contributions of the authors for each paper.

Paper I

Sadeghi, H., S. Banert, and P. Giselsson (2021). Forward–backward splitting with
deviations for monotone inclusions. arXiv: 2112.00776v1 [math.OC].

The general idea of this paper was proposed by S. Banert. Most of the results
were derived through collaboration between the authors. Implementations, numeri-
cal experiments, and preparation of the manuscript were conducted by H. Sadeghi.

Paper II

Sadeghi, H., S. Banert, and P. Giselsson (2022). Incorporating history and devia-
tions in forward–backward splitting. arXiv: 2208.05498 [math.OC].

H. Sadeghi contributed with the majority of the work including the general idea
of the work, derivation of the results, and writing of the manuscript. Part of the
results were found through an idea from S. Banert. S. Banert and P. Giselsson helped
revising the manuscript.

Paper III

Sadeghi, H., S. Banert, and P. Giselsson (2021). Dwifob: a dynamically weighted
inertial forward–backward algorithm for monotone inclusions. arXiv: 2203.
00028 [math.OC].

H. Sadeghi contributed with the majority of the work including the idea of the
work, implementations, and writing of the manuscript. S. Banert and P. Giselsson
helped revising the manuscript.

29

Chapter 3. Publications

Paper IV

Sadeghi, H. and P. Giselsson (2021). Hybrid acceleration scheme for variance re-
duced stochastic optimization algorithms. arXiv: 2111.06791 [math.OC].

The general idea of the paper was proposed by P. Giselsson. The results were
found by H. Sadeghi in collaboration with P. Giselsson. Implementations, numerical
evaluations, and writing of the manuscript were carried out by H. Sadeghi.

30

Bibliography

Bauschke, H. H. and P. L. Combettes (2017). Convex analysis and monotone op-
erator theory in Hilbert spaces. 2nd ed. CMS Books in Mathematics. Springer.
DOI: 10.1007/978-3-319-48311-5.

Beck, A. (2017). First-order methods in optimization. SIAM. DOI: 10.1137/1.
9781611974997.

Beck, A. and M. Teboulle (2009). “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems”. SIAM journal on imaging sciences 2:1, pp. 183–
202. DOI: 10.1137/080716542.

Berinde, V. and F. Takens (2007). Iterative approximation of fixed points. Vol. 1912.
Berlin: Springer. DOI: https://doi.org/10.1007/978-3-540-72234-2.

Borwein, J. M. (2010). “Fifty years of maximal monotonicity”. Optimization Letters
4:4, pp. 473–490. DOI: 10.1007/s11590-010-0178-x.

Boyd, S. P. and L. Vandenberghe (2004). Convex optimization. Cambridge univer-
sity press. DOI: 10.1017/CBO9780511804441.

Bruck Jr, R. E. (1975). “An iterative solution of a variational inequality for certain
monotone operators in hilbert space”. Bulletin of the American Mathematical
Society 81:5, pp. 890–892. DOI: bams/1183537239.

Chambolle, A. and T. Pock (2011). “A first-order primal–dual algorithm for convex
problems with applications to imaging”. Journal of Mathematical Imaging and
Vision 40:1, pp. 120–145. DOI: 10.1007/s10851-010-0251-1.

Combettes, P. L. (2018). “Monotone operator theory in convex optimization”. Math-
ematical Programming 170:1, pp. 177–206. DOI: 10.1007/s10107- 018-
1303-3.

Combettes, P. L. (2004). “Solving monotone inclusions via compositions of nonex-
pansive averaged operators”. Optimization 53:5-6, pp. 475–504. DOI: 10.1080/
02331930412331327157.

Combettes, P. L. and B. C. Vũ (2014). “Variable metric forward–backward split-
ting with applications to monotone inclusions in duality”. Optimization 63:9,
pp. 1289–1318. DOI: 10.1080/02331934.2012.733883.

31

Bibliography

Condat, L. (2013). “A primal–dual splitting method for convex optimization involv-
ing Lipschitzian, proximable and linear composite terms”. Journal of Optimiza-
tion Theory and Applications 158:2, pp. 460–479. DOI: 10.1007/s10957-
012-0245-9.

d’Aspremont, A., D. Scieur, A. Taylor, et al. (2021). “Acceleration methods”.
Foundations and Trends® in Optimization 5:1-2, pp. 1–245. DOI: 10.1561/
2400000036.

Darup, M. S., G. Book, and P. Giselsson (2019). “Towards real-time admm for
linear mpc”. In: 2019 18th European Control Conference (ECC), pp. 4276–
4282. DOI: 10.23919/ECC.2019.8796239.

Everitt, B. (2012). Introduction to optimization methods and their application in
statistics. Springer science & business media. DOI: 10.1007/978-94-009-
3153-4.

Gilli, M., D. Maringer, and E. Schumann (2019). Numerical methods and optimiza-
tion in finance. Academic Press. DOI: 10.1016/C2017-0-01621-X.

Giselsson, P. (2021). “Nonlinear forward-backward splitting with projection cor-
rection”. SIAM Journal on Optimization 31:3, pp. 2199–2226. DOI: 10.1137/
20M1345062.

Giselsson, P., M. Fält, and S. Boyd (2016). “Line search for averaged operator iter-
ation”. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
pp. 1015–1022. DOI: 10.1109/CDC.2016.7798401.

Giselsson, P. and A. Rantzer (2014). “Generalized accelerated gradient methods for
distributed mpc based on dual decomposition”. In: Distributed model predictive
control made easy. Springer, pp. 309–325. DOI: 10.1007/978- 94- 007-
7006-5_19.

Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations. SIAM.
DOI: 10.1137/1.9781611970944.

Kelley, C. T. (1999). Iterative methods for optimization. SIAM. DOI: 10.1137/1.
9781611970920.

Kim, D. (2021). “Accelerated proximal point method for maximally monotone oper-
ators”. Mathematical Programming 190:1, pp. 57–87. DOI: 10.1007/s10107-
021-01643-0.

Le, Q. V., J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng (2011). “On
optimization methods for deep learning”. In: ICML. DOI: 10.5555/3104482.
3104516.

Lin, H., J. Mairal, and Z. Harchaoui (2015). “A universal catalyst for first-order
optimization”. Advances in neural information processing systems 28. DOI: 10.
5555/2969442.2969617.

32

Bibliography

Lions, P.-L. and B. Mercier (1979). “Splitting algorithms for the sum of two nonlin-
ear operators”. SIAM Journal on Numerical Analysis 16:6, pp. 964–979. DOI:
10.1137/0716071.

Minty, G. J. (1962). “Monotone (nonlinear) operators in hilbert space”. Duke math-
ematical journal 29:3, pp. 341–346. DOI: 10.1215/S0012-7094-62-02933-
2.

Minty, G. J. (1969). “On some aspects of the theory of monotone operators”. Theory
and Applications of Monotone Operators (Proc. NATO Advanced Study Inst.,
Venice, 1968), pp. 67–82.

Nesterov, Y. E. (1983). “A method for solving the convex programming prob-
lem with convergence rate o (1/k2̂)”. In: Dokl. akad. nauk Sssr. Vol. 269,
pp. 543–547. URL: https://vsokolov.org/courses/750/2018/files/
nesterov.pdf.

Perea-Lopez, E., B. E. Ydstie, and I. E. Grossmann (2003). “A model predictive
control strategy for supply chain optimization”. Computers & Chemical Engi-
neering 27:8-9, pp. 1201–1218. DOI: 10.1016/S0098-1354(03)00047-4.

Rockafellar, R. T. (1970). Convex analysis. Vol. 18. Princeton university press. DOI:
10.1515/9781400873173.

Rockafellar, R. T. (1976). “Monotone operators and the proximal point algorithm”.
SIAM journal on control and optimization 14:5, pp. 877–898. DOI: 10.1137/
0314056.

Ryu, E. K. and S. Boyd (2016). “Primer on monotone operator methods”. Appl.
Comput. Math 15:1, pp. 3–43. URL: https://web.stanford.edu/~boyd/
papers/pdf/monotone_primer.pdf.

Ryu, E. K. and W. Yin (2022). Large-scale convex optimization via monotone op-
erators. Cambridge University Press. URL: https://large-scale-book.
mathopt.com/.

Scieur, D., F. Bach, and A. d’Aspremont (2017). “Nonlinear acceleration of
stochastic algorithms”. Advances in Neural Information Processing Systems
30. URL: https : / / proceedings . neurips . cc / paper / 2017 / file /
fca0789e7891cbc0583298a238316122-Paper.pdf.

Scieur, D., A. d’Aspremont, and F. Bach (2016). “Regularized nonlinear
acceleration”. Advances In Neural Information Processing Systems 29.
URL: https : / / proceedings . neurips . cc / paper / 2016 / file /
bbf94b34eb32268ada57a3be5062fe7d-Paper.pdf.

Sra, S., S. Nowozin, and S. J. Wright (2012). Optimization for machine learn-
ing. Mit Press. URL: https : / / mitpress . mit . edu / 9780262537766 /
optimization-for-machine-learning/.

Themelis, A. and P. Patrinos (2019). “Supermann: a superlinearly convergent algo-
rithm for finding fixed points of nonexpansive operators”. IEEE Transactions on
Automatic Control 64:12, pp. 4875–4890. DOI: 10.1109/TAC.2019.2906393.

33

Bibliography

Vũ, B. C. (2013). “A splitting algorithm for dual monotone inclusions involving
cocoercive operators”. Advances in Computational Mathematics 38:3, pp. 667–
681. DOI: 10.1007/s10444-011-9254-8.

Walker, H. F. and P. Ni (2011). “Anderson acceleration for fixed-point iterations”.
SIAM Journal on Numerical Analysis 49:4, pp. 1715–1735. DOI: 10.1137/
10078356X.

Yin, Y. (2002). “Multiobjective bilevel optimization for transportation planning and
management problems”. Journal of Advanced Transportation 36:1, pp. 93–105.
DOI: 10.1002/atr.5670360106.

Zhang, J., B. O’Donoghue, and S. Boyd (2020). “Globally convergent type-I An-
derson acceleration for nonsmooth fixed-point iterations”. SIAM Journal on Op-
timization 30:4, pp. 3170–3197. DOI: 10.1137/18M1232772.

34

Paper I

Forward–Backward Splitting with
Deviations for Monotone Inclusions

Hamed Sadeghi Sebastian Banert Pontus Giselsson

Abstract

We propose and study a weakly convergent variant of the forward–backward
algorithm for solving structured monotone inclusion problems. Our algorithm
features a per-iteration deviation vector which provides additional degrees of
freedom. The only requirement on the deviation vector to guarantee conver-
gence is that its norm is bounded by a quantity that can be computed online.
This approach provides great flexibility and opens up for the design of new and
improved forward–backward-based algorithms, while retaining global conver-
gence guarantees. These guarantees include linear convergence of our method
under a metric subregularity assumption without the need to adapt the algo-
rithm parameters.

Choosing suitable monotone operators allows for incorporating deviations
into other algorithms, such as Chambolle–Pock and Krasnosel’skiı̆–Mann iter-
ations. We propose a novel inertial primal–dual algorithm by selecting the devi-
ations along a momentum direction and deciding their size using the norm con-
dition. Numerical experiments demonstrate our convergence claims and show
that even this simple choice of deviation vector can improve the performance,
compared, e.g., to the standard Chambolle–Pock algorithm.

Available on arXiv.

35

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

1. Introduction

Forward–backward (FB) splitting [Bruck, 1975; Lions and Mercier, 1979; Passty,
1979] has been extensively used to solve structured monotone inclusion problems
of finding x ∈H such that

0 ∈ Ax+Cx, (I.1)

where A : H → 2H is a maximally monotone operator, C : H →H is a cocoer-
cive operator, and H is a real Hilbert space. The algorithm sequentially performs
a forward step with the operator C followed by a backward step with A to arrive at
the iteration

xn+1 = (Id+γnA)−1 ◦ (Id−γnC)xn, (I.2)

where γn > 0 is a step-size parameter.
One of the most important special cases of this setting is first-order algorithms

for convex optimization: let f : H → R be a convex, differentiable function whose
gradient is Lipschitz continuous and g : H → R∪{±∞} be a proper, convex and
lower semicontinuous function, and let A = ∂g (the subdifferential of g) and C =
∇ f . Then, (I.1) is the problem of finding a minimizer of f + g, and (I.2) describes
the proximal gradient method [Combettes and Pesquet, 2011].

In this paper, we present a weakly convergent extension to the standard FB split-
ting method to solve the monotone inclusion (I.1). A simplified instance of our al-
gorithm is given by

pn = (Id+ 1
β

A)−1 ◦ (Id− 1
β

C)(xn +un)

xn+1 = pn−un
(I.3)

where un is a deviation (vector) and 1
β
> 0 is a cocoercivity constant of C. By letting

un = 0, a step of (I.3) reduces to the standard FB step in (I.2). The addition of un
therefore gives added flexibility that can be utilized to improve performance. In
order to ensure convergence of this algorithm, un has to satisfy the norm condition

‖un‖2 ≤ 1−ε

4 ‖pn−1− xn−1 +un−1‖2, (I.4)

where ε ∈ [0,1) is arbitrary and the quantity to the right-hand side of the inequality
is computable online since the variables are known from previous iterations.

Safeguarding is a common technique to ensure global convergence in opti-
mization algorithms, for instance the Wolfe conditions in line-search [Nocedal and
Wright, 2006, Chapter 3] ensure a sufficient decrease in the objective function value,
and trust-region methods [Nocedal and Wright, 2006, Chapter 4] are based on a
quadratic model having sufficient accuracy within a given radius. Recently, a norm
condition similar to (I.4) has been combined with a deep-learning approach to speed
up the convergence [Banert et al., 2021]. Even for monotone operators, line-search

36

1 Introduction

strategies with safeguarding have been developed, see [Tseng, 2000, Eq. (2.4)] for
an example. In contrast to line search, (I.4) does not require to compute (and pos-
sibly reject) several steps per iteration. For other examples of safeguarding, see
[Giselsson et al., 2016; Sadeghi and Giselsson, 2021; Themelis and Patrinos, 2019;
Zhang et al., 2020].

Our main algorithm (Algorithm 1) is more general than (I.3). It uses two de-
viation vectors and a slightly more involved safeguard condition. A similar algo-
rithm with deviation vectors has been proposed in [Banert et al., 2021] to extend the
proximal gradient method for convex minimization. The fact that we consider the
more general monotone inclusion setting, allows us to apply our results, e.g., to the
Chambolle–Pock [Chambolle and Pock, 2011] and Condat–Vũ [Condat, 2013; Vũ,
2013] methods that both are preconditioned FB methods [He and Yuan, 2012]. To
facilitate the derivation of these special cases, we derive our algorithm with explicit
preconditioning, such as in [Chouzenoux et al., 2013; Combettes and Vũ, 2012;
Giselsson, 2021; Giselsson and Boyd, 2015; Giselsson and Boyd, 2014a; Giselsson
and Boyd, 2014b; Pock and Chambolle, 2011; Raguet and Landrieu, 2015].

Our algorithm is also related to inexact FB methods, which are studied in the
framework of monotone inclusions [Raguet et al., 2013; Solodov and Svaiter, 2000;
Solodov and Svaiter, 2001; Vũ, 2013] and in a convex optimization setting [Condat,
2013; Schmidt et al., 2011; Villa et al., 2013]. By including error terms in the FB
splitting algorithms, these works allow for inaccuracies in the forward and backward
step evaluations. The convergence of the algorithm is usually based on a summa-
bility assumption on the error sequences and would therefore allow arbitrarily large
errors as long as they only happen for a finite number of iterations. The idea be-
hind our method is in stark contrast to these methods, as our method is designed for
actively choosing the deviations with the aim to improve performance.

We instantiate our general scheme in three special settings; the standard FB set-
ting, the primal-dual setting of Condat–Vũ, and the Krasnosel’skiı̆–Mann setting.
We also propose a further specialization of the primal-dual setting of Chambolle–
Pock in which we select the deviations in a heavy-ball type [Polyak, 1964] momen-
tum direction (see [Sadeghi et al., 2022a] for another novel usage of the deviations
in a primal–dual setting). The resulting algorithm bears similarities with the inertial
FB methods [Alvarez, 2000; Alvarez and Attouch, 2001; Attouch and Cabot, 2019;
Cholamjiak et al., 2018; Lorenz and Pock, 2015] when applied in a primal-dual set-
ting. Numerical experiments show improved performance of our method compared
to Chambolle–Pock and a primal–dual version of Lorenz–Pock [Lorenz and Pock,
2015].

Contributions. The most notable differences of this work to existing literature
can be summarized as follows:

− Compared to the standard FB, we extend the degrees of freedom by allowing
the input argument to the FB operator to deviated from a pre-specified point.

37

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

− Unlike various known examples of momentum methods, the increase is not
achieved with a fixed number of parameters, but the design parameter has the
dimension of the underlying problem.

− In contrast to inexact FB algorithms [Condat, 2013; Raguet et al., 2013; Vũ,
2013; Villa et al., 2013], the bound on the deviations is a scalar condition
with known quantities in each step instead of a summability condition that
has limited meaning for a finite number of steps.

− In contrast to the deviation-based FB method for convex optimization in
[Banert et al., 2021], our work considers more general monotone inclu-
sion problems. Hence, we immediately obtain the algorithms of Chambolle–
Pock [Chambolle and Pock, 2011] and Krasnosel’skiı̆–Mann with deviations
as special cases. Moreover, our convergence result is slightly stronger than
[Banert et al., 2021, Theorem 3.2]. To the best of our knowledge, neither
algorithm is a special case of the other.

− In addition to showing weak convergence of our algorithm, we show that
under a metric subregularity assumption the algorithm converges strongly to
a point in the solution set of the problem with a linear rate of convergence.

− As an example for the expressiveness of the deviation-based approach, we
introduce a novel inertial primal–dual algorithm by selecting the deviations
along a momentum direction—in the sense of Polyak [Polyak, 1964]—and
deciding their size using the norm condition.

Outline of the paper. The organization of the paper is as follows. In Section 2,
we provide notations and some definitions. In Section 3, the proposed algorithm is
introduced. In Section 4, we prove weak convergence of the method and linear and
strong convergence under a metric subregularity assumption. In Section 5, some
special cases of the proposed algorithm are presented and Section 6 further special-
izes one of these to arrive at a novel inertial primal–dual algorithm. We conclude
the paper by presenting the numerical results in Section 7.

2. Preliminaries

Throughout the paper, the set of real numbers is denoted by R; H and K denote
real Hilbert spaces that are equipped with inner products and induced norms, which
are denoted by 〈·, ·〉 and ‖·‖=

√
〈·, ·〉, respectively. A bounded, self-adjoint operator

M : H →H is said to be strongly positive if there exists some c > 0 such that
〈x,Mx〉 ≥ c‖x‖2 for all x ∈H . We use the notation M (H) to denote the set of
linear, self-adjoint, strongly positive operators on H . For M ∈M (H) and for all
x,y ∈H , the M-induced inner product and norm are denoted by 〈x,y〉M = 〈x,My〉
and ‖x‖M =

√
〈x,Mx〉, respectively.

38

3 Forward–backward splitting with deviations

Young’s inequality

〈x,y〉 ≤ ω

2
‖x‖2

M +
1

2ω
‖y‖2

M−1

holds for all x,y ∈H , ω > 0, and M ∈M (H). Hence, with the same variables,

‖x+ y‖2
M = ‖x‖2

M +‖y‖2
M +2〈x,My〉 ≤ (1+ω)‖x‖2

M +
1+ω

ω
‖y‖2

M.

Let M ∈M (H), x ∈H , and S ⊂H be a nonempty closed convex set. The
M-induced projection of x onto the set S is defined as ΠM

S x = argminy∈S ‖x− y‖M ,
and the M-induced distance from x to S is defined by distM(x,S) =

∥∥x−ΠM
S x
∥∥

M .
The notation 2H denotes the power set of H . A map A : H → 2H is character-

ized by its graph gra(A) = {(x,u) ∈H ×H : u ∈ Ax}. An operator A : H → 2H

is monotone if 〈u− v,x− y〉 ≥ 0 for all (x,u),(y,v) ∈ gra(A). A monotone oper-
ator A : H → 2H is maximally monotone if there exists no monotone operator
B : H → 2H such that gra(B) properly contains gra(A).

Let M ∈M (H). An operator T : H →H is said to be

(i) L-Lipschitz continuous (L≥ 0) w.r.t. ‖·‖M if

‖T x−Ty‖M−1 ≤ L‖x− y‖M for all x,y ∈H ;

(ii) 1
β

-cocoercive (β > 0) w.r.t. ‖·‖M if

〈T x−Ty,x− y〉 ≥ 1
β
‖T x−Ty‖2

M−1 for all x,y ∈H ;

(iii) nonexpansive if it is 1-Lipschitz continuous w.r.t. ‖·‖;

(iv) firmly nonexpansive if

‖T x−Ty‖2 +‖(Id−T)x− (Id−T)y‖2 ≤ ‖x− y‖2 for all x,y ∈H .

By the Cauchy–Schwarz inequality, a 1
β

-cocoercive operator is β -Lipschitz contin-

uous. The resolvent of a maximally monotone operator A : H → 2H is denoted by
JγA : H →H and defined as JγA := (Id+γA)−1. JγA has full domain, is firmly non-
expansive [Bauschke and Combettes, 2017, Corollary 23.8], and is single-valued.

3. Forward–backward splitting with deviations

We consider structured monotone inclusion problems of the form

0 ∈ Ax+Cx, (I.5)

that satisfy the following assumptions.

39

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

ASSUMPTION 1 Assume that β > 0,

(i) A : H → 2H is maximally monotone.

(ii) C : H →H is 1
β

-cocoercive with respect to ‖·‖M with M ∈M (H).

(iii) The solution set zer(A+C) := {x ∈H : 0 ∈ Ax+Cx} is nonempty. 2

Observe that, as a cocoercive operator is maximally monotone [Bauschke and Com-
bettes, 2017, Corollary 20.28], and since C has a full domain, the operator A+C is
maximally monotone [Bauschke and Combettes, 2017, Corollary 25.5].

We present and prove convergence for the following extended variant of FB
splitting for solving (I.5).

Algorithm 1 Forward–backward splitting with deviations

1: Input: initial point x0 ∈H , the sequences (ζn)n∈N, (λn)n∈N, and (γn)n∈N as
per Assumption 2, and the metric ‖·‖M with M ∈M (H).

2: set: u0 = v0 = 0
3: for n = 0,1,2, . . . do
4: yn = xn +un

5: zn = xn +
(1−λn)γnβ

2−λnγnβ
un + vn

6: pn = (M+ γnA)−1(Mzn− γnCyn)
7: xn+1 = xn +λn(pn− zn)
8: choose un+1 and vn+1 such that

λn+1γn+1β

2−λn+1γn+1β
‖un+1‖2

M +
λn+1(2−λn+1γn+1β)

4−2λn+1−γn+1β
‖vn+1‖2

M ≤ ζn`
2
n (I.6)

is satisfied, where

`2
n =

λn(4−2λn−γnβ)
2

∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un− 2(1−λn)

4−2λn−γnβ
vn

∥∥∥2

M
(I.7)

9: end for

Our convergence analysis requires that the parameter sequences (ζn)n∈N,
(λn)n∈N, and (γn)n∈N satisfy the following assumption.

ASSUMPTION 2 Choose ε ∈
(

0,min
(

1, 4
3+β

))
, and assume that, for all n∈N, the

following hold:

(i) 0≤ ζn ≤ 1− ε;
(ii) ε ≤ γn ≤ 4−3ε

β
; and

(iii) ε ≤ λn ≤ 2− γnβ

2 −
ε

2 . 2

40

3 Forward–backward splitting with deviations

The sequence (ζn)n∈N relates the norm of the deviation vector (un+1,vn+1) in
(I.6) to its maximum permissible value; (γn)n∈N is a sequence of step-size parame-
ters for the FB step 6, and (λn)n∈N can be seen as a sequence of relaxation parame-
ters for (xn)n∈N in step 7 .

For our convergence analysis in Section 4, we have to choose these sequences
in such a way that all the coefficients multiplying the norms in (I.6) and (I.7) have a
positive lower bound. Indeed, if (γn)n∈N and (λn)n∈N satisfy Assumption 2, then

4−2λn− γnβ ≥ ε (I.8)

and

2−λnγnβ ≥ 2−
(

2− γnβ

2
− ε

2

)
γnβ =

εγnβ

2
+2
(

1− γnβ

2

)2

≥ ε2β

2
. (I.9)

Algorithm 1 handles the evaluation of C and A in step 6 differently than the stan-
dard FB method (I.2) in two ways. First, the operator M acts as a preconditioning for
the resolvent of A, and secondly, the points yn and zn can be different. Algorithm 1
also allows for deviations un and vn, which can be seen as design parameters of the
algorithm. They can in general be chosen in a subset of H with non-empty interior
(if `2

n > 0 in step 8). Hence, the degrees of freedom in the parameter choice are
determined by the dimension of H . It is important to note that the upper bound `2

n,
as it is seen from (I.7), is computable at the time of selecting un+1 and vn+1. See
[Sadeghi et al., 2022b] for a generalization of Algorithm 1.

Below, we present some special cases of our method. We defer a more detailed
discussion on special cases to Section 5.

EXAMPLE 1
With the trivial choice of un+1 = vn+1 = 0, the condition (I.6) is already satisfied,
and Algorithm 1 reduces to the relaxed preconditioned FB iteration

pn = (M+ γnA)−1(Mxn− γnCxn),

xn+1 = xn +λn(pn− xn).

With M = Id and λn = 1 (n ∈ N), we recover (I.2). 2

EXAMPLE 2
With M = Id, γn = 1

β
, λn = 1, vn = un, and ζn = 1− ε (n ∈ N), we recover the

simplified version from (I.3) in Section 1. It is easy to see that this choice satis-
fies Assumption 2. 2

EXAMPLE 3—NO RELAXATION
With λn = 1 for all n ∈ N, Algorithm 1 simplifies to the iteration

pn = (M+ γnA)−1(M(xn + vn)− γnC(xn +un)),

41

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

xn+1 = pn− vn

with the norm condition

γn+1β

2− γn+1β
‖un+1‖2

M +‖vn+1‖2
M ≤

ζn(2− γnβ)

2

∥∥∥∥pn− xn +
γnβ

2− γnβ
un

∥∥∥∥2

M
.

2

EXAMPLE 4—FORWARD ITERATION WITH DEVIATIONS
With Ax = {0} for all x ∈H , vn = 0, and γn = 2/β for all n ∈ N, Algorithm 1
simplifies to the iteration

yn = xn +un,

xn+1 = xn− 2λn
β

M−1Cyn

with the norm condition

λn+1

1−λn+1
‖un+1‖2

M ≤ ζnλn(1−λn)

∥∥∥∥ 1
1−λn

un−
2
β

M−1Cyn

∥∥∥∥2

M 2

EXAMPLE 5—BACKWARD ITERATION WITH DERIVATIONS
With Cx = 0 for all x ∈H and un = 0 for all n ∈ N, Algorithm 1 simplifies to the

iteration

pn = (M+ γnA)−1M(xn + vn),

xn+1 = xn +λn(pn− xn− vn).

Since C is 1/β -cocoercive for all β > 0, it is possible to set β = 0 in the norm
condition, which then takes the form

λn+1

2−λn+1
‖vn+1‖2

M ≤ ζnλn(2−λn)

∥∥∥∥pn− xn−
1−λn

2−λn
vn

∥∥∥∥2

M
.

2

REMARK 1 Many works exist that allow for error terms in FB algorithms [Condat,
2013; Raguet et al., 2013; Vũ, 2013; Villa et al., 2013]. Convergence is often based
on a summability argument so that any summable sequence of errors is allowed.
The strength of our condition (I.6) is that it is iteration-wise; hence, arbitrary large
errors would not be accepted. A major difference is that our algorithm does not
treat the deviations as errors or inaccuracies in the computation. Instead, they are
introduced to allow for actively selecting the deviations with the aim to improve
performance. 2

42

4 Convergence analysis

4. Convergence analysis

In this section, we provide a convergence analysis for Algorithm 1. We start by
describing the points in the graph of A+C constructed by Algorithm 1 (Lemma 1)
and introducing a Lyapunov inequality in Lemma 2. Both results are later used to
show weak convergence in Theorem 1 and strong and linear convergence under a
metric subregularity assumption in Theorem 2.

LEMMA 1 Suppose that Assumption 1 holds. Let (xn)n∈N, (yn)n∈N, (zn)n∈N, and
(pn)n∈N be sequences generated by Algorithm 1. Then, for all n ∈ N, (pn,∆n) ∈
gra(A+C), where

∆n :=
Mzn−Mpn

γn
− (Cyn−Cpn).

Moreover,

‖∆n‖M−1 ≤
1

2γn
‖2(zn− pn)−βγn(yn− pn)‖M +

β

2
‖yn− pn‖M

=
1

2γn

∥∥∥∥(2−βγn)(xn− pn)−
λnγnβ (2− γnβ)

2−λnγnβ
un +2vn

∥∥∥∥
M

+
β

2
‖xn− pn +un‖M. (I.10)

2

Before we prove Lemma 1, note that the right-hand side of (I.10) only contains data
that is computed in Algorithm 1, whereas evaluating ∆n requires the knowledge of
Cpn. Therefore, (I.10) can be used to check the accuracy of the current iteration or
to define a stopping criterion without any extra evaluations of C.

In Example 2, (I.10) reduces to

‖∆n‖ ≤ β‖yn− pn‖= β

∥∥∥∥(Id−
(

Id+ 1
β

A
)−1
◦
(

Id− 1
β

C
))

yn

∥∥∥∥.
Hence, the right-hand side of (I.10) plays the role of a residual for the iteration in
Algorithm 1.

Proof of Lemma 1. Let n ∈ N. Step 6 in Algorithm 1 is equivalent to the inclusion

Mzn−Mpn

γn
−Cyn ∈ Apn, (I.11)

to which adding Cpn on both sides yields the desired inclusion ∆n ∈ (A+C)pn.

43

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

Furthermore, we have

‖∆n‖2
M−1 −

(
1

2γn
‖2(zn− pn)−βγn(yn− pn)‖M +

β

2
‖yn− pn‖M

)2

=
1
γ2

n
‖zn− pn‖2

M +‖Cyn−Cpn‖2
M−1 −

2
γn
〈zn− pn,Cyn−Cpn〉

− 1
4γ2

n
‖2(zn− pn)−βγn(yn− pn)‖2

M−
β 2

4
‖yn− pn‖2

M

− β

2γn
‖2(zn− pn)−βγn(yn− pn)‖M‖yn− pn‖M

= ‖Cyn−Cpn‖2
M−1 −

2
γn
〈zn− pn,Cyn−Cpn〉

− β 2

2
‖yn− pn‖2

M +
β

γn
〈zn− pn,yn− pn〉M

− β

2γn
‖2(zn− pn)−βγn(yn− pn)‖M‖yn− pn‖M

= ‖Cyn−Cpn‖2
M−1 −β 〈yn− pn,Cyn−Cpn〉

+
1
γn

〈
2(zn− pn)−βγn(yn− pn),

β

2
M(yn− pn)− (Cyn−Cpn)

〉
− β

2γn
‖2(zn− pn)−βγn(yn− pn)‖M‖yn− pn‖M.

(I.12)
Notice that, by the 1/β -cocoercivity of C w.r.t. ‖·‖M ,

‖yn− pn‖M ≥
2
β

∥∥∥∥Cyn−Cpn−
β

2
M(yn− pn)

∥∥∥∥
M−1

. (I.13)

The inequality part in (I.10) then follows from (I.12), using the 1/β -cocoercivity
again, inserting (I.13), and applying the Cauchy–Schwarz inequality. The equality
in (I.10) is easily obtained by inserting the definitions of yn and zn. 2

LEMMA 2 (LYAPUNOV INEQUALITY) Suppose that Assumption 1 and Assump-
tion 2 hold. Let (xn)n∈N, (un)n∈N, (vn)n∈N,

(
`2

n
)

n∈N be sequences generated by Al-
gorithm 1 and x? be an arbitrary point in zer(A+C). Then,

‖xn+1− x?‖2
M + `2

n ≤ ‖xn− x?‖2
M + λnγnβ

2−λnγnβ
‖un‖2

M + λn(2−λnγnβ)
4−2λn−γnβ

‖vn‖2
M (I.14)

and
‖xn+1− x?‖2

M + `2
n ≤ ‖xn− x?‖2

M +ζn−1`
2
n−1 (I.15)

hold for all n ∈ N. 2

44

4 Convergence analysis

Proof. Let n ∈ N be arbitrary. Step 6 in Algorithm 1 is equivalent to the inclusion

Mzn−Mpn

γn
−Cyn ∈ Apn. (I.16)

Since x? ∈ zer(A+C), we also have

−Cx? ∈ Ax?. (I.17)

Using (I.16), (I.17), and the monotonicity of A gives

0≤
〈

Mzn−Mpn

γn
−Cyn +Cx?, pn− x?

〉
. (I.18)

By the 1/β -cocoercivity of C w.r.t. ‖·‖M we have

1
β
‖Cyn−Cx?‖2

M−1 ≤ 〈Cyn−Cx?,yn− x?〉. (I.19)

Adding (I.18) and (I.19) yields

0≤
〈

Mzn−Mpn

γn
, pn− x?

〉
+ 〈Cyn−Cx?,yn− pn〉− 1

β
‖Cyn−Cx?‖2

M−1 .

Then, from step 7 in Algorithm 1, we substitute zn− pn =
1

λn
(xn− xn+1) to obtain

0≤ 1
γnλn
〈xn− xn+1, pn− x?〉M + 〈Cyn−Cx?,yn− pn〉− 1

β
‖Cyn−Cx?‖2

M−1

= 1
2γnλn

(
‖xn− x?‖2

M +‖xn+1− pn‖2
M−‖xn− pn‖2

M−‖xn+1− x?‖2
M

)
+ 〈Cyn−Cx?,yn− pn〉− 1

β
‖Cyn−Cx?‖2

M−1

≤ 1
2γnλn

(
‖xn− x?‖2

M +‖xn+1− pn‖2
M−‖xn− pn‖2

M−‖xn+1− x?‖2
M

)
+ β

4 ‖yn− pn‖2
M

where we use the identity 2〈a−b,c−d〉M = ‖a−d‖2
M + ‖b− c‖2

M −‖a− c‖2
M −

‖b−d‖2
M for all a,b,c,d ∈H and Young’s inequality. Multiplying both sides of

the last inequality by 2γnλn and reordering the terms yield

‖xn+1− x?‖2
M−‖xn− x?‖2

M

≤ ‖xn+1− pn‖2
M−‖xn− pn‖2

M + λnγnβ

2 ‖yn− pn‖2
M

= ‖xn− pn +λn(pn− zn)‖2
M−‖xn− pn‖2

M + λnγnβ

2 ‖yn− pn‖2
M

= λ
2
n ‖pn− zn‖2

M +2λn〈xn− pn, pn− zn〉M + λnγnβ

2 ‖yn− pn‖2
M

=−λn(2−λn)‖pn− zn‖2
M +2λn〈pn− zn,xn− zn〉M

+ λnγnβ

2 ‖yn− pn‖2
M,

(I.20)

45

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

where we, once again, used step 7 in Algorithm 1 to substitute back xn+1 = xn +
λn(pn− zn) into the expression to the right-hand side of the inequality. Now, using
the definitions of yn and zn in steps 4 and 5 of Algorithm 1, we observe that

`2
n =

(
λn(2−λn)− λnγnβ

2

)∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un +

2(1−λn)
γnβ−2(2−λn)

vn

∥∥∥2

M
(I.21)

= λn(2−λn)‖pn− zn‖2
M +λn(2−λn)

∥∥∥ γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

∥∥∥2

M

+2λn(2−λn)
〈

pn− zn,
γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

〉
M

− λnγnβ

2 ‖pn− yn‖2
M−

λnγnβ

2

∥∥∥ 2
2−λnγnβ

un +
2(1−λn)

γnβ−2(2−λn)
vn

∥∥∥2

M

−λnγnβ

〈
pn− yn,

2
2−λnγnβ

un +
2(1−λn)

γnβ−2(2−λn)
vn

〉
M
.

We can estimate the left-hand side of (I.14) by adding (I.20) and (I.21). Let us do
this step by step. First, let us look at the two inner products with pn− zn.

2λn

〈
pn− zn,xn− zn +(2−λn)

(
γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

)〉
M

= 2λn

〈
pn− zn,

(
γnβ (2−λn)
2−λnγnβ

− (1−λn)γnβ

2−λnγnβ

)
un−

(
1+ (2−λn)(2−γnβ)

γnβ−2(2−λn)

)
vn

〉
M

= 2λn

〈
pn− zn,

γnβ

2−λnγnβ
un +

(1−λn)γnβ

γnβ−2(2−λn)
vn

〉
M

This can be combined with the last term in (I.21), so that we get

‖xn+1− x?‖2
M−‖xn− x?‖2

M + `2
n

≤ 2λnγnβ

〈
yn− zn,

1
2−λnγnβ

un +
(1−λn)

γnβ−2(2−λn)
vn

〉
M

+λn(2−λn)
∥∥∥ γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

∥∥∥2

M

−2λnγnβ

∥∥∥ 1
2−λnγnβ

un +
(1−λn)

γnβ−2(2−λn)
vn

∥∥∥2

M
.

(I.22)

With yn−zn =
2−γnβ

2−λnγnβ
un−vn, the right-hand side of (I.22) is a quadratic expression

in un and vn alone:

‖xn+1− x?‖2
M−‖xn− x?‖2

M + `2
n

≤ 2λnγnβ

〈
1−γnβ

2−λnγnβ
un− γnβ−3+λn

γnβ−2(2−λn)
vn,

1
2−λnγnβ

un +
(1−λn)

γnβ−2(2−λn)
vn

〉
M

+λn(2−λn)
∥∥∥ γnβ

2−λnγnβ
un− 2−γnβ

γnβ−2(2−λn)
vn

∥∥∥2

M
.

In order to verify (I.14), it suffices to check the coefficients of ‖un‖2
M , ‖vn‖2

M , and
〈un,vn〉M on the right-hand side. This results in

46

4 Convergence analysis

‖xn+1− x?‖2
M−‖xn− x?‖2

M + `2
n

≤ 2λnγnβ (1−γnβ)+λnγ2
n β 2(2−λn)

(2−λnγnβ)2 ‖un‖2
M

+ −2λnγnβ (γnβ−3+λn)(1−λn)+λn(2−λn)(2−γnβ)2

(γnβ−2(2−λn))
2 ‖vn‖2

M

+ 2λnγnβ (1−γnβ)(1−λn)−2λnγnβ (γnβ−3+λn)−2λnγnβ (2−λn)(2−γnβ)
(2−λnγnβ)(γnβ−2(2−λn))

〈un,vn〉M

= λnγnβ

2−λnγnβ
‖un‖2

M + λn(−2+λnγnβ)
(γnβ−2(2−λn))

‖vn‖2
M,

showing (I.14). Finally, (I.15) follows from inserting (I.6). 2

The following theorem is the main convergence result of the paper that guaran-
tees weak convergence for the sequence of iterates obtained from Algorithm 1.

THEOREM 1 Suppose that Assumption 1 and Assumption 2 hold. Let the sequences
(xn)n∈N, (un)n∈N, (vn)n∈N, and

(
`2

n
)

n∈N be generated by Algorithm 1. Then, the
following hold:

(i) The sequence
(
`2

n
)

n∈N is summable and the sequences (un)n∈N and (vn)n∈N
are convergent to zero.

(ii) For all x? ∈ zer(A+C), the sequence (‖xn− x?‖M)n∈N converges.
(iii) The sequence (xn)n∈N converges weakly to a point in zer(A+C). 2

Proof. We start by proving Theorem 1 (i) via a telescoping argument for (I.15). To
this end, let N ∈ N. We sum (I.15) for n = 1,2, . . . ,N to obtain

‖xN+1− x?‖2
M + `2

N +
N−1

∑
n=1

(1−ζn)`
2
n ≤ ‖x1− x?‖2

M +ζ0`
2
0.

Then, rearranging the terms gives

N

∑
n=1

(1−ζn)`
2
n ≤ ‖x1− x?‖2

M−‖xN+1− x?‖2
M−ζN`

2
N

≤ ‖x1− x?‖2
M +ζ0`

2
0.

Since the right hand side of the last inequality is independent of N, we conclude that

∞

∑
n=0

(1−ζn)`
2
n < ∞,

which, along with ζn ≤ 1− ε from Assumption 2, implies that

`2
n→ 0 (I.23)

47

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

as n→ ∞. Then, (I.6) implies that un→ 0 and vn→ 0 as n→ ∞. This proves Theo-
rem 1 (i).

The proof of Theorem 1 (ii) follows from the property that (I.15) defines a Lya-
punov function: since ζn ≤ 1, we get from (I.15) that

‖xn+1− x?‖2
M + `2

n ≤ ‖xn− x?‖2
M + `2

n−1,

i.e., the sequence
(
‖xn− x?‖2

M + `2
n−1

)
n∈N

is nonincreasing. As it is also nonnega-

tive, it is convergent, say ‖xn− x?‖2
M + `2

n−1→ `x? ≥ 0 as n→∞. Moreover, `2
n→ 0

by Theorem 1 (i) as n→ ∞, so ‖xn− x?‖2
M → `x? , proving Theorem 1 (ii).

For the proof of Theorem 1 (iii), recall that (pn,∆n) ∈ gra(A+C) for all n ∈ N
by Lemma 1. Now, by (I.8), we have λn(4−2λn−γnβ)

2 ≥ ε2/2 for all n ∈ N. By this
and `n→ 0 as n→ ∞, we have that

pn− xn +
λnγnβ

2−λnγnβ
un +

2(λn−1)
4−2λn−γnβ

vn→ 0.

Next, from un→ 0 and vn→ 0, together with (I.8) and (I.9), we conclude that pn−
xn→ 0 as n→ ∞. Then, by Lemma 1

‖∆n‖M−1 ≤
1

2γn

∥∥∥∥(2−βγn)(xn− pn)−
λnγnβ (2− γnβ)

2−λnγnβ
un +2vn

∥∥∥∥
M

+
β

2
‖xn− pn +un‖M,

hence, ∆n→ 0 as n→ ∞.
Now, from Theorem 1 (ii), we know that

(
‖xn− x?‖2

M

)
n∈N

is convergent, which

implies that the sequence (xn)n∈N is bounded. Therefore, the latter has at least one
weakly convergent subsequence (xkn)n∈N, say xkn ⇀ x?wc ∈H as n→ ∞. By the
arguments above, we have pkn ⇀ x?wc and ∆kn → 0. Therefore, (x?wc,0) ∈ gra(A+
C) by the weak–strong closedness of gra(A+C) [Bauschke and Combettes, 2017,
Proposition 20.38]. Then, Theorem 1 (iii) follows from [Bauschke and Combettes,
2017, Lemma 2.47], and the proof is complete. 2

4.1 Linear convergence
In this section, we show the linear convergence of Algorithm 1 under the following
metric subregularity assumption.

DEFINITION 1—M-METRIC SUBREGULARITY

Let M ∈M (H). A mapping T : H → 2H is called M-metrically subregular at x̄
for ȳ if (x̄, ȳ) ∈ gra(T) and there exists a κ ≥ 0 along with neighborhoods U of x̄
and V of ȳ such that

distM(x,T−1(ȳ))≤ κ distM−1(ȳ,T (x)∩V) (I.24)

for all x ∈U . 2

48

4 Convergence analysis

This definition is equivalent to that in [Dontchev and Rockafellar, 2009], but uses
the M- and M−1-induced norm distances instead of the standard canonical norm
distance. Using this definition simplifies the notation in the linear convergence anal-
ysis. Metric subregularity is an important notion in numerical analysis. For a set-
valued operator T and an input vector ȳ, it simply provides an upper bound of how
far a point x is from being a solution to inclusion problem ȳ ∈ T (x). This upper
bound is given by (I.24) in terms of the distance of T (x) from the input vector ȳ.
For a detailed discussion on this subject, see [Dontchev and Rockafellar, 2009].

THEOREM 2 (LINEAR CONVERGENCE) Consider the monotone inclusion prob-
lem (I.5) and suppose that Assumption 1 and Assumption 2 hold, that A +C is
M-metrically subregular at all x? ∈ zer(A+C) for 0, and that either H is finite-
dimensional or that in Definition 1 the neighborhood U at all x? ∈ zer(A+C) is the
whole space H . Then, there exists 0 ≤ q < 1 such that the following statements
hold.

(i) There exists 0 < δ < 1 such that

dist2M(xn+1,zer(A+C))+(1−δ)`2
n

≤ q
(

dist2M(xn,zer(A+C))+(1−δ)`2
n−1
)

for all n≥ 1;
(ii) there exist x∗ ∈ zer(A+C) and c > 0 such that ‖xn− x∗‖2 ≤ cqn for all n≥ 1.

Hence, xn→ x∗ even if H is infinite-dimensional. 2

Proof. We start by proving (i). Let x? ∈ zer(A+C) be the weak cluster point of the
sequences (xn)n∈N and (pn)n∈N according to Theorem 1. From the metric subreg-
ularity of A+C at x∗ for 0, we get κ ≥ 0 and neighborhoods U of x∗ and V of 0
such that

distM(x,zer(A+C))≤ κ distM−1(0,(A+C)(x)∩V) (I.25)

for all x ∈U .
If H is finite-dimensional, then pn → x∗, and there exists n0 ∈ N such that

pn ∈U for all n≥ n0. If H is infinite-dimensional, then U = H , and pn ∈U for
all n ∈ N.

Now, Lemma 1 gives ∆n ∈ (A+C)pn for all n ∈ N, and ∆n→ 0 by the proof of
Theorem 1. Let n0 ∈ N be chosen such that ∆n ∈ V in addition to pn ∈ U for all

49

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

n≥ n0. Setting x = pn in (I.25) hence gives

distM(pn,zer(A+C))

≤ κ distM−1(0,(A+C)(pn)∩V)

≤ κ‖∆n‖M−1

≤ κ

2γn

∥∥∥∥(2−βγn)(xn− pn)−
λnγnβ (2− γnβ)

2−λnγnβ
un +2vn

∥∥∥∥
M

+
βκ

2
‖xn− pn +un‖M

(I.26)

for all n≥ n0, where we used (I.10) in the last step. From Lemma 2 we have that

‖xn+1− x?‖2
M + `2

n ≤ ‖xn− x?‖2
M +ζn−1`

2
n−1. (I.27)

Now, set x?n := ΠM
zer(A+C)(xn). Then, from (I.27), we get

dist2M(xn+1,zer(A+C))+ `2
n ≤ ‖xn+1− x?n‖

2
M + `2

n

≤ ‖xn− x?n‖
2
M +ζn−1`

2
n−1

= dist2M(xn,zer(A+C))+ζn−1`
2
n−1. (I.28)

Next, we will estimate both sides of (I.26) in terms of dist2M(xn,zer(A+C)), `2
n, and

`2
n−1. Let p∗n := ΠM

zer(A+C)(pn). Then, since Πzer(A+C) is the projection onto a convex
set w.r.t. the M-induced metric, [Bauschke and Combettes, 2017, Theorem 3.16]
yields

dist2M(pn,zer(A+C))

≥ ‖pn− p∗n‖
2
M−2〈x∗n− xn, p∗n− x∗n〉M

= ‖pn− p∗n‖
2
M−2〈x∗n− xn, p∗n− pn〉M−2〈x∗n− xn, pn− x∗n〉M

= ‖pn− p∗n− x∗n + xn‖2
M−‖x

∗
n− xn‖2

M−2〈x∗n− xn, pn− x∗n〉M
≥ ‖x∗n− xn‖2

M−2〈x∗n− xn, pn− xn〉M
≥ 1

2‖x
∗
n− xn‖2

M−2‖pn− xn‖2
M,

50

4 Convergence analysis

where we used Young’s inequality in the last step. Combining this with (I.26) gives

1
2 dist2M(xn,zer(A+C))

≤

(
κ

2γn

∥∥∥∥(2−βγn)(xn− pn)−
λnγnβ (2− γnβ)

2−λnγnβ
un +2vn

∥∥∥∥
M

+
βκ

2
‖xn− pn +un‖M

)2

+2‖pn− xn‖2
M

≤ κ2

2γ2
n

∥∥∥∥(2−βγn)(xn− pn)−
λnγnβ (2− γnβ)

2−λnγnβ
un +2vn

∥∥∥∥2

M

+
β 2κ2

2
‖xn− pn +un‖2

M +2‖pn− xn‖2
M,

(I.29)

where we used Young’s inequality in the last step. It remains to estimate the right-
hand side of (I.29) in terms of `2

n and `2
n−1. To this end, we use the following

lemma. 2

LEMMA 3 Let (xn)n∈N, (pn)n∈N, (un)n∈N, (vn)n∈N, and
(
`2

n
)

n∈N be generated by
Algorithm 1 under Assumption 2, and let (an)n∈N, (bn)n∈N, and (cn)n∈N be bounded
sequences of real numbers. Then there exist c1,c2 > 0 (which do not depend on n)
such that

‖an(pn− xn)+bnun + cnvn‖2
M ≤ c1`

2
n + c2`

2
n−1. 2

Proof. The assertion is proven by repeatedly applying Young’s inequality and sub-
sequently using the norm condition (I.6):

‖an(pn− xn)+bnun + cnvn‖2
M

=

∥∥∥∥∥an

(
pn− xn +

λnγnβ

2−λnγnβ
un−

2(1−λn)

4−2λn− γnβ
vn

)

+

(
bn−

λnγnβan

2−λnγnβ

)
un +

(
cn +

2an(1−λn)

4−2λn− γnβ

)
vn

∥∥∥∥∥
2

M

≤ 2a2
n

∥∥∥∥pn− xn +
λnγnβ

2−λnγnβ
un−

2(1−λn)

4−2λn− γnβ
vn

∥∥∥∥2

M

+2
∥∥∥∥(bn−

λnγnβan

2−λnγnβ

)
un +

(
cn +

2an(1−λn)

4−2λn− γnβ

)
vn

∥∥∥∥2

M

≤ 4a2
n

λn(4−2λn− γnβ)
`2

n

+4
(
bn−

λnγnβan

2−λnγnβ

)2

‖un‖2
M +4

(
cn +

2an(1−λn)

4−2λn− γnβ

)2

‖vn‖2
M

51

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

≤ 4a2
n

λn(4−2λn− γnβ)
`2

n +4dnζn−1`
2
n−1

with

dn := max

{
2−λnγnβ

λnγnβ

(
bn−

λnγnβan

2−λnγnβ

)2

,

4−2λn− γnβ

λn(2−λnγnβ)

(
cn +

2an(1−λn)

4−2λn− γnβ

)2
}
.

It is straightforward to show, by using Assumption 2, that 4a2
n

λn(4−2λn−γnβ) and 4dnζn−1

are bounded, completing the proof. 2

Now, we are in the position to complete the argument of this section’s main
result.

Proof of Theorem 2 continued. Since all the relevant coefficients on the right-hand
side of (I.29) are bounded due to Assumption 2, using Lemma 3 on all the norms
and combining the results yields c1,c2 > 0 such that

1
2 dist2M(xn,zer(A+C))≤ c1`

2
n + c2`

2
n−1.

Multiplying this with any δ ′ > 0 and adding (I.28) gives

dist2M(xn+1,zer(A+C))+
(
1−δ

′c1
)
`2

n

≤
(

1− δ ′
2

)
dist2M(xn,zer(A+C))+

(
ζn−1 +δ

′c2
)
`2

n−1

≤
(

1− δ ′
2

)
dist2M(xn,zer(A+C))+

(
1− ε +δ

′c2
)
`2

n−1.

Choosing (for example) δ ′ as the smaller of the two solutions to(
1− δ ′

2

)(
1−δ

′c1
)
=
(
1− ε +δ

′c2
)
,

namely

δ
′ =

1+2c1 +2c2

2c1
−

√
(1+2c1 +2c2)

2

4c2
1

− 2ε

c1
, (I.30)

proves Item (i) with δ = δ ′c1 and q = 1− δ ′/2. For the proof of Item (ii), choose
c′1,c

′
2 > 0 according to Lemma 3 such that

‖xn+1− xn‖2
M = λ

2
n

∥∥∥∥pn− xn−
(1−λn)γnβ

2−λnγnβ
un− vn

∥∥∥∥2

M
≤ c′1`n + c′2`n−1 (I.31)

52

5 Special cases

for all n≥ 1. From Item (i), we get δ > 0 and 0≤ q < 1 such that

dist2M(xn+1,zer(A+C))+(1−δ)`2
n ≤ q

(
dist2M(xn,zer(A+C))+(1−δ)`2

n−1
)

for all n≥ 1. Repeatedly applying this relation gives

`2
n ≤

1
1−δ

(
dist2M(xn+1,zer(A+C))+(1−δ)`2

n
)

≤ qn

1−δ

(
dist2M(x1,zer(A+C))+(1−δ)`2

0
)
.

Inserting into (I.31) and taking square roots on both sides yields

‖xn+1− xn‖M ≤ qn/2

√
c′1 + c′2/q

1−δ

(
dist2M(x1,zer(A+C))+(1−δ)`2

0

)
.

Let us choose m > n≥ 1 and apply the triangle inequality,

‖xm− xn‖M ≤
m−1

∑
k=n
‖xk+1− xk‖M

≤
m−1

∑
k=n

qk/2

√
c′1 + c′2/q

1−δ

(
dist2M(x1,zer(A+C))+(1−δ)`2

0

)
≤

∞

∑
k=n

qk/2

√
c′1 + c′2/q

1−δ

(
dist2M(x1,zer(A+C))+(1−δ)`2

0

)
= qn/2 1

1−√q

√
c′1 + c′2/q

1−δ

(
dist2M(x1,zer(A+C))+(1−δ)`2

0

)
(I.32)

showing that (xn)n∈N is a Cauchy sequence, hence xn → x∗ as n → ∞ with x∗

from Theorem 1. The other claim of Item (ii) follows by letting m→ ∞ in (I.32). 2

REMARK 2 The analysis in Section 4 requires β > 0, but it can in an analogous
way be done with the choice C = 0 and β = 0 without division by zero, leading to
the iteration and safeguarding condition mentioned in Example 5. 2

5. Special cases

In this section, we present some special cases of our algorithm.

53

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

5.1 Primal–dual splitting with deviations
We are concerned with the primal inclusion problem of finding x ∈H such that

0 ∈ Ax+L∗B(Lx)+Cx (I.33)

under the following assumption.

ASSUMPTION 3 We assume that

(i) A : H → 2H is a maximally monotone operator;

(ii) B : K → 2K is a maximally monotone operator;

(iii) L : H →K is a bounded linear operator;

(iv) C : H →H is a 1
β

-cocoercive operator with respect to ‖ · ‖;

(v) the solution set zer(A+L∗BL+C) := {x ∈H : 0 ∈ Ax+L∗B(Lx)+Cx} is
nonempty. 2

Problem (I.33) can be translated to a primal–dual problem [He and Yuan, 2012]:
x∈H is a solution to (I.33) if and only if there exists µ ∈ B(Lx) (the dual variable)
such that

0 ∈ Ax+L∗µ +Cx,

0 ∈ −Lx+B−1
µ.

(I.34)

Define the primal–dual pair w := (x,µ) ∈H ×K . Then, (I.34) can be restated as

0 ∈A w+C w, (I.35)

where (with slight abuse of notation in the infinite-dimensional setting)

A =

[
A L∗

−L B−1

]
, C =

[
C 0
0 0

]
. (I.36)

The operator A is maximally monotone by [Bauschke and Combettes, 2017, Propo-
sition 26.32] and C is 1/β -cocoercive with respect to the metric ‖·‖M , with

M =

[
I −τL∗

−τL τσ−1I

]
(I.37)

where σ ,τ > 0 such that στ‖L‖2 < 1.
The translation of (I.33) to (I.35) via the two operators A and C shows that

Algorithm 1 using the metric M can be used to solve problem (I.33). We present this
special case in Algorithm 2, along with the subsequent result on its convergence.

54

5 Special cases

Algorithm 2
1: Input: (x0,µ0) ∈H ×K , the sequences (λn)n∈N and (ζn)n∈N as defined in

Assumption 2, and σ ,τ > 0 such that στ‖L‖2 < 1.
2: set: ux,0 = vx,0 = 0, vµ,0 = 0.
3: for n = 0,1,2, . . . do
4: x̃n = xn +ux,n

5:

[
x̂n
µ̂n

]
=

[
xn
µn

]
+

[
(1−λn)τβ

2−λnτβ
ux,n + vx,n

vµ,n

]
6:

[
px,n
pµ,n

]
=

[
JτA (x̂n− τL∗µ̂n− τCx̃n)

JσB−1 (µ̂n +σL(2px,n− x̂n))

]
7:

[
xn+1
µn+1

]
=

[
xn
µn

]
+λn

([
px,n
pµ,n

]
−
[

x̂n
µ̂n

])
8: choose un+1 = (ux,n+1,uµ,n+1) and vn+1 = (vx,n+1,vµ,n+1) such that

λn+1τβ

2−λn+1τβ
‖ux,n+1‖2 +

λn+1(2−λn+1τβ)
4−2λn+1−τβ

∥∥∥∥[vx,n+1
vµ,n+1

]∥∥∥∥2

M

≤ ζn
λn(4−2λn−τβ)

2

∥∥∥∥∥
[

px,n
pµ,n

]
−
[

xn
µn

]
+ λnτβ

2−λnτβ

[
ux,n
0

]

− 2(1−λn)
4−2λn−τβ

[
vx,n
vµ,n

]∥∥∥∥∥
2

M

(I.38)

9: end for

COROLLARY 1 Consider monotone inclusions (I.35) and suppose that Assumption
3 holds. Let (xn)n∈N and (µn)n∈N denote the primal and the dual sequences, re-
spectively, that are obtained from Algorithm 2. Then (xn)n∈N converges weakly to
a point in zer(A+L∗BL+C). 2

Proof. In Algorithm 1, replace A by A and C by C as devised by (I.36), and substi-
tute (xn,µn) in place of xn, and also set pn = (px,n, pµ,n), yn = (x̃n,µn), zn = (x̂n, µ̂n),
un = (ux,n,0), vn = (vx,n,vµ,n), M as is in (I.37), and γn = τ (n ∈N). These changes,
along with the update formula

pn = (px,n, pµ,n) = (M+ τA)−1(Mzn− τC yn)

=

[
I + τA 0
−2τL τσ−1I + τB−1

]−1 [x̂n− τL∗µ̂n− τCx̃n
−τLx̂n + τσ−1µ̂n

]
=

[
(I + τA)−1(x̂n− τL∗µ̂n− τCx̃n)

(I +σB−1)−1(µ̂n +σL(2px,n− x̂n))

]
55

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

=

[
JτA (x̂n− τL∗µ̂n− τCx̃n)

JσB−1 (µ̂n +σL(2px,n− x̂n))

]
,

result in Algorithm 2. Therefore, Algorithm 2 is a special instance of Algorithm 1;
and the corollary is an immediate consequence of Theorem 1. 2

REMARK 3 In Algorithm 2, it might be expected that we get µ̃n = µn+uµ,n, which
is the dual counterpart of x̃n = xn + ux,n, but we do not. That is because the corre-
sponding part of µ̃n of the operator C in (I.36), i.e. its second column, is zero, and
thus, there is no need to define the dual counterpart of x̃n. 2

REMARK 4 In Algorithm 2, letting all deviations ux,n, vx,n, vµ,n (n∈N) be zero and
λn = 1 give

xn+1 = JτA (xn− τL∗µn− τCxn) ,

µn+1 = JσB−1 (µn +σL(2xn+1− xn)) .

This is the Condat–Vũ algorithm in its basic form [Condat, 2013; Vũ, 2013], which,
with C = 0, reduces to the basic form of the Chambolle–Pock primal–dual method
[Chambolle and Pock, 2011]. 2

REMARK 5 By letting C = 0, β = 0, and ux,n = 0 for all n ∈ N in Algorithm 2, we
arrive at a Chambolle–Pock method with deviations and the condition (I.38) reduces
to ∥∥∥∥[vx,n+1

vµ,n+1

]∥∥∥∥2

M
≤ ζn

(2−λn+1)(2−λn)λn
λn+1

∥∥∥∥[px,n
pµ,n

]
−
[

xn
µn

]
− 1−λn

2−λn

[
vx,n
vµ,n

]∥∥∥∥2

M
. 2

5.2 Krasnosel’skiı̆–Mann iteration with deviations
Consider the fixed-point problem

x = T x, (I.39)

where T : H →H is a nonexpansive operator. Then, by [Bauschke and Combettes,
2017, Remark 4.34, Corollary 23.9], there is a maximally monotone operator A :
H → 2H for which JγA = 1

2 Id+ 1
2 T , with γ > 0. This correspondence suggests

that Algorithm 1 can be used to solve (I.39). Letting C = 0, β = 0, M = Id, and
un = 0 for all n∈N in Algorithm 1, results in Algorithm 3, that can be used to solve
problem (I.39). Weak convergence of Algorithm 3 is shown in Corollary 2.

COROLLARY 2 Consider the fixed-point problem (I.39); suppose that its solution
set is nonempty and let JγA = 1

2 Id+ 1
2 T . Then, the sequence (xn)n∈N, that is gen-

erated by Algorithm 3, converges weakly to a point in the solution set of the prob-
lem. 2

56

6 A novel inertial primal–dual splitting algorithm

Algorithm 3
1: Input: x0 ∈H , and the sequences (λn)n∈N, (γn)n∈N, and (ζn)n∈N according to

Assumption 2.
2: set: v0 = 0
3: for n = 0,1, . . . do
4: zn = xn + vn
5: pn =

1
2 (Id+T)(xn + vn)

6: xn+1 = (1−λn)xn +λn(pn− vn)
7: choose vn+1 such that

‖vn+1‖2 ≤ ζn
λn(2−λn)(2−λn+1)

λn+1

∥∥∥pn− xn +
λn−1
2−λn

vn

∥∥∥2
(I.40)

8: end for

Setting vn = 0 for all n ∈ N in Algorithm 3 results in

xn+1 = (1− λn
2)xn +

λn
2 T (xn),

which is the standard Krasnosel’skiı̆–Mann iteration [Bauschke and Combettes,
2017, Corollary 5.17].

6. A novel inertial primal–dual splitting algorithm

In this section, we present a novel inertial primal–dual method to solve problem
(I.33) with C = 0. We construct this algorithm from Algorithm 2 by consider-
ing a special structure for the deviation vector. We preset the deviation vector
direction at the n-th iteration to be aligned with the momentum direction, i.e.,
vn = an(xn − xn−1,µn − µn−1), and use the bound on the norm of deviations to
compute an. Since this algorithm is an instance of Algorithm 2, its convergence
is guaranteed by Corollary 1.

REMARK 6 Even though Algorithm 4 has similarities with translations of the al-
gorithms of [Alvarez, 2000; Alvarez and Attouch, 2001; Attouch and Cabot, 2019;
Cholamjiak et al., 2018; Lorenz and Pock, 2015] to a primal–dual framework, to the
best of our knowledge, the former and the latter cannot be derived from each other,
and thus, are essentially different. 2

6.1 Efficient evaluation of the norm condition
In order to compute the bound on the coefficients an using (I.41), one needs to
compute some M-induced norms, which involves evaluating L and L∗. Depending
on the complexity of evaluating L and L∗, these evaluations may be computationally
expensive. However, by scrutinizing Algorithm 4, it is observed that some of the

57

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

Algorithm 4
1: Input: (x0,µ0) ∈H ×K , and the sequences (λn)n∈N and (ζn)n∈N as stated in

Assumption 2.
2: set: a0 = 0
3: for n = 0,1,2, . . . do

4:

[
x̂n
µ̂n

]
=

[
xn
µn

]
+an

[
xn− xn−1
µn−µn−1

]
5:

[
px,n
pµ,n

]
=

[
JτA (x̂n− τL∗µ̂n)

JσB−1 (µ̂n +σL(2px,n− x̂n))

]
6:

[
xn+1
µn+1

]
=

[
xn
µn

]
+λn

([
px,n
pµ,n

]
−
[

x̂n
µ̂n

])
7: choose an+1 such that

a2
n+1

∥∥∥∥[xn+1− xn
µn+1−µn

]∥∥∥∥2

M

≤ ζn
λn(2−λn)(2−λn+1)

λn+1

∥∥∥∥∥
[

px,n− xn
pµ,n−µn

]
+ λn−1

2−λn
an

[
xn− xn−1
µn−µn−1

]∥∥∥∥∥
2

M

(I.41)

8: end for

previous evaluations can be reused to keep the additional computational cost low
compared to the standard Chambolle–Pock algorithm. In what follows, we provide
more details on how to compute the required scaled norm of the vector quantities in
a computationally efficient manner.

As seen in line 7 of Algorithm 4, at each iteration one of each L and L∗ eval-
uations are performed. Similar operations take place at each iteration of, e.g., the
Chambolle–Pock algorithm. However, in our algorithm, we have other operations
involving evaluations of L and L∗. Those are due to verification of the norm con-
dition in line 8 of Algorithm 4. More specifically, since the kernel M is given by
(I.37) for each evaluation of ‖·‖M , we have one more evaluation each of L and L∗.
This can lead to a substantially higher computational cost. However, except for the
first iteration, the extra L and L∗ evaluations can be computed from the computa-
tions which are already available from previous iterations. That is possible due to
the relations

Lx̂n = Lxn +bn(Lxn−Lxn−1),

L∗µ̂n = L∗µn +bn(L∗µn−L∗µn−1),

Lxn+1 = Lxn +λn(Lpx,n−Lx̂n),

L∗µn+1 = L∗µn +λn(L∗pµ,n−L∗µ̂n),

(I.42)

which are derived from lines 5 and 7 of Algorithm 4. In the relations above, for
n > 0, all quantities to the right hand side are already computed and can be reused,

58

7 Numerical experiments

except for Lpx,n and L∗pµ,n that need to be computed via direct evaluation.
Table 1 provides the list of evaluations involving L and L∗ that we need to per-

form at the first three iterations. It reveals that at the first iteration, we need to
perform six different evaluations involving L or L∗, of which four might be com-
putationally heavy and two can be done cheaply. After that, i.e. for n > 0, we only
need to perform two such heavy evaluations per iteration; namely, Lpx,n and L∗pµ,n.
The rest of the L and L∗ evaluations can be done efficiently by exploiting previously
computed quantities and (I.42). This keeps the computational per-iteration cost of
our algorithm basically the same as that of the Chambolle–Pock algorithm.

n Expensive evaluations Cheap evaluations
0 Lx0, L∗µ0, Lpx,0, L∗pµ,0 Lx1, L∗µ1
1 Lpx,1, L∗pµ,1 Lx̂2, Lx2, L∗µ̂2, L∗µ2
2 Lpx,2, L∗pµ,2 Lx̂3, Lx3, L∗µ̂3, L∗µ3

Table 1: List of evaluations that involve L and L∗ for the first three iterations. The
second column shows direct and potentially expensive evaluations and the third
column shows evaluations that can be done cheaply via the relations in (I.42).

7. Numerical experiments

We solve an l1-norm regularized SVM problem for classification of the form

minimize
x

f (Lx)+g(x), (I.43)

given a labeled training data set {θi,φi}N
i=1, where θi ∈ Rd and φi ∈ {−1,1} are

training data and labels, respectively, and with

f (Lx) = 1T max(0,1−Lx) , g(x) = ξ‖ω‖1, L =

φ1θ T
1 φ1

...
...

φNθ T
N φN

 ,
where 0 = (0, . . . ,0)T , 1 = (1, . . . ,1)T , x = (ω,b) is the decision variable with b∈R
and ω ∈ Rd , max(·, ·) acts element-wise, and ξ ≥ 0 is the regularization parameter.

A point x? is a solution to (I.43) if and only if it satisfies

0 ∈ L∗∂ f (Lx?)+∂g(x?).

This holds, since f and g are proper, closed, and convex functions with full domains,
and thus, ∂ f and ∂g are maximally monotone and L is a linear operator [Bauschke
and Combettes, 2017, Proposition 16.42]. This monotone inclusion problem is an

59

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

instance of (I.33) with A = ∂g, B = ∂ f , and C = 0. As in Section 5.1, we transform
the problem into a primal–dual problem and solve it with primal–dual algorithms.

We compare our inertial primal–dual method, Algorithm 4, to the standard
Chambolle–Pock (CP) [Chambolle and Pock, 2011], and to the inertial primal–dual
algorithm of Lorenz–Pock (LP) [Lorenz and Pock, 2015]. In all experiments, we
set the primal and the dual step-sizes to τ = σ = 0.99/‖L‖, the regularization pa-
rameter of problem (I.43) to ξ = 0.1, and ζn is, for each n ∈ N, sampled from a
uniform distribution on [0,1−10−6]. The experiments are done using the liver dis-
orders data-set [Chang and Lin, 2011] which has 145 samples and 5 features. The
solution (x?,µ?) is found by running the standard Chambolle–Pock algorithm until
the residual gets smaller than 10−15.

CP
LP
Alg. 6.1

CP
LP
Alg. 4

×103 iteration

‖ x
n
−

x?
‖ /
‖ x

0
−

x?
‖

CP
LP
Alg. 6.1

CP
LP
Alg. 4

×103 iteration

‖ µ
n
−

µ
?
‖ /
‖ µ

0
−

µ
?
‖

Figure 1: Distance to the solution vs. iteration number for the l1-norm regularized
SVM (I.43) with ξ = 0.1, on the liver disorders data-set [Chang and Lin, 2011] with
145 samples and 5 features. Solved using Chambolle–Pock primal–dual algorithm
(CP), Lorenz–Pock inertial primal–dual method (LP), and Algorithm 4 with λ =
1.0. The primal and dual step-sizes are set to τ = σ = 0.99/‖L‖ for all algorithms.

steps

co
rr

ec
tio

n
fa

ct
or

iteration

sc
al

in
g

fa
ct

or

Figure 2: Scaling factor an of Algorithm 4 in the experiment shown in Fig. 1 vs.
iteration number for the first 1000 iterations.

60

7 Numerical experiments

λ = 0.5
λ = 1.0
λ = 1.5

×103 iteration

‖ x
n
−

x?
‖ /
‖ x

0
−

x?
‖

λ = 0.5
λ = 1.0
λ = 1.5

×103 iteration

‖ µ
n
−

µ
?
‖ /
‖ µ

0
−

µ
?
‖

Figure 3: Distance to the solution vs. iteration number for the l1-norm regularized
SVM (I.43) with ξ = 0.1, on the liver disorders data-set [Chang and Lin, 2011]
with 145 samples and 5 features. Solved using Algorithm 4 for some values of λ

with τ = σ = 0.99/‖L‖.

For the l1-norm regularized SVM problem, since f and g are piece-wise linear,
the resulting (primal–dual) monotone operator

A =

[
∂g L∗

−L ∂ f ∗

]
is metrically subregular at any point in the solution set of the problem for 0, see
[Latafat et al., 2019, Lemma IV.4]. It therefore follows from Theorem 2 that the
algorithm exhibits local linear convergence, see Fig. 1 and Fig. 3. The figures re-
veal that our method needs about half the number of iterations to reach the same
accuracy as the other two methods. This improvement comes at essentially no extra
computational cost.

Figure 2 shows the first one thousand scaling factors an of Algorithm 4 for the
same implementation as in Fig. 1. It is seen that the scaling factor attains mostly
values close to one.

In Fig. 3, the impact of the relaxation parameter λ is investigated. In the sense
of convergence rate, it interestingly seems that λ = 1.0 yields the best performance
in this example.

Acknowledgement. The authors would like to thank Bo Bernhardsson for his
valuable feedback on this work. This research was partially supported by Wallen-
berg AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation. Sebastian Banert was partially supported by EL-
LIIT.

61

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

References

Alvarez, F. (2000). “On the minimizing property of a second order dissipative
system in Hilbert spaces”. SIAM Journal on Control and Optimization 38:4,
pp. 1102–1119. DOI: 10.1137/s0363012998335802.

Alvarez, F. and H. Attouch (2001). “An inertial proximal method for maximal
monotone operators via discretization of a nonlinear oscillator with damping”.
Set-Valued Analysis 9:1/2, pp. 3–11. DOI: 10.1023/a:1011253113155.

Attouch, H. and A. Cabot (2019). “Convergence of a relaxed inertial forward–
backward algorithm for structured monotone inclusions”. Applied Mathematics
& Optimization 80:3, pp. 547–598. DOI: 10.1007/s00245-019-09584-z.

Banert, S., J. Rudzusika, O. Oktem, and J. Adler (2021). Accelerated forward–
backward optimization using deep learning. arXiv: 2105 . 05210v1
[math.OC].

Bauschke, H. H. and P. L. Combettes (2017). Convex analysis and monotone op-
erator theory in Hilbert spaces. 2nd ed. CMS Books in Mathematics. Springer.
DOI: 10.1007/978-3-319-48311-5.

Bruck, R. E. (1975). “An iterative solution of a variational inequality for certain
monotone operators in hilbert space”. Bulletin of the American Mathematical
Society 81, pp. 890–892. DOI: 10.1090/S0002-9904-1975-13874-2.

Chambolle, A. and T. Pock (2011). “A first-order primal–dual algorithm for convex
problems with applications to imaging”. Journal of Mathematical Imaging and
Vision 40:1, pp. 120–145. DOI: 10.1007/s10851-010-0251-1.

Chang, C.-C. and C.-J. Lin (2011). “LIBSVM: a library for support vector ma-
chines”. ACM Transactions on Intelligent Systems and Technology (TIST) 2:3,
pp. 1–27. DOI: 10.1145/1961189.1961199.

Cholamjiak, W., P. Cholamjiak, and S. Suantai (2018). “An inertial forward–
backward splitting method for solving inclusion problems in Hilbert spaces”.
Journal of Fixed Point Theory and Applications 20:1. DOI: 10.1007/s11784-
018-0526-5.

Chouzenoux, E., J.-C. Pesquet, and A. Repetti (2013). “Variable metric forward–
backward algorithm for minimizing the sum of a differentiable function and
a convex function”. Journal of Optimization Theory and Applications 162:1,
pp. 107–132. DOI: 10.1007/s10957-013-0465-7.

Combettes, P. L. and J.-C. Pesquet (2011). “Proximal splitting methods in signal
processing”. In: Bauschke, H. H. et al. (Eds.). Fixed-point algorithms for inverse
problems in science and engineering. Springer New York, pp. 185–212. DOI:
10.1007/978-1-4419-9569-8_10.

Combettes, P. L. and B. C. Vũ (2012). “Variable metric forward–backward split-
ting with applications to monotone inclusions in duality”. Optimization 63:9,
pp. 1289–1318. DOI: 10.1080/02331934.2012.733883.

62

References

Condat, L. (2013). “A primal–dual splitting method for convex optimization involv-
ing Lipschitzian, proximable and linear composite terms”. Journal of Optimiza-
tion Theory and Applications 158:2, pp. 460–479. DOI: 10.1007/s10957-
012-0245-9.

Dontchev, A. L. and R. T. Rockafellar (2009). Implicit functions and solution map-
pings. A view from variational analysis. Springer Monographs in Mathematics.
Springer. DOI: 10.1007/978-0-387-87821-8.

Giselsson, P. (2021). “Nonlinear forward–backward splitting with projection cor-
rection”. SIAM Journal on Optimization 31:3, pp. 2199–2226. DOI: 10.1137/
20M1345062.

Giselsson, P. and S. Boyd (2015). “Metric selection in fast dual forward–backward
splitting”. Automatica 62, pp. 1–10. DOI: 10.1016/j.automatica.2015.09.
010.

Giselsson, P. and S. P. Boyd (2014a). “Diagonal scaling in douglas–rachford split-
ting and admm”. In: 53rd IEEE Conference on Decision and Control. IEEE,
pp. 5033–5039. DOI: 10.1109/CDC.2014.7040175.

Giselsson, P. and S. P. Boyd (2014b). “Preconditioning in fast dual gradient meth-
ods”. In: 53rd IEEE Conference on Decision and Control. IEEE, pp. 5040–5045.
DOI: 10.1109/CDC.2014.7040176.

Giselsson, P., M. Fält, and S. Boyd (2016). “Line search for averaged operator iter-
ation”. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
pp. 1015–1022. DOI: 10.1109/CDC.2016.7798401.

He, B. and X. Yuan (2012). “Convergence analysis of primal–dual algorithms for a
saddle-point problem: from contraction perspective”. SIAM Journal on Imaging
Sciences 5:1, pp. 119–149. DOI: 10.1137/100814494.

Latafat, P., N. Freris, and P. Patrinos (2019). “A new randomized block-coordinate
primal–dual proximal algorithm for distributed optimization”. IEEE Transac-
tions on Automatic Control 64:10, pp. 4050–4065. DOI: 10.1109/TAC.2019.
2906924.

Lions, P. L. and B. Mercier (1979). “Splitting algorithms for the sum of two nonlin-
ear operators”. SIAM Journal on Numerical Analysis 16:6, pp. 964–979. DOI:
10.1137/0716071.

Lorenz, D. A. and T. Pock (2015). “An inertial forward–backward algorithm
for monotone inclusions”. Journal of Mathematical Imaging and Vision 51:2,
pp. 311–325. DOI: 10.1007/s10851-014-0523-2.

Nocedal, J. and S. J. Wright (2006). Numerical optimization. 2nd ed. Springer Series
in Operations Research and Financial Engineering. Springer. DOI: 10.1007/
978-0-387-40065-5.

Passty, G. B. (1979). “Ergodic convergence to a zero of the sum of monotone opera-
tors in Hilbert space”. Journal of Mathematical Analysis and Applications 72:2,
pp. 383–390. DOI: 10.1016/0022-247x(79)90234-8.

63

Paper I. Forward–Backward Splitting with Deviations for Monotone Inclusions

Pock, T. and A. Chambolle (2011). “Diagonal preconditioning for first order
primal–dual algorithms in convex optimization”. In: 2011 International Confer-
ence on Computer Vision. IEEE, pp. 1762–1769. DOI: 10.1109/ICCV.2011.
6126441.

Polyak, B. T. (1964). “Some methods of speeding up the convergence of iteration
methods”. USSR Computational Mathematics and Mathematical Physics 4:5,
pp. 1–17. DOI: 10.1016/0041-5553(64)90137-5.

Raguet, H., J. Fadili, and G. Peyré (2013). “A generalized forward–backward split-
ting”. SIAM Journal on Imaging Sciences 6:3, pp. 1199–1226. DOI: 10.1137/
120872802.

Raguet, H. and L. Landrieu (2015). “Preconditioning of a generalized forward–
backward splitting and application to optimization on graphs”. SIAM Journal
on Imaging Sciences 8:4, pp. 2706–2739. DOI: 10.1137/15m1018253.

Sadeghi, H., S. Banert, and P. Giselsson (2022a). Dwifob: a dynamically weighted
inertial forward–backward algorithm for monotone inclusions. arXiv: 2203.
00028 [math.OC].

Sadeghi, H., S. Banert, and P. Giselsson (2022b). Incorporating history and devia-
tions in forward–backward splitting. arXiv: 2208.05498 [math.OC].

Sadeghi, H. and P. Giselsson (2021). Hybrid acceleration scheme for variance re-
duced stochastic optimization algorithms. arXiv: 2111.06791 [math.OC].

Schmidt, M., N. Roux, and F. Bach (2011). “Convergence rates of inexact proximal–
gradient methods for convex optimization”. In: Shawe-Taylor, J. et al. (Eds.).
Advances in Neural Information Processing Systems (NIPS 2011). Vol. 24.
Curran Associates, Inc., pp. 1458–1466. URL: https : / / proceedings .
neurips.cc/paper/2011/hash/8f7d807e1f53eff5f9efbe5cb81090fb-
Abstract.html.

Solodov, M. V. and B. F. Svaiter (2000). “An inexact hybrid generalized proximal
point algorithm and some new results on the theory of Bregman functions”.
Mathematics of Operations Research 25:2, pp. 214–230. DOI: 10.1287/moor.
25.2.214.12222.

Solodov, M. V. and B. F. Svaiter (2001). “A unified framework for some inexact
proximal point algorithms”. Numerical Functional Analysis and Optimization
22:7–8, pp. 1013–1035. DOI: 10.1081/NFA-100108320.

Themelis, A. and P. Patrinos (2019). “Supermann: a superlinearly convergent algo-
rithm for finding fixed points of nonexpansive operators”. IEEE Transactions on
Automatic Control 64:12, pp. 4875–4890. DOI: 10.1109/TAC.2019.2906393.

Tseng, P. (2000). “A modified forward–backward splitting method for maxi-
mal monotone mappings”. SIAM Journal on Control and Optimization 38:2,
pp. 431–446. DOI: 10.1137/S0363012998338806.

64

References

Villa, S., S. Salzo, L. Baldassarre, and A. Verri (2013). “Accelerated and inexact
forward–backward algorithms”. SIAM Journal on Optimization 23:3, pp. 1607–
1633. DOI: 10.1137/110844805.

Vũ, B. C. (2013). “A splitting algorithm for dual monotone inclusions involving
cocoercive operators”. Advances in Computational Mathematics 38:3, pp. 667–
681. DOI: 10.1007/s10444-011-9254-8.

Zhang, J., B. O’Donoghue, and S. Boyd (2020). “Globally convergent type-I An-
derson acceleration for nonsmooth fixed-point iterations”. SIAM Journal on Op-
timization 30:4, pp. 3170–3197. DOI: 10.1137/18M1232772.

65

Paper II

Incorporating History and Deviations in
Forward–Backward Splitting

Hamed Sadeghi Sebastian Banert Pontus Giselsson

Abstract

We propose a novel variation of the forward–backward splitting method for
solving structured monotone inclusions that incorporates past iterates as well
as two deviation vectors into the update equations. The deviation vectors bring
a great flexibility to the algorithm and can be chosen arbitrarily as long as
they jointly satisfy a norm condition. The method is derived from a Lyapunov
analysis from which we conclude convergence rates for various quantities. For
a specific choice of the parameters and the deviations, our algorithm reduces
to the Halpern iteration and the accelerated proximal point method that both
converge as O(1

n2) in squared norm of the fixed-point residual.

Available on arXiv.

67

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

1. Introduction

In this work, we consider the problem of finding x in the real Hilbert space H such
that

0 ∈ Ax+Cx (II.1)

where A : H → 2H is a maximally monotone operator with 2H denoting the
power-set of H , and C : H → H is a cocoercive operator. This monotone in-
clusion has optimization problems [Eckstein, 1989; Raguet and Landrieu, 2015],
convex-concave saddle-point problems [Chambolle and Pock, 2011], and varia-
tional inequalities [Attouch et al., 2011; Chen and Rockafellar, 1997; Tseng, 2000]
as special cases.

Forward–backward (FB) splitting [Bruck, 1975; Lions and Mercier, 1979;
Passty, 1979] has been broadly used to find solutions of the monotone inclusion
problem (II.1). The FB splitting iteration is given by

xn+1 = (Id+γA)−1(Id−γC)xn, (II.2)

where γ > 0 is a step-size parameter. The gradient method, the proximal point algo-
rithm [Rockafellar, 1976], and the proximal-gradient method [Combettes and Pes-
quet, 2011] are some widely used special instances of the FB splitting method.

Several attempts have been made to improve the convergence of the FB splitting
algorithm by incorporating information from the previous iterations. The heavy-
ball method [Polyak, 1964], the inertial proximal point algorithm [Alvarez, 2000;
Alvarez and Attouch, 2001], and inertial FB algorithms [Apidopoulos et al., 2020;
Attouch and Cabot, 2020; Attouch and Peypouquet, 2016; Attouch et al., 2018;
Beck and Teboulle, 2009; Chambolle and Dossal, 2015; Cholamjiak et al., 2018;
Lorenz and Pock, 2015] are a few instances that fuse previous information into the
current iteration by including a momentum term into the algorithm.

In this paper, we propose an extension to the standard FB splitting algo-
rithm (II.2) to solve the monotone inclusion problem (II.1). In our algorithm, the
past information is incorporated in two ways. We use momentum-like terms to con-
struct two extrapolated/deviated points which are fed to the FB operator as its input
arguments. In addition, our proposed algorithm has a relaxation step in which the
momentum-like terms are included. As a result of fusing past information, our pro-
posed algorithm attains a sublinear rate of convergence of o(1

n2), which is faster
than nominal FB splitting that achieves o(1

n).
Our algorithm, in its general form, in addition to incorporating iterates from the

past, embodies two deviation vectors. These deviations can be seen as adjustable pa-
rameters of the algorithm that have the same dimension as the underlying space of
the problem; hence, providing the algorithm with a great flexibility. This flexibility
can be utilized to control the trajectory of the iterates and improve the convergence
of the algorithm. Each iteration of the algorithm is safeguarded by requiring the

68

1 Introduction

deviations to jointly satisfy a safeguard condition to ensure convergence. Unlike
the safeguard conditions in [Giselsson et al., 2016; Sadeghi and Giselsson, 2021;
Themelis and Patrinos, 2019; Zhang et al., 2020] that select between a globally
convergent and locally fast method, our safeguard condition limits the size of the
deviations such that the trajectory of iterates obtained from the algorithm is con-
trolled in all iterations. The deviations in this work have the same role as the ones
in [Banert et al., 2021; Sadeghi et al., 2021a; Sadeghi et al., 2021b], which in fact
are special instances of our algorithm.

Our Lyapunov analysis of the algorithm is based on using the monotonicity in-
equality of A and the cocoercivity inequality of C between the last iterate and a
solution as well as between the last two points generated by the algorithm. (Such
inequalities are referred to as interpolation conditions in the terminology of perfor-
mance estimation (PEP), see for instance [Ryu et al., 2020; Taylor et al., 2017b;
Taylor et al., 2017a].) This is in contrast to the analysis in [Sadeghi et al., 2021b]
that only uses these inequalities between the last iterate and a solution. The use of
the extra inequalities paves the way for deriving a Lyapunov analysis from which
we obtain convergence rates of order o(1

n2), which is not attainable for the algorithm
given in [Sadeghi et al., 2021b].

A simplified version of our algorithm is given by

pn = (Id+γA)−1(Id−γC)yn,

yn+1 = yn +
n

n+2 (yn− yn−1)

+ (n+1)(4−γβ)
2n+4

(
pn− yn− n

n+1 (pn−1− yn−1)
) (II.3)

where C is 1
β

-cocoercive and 0 < γ < 4
β

, where, similar to what has been shown
in NOFOB [Giselsson, 2019] and AFBA [Latafat and Patrinos, 2017], the upper
step-size bound is larger as compared to nominal FB splitting. This algorithm is a
novel inertial-type FB scheme that incorporates past data into its iteration’s update
equation. It has the Halpern iteration studied in [Lieder, 2021] and the accelerated
proximal point method [Kim, 2021] as special instances. Note that algorithm (II.3),
which itself is a simplified instance of our proposed algorithm, extends the acceler-
ated proximal point (backward) method to the forward-backward setting for mono-
tone inclusion problems. For this case, we show that the sequence of fixed-point
residuals of the algorithm, yn− pn, converges to zero with a rate of O(1

n).
The paper is organized as follows. In Section 2, we provide some basic defini-

tions along with the notations used throughout the paper. Section 3, in addition to
the formal statement of the problem under study, presents our proposed algorithm
along with examples demonstrating some special instances of our algorithm. In Sec-
tion 4, we provide our convergence analysis. In Section 5, we derive several further
special instances of our algorithm, two of which lead to the Halpern iteration. We
conclude the paper in Section 6 by presenting some deferred results/proofs.

69

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

2. Preliminaries

Throughout the paper, the set of real numbers is denoted by R; H denotes a real
Hilbert space that is equipped with an inner product and induced norm, which are
denoted by 〈·, ·〉 and ‖·‖ =

√
〈·, ·〉, respectively. A self-adjoint bounded operator

M : H →H is said to be strongly positive if there exists some c > 0 such that
〈x,Mx〉 ≥ c‖x‖2 for all x ∈H . The notation M (H) is used to denote the set of
linear, self-adjoint, strongly positive operators on H . For M ∈M (H) and for all
x,y ∈H , the M-induced inner product and norm are denoted by 〈x,y〉M = 〈x,My〉
and ‖x‖M =

√
〈x,Mx〉, respectively.

The power set of H is denoted by 2H . A map A : H → 2H is characterized
by its graph gra(A) = {(x,u) ∈H ×H : u ∈ Ax}. An operator A : H → 2H is
monotone if 〈u− v,x− y〉 ≥ 0 for all (x,u),(y,v) ∈ gra(A). A monotone operator
A : H → 2H is maximally monotone if there exists no monotone operator B : H →
2H such that gra(B) properly contains gra(A).

Let M ∈M (H). An operator T : H →H is said to be

(i) L-Lipschitz continuous (L≥ 0) w.r.t. ‖·‖M if

‖T x−Ty‖M−1 ≤ L‖x− y‖M for all x,y ∈H ;

(ii) 1
β

-cocoercive (β > 0) w.r.t. ‖·‖M if

〈T x−Ty,x− y〉 ≥ 1
β
‖T x−Ty‖2

M−1 for all x,y ∈H ;

(iii) nonexpansive if it is 1-Lipschitz continuous w.r.t. ‖·‖;

By the Cauchy–Schwarz inequality, a 1
β

-cocoercive operator is β -Lipschitz contin-
uous.

Let (an)n∈N and (bn)n∈N be sequences of real numbers and let bn 6= 0 for all
n ∈ N. we use the notation an ∈ O(bn) if there exists c0 > 0 such that |an| ≤ c0|bn|
for sufficiently large n; and we say an ∈ o(bn) if and only if

lim
n→∞

an
bn

= 0;

and we use the notation an ∈Ω(bn) if there exists some c1 > 0 such that |an| ≥ c1|bn|
for sufficiently large n.

3. Proposed algorithm

We consider structured monotone inclusion problems of the form

0 ∈ Ax+Cx, (II.4)

that satisfy the following assumption.

70

3 Proposed algorithm

ASSUMPTION 1 Let β > 0 and assume that

(i) A : H → 2H is maximally monotone,

(ii) C : H →H is 1
β

-cocoercive with respect to ‖·‖M with M ∈M (H), and

(iii) the solution set zer(A+C) := {x ∈H : 0 ∈ Ax+Cx} is nonempty. 2

As the operator C has a full domain and a cocoercive operator is maximally mono-
tone [Bauschke and Combettes, 2017, Corollary 20.28], the operator A+C is max-
imally monotone as well [Bauschke and Combettes, 2017, Corollary 25.5].

We present a variant of FB splitting with deviations for solving problem (II.4)
in Algorithm 1.

For the FB step to be implementable and the safeguarding step in (II.5) to be
satisfied for some un+1 and vn+1, we require for all n ∈ N that γn, λn, θn, θ̂n, and θ̃n
are strictly positive and the parameters ζn, µn, αn, and ᾱn are non-negative. If these
requirements are met, one trivial choice that satisfies the safeguard condition (II.5)
is un = vn = 0. For the convergence analysis, there are further requirements on some
of these parameters that are discussed in Section 4.

The FB step of Algorithm 1 allows the points yn and zn to be different, which
is in contrast to standard FB splitting (II.2) and the inertial FB method (II.3). The
points yn and zn are constructed based on a linear combination of the last iterate,
some momentum-like terms, and the deviations un and vn. We have a great flexibility
in choosing the direction of the deviations un and vn, however, they are confined to
a subset of H which is defined by the condition (II.5). At the step of selecting the
deviations, all the quantities involved in the right-hand side of (II.5) are computable.
The deviations can be viewed as design parameters of the algorithm, and thus, the
flexibility provided by them can be used to control the trajectory of the algorithm
with the aim of improving convergence of the algorithm.

In spite of the similarities between Algorithm 1 and the FB splitting with de-
viations algorithm of [Sadeghi et al., 2021b], there are several differences. First,
in the update equations of yn and zn, momentum-like terms—αn(yn−1− xn) for yn
update and αn(yn−1− xn) and ᾱn(zn−1− pn−1) for zn update—are included. Sec-
ond, the relaxation step of the algorithm, step 8, is equipped with an additional
relaxation-like term. Third, the safeguard condition includes an additional non-
negative expression on the right-hand side—compared to that of [Sadeghi et al.,
2021b]—which could potentially lead to a larger upper-bound on the norm of the
deviations. These differences are rooted from including additional monotonicity and
cocoercivity inequalities—so-called interpolation conditions in the terminology of
[Taylor et al., 2017b; Ryu et al., 2020; Taylor et al., 2017a]—in our analysis com-
pared to the analysis of [Sadeghi et al., 2021b]. Notably, beside using inequalities
between the points of the last iterations and a solution, which are the only interpo-
lations used in [Sadeghi et al., 2021b], we use inequalities also between the points
generated in the last two iterations of our algorithm. This gives an extra degree of

71

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

Algorithm 1
1: Input: initial point x0 ∈ H ; the strictly positive sequences (γn)n∈N and

(λn)n∈N; the non-negative sequences (ζn)n∈N and (µn)n∈N; and the metric ‖·‖M
with M ∈M (H).

2: Given the input parameters, for all n ∈ N, define:

(i) αn := µn
λn+µn

;
(ii) ᾱn := γnµn

γn−1(λn+µn)
;

(iii) θn := (4− γnβ)(λn +µn)−2λ 2
n ;

(iv) θ̂n := 2λn +2µn− γnβλ 2
n ;

(v) θ̄n := λn +µn−λ 2
n ;

(vi) θ̃n := (λn +µn)γnβ .

3: set: z0 = y0 = x0 and u0 = v0 = 0
4: for n = 0,1,2, . . . do
5: yn = xn +αn(yn−1− xn)+un

6: zn = xn +αn(pn−1− xn)+ ᾱn(zn−1− pn−1)+
θ̄nγnβ

θ̂n
un + vn

7: pn = (M+ γnA)−1(Mzn− γnCyn)
8: xn+1 = xn +λn(pn− zn)+ ᾱnλn(zn−1− pn−1)
9: choose un+1 and vn+1 such that

λn+1 +µn+1

ζn+1

(
θ̃n+1

θ̂n+1
‖un+1‖2

M +
θ̂n+1

θn+1
‖vn+1‖2

M

)
≤ `2

n (II.5)

is satisfied, where

`2
n =

θn
2

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

+2µnγn

〈
zn−pn

γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M

(II.6)

10: end for

freedom in our algorithm represented by the parameter µn that comes from how
much of these extra interpolation conditions that are used in the analysis. This addi-
tion allows us to arrive at convergence rate of `2

n ∈ o(1
θn
) and in particular, by letting

λn grow linearly with n—which makes θn grow quadratically—a rate of `2
n ∈ o(1

n2).
Such rates are not achievable in [Sadeghi et al., 2021b] as setting µn to zero takes
us back to the algorithm of [Sadeghi et al., 2021b].

We end this section by presenting some simplified variations of our algorithm
as special instances.

72

3 Proposed algorithm

EXAMPLE 1
With µn = 0 and un = vn = 0 for all n ∈ N, the safeguard condition (II.5) is always
satisfied, and Algorithm 1 reads

pn = (M+ γnA)−1(M− γnC)xn

xn+1 = xn +λn(pn− xn)

which is the relaxed preconditioned variant of FB splitting. If we further choose
M = Id and λn = 1 for all n ∈ N, we recover the standard FB splitting (II.2). 2

EXAMPLE 2
With γn = γ and un = vn = 0 for all n ∈ N, the safeguard condition is already satis-
fied, we get yn = zn, and Algorithm 1, after eliminating xn, can be simplified to

pn = (M+ γA)−1(M− γC)yn

yn+1 = yn +
(1−αn+1)αn

1−αn
(yn− yn−1)

+λn(1−αn+1)(pn− yn−αn(pn−1− yn−1)).

This algorithm is a novel inertial-type FB algorithm. 2

EXAMPLE 3
With γn = γ and

vn =
(2−γβ)(λn+µn)

θ̂n
un,

for all n ∈ N, we get zn = yn and Algorithm 1 reduces to

yn = xn +αn(yn−1− xn)+un

pn = (M+ γnA)−1(M− γnC)yn

xn+1 = xn +λn(pn− yn)+αnλn(yn−1− pn−1)

where the safeguard condition (II.5) reads as

(λn+1+µn+1)
2

ζn+1θn+1
‖un+1‖2

M ≤
θn
4

∥∥∥pn− xn +αn(xn− pn−1)− θn−2(λn+µn)
θn

un

∥∥∥2

M

+µnγn

〈
zn−pn

γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M

+ µnγnβ

4 ‖pn− yn− (pn−1− yn−1)‖2
M

In Section 5.2, we see that this algorithm, with a slightly tighter safeguard condition,
has the Halpern iteration [Lieder, 2021] and the accelerated proximal point method
[Kim, 2021] as special cases. 2

73

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

EXAMPLE 4
With µn = 0 for all n ∈ N, the algorithm reduces to the forward–backward splitting
with deviations [Sadeghi et al., 2021b]. If we further let

vn =
2−γnβ

4−γnβ−2λn
un,

for all n ∈ N, we get zn = yn and Algorithm 1 is simplified to

yn = xn +un

pn = (M+ γnA)−1(M− γnC)yn

xn+1 = xn +λn(pn− yn)

and the safeguard condition (II.5) reduces to

‖un+1‖2
M ≤

ζn+1λn(4−γnβ−2λn)(4−γn+1β−2λn+1)
4λn+1

∥∥∥pn− xn− 2−γnβ−2λn
4−γnβ−2λn

un

∥∥∥2

M
.

This algorithm, is Algorithm 1 of [Sadeghi et al., 2021a] which itself is a special
instance of the forward–backward splitting with deviations algorithm [Sadeghi et
al., 2021b]. 2

4. Convergence analysis

In this section, we present our Lyapunov-based convergence analysis of Algo-
rithm 1. In Theorem 1, we define a quantity Vn—which we call a Lyapunov
function—based on the iterates generated by Algorithm 1, and present an iden-
tity that establishes a relation between Vn+1 and Vn. In Theorem 2, under a set of
assumptions on the the parameters of Algorithm 1, we introduce an inequality—
which we refer to as a Lyapunov inequality—from which, several useful results
can be deduced. Then, in Theorem 3, we use this inequality along with some as-
sumptions on the parameters to draw conclusions on the rate of convergence of the
algorithm, as well as, on the summability and convergence of some sequences of
the terms that appear in the Lyapunov function/inequality. This theorem is followed
by results that address two particularly important corner cases.

The proof of our first theorem is lengthy and only based on algebraic manipula-
tions and is therefore deferred to Section 6.

THEOREM 1 Suppose that Assumption 1 holds. Let x? be an arbitrary point in
zer(A+C) and V0 = ‖x0− x?‖2

M , and based on the iterates generated by Algorithm 1,
for all n ∈ N, let

Vn+1 := ‖xn+1− x?‖2
M +2λn+1γn+1αn+1φn + `2

n, (II.7)

where
φn :=

〈
zn−pn

γn
, pn− x?

〉
M
+ β

4 ‖yn− pn‖2
M, (II.8)

74

4 Convergence analysis

and `2
n given by (II.6). Then,

Vn+1 +2γn(λn− ᾱn+1λn+1)φn + `2
n−1

=Vn +(λn +µn)

(
θ̃n

θ̂n
‖un‖2

M +
θ̂n

θn
‖vn‖2

M

)

holds for all n ∈ N. 2

The identity relation provided in Theorem 1 becomes more insightful if we
know that all its constituent terms are non-negative. In that case, one can imme-
diately conclude, for instance, that (Vn)n∈N is a non-increasing sequence. Non-
negativity of these terms relies on the joint selection of the parameter sequences
(ζn)n∈N, (γn)n∈N, (µn)n∈N, and (λn)n∈N according, for instance, to the following
assumption.

ASSUMPTION 2 Choose ε0,ε1 ∈ [0,1) and ε ∈
(

0,min
(

1, 2
β

))
, and assume that,

for all n ∈ N, µn ≥ 0 and the following hold:

(i) 0≤ ζn ≤ 1− ε0;

(ii) 2−
√

4−2βε

β
≤ γn ≤

2+
√

4−2βε

β
;

(iii) ε ≤ γnλn ≤ γn−1λn−1 +2γn(1− γnβ

4)− ε; and

(iv) ε1 + γnλn− γn−1λn−1 ≤ γnλ 2
n

λn+µn
≤ (4−γnβ)γnλ 2

n
2λ 2

n +ε
. 2

REMARK 1 Our convergence analysis entails that the parameter sequences
(θn)n∈N,

(
θ̂n
)

n∈N, and
(
θ̃n
)

n∈N to be lower-bounded by a positive constant. This
follows by Assumption 2 since then, θ̃n ≥ βε , θn = (4− γnβ)(λn +µn)−2λ 2

n ≥ ε ,
and

θ̂n = 2(λn +µn)− γnβλ
2
n ≥ 2(λn +µn)− 1

2 γnβ ((4− γnβ)(λn +µn)− ε)

= 1
2 (λn +µn)(2− γnβ)2 + 1

2 γnβε ≥ ε

(
1−
√

1− 1
2 βε

)
. 2

In the following result, we introduce a so-called Lyapunov inequality that is the
foundation of the rest of the results in this section.

THEOREM 2 Suppose that Assumption 1 and Assumption 2 hold. Let x? be an ar-
bitrary point in zer(A+C), and the sequences

(
`2

n
)

n∈N, (Vn)n∈N, and (φn)n∈N be

75

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

constructed in terms of the iterates obtained from Algorithm 1, as per (II.6)–(II.8),
respectively. Further, for all n ∈ N, let

ϕn :=
〈

zn−pn
γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M
− 1

β
‖Cyn−Cyn−1‖2

M−1

+ 〈Cyn−Cyn−1,yn− yn−1− (pn− pn−1)〉.
(II.9)

Then, for all n ∈ N,

(i) ϕn ≥ 0, and

ϕn +
β

4

∥∥∥ 2
β

M−1(Cyn−Cyn−1)+ pn− pn−1− yn + yn−1

∥∥∥2

M

=
〈

zn−pn
γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M
+ β

4 ‖pn− pn−1− yn + yn−1‖2
M;

(ii) `2
n, φn, and Vn are non-negative;

(iii) and the following inequality holds

Vn+1 +2γn(λn− ᾱn+1λn+1)φn +(1−ζn)`
2
n−1 ≤Vn. 2

Proof. It follows from step 7 of Algorithm 1 that

Mzn−Mpn

γn
−Cyn ∈ Apn. (II.10)

From (II.10) and montonicity of A we get

0≤
〈

Mzn−Mpn
γn

−Cyn− Mzn−1−Mpn−1
γn−1

+Cyn−1, pn− pn−1

〉
. (II.11)

From 1
β

-cocoercivity of C w.r.t. ‖·‖M , we have

0≤ 〈Cyn−Cyn−1,yn− yn−1〉− 1
β
‖Cyn−Cyn−1‖2

M−1 . (II.12)

Adding (II.11) and (II.12), yields

0≤
〈

Mzn−Mpn
γn

−Cyn− Mzn−1−Mpn−1
γn−1

+Cyn−1, pn− pn−1

〉
+ 〈Cyn−Cyn−1,yn− yn−1〉− 1

β
‖Cyn−Cyn−1‖2

M−1

=
〈

zn−pn
γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M
− 1

β
‖Cyn−Cyn−1‖2

M−1

+ 〈Cyn−Cyn−1,yn− yn−1− (pn− pn−1)〉= ϕn.

Then, from the equality above, we have

ϕn =
〈

zn−pn
γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M
+ β

4 ‖pn− pn−1− yn + yn−1‖2
M

76

4 Convergence analysis

− β

4

∥∥∥ 2
β

M−1(Cyn−Cyn−1)+ pn− pn−1− yn + yn−1

∥∥∥2

M
, (II.13)

where we used

〈s, t〉− 1
δ
‖s‖2

M−1 = δ

4 ‖t‖
2
M− δ

4

∥∥ 2
δ

M−1s− t
∥∥2

M

for all t,s ∈H . Rearranging the terms in (II.13) gives the desired relation.
For Theorem 2 (ii), due to Remark 1 and Assumption 2 and by construction

of `2
n as per (II.6), and given ϕn ≥ 0, it is evident that, for all n ∈ N, `2

n ≥ 0. By
x? ∈ zer(A+C), we have

−Cx? ∈ Ax? (II.14)

From (II.10) and (II.14), and montonicity of A we get

0≤
〈

Mzn−Mpn
γn

−Cyn +Cx?, pn− x?
〉
. (II.15)

From 1
β

-cocoercivity of C w.r.t. ‖·‖M , we have

0≤ 〈Cyn−Cx?,yn− x?〉− 1
β
‖Cyn−Cx?‖2

M−1 . (II.16)

Define

φ̂n :=
〈

Mzn−Mpn
γn

−Cyn +Cx?, pn− x?
〉

+ 〈Cyn−Cx?,yn− x?〉− 1
β
‖Cyn−Cx?‖2

M−1

=
〈

zn−pn
γn

, pn− x?
〉

M
+ 〈Cyn−Cx?,yn− pn〉− 1

β
‖Cyn−Cx?‖2

M−1 ,

which is constructed by adding (II.15) and (II.16), and thus, φ̂n ≥ 0 by construction.
Then, from (II.8) we have

φ̂n =
〈

zn−pn
γn

, pn− x?
〉

M
+ 〈Cyn−Cx?,yn− pn〉− 1

β
‖Cyn−Cx?‖2

M−1

=
〈

zn−pn
γn

, pn− x?
〉

M
+ β

4 ‖yn− pn‖2
M

− β

4

∥∥∥ 2
β

M−1(Cyn−Cx?)+ pn− yn

∥∥∥2

M
, (II.17)

where in the last equality we used

〈s, t〉− 1
δ
‖s‖2

M−1 = δ

4 ‖t‖
2
M− δ

4

∥∥ 2
δ

M−1s− t
∥∥2

M

for all t,s ∈H . Rearranging the terms in (II.17) gives

0≤ φ̂n +
β

4

∥∥∥ 2
β

M−1(Cyn−Cx?)+ pn− yn

∥∥∥2

M

=
〈

zn−pn
γn

, pn− x?
〉

M
+ β

4 ‖yn− pn‖2
M = φn,

(II.18)

77

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

and thus, φn ≥ 0. Additionally, since `2
n ≥ 0 and the coefficients of φn in (II.7) are

non-negative by Assumption 2 (ii) and Assumption 2 (iii), Vn ≥ 0 by construction.
For Theorem 2 (iii), by Theorem 1, we have

Vn+1 + `2
n−1 +2γn(λn− ᾱn+1λn+1)φn

=Vn +(λn +µn)
(

θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
.

Using this equality and (II.5) gives

Vn+1 +2γn(λn− ᾱn+1λn+1)φn + `2
n−1 ≤Vn +ζn`

2
n−1.

Due to Assumption 2 (i), moving ζn`
2
n−1 to the other side gives the desired result.

This concludes the proof. 2

REMARK 2 As seen in the proof of Theorem 2 (i), the interpolation conditions be-
tween the points obtained from the last two iterations of the algorithm, mentioned
before, are in fact added to construct the condition ϕn ≥ 0. Having this interpola-
tion in our analysis allows us to bring the adjustable parameter µn into the algorithm.
This parameter enters into the convergence analysis as the coefficient of the interpo-
lation condition ϕn ≥ 0. As we see later in this section, the rate results are obtained
for our algorithm are all rooted into the presence of this parameter. 2

REMARK 3 Note that from Assumption 2, one can potentially choose to fix λn, let
it be growing with Ω(n), or select any other variation in between these two. If λn is
selected to be fixed for all n ∈N, then, µn would be bounded from above and below
by Assumption 2 (iv). On the other hand, if one choose (λn)n∈N to be growing,
then (µn)n∈N has to be growing as well. In particular, by Assumption 2 (iv), if the
relaxation parameter (λn)n∈N is chosen to be increasing as n increases, then (µn)n∈N
must be growing with Ω(λ 2

n). 2

Before stating the main convergence result, we present the following lemma on
boundedness of some sequences of coefficients.

LEMMA 1 Consider the quantities defined in Algorithm 1 and suppose that As-
sumption 2 holds. Given β > 0, the sequences

(
θ̃n
θ̂n

)
n∈N

,
(

θ̂n
θn

)
n∈N

,
(

θn
2λ 2

n

)
n∈N

,(
(2−γnβ)(λn+µn)

θn

)
n∈N

, and
(

λn+µn
λ 2

n

)
n∈N

are bounded. 2

Proof. By the assumption, we know that all the quantities in the denominator of the
sequences are lower-bounded by some positive constants. Thus, the only way that
these sequences can be unbounded is that the absolute value of their numerator grow
towards infinity with a rate faster than the rate of growth of their associated denom-
inators. We show that this can not be the case. The only way that the absolute value
of the numerators of these sequences can grow is to let (λn)n∈N be increasing. Let

78

4 Convergence analysis

us make that assumption. Then, according to Assumption 2, the sequence (µn)n∈N
grows with Ω(λ 2

n) (see Remark 3). By definition, the sequences (θn)n∈N,
(
θ̃n
)

n∈N,
and

(
θ̂n
)

n∈N grow linearly with µn, and thus, they are increasing with Ω(λ 2
n) as

well. Hence, we see that if the numerators of these sequences are increasing, their
associated denominators would be growing with the same rate. Therefore, none of
these sequences are unbounded. 2

The following convergence theorem, which is based on Theorem 2, excludes the
edge cases of Assumption 2 where the constants ε0 and ε1 can be chosen as zero. We
consider two corner cases corresponding to these choices after the theorem below.

THEOREM 3 Suppose that Assumption 1 and Assumption 2 hold. Let x? be an arbi-
trary point in zer(A+C), and the sequences

(
`2

n
)

n∈N, (Vn)n∈N, (φn)n∈N, and (ϕn)n∈N
be constructed in terms of the iterates obtained from Algorithm 1, as per (II.6)-(II.9),
respectively. Then, provided that ε0,ε1 > 0, the following hold:

(i) the sequences
(
`2

n
)

n∈N and (φn)n∈N are summable, (Vn)n∈N is convergent, and
(xn)n∈N is a bounded sequence;

(ii) the sequences (λnun)n∈N and (λnvn)n∈N are convergent to zero with a rate of
o(1);

(iii) xn+1− xn→ 0 as n→ ∞;
(iv) the sequences(∥∥∥pn− xn +αn(xn− pn−1)+

γnβλ 2
n

θ̂n
un− 2θ̄n

θn
vn

∥∥∥2

M

)
n∈N

and(〈
zn−pn

γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M
+ β

4 ‖pn− yn− (pn−1− yn−1)‖2
M

)
n∈N

converge to zero with the rates of o(1
θn
) and o(1

µn
), respectively;

(v) the sequences (ϕn)n∈N and(∥∥∥pn− yn +
2
β

M−1Cyn−
(

pn−1− yn−1 +
2
β

M−1Cyn−1

)∥∥∥2

M

)
n∈N

converge to zero with a rate of o(1
µn
);

(vi) the sequences (φn)n∈N and
(

pn− yn +
2
β

M−1Cyn

)
n∈N

are respectively con-

vergent to zero and Cx? with a rate of O(1
λn
). 2

Proof. To show Theorem 3 (i), we use

Vn+1 +2γn(λn− ᾱn+1λn+1)φn +(1−ζn)`
2
n−1 ≤Vn,

79

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

from Theorem 2 (iii). The sequences
(
`2

n
)

n∈N, (Vn)n∈N, and (φn)n∈N are non-
negative by Theorem 2 (ii). Additionally, by Assumption 2 (i) and Assumption 2 (iv)
respectively, the quantities 1− ζn and λn− ᾱnλn+1 are non-negative for all n ∈ N;
and thus, the quantity 2γn(λn− ᾱn+1λn+1)φn +(1−ζn)`

2
n−1 is non-negative for all

n ∈ N. Therefore, by [Bauschke and Combettes, 2017, Lemma 5.31] the sequence
(Vn)n∈N converges and the sequence(

2γn(λn− ᾱn+1λn+1)φn +(1−ζn)`
2
n−1
)

n∈N

is summable. Moreover, for all n ∈ N, we have liminfn→∞ γn > 0 by Assump-
tion 2 (ii), 1− ζn ≥ ε0 > 0 by Assumption 2 (i), and λn− ᾱn+1λn+1 ≥ ε1 > 0 by
Assumption 2 (iv), hence, summability of the sequence above implies that

(
`2

n
)

n∈N
and (φn)n∈N are summable; thus, `2

n→ 0 and φn→ 0 as n→ ∞. Since Vn is conver-
gent and its constituent terms in

Vn = ‖xn− x?‖2
M + `2

n−1 +2λnγnαnφn−1,

are all non-negative, the sequence
(
‖xn− x?‖2

M

)
n∈N

converges which implies that

the sequence (xn)n∈N is bounded.
To show Theorem 3 (ii), note that due to (II.5) and Assumption 2 (i), the summa-

bility of
(
`2

n
)

n∈N implies summability of(
λn+1+µn+1

λ 2
n+1

(
θ̃n+1
θ̂n+1
‖λn+1un+1‖2

M +
θ̂n+1
θn+1
‖λn+1vn+1‖2

M

))
n∈N

. (II.19)

Hence, as, for all n∈N, by Remark 1 and Lemma 1 the coefficients in the expression
above are strictly positive and bounded, the sequences (λnun)n∈N and (λnvn)n∈N
must be convergent to zero with a rate of o(1).

For Theorem 3 (iii), note that since
(
`2

n
)

n∈N is summable and it is comprised of
two positive terms, its constituent terms must be summable. Therefore, from (II.6),
the sequence(

θn
2

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

)
n∈N

is summable. Next, we use Lemma 2 to replace the expression inside the norm
above by Lemma 2 (iii). Then, by taking the factor 1

λn
out of the norm, we get(

θn
2λ 2

n

∥∥∥xn+1− xn +
θ̃n
θ̂n

λnun +
(2−γnβ)(λn+µn)

θn
λnvn

∥∥∥2

M

)
n∈N

,

which is a summable sequence too. Since all the coefficients in the expression above
are bounded by Lemma 1, by Theorem 3 (ii), we get xn+1− xn→ 0 as n→ ∞.

80

4 Convergence analysis

For Theorem 3 (iv), since
(
`2

n
)

n∈N is summable, it is convergent to zero with
o(1). As a result, its constituent terms which are non-negative, are convergent to
zero at least with the same rate. Recalling the definition of `2

n from (II.6) gives the
desired result.

Theorem 2 (i) along with Theorem 3 (iv) immediately imply the assertion of
Theorem 3 (v).

For the proof of Theorem 3 (vi), from (II.18) in proof of Theorem 2, we have

φn = φ̂n +
β

4

∥∥∥ 2
β

M−1(Cyn−Cx?)+ pn− yn

∥∥∥2

M
(II.20)

Thus, due to the summability of (φn)n∈N from Theorem 3 (i), and since the terms
in the identity relation above are non-negative, both of them are convergent to zero,
which implies that pn−yn+

2
β

M−1Cyn→Cx? as n→∞. Moreover, from Theorem 2
we have

Vn+1 = ‖xn+1− x?‖2
M + `2

n +2λn+1γn+1αn+1φn ≤V0.

Due to the fact that αn and γn are bounded for all n ∈ N, from this we see that
(φn)n∈N, as well as its constituent terms, are convergent to zero with O(1

λn
). This

completes the proof. 2

Next, we present a convergence result for one of the corner cases mentioned
before in which we assume that (γnλn)n∈N is an increasing sequence, that ε1 = 0 in
Assumption 2 and that the lower-bound of Assumption 2 (iv) holds with equality,
which implies that Assumption 2 (iv) reads as

µn =
γn−1λn−1λn

γnλn− γn−1λn−1
,

ε ≤ γnλn− γn−1λn−1,

(II.21)

for all n ∈ N and with λ−1 = 0. Based on this assumption, as proven in the theo-
rem below, the (θn)n∈N grows quadratically with n, and as a consequence of Theo-
rem 3 (iv), we conclude a convergence rate of o(1

n2), at the cost of loosing summa-
bility of (φn)n∈N an boundedness of (xn)n∈N.

THEOREM 4 Suppose that Assumption 1 and Assumption 2 (i)-Assumption 2 (iii)
along with the assumptions given by (II.21) hold. Let x? be an arbitrary point in
zer(A +C), and the sequences

(
`2

n
)

n∈N, (Vn)n∈N, (φn)n∈N, and (ϕn)n∈N be con-
structed in terms of the iterates obtained from Algorithm 1, as per (II.6)-(II.9), re-
spectively. Then, provided that ε0 > 0, the following hold:

(i) the sequence
(
`2

n
)

n∈N is summable, and (Vn)n∈N is a convergent sequence;
(ii) the sequences (un)n∈N, and (vn)n∈N are convergent to zero with a rate of o(1

n);

81

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

(iii) xn+1− xn→ 0 as n→ ∞;
(iv) the sequences(∥∥∥pn− xn +αn(xn− pn−1)+

γnβλ 2
n

θ̂n
un− 2θ̄n

θn
vn

∥∥∥2

M

)
n∈N

and(〈
zn−pn

γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M
+ β

4 ‖pn− yn− (pn−1− yn−1)‖2
M

)
n∈N

converge to zero with a rate of o(1
n2);

(v) the sequences (ϕn)n∈N and(∥∥∥pn− yn +
2
β

M−1Cyn−
(

pn−1− yn−1 +
2
β

M−1Cyn−1

)∥∥∥2

M

)
n∈N

converge to zero with a rate of o(1
n2);

(vi) the sequences (φn)n∈N and
(

pn− yn +
2
β

M−1Cyn

)
n∈N

are respectively con-

vergent to zero and Cx? with a rate of O(1
n). 2

Proof. From the assumption given by (II.21), (λn)n∈N grows with Ω(n) and
(µn)n∈N grows with Ω(n2). By the definition of θn and from (II.21), we obtain

θn = (4− γnβ)(λn +µn)−2λ
2
n

= (4− γnβ)

(
λn +

γn−1λn−1λn

γnλn− γn−1λn−1

)
−2λ

2
n

=
(4− γnβ)γnλ 2

n −2(γnλn− γn−1λn−1)λ
2
n

γnλn− γn−1λn−1

=
λ 2

n

γnλn− γn−1λn−1
((4− γnβ)γn +2γn−1λn−1−2γnλn).

Due to this and by assumption (II.21) and Assumption 2 (iii), we conclude that
(θn)n∈N grows with Ω(n2).

Given the growth rates of (λn)n∈N, (µn)n∈N, and (θn)n∈N as above, it is straight-
forward to obtain the asserted results from Theorem 3. 2

Note that in the theorem above,we cannot guarantee summability of (φn)n∈N
as by (II.21), the coefficient of φn in the Lyapunov inequality is zero, that is λn−
ᾱn+1λn+1 = 0 for all n ∈ N. As a consequence, we cannot coclude that(

‖xn− x?‖2
M

)
n∈N

82

4 Convergence analysis

is convergent, and thus, our argument on boundedness of (xn)n∈N no longer holds.
Finally, we consider the corner case with ε0 = 0 and ζn = 1 for all n ∈ N and

equality in the lower bound in Assumption 2 (iv) as in Theorem 4, which gives
(II.21). To get meaningful summability results, we tighten the safeguard condi-
tion (5) to

(λn+1 +µn+1)

(
θ̃n+1

θ̂n+1
‖un+1‖2

M +
θ̂n+1

θn+1
‖vn+1‖2

M

)
≤ ˜̀2

n, (II.22)

where ˜̀2
n := `2

n− ˆ̀2
n for all n ∈ N, with `2

n given by (II.6) and

ˆ̀2
n := 2µnγn

〈
zn−pn

γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M.

(II.23)

Note that ,for all n ∈N, by Theorem 2 (i) and Assumption 2, ˆ̀2
n is non-negative and

due to Remark 1 and by definition, ˜̀2
n is non-negative, as well. With these choices,

the algorithm attains a convergence rate of o(1
n2) for the sequence (ϕn)n∈N, which

as per Theorem 2 (i), is a combination of monotonicity and cocoercivity inequalities
for two consecutive iterates.

We will show in Section 5.3 that Algorithm 1 with this setting, for some specific
choices of the parameters, leads to the Halpern iteration studied in [Lieder, 2021]
and we recover the same convergence rate for the fixed-point residual from our rate
result on

(
`2

n
)

n∈N.

THEOREM 5 Suppose that Assumption 1 and Assumption 2 (i)-Assumption 2 (iii)
along with the assumptions given by (II.21) hold. Let x? be an arbitrary point in
zer(A+C), and (φn)n∈N, (Vn)n∈N, and

(ˆ̀2
n
)

n∈N be respectively constructed as per
(II.7), (II.8), and (II.23) by the iterates obtained from Algorithm 1 with its safeguard
condition modified to (II.22). Then, the following hold:

(i) for all n ∈ N

Vn+1 + ˆ̀2
n−1 ≤Vn.

(ii) the sequence (Vn)n∈N is convergent and
(ˆ̀2

n
)

n∈N is summable;
(iii) the sequences(∥∥∥pn− xn +αn(xn− pn−1)+

γnβλ 2
n

θ̂n
un− 2θ̄n

θn
vn

∥∥∥2

M

)
n∈N

and(〈
zn−pn

γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M
+ β

4 ‖pn− yn− (pn−1− yn−1)‖2
M

)
n∈N

converge to zero with rates of O(1
n2) and o(1

n2), respectively;

83

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

(iv) the sequences (ϕn)n∈N and(∥∥∥pn− yn +
2
β

M−1Cyn−
(

pn−1− yn−1 +
2
β

M−1Cyn−1

)∥∥∥2

M

)
n∈N

converge to zero with a rate of o(1
n2);

(v) the sequences (φn)n∈N and
(

pn− yn +
2
β

M−1Cyn

)
n∈N

are respectively con-

vergent to zero and Cx? with a rate of O(1
n). 2

Proof. To prove Theorem 5 (i), from Theorem 1 we have

Vn+1 +2γn(λn− ᾱn+1λn+1)φn + `2
n−1

=Vn +(λn +µn)
(

θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
.

Note that by (II.21), λn− ᾱn+1λn+1 is zero for all n ∈ N. This gives

Vn+1 + `2
n−1 =Vn +(λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
.

Substituting `2
n = ˆ̀2

n + ˜̀2
n, we obtain

Vn+1 + ˆ̀2
n−1 + ˜̀2

n−1 =Vn +(λn +µn)
(

θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
.

Using the new condition on deviations, given by (II.22), yields the desired inequal-
ity.

For the proof of Theorem 5 (ii), observe that the sequences (Vn)n∈N and
(ˆ̀2

n
)

n∈N
are non-negative by Theorem 2 (i) and by construction, respectively. By Theo-
rem 5 (i), the sequence (Vn)n∈N is nonincreasing and, by [Bauschke and Combettes,
2017, Lemma 5.31], it is convergent and

(ˆ̀2
n
)

n∈N is summable.
The proofs of Theorem 5 (iii)-Theorem 5 (v) follow from very similar argu-

ments given in the proofs of Theorem 3 (iv) and Theorem 3 (vi), respectively. This
completes the proof. 2

5. Special cases

In this section, we introduce some special instances of Algorithm 1 by giving spe-
cific choices of the parameters and the deviations.

5.1 Vanishing deviations
By letting un = vn = 0 for all n ∈ N, Algorithm 1 reduces to

yn = xn +αn(yn−1− xn)

84

5 Special cases

zn = xn +αn(pn−1− xn)+ ᾱn(zn−1− pn−1)

pn = (M+ γnA)−1(Mzn− γnCyn)

xn+1 = xn +λn(pn− zn)+ ᾱnλn(zn−1− pn−1).

The algorithm given in Example 2 is a special case of this algorithm. To show that,
after eliminating xn from the algorithm above, we obtain

yn = zn + ᾱn(pn−1− zn−1)+αn(yn−1− pn−1),

pn = (M+ γnA)−1(Mzn− γnCyn),

zn+1 = zn +
1−αn+1

1−αn
(αnzn− ᾱnzn−1)

+(λn−αn+1λn− ᾱn+1 +αn+1)(pn− zn)

−λnᾱn(1−αn+1)(pn−1− zn−1)+
(1−αn+1)(ᾱn−αn)

1−αn
pn−1.

(II.24)

Setting γn = γ gives yn = zn and ᾱn = αn, for all n ∈ N. Substituting these into
(II.24) yields the algorithm of Example 2. The algorithms above are convergent by
Theorem 3 with a rate of o(1

µn
).

REMARK 4 In the case that the deviations are identically zero, unlike Remark 1,
we do not require θ̂n to be strictly positive for all n∈N. In fact, for our convergence
analysis to hold, it suffices to have θn ≥ 0 for all n∈N; as in that case, the safeguard
condition (II.5) is already satisfied. Therefore, we can drop the ε from the upper-
bounds of Assumption 2 (iii) and Assumption 2 (iv). In particular, the condition on
λn can be restated as

γnλn ≤ γn−1λn−1 +2γn

(
1− γnβ

4

)
. (II.25)

2

In what follows, we present a special instance of algorithm (II.24), using

λn = 1+
γn−1

γn
λn−1,

and γnβ ≤ 2, for all n ∈ N, which satisfy (II.21) and (II.25). Substituting µn from
(II.21) and definitions of αn and ᾱn from Algorithm 1 along with the choice of λn
above into (II.24), we obtain

yn = zn +
γn(λn−1)

γn−1λn
(pn−1− zn−1)+

λn−1
λn

(yn−1− pn−1),

pn = (M+ γnA)−1(Mzn− γnCyn),

zn+1 =
γn+1λn

γnλn+γn+1
zn +

γnλn
γnλn+γn+1

pn− (λn−1)γn+1
γnλn+γn+1

pn−1.

(II.26)

According to Theorem 4, this algorithm is convergent with a rate of o(1
n2).

85

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

5.2 Parallel deviations
In this section, we consider Algorithm 1 with the alternative safeguard condition
given by (II.22), and with the particular choice of the deviations as

un =
ᾱnθn

2(λn+µn)
(pn−1− zn−1), vn =

ᾱnθn(2−γnβ)

2θ̂n
(pn−1− zn−1). (II.27)

Having these parallel deviations along with the assumption of γn = γ , implies yn = zn
for all n ∈ N. Then, by substitution of the specified parameters and deviations into
Algorithm 1, and after eliminating xn, we obtain

pn = (M+ γA)−1(M− γC)yn

yn+1 = yn +
αn(1−αn+1)

1−αn
(yn− yn−1)

+
(

λn(1−αn+1)+
αn+1θn+1

2(λn+1+µn+1)

)
(pn− yn)

−
(

(1−αn+1)αnθn
2(1−αn)(λn+µn)

+αnλn(1−αn+1)
)
(pn−1− yn−1),

(II.28)

where the parameters must be chosen such that

ᾱ
2
n+1θn+1 ≤ θn (II.29)

is satisfied at each iteration, as the safeguard condition (II.22) reduces to this condi-
tion in the specified setting. This means that, we do not need to evaluate any norms
to ensure convergence of the algorithm.

By letting λn = (1+ n)σ , for all n ∈ N, with σ being a positive constant such
that Assumption 2 (iii) and (II.21) are satisfied, regardless of the value of σ , (II.28)
becomes

pn = (M+ γA)−1(M− γC)yn,

yn+1 =
γβ (1+n)

4+2n yn +
n(2−γβ)

4+2n yn−1 +
(1+n)(4−γβ)

4+2n pn− n(4−γβ)
4+2n pn−1,

(II.30)

which is an alternative presentation of the algorithm given by (II.3). Observe that
with the set of selected parameters that led to this algorithm, the condition (II.29) is
always satisfied.

The following result shows that algorithm (II.30) is convergent, with respect to
the norm of the fixed-point residual, with a rate of O(1

n).

PROPOSITION 1 Consider Algorithm 1 with the modified safeguard condition
given by (II.22) and let the deviations be selected as per (II.27). Given y0 = x0 ∈H
and β > 0, let x? be an arbitrary point in zer(A +C), and for all n ∈ N, λn =

(1+n)(1− γβ

4). Then, Algorithm 1 reduces to the algorithm given by (II.30) which
converges as

‖pn− yn‖2
M ≤ 1(

1− γβ

4

)2
(n+1)2

‖y0− x?‖2
M. 2

86

5 Special cases

Proof. Using the choices made by assumption, from Theorem 5 and the definition
of Vn in (II.7), we obtain

˜̀2
n =

(
1− γβ

4

)2
(n+1)2‖pn− yn‖2

M ≤Vn+1 ≤V0 = ‖x0− x?‖2
M = ‖y0− x?‖2

M.

This concludes the proof. 2

By letting Cx = 0 for all x ∈H , M = Id and β = 0, we arrive at the accelerated
proximal point method [Kim, 2021] and the convergence rate results found in [Kim,
2021] can be recovered by Proposition 1. This means that this special case of our
general Algorithm 1 is a generalization of the accelerated proximal point method.

5.3 Halpern iteration
Given y0 ∈H and the nonexpansive operator N : H →H , a special case of the
Halpern iteration that is studied in [Lieder, 2021] is defined as

yn+1 =
1

n+2 y0 +
n+1
n+2 Nyn, (II.31)

for all n ∈ N.
Prior to proceeding to the derivation of Halpern iteration from our algorithm,

we give the following result. The proof is straightforward and is left to the reader.

PROPOSITION 2 Given a nonexpansive operator N : H →H and a positive con-
stant β > 0, the operator β

2 (Id−N) is 1
β

-cocoercive. 2

In what follows, we show that the algorithm given by (II.31) is a special case
of Algorithm 1. We derive the Halpern iteration from our algorithm in two different
ways. We first use the algorithm outlined in (II.26) in Section 5.1, and then, uti-
lize the algorithm presented in (II.30). For both cases, we show that the algorithm
converges with o(1

n2).

Alternative 1. In the algorithm given by (II.26), having γn = γ , for all n ∈ N,
implies that yn = zn and λn = 1+n; and simplifies the algorithm to

pn = (M+ γA)−1(M− γC)yn,

yn+1 =
n+1
n+2 yn +

n+1
n+2 pn− n

n+2 pn−1,

which can alternatively be cast as

pn = (M+ γA)−1(M− γC)yn,

yn+1 =
1

n+2
y0 +

n+1
n+2

pn.
(II.32)

87

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

Next, given the nonexpansive operator N, let us set Ax = {0} for all x∈H , M = Id,
C = β

2 (Id−N), and γβ = 2. By Proposition 2, the operator C is 1
β

-cocercive; and
hence, it can be inserted in place of C in (II.32). This gives

pn = yn−
2
β
(

β

2
(Id−N))yn = Nyn

yn+1 =
1

n+2
y0 +

n+1
n+2

pn

(II.33)

which is the Halpern iteration as given by (II.31). Recalling Theorem 4, it is easy
to verify that this algorithm converges, for instance in ϕn value, with a convergence
rate of o(1

n2).

Alternative 2. Similar to what is done above, given the nonexpansive operator N,
and having the choices Ax= {0} for all x∈H , M = Id, C = β

2 (Id−N), and γnβ = 2
for all n ∈ N, invoking Proposition 2 and applying this setting, the algorithm pre-
sented in (II.30) becomes (II.33). Similar to the earlier alternative, from Theorem 5,
one can verify that this algorithm converges, e.g., in the value of ϕn, with a rate of
o(1

n2).
In addition to the rate result given above, for the approach taken in the latter

alternative, we can derive exactly the same rate as found in [Lieder, 2021]. This is
given in the following result.

PROPOSITION 3 Consider Algorithm 1 with the modified safeguard condition
given by (II.22) and let the deviations be selected as per (II.27). Given y0 ∈H ,
β > 0, and the nonexpansive operator N : H →H , let Ax = {0} for all x ∈H ,
M = Id, C = β

2 (Id−N), x? be an arbitrary fixed-point of the operator N, and for all
n ∈ N, γnβ = 2 and λn =

1
2 (1+ n). Then, Algorithm 1 results in Halpern iteration

(II.31) which converges as

‖Nyn− yn‖2 ≤ 4
(n+1)2 ‖y0− x?‖2. 2

Proof. The fact that with given assumptions, Algorithm 1 becomes the Halpern-
itaeration is already shown. Next, using the choices made by assumption, from
Theorem 5 and the definition of Vn in (II.7), we obtain

˜̀2
n =

1
4
(n+1)2‖pn− yn‖2 ≤Vn+1 ≤V0 = ‖x0− x?‖2 = ‖y0− x?‖2.

By substitution of pn = Nyn, we obtain the desired result. 2

We derived the Halpern iteration using two different approaches and verified that
both converge in, for instance ϕn, with a rate of o(1

n2). For the second alternative

88

6 Deferred results and proofs

we recover the same rate—in the norm of residual—as the one obtained by [Lieder,
2021]. However, to the best of our knowledge, this is not possible for the first al-
ternative. This can be explained by the fact that we derived the same algorithm—
Halpern iteration—assuming two different sets of parameters and deviations. In the
setting that led to the second alternative, we used a tighter safeguard condition. This
resulted in the two approaches having different underlying Lyapunov inequalities,
and hence, their rates could be obtained for different quantities.

As a final remark, observe that with the choice of N = 2(Id+γA)−1− Id, the
Halpern iteration [Lieder, 2021] for finding fixed-points of the nonexpansive opera-
tor N and the accelerated proximal point method [Kim, 2021] of finding the root of
a maximally monotone operator A are equivalent, since, given the same initial point
x0 ∈H , they generate the same sequence of iterates. This was recently shown by
[Ryu and Yin, 2021].

6. Deferred results and proofs

In what follows, we present some results that have been used in the previous sections
along with the proof of Theorem 1 that was deferred to this section. Prior to that,
we define the auxiliary parameter

θ
′
n := (2− γnβ)µn +2ᾱnθ̄n (II.34)

which frequently appears throughout this section.
We begin by establishing some identities between the parameters defined in

Algorithm 1. These identities are used several times in the proof of Theorem 1.

PROPOSITION 4 Consider the auxiliary parameters defined in step 2 of Algo-
rithm 1. Then, for all n ∈ N, the following identities hold

(i) θn = (2− γnβ)θ̄n + θ̂n;
(ii) θn = 2θ̄n +(2− γnβ)(λn +µn);

(iii) λ 2
n θn = θ̂n(λn +µn)−2θ̄ 2

n . 2

Proof. For Proposition 4 (i), from definition of θ̄n and θ̂n, we have

θn = (2− γnβ)θ̄n + θ̂n

= (2− γnβ)
(
λn +µn−λ

2
n
)
+
(
2λn +2µn− γnβλ

2
n
)

= (2− γnβ)(λn +µn)−2λ
2
n + γnβλ

2
n +

(
2λn +2µn− γnβλ

2
n
)

= (2− γnβ)(λn +µn)−2λ
2
n +2(λn +µn)

= (4− γnβ)(λn +µn)−2λ
2
n

89

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

which holds by definition of θn in Algorithm 1. For Proposition 4 (ii) we have

θn = 2θ̄n +(2− γnβ)(λn +µn)

= 2
(
λn +µn−λ

2
n
)
+(2− γnβ)(λn +µn)

=−2λ
2
n +(4− γnβ)(λn +µn).

For Proposition 4 (iii), after moving all terms to the left-hand side of the equality
we get

λ
2
n θn +2θ̄

2
n − θ̂n(λn +µn)

= λ
2
n
(
(2− γnβ)θ̄n + θ̂n

)
+2θ̄

2
n − θ̂n(λn +µn)

= θ̄n
(
λ

2
n (2− γnβ)+2θ̄n

)
− θ̂n(λn +µn−λ

2
n)

= θ̄n
(
2λn +2µn− γnβλ

2
n
)
− θ̂nθ̄n = θ̄nθ̂n− θ̂nθ̄n

where in the first equality θn is substituted by from Proposition 4 (i) and in the
second and the third equality definitions of θ̄n and θ̂n are used, respectively. 2

The next lemma provides alternative expressions for the term inside the first
norm in (II.6).

LEMMA 2 Suppose that Assumption 1 holds and consider the sequences generated
by Algorithm 1. Then, for all n ∈ N, the following expressions represent the same
vector

(i) pn− (1−αn)xn−αn pn−1 +
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn;

(ii) pn− 2θ̄n
θn

zn +
θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1;

(iii) 1
λn
(xn+1− xn)+

θ̃n
θ̂n

un +
(2−γnβ)(λn+µn)

θn
vn. 2

Proof. We, first, show that Lemma 2 (ii) represents the same vector as Lemma 2 (i):

pn− 2θ̄n
θn

zn +
θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

= pn− 2θ̄n
θn

(zn− ᾱnzn−1)+
θ̃n
θn
(yn−αnyn−1)− 2λn

θn
xn− θ ′n

θn
pn−1

= pn− 2θ̄n
θn

(
(1−αn)xn +(αn− ᾱn)pn−1 +

θ̄nγnβ

θ̂n
un + vn

)
+ θ̃n

θn
((1−αn)xn +un)− 2λn

θn
xn− θ ′n

θn
pn−1

= pn− 2(1−αn)θ̄n−(1−αn)θ̃n+2λn
θn

xn− θ ′n+2θ̄n(αn−ᾱn)
θn

pn−1

+ θ̂ θ̃n−2θ̄ 2
n γnβ

θnθ̂n
un− 2θ̄n

θn
vn

90

6 Deferred results and proofs

= pn− (1−αn)xn−αn pn−1 +
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

where the coefficients of the last equality are found as follows. The numerator of
the coefficient of xn reads

2(1−αn)θ̄n− (1−αn)θ̃ +2λn

= (1−αn)(θn− (2− γnβ)(λn +µn))

− (1−αn)γnβ (λn +µn)+2λn

= (1−αn)θn−2(1−αn)(λn +µn)+2λn

= (1−αn)θn−2 λn
λn+µn

(λn +µn)+2λn = (1−αn)θn

(II.35)

where in the first equality, θ̄n is substituted from Proposition 4 (ii), and θ̃n and αn
are substituted by their definitions in Algorithm 1. The numerator of the coefficient
of pn−1 is

θ
′
n +2θ̄n(αn− ᾱn) = (2− γnβ)µn +2ᾱnθ̄n +2θ̄n(αn− ᾱn)

= (2− γnβ)µn +2θ̄nαn

= (2− γnβ)αn(λn +µn)+2θ̄nαn = αnθn

(II.36)

where in the first equality (II.34) is used, the third equality is obtained using the def-
inition of αn, and Proposition 4 (ii) is utilized in the last equality. For the numerator
of un we get

θ̂ θ̃n−2θ̄
2
n γnβ = θ̂ γnβ (λn +µn)−2θ̄

2
n γnβ

= γnβ
(
θ̂n(λn +µn)−2θ̄

2
n
)
= γnβλ

2
n θn

(II.37)

where the first equality is obtained by substitution of the definition of θ̃n from Al-
gorithm 1, and in the last equality Proposition 4 (iii) is used.

Now, we show that Lemma 2 (ii) and Lemma 2 (iii) represent the same vector.
Starting from Lemma 2 (ii), we have

pn− 2θ̄n
θn

zn +
θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

= pn− 2θ̄n
θn

(zn− ᾱnzn−1)+
θ̃n
θn
(yn−αnyn−1)− 2λn

θn
xn− θ ′n

θn
pn−1

= 1
λn
(xn+1− xn)+ zn + ᾱn(pn−1− zn−1)− 2θ̄n

θn
(zn− ᾱnzn−1)

+ θ̃n
θn
(yn−αnyn−1)− 2λn

θn
xn− θ ′n

θn
pn−1

= 1
λn
(xn+1− xn)+

θn−2θ̄n
θn

(zn− ᾱnzn−1)+
θ̃n
θn
(yn−αnyn−1)− 2λn

θn
xn

+ ᾱnθn−θ ′n
θn

pn−1

= 1
λn
(xn+1− xn)+

θn−2θ̄n
θn

(
(1−αn)xn +(αn− ᾱn)pn−1 +

θ̄nγnβ

θ̂n
un + vn

)
91

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

+ θ̃n
θn
((1−αn)xn +un)− 2λn

θn
xn +

ᾱθn−θ ′n
θn

pn−1

= 1
λn
(xn+1− xn)+

(θn−2θ̄n)θ̄nγnβ+θ̃nθ̂n

θnθ̂n
un +

θn−2θ̄n
θn

vn

+
(θn−2θ̄n)(1−αn)+θ̃n(1−αn)−2λn

θn
xn +

(θn−2θ̄n)(αn−ᾱn)+ᾱnθn−θ ′n
θn

pn−1

= 1
λn
(xn+1− xn)+

θ̃n
θ̂n

un +
(2−γnβ)(λn+µn)

θn
vn

In the second equality, the definition of xn+1 from step 8 of Algorithm 1 is used. In
the last equality, the coefficient of xn is found to be − 1

λn
by (II.35), the coefficient

of pn−1 is zero by (II.36), the coefficient of vn is found by Proposition 4 (ii), and for
the coefficient of un we have(

θn−2θ̄n
)
θ̄nγnβ + θ̃nθ̂n = θnθ̄nγnβ −2θ̄

2
γnβ + θ̃nθ̂n

= θnθ̄nγnβ + γnβλ
2
n θn

= θnγnβ
(
θ̄n +λ

2
n
)
= θnγnβ (λn +µn)

where the second equality is obtained by (II.37), and in the last equality the defini-
tion of θ̄n is used. This concludes the proof. 2

6.1 Proof of Theorem 1
Proof. We define the following quantity

∆n :=Vn+1−Vn +2γn(λn− ᾱn+1λn+1)φn + `2
n−1

− (λn +µn)
(

θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

) (II.38)

and prove the result by showing that, for all n ∈ N, it is identical to zero. By substi-
tuting Vn+1 and Vn in (II.38), we get

∆n = ‖xn+1− x?‖2
M + `2

n +2λn+1γn+1αn+1φn

−‖xn− x?‖2
M− `2

n−1−2λnγnαnφn−1

+2γn(λn− ᾱn+1λn+1)φn + `2
n−1− (λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
= ‖xn+1− x?‖2

M−‖xn− x?‖2
M + `2

n−2λnγnαnφn−1 +2γnλnφn

− (λn +µn)
(

θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
,

where in the last equality we used γnᾱn+1 = γn+1αn+1. Next, substituting `2
n from

(II.6), and φn−1 and φn from (II.8) on the right-hand side of the last equality above,
yields

∆n = ‖xn+1− x?‖2
M−‖xn− x?‖2

M

92

6 Deferred results and proofs

+ 1
2 θn

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

+2µnγn

〈
zn−pn

γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M

−2λnγnαn

(〈
zn−1−pn−1

γn−1
, pn−1− x?

〉
M
+ β

4 ‖yn−1− pn−1‖2
M

)
+2λnγn

(〈
zn−pn

γn
, pn− x?

〉
M
+ β

4 ‖yn− pn‖2
M

)
− (λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
= ‖xn+1− x?‖2

M−‖xn− x?‖2
M +2λnγn

〈
zn−pn

γn
, pn− x?

〉
M

−2λnγnαn

〈
zn−1−pn−1

γn−1
, pn−1− pn + pn− x?

〉
M

+2µnγn

〈
zn−pn

γn
− zn−1−pn−1

γn−1
, pn− pn−1

〉
M

+ 1
2 θn

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn− pn‖2
M− (λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
= ‖xn+1− x?‖2

M−‖xn− x?‖2
M

+2〈λn(zn− pn)− ᾱnλn(zn−1− pn−1), pn− x?〉M
+2
〈

µn(zn− pn)+(ᾱnλn− γn
γn−1

µn)(zn−1− pn−1), pn− pn−1

〉
M

+ 1
2 θn

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn− pn‖2
M− (λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
.

We define
ωn := ᾱnλn− γn

γn−1
µn (II.39)

and substitute it in the last equality above; and also from step 8 of Algorithm 1, we
replace λn(zn− pn)− ᾱnλn(zn−1− pn−1) by xn− xn+1. Then, we get

∆n = ‖xn+1− x?‖2
M−‖xn− x?‖2

M +2〈xn− xn+1, pn− x?〉M
+2〈µn(zn− pn)+ωn(zn−1− pn−1), pn− pn−1〉M

+ 1
2 θn

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

93

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

+ λnγnβ

2 ‖yn− pn‖2
M− (λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
= ‖xn+1− pn‖2

M−‖xn− pn‖2
M

+2〈µn(zn− pn)+ωn(zn−1− pn−1), pn− pn−1〉M

+ 1
2 θn

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn− pn‖2
M− (λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
where in the last equality we used the identity 2〈a−b,c−d〉M + ‖b−d‖2

M −
‖a−d‖2

M = ‖b− c‖2
M −‖a− c‖2

M for all a,b,c,d ∈H . Now, inserting xn+1 from
step 8 of Algorithm 1, yields

∆n = ‖xn− pn +λn(pn− zn)+λnᾱn(zn−1− pn−1)‖2
M−‖xn− pn‖2

M

+2〈µn(zn− pn)+ωn(zn−1− pn−1), pn− pn−1〉M

+ 1
2 θn

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn− pn‖2
M− (λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
= ‖λn(pn− zn)+λnᾱn(zn−1− pn−1)‖2

M

+2〈xn− pn,λn(pn− zn)+λnᾱn(zn−1− pn−1)〉M
+2〈µn(zn− pn)+ωn(zn−1− pn−1), pn− pn−1〉M

+ 1
2 θn

∥∥∥pn− xn +αn(xn− pn−1)+
γnβλ 2

n
θ̂n

un− 2θ̄n
θn

vn

∥∥∥2

M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn− pn‖2
M− (λn +µn)

(
θ̃n
θ̂n
‖un‖2

M + θ̂n
θn
‖vn‖2

M

)
.

Next, using Lemma 2 and steps 5–6 of Algorithm 1, we replace the terms including
un and vn in terms of the iterates

∆n = ‖λn(pn− zn)+λnᾱn(zn−1− pn−1)‖2
M

+2〈xn− pn,λn(pn− zn)+λnᾱn(zn−1− pn−1)〉M
+2〈µn(zn− pn)+ωn(zn−1− pn−1), pn− pn−1〉M

+ θn
2

∥∥∥pn− 2θ̄n
θn

zn +
θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

+ µnγnβ

2 ‖pn− yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn− pn‖2
M−

(λn+µn)θ̃n
θ̂n

‖yn− (1−αn)xn−αnyn−1‖2
M

94

6 Deferred results and proofs

− (λn+µn)θ̂n
θn

∥∥∥zn− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn

+(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

where we used

vn = zn− (1−αn)xn +(ᾱn−αn)pn−1− ᾱnzn−1−β
θ̄nγn
θ̂n

un

= zn− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn +(ᾱn−αn)pn−1− ᾱnzn−1 +

αnθ̄nγnβ

θ̂n
yn−1

which is obtained by substituting un from step 5 into step 6 of Algorithm 1. Next,
we expand the terms on the right-hand side of the last equality above which include
pn. This yields

∆n = λ
2
n ‖pn‖2

M +2
〈

pn,λ
2
n (−zn + ᾱnzn−1− ᾱn pn−1)

〉
M

+λ
2
n ‖zn− ᾱnzn−1 + ᾱn pn−1‖2

M

−2λn‖pn‖2
M +2〈pn,λn(zn + xn + ᾱn pn−1− ᾱnzn−1)〉M

+2〈xn,λn(−zn− ᾱn pn−1 + ᾱnzn−1)〉M
−2µn‖pn‖2

M +2〈pn,µnzn +(µn−ωn)pn−1 +ωnzn−1〉M
+2〈µnzn +ωn(zn−1− pn−1),−pn−1〉M + 1

2 θn‖pn‖2
M

+2
〈

pn,
θn
2

(
− 2θ̄n

θn
zn +

θ̃n
θn

yn− 2λn
θn

xn

)〉
M

+2
〈

pn,
θn
2

(
− θ ′n

θn
pn−1 +

2θ̄nᾱn
θn

zn−1− θ̃nαn
θn

yn−1

)〉
M

+ 1
2 θn

∥∥∥− 2θ̄n
θn

zn +
θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

+ µnγnβ

2 ‖pn‖2
M +2

〈
pn,

µnγnβ

2 (−yn− (pn−1− yn−1))
〉

M

+ µnγnβ

2 ‖−yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖pn‖2
M−2

〈
pn,

λnγnβ

2 yn

〉
M
+ λnγnβ

2 ‖yn‖2
M

− θ̃n(λn+µn)

θ̂n
‖yn− (1−αn)xn−αnyn−1‖2

M

− θ̂n(λn+µn)
θn

∥∥∥zn− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn

+(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

=
(

λ
2
n −

(4−γnβ)(λn+µn)
2 + 1

2 θn

)
‖pn‖2

M

+2
〈

pn,
(
λn +µn−λ

2
n − θ̄n

)
zn +

(
θ̃n
2 −

(λn+µn)γnβ

2

)
yn

〉
M

+2
〈

pn,(λn−λn)xn +
(
(1−λn)λnᾱn +µn−ωn− 1

2 θ
′
n−

µnγnβ

2

)
pn−1

〉
M

95

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

+2
〈

pn,
(
λ

2
n ᾱn−λnᾱn +ωn + θ̄nᾱn

)
zn−1 +

(
− 1

2 θ̃nαn +
µnγnβ

2

)
yn−1

〉
M

+λ
2
n ‖zn− ᾱnzn−1 + ᾱn pn−1‖2

M +2〈xn,λn(−zn− ᾱn pn−1 + ᾱnzn−1)〉M
+2〈µnzn +ωn(zn−1− pn−1),−pn−1〉M

+ 1
2 θn

∥∥∥− 2θ̄n
θn

zn +
θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

+ µnγnβ

2 ‖−yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn‖2
M−

θ̃n(λn+µn)

θ̂n
‖yn− (1−αn)xn−αnyn−1‖2

M

− θ̂n(λn+µn)
θn

∥∥∥zn− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn

+(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M
.

All terms involving pn in this expression are identically zero since their coefficients
become zero. This is for most terms straightforward to show by substituting θn, θ̄n,
θ̃n, θ ′n, αn, and ᾱn defined in Algorithm 1 into the corresponding coefficients. We
show this for two coefficients for which it is less obvious. For the coefficient of
〈pn, pn−1〉M we have

−λ
2
n ᾱn +λnᾱn +µn−ωn− 1

2 θ
′
n−

µnγnβ

2

=−λ
2
n ᾱn +λnᾱn +µn−

(
λnᾱn− γn

γn−1
µn

)
− 1

2 θ
′
n−

µnγnβ

2

=−λ
2
n ᾱn +

γn
γn−1

µn +
(2−γnβ)µn

2 − 1
2 θ
′
n

=−λ
2
n ᾱn +(λn +µn)ᾱn +

(2−γnβ)µn
2 − 1

2 θ
′
n

= θ̄nᾱn +
(2−γnβ)µn

2 − 1
2 θ
′
n =

1
2 θ
′
n− 1

2 θ
′
n = 0,

where in the first equality ωn is substituted from (II.39) and in the third equality the
definition of ᾱn is used. For the coefficient of 〈pn,zn−1〉M

λ
2
n ᾱn−λnᾱn +ωn + θ̄nᾱn

= λ
2
n ᾱn−λnᾱn +λnᾱn− γn

γn−1
µn + θ̄nᾱn

= λ
2
n ᾱn− (λn +µn)ᾱn + θ̄nᾱn = (θ̄n− θ̄n)ᾱn = 0.

Next, for the terms containing zn, we do a similar procedure of expanding, reorder-
ing, and recollecting the terms as we did for pn. This gives

∆n = λ
2
n ‖zn− ᾱnzn−1 + ᾱn pn−1‖2

M +2〈xn,λn(−zn− ᾱn pn−1 + ᾱnzn−1)〉M
+2〈µnzn +ωn(zn−1− pn−1),−pn−1〉M

+ 1
2 θn

∥∥∥− 2θ̄n
θn

zn +
θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

96

6 Deferred results and proofs

+ µnγnβ

2 ‖−yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn‖2
M−

θ̃n(λn+µn)

θ̂n
‖yn− (1−αn)xn−αnyn−1‖2

M

− θ̂n(λn+µn)
θn

∥∥∥zn− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn

+(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

= λ
2
n ‖zn‖2

M +2
〈
zn,λ

2
n (−ᾱnzn−1 + ᾱn pn−1)

〉
M +λ

2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M

+2〈zn,−λnxn〉M +2〈xn,λn(−ᾱn pn−1 + ᾱnzn−1)〉M
+2〈zn,−µn pn−1〉M +2〈pn−1,−ωn(zn−1− pn−1)〉M + 2θ̄ 2

n
θn
‖zn‖2

M

+2
〈

zn,−θ̄n

(
θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

)〉
M

+ 1
2 θn

∥∥∥ θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

+ µnγnβ

2 ‖−yn− (pn−1− yn−1)‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn‖2
M−

θ̃n(λn+µn)

θ̂n
‖yn− (1−αn)xn−αnyn−1‖2

M

− θ̂n(λn+µn)
θn

‖zn‖2
M +2

〈
zn,− θ̂n(λn+µn)

θn

(
− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn

)〉
M

+2
〈

zn,− θ̂n(λn+µn)
θn

(
(ᾱn−αn)pn−1− ᾱnzn−1 +

αnθ̄nγnβ

θ̂n
yn−1

)〉
M

− θ̂n(λn+µn)
θn

∥∥∥− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn

+(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

= λ 2
n θn+2θ̄ 2

n−θ̂n(λn+µn)
θn

‖zn‖2
M +2

〈
zn,

θ̄n(γnβ (λn+µn)−θ̃n)
θn

yn

〉
M

+2
〈

zn,
2θ̄nλn−λnθn+(2−γnβ)(λn+µn)λn

θn
xn

〉
M

+2
〈

zn,
λ 2

n ᾱnθn−µnθn+θ̄nθ ′n−θ̂n(λn+µn)(ᾱn−αn)
θn

pn−1

〉
M

+2
〈

zn,
ᾱn(θ̂n(λn+µn)−2θ̄ 2

n−λ 2
n θn)

θn
zn−1 +

αnθ̄n(θ̃n−γnβ (λn+µn))
θn

yn−1

〉
M

+λ
2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M +2〈xn,λn(−ᾱn pn−1 + ᾱnzn−1)〉M
+2〈pn−1,−ωn(zn−1− pn−1)〉M

+ 1
2 θn

∥∥∥ θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

+ µnγnβ

2 ‖−yn− pn−1 + yn−1‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn‖2
M−

θ̃n(λn+µn)

θ̂n
‖yn− (1−αn)xn−αnyn−1‖2

M

97

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

− θ̂n(λn+µn)
θn

∥∥∥− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn

+(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

Now, we show that all the coefficients of the terms containing zn are identical to
zero. The coefficients of ‖zn‖2

M and 〈zn,zn−1〉M are zero by Proposition 4 (iii).For
the coefficient of 〈zn,xn〉M we have

2θ̄nλn−λnθn +(2− γnβ)(λn +µn)λn = λn
(
2θ̄n +(2− γnβ)(λn +µn)−θn

)
which is identical to zero by Proposition 4 (ii). For the coefficient of 〈zn, pn−1〉M we
have

λ
2
n ᾱnθn−µnθn + θ̄nθ

′
n− θ̂n(λn +µn)(ᾱn−αn)

= λ
2
n ᾱnθn−µnθn + θ̄n

(
(2− γnβ)µn +2ᾱnθ̄n

)
− θ̂n(λn +µn)(ᾱn−αn)

= ᾱn
(
λ

2
n θn +2θ̄

2
n − (λn +µn)θ̂n

)
−µnθn

+(2− γnβ)µnθ̄n +(λn +µn)αnθ̂n

=
(
−θn +(2− γnβ)θ̄n + θ̂n

)
µn = 0

where in the first equality, θ ′n is substituted and in the third equality Proposi-
tion 4 (iii) is used and in the last equality Proposition 4 (i) is used. Therefore, all
terms containing zn can be eliminated from ∆n and we are left with

∆n =

λ
2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M +2〈xn,λn(−ᾱn pn−1 + ᾱnzn−1)〉M
+2〈pn−1,−ωn(zn−1− pn−1)〉M

+ 1
2 θn

∥∥∥ θ̃n
θn

yn− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

+ µnγnβ

2 ‖−yn− pn−1 + yn−1‖2
M−

λnγnαnβ

2 ‖yn−1− pn−1‖2
M

+ λnγnβ

2 ‖yn‖2
M−

θ̃n(λn+µn)

θ̂n
‖yn− (1−αn)xn−αnyn−1‖2

M

− θ̂n(λn+µn)
θn

∥∥∥− θ̄nγnβ

θ̂n
yn− (2−γnβ)λn

θ̂n
xn

+(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

= λ
2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M +2〈xn,λn(−ᾱn pn−1 + ᾱnzn−1)〉M
+2〈pn−1,−ωn(zn−1− pn−1)〉M + θ̃ 2

n
2θn
‖yn‖2

M

+2
〈

yn,
θ̃n
2

(
− 2λn

θn
xn− θ ′n

θn
pn−1 +

2θ̄nᾱn
θn

zn−1− θ̃nαn
θn

yn−1

)〉
M

+ 1
2 θn

∥∥∥− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

98

6 Deferred results and proofs

+ µnγnβ

2 ‖yn‖2
M +2

〈
yn,

µnγnβ

2 (pn−1− yn−1)
〉

M
+ µnγnβ

2 ‖pn−1− yn−1‖2
M

+ λnγnβ

2 ‖yn‖2
M−

θ̃n(λn+µn)

θ̂n
‖yn‖2

M

−2
〈

yn,
θ̃n(λn+µn)

θ̂n
((αn−1)xn−αnyn−1)

〉
M

− θ̃n(λn+µn)

θ̂n
‖(αn−1)xn−αnyn−1‖2

M−
λnγnαnβ

2 ‖yn−1− pn−1‖2
M

− θ̄ 2
n γ2

n β 2(λn+µn)

θ̂nθn
‖yn‖2

M +2
〈

yn,
θ̄nγnβ (λn+µn)

θn

(
− (2−γnβ)λn

θ̂n
xn

)〉
M

+2
〈

yn,
θ̄nγnβ (λn+µn)

θn

(
(ᾱn−αn)pn−1− ᾱnzn−1 +

αnθ̄nγnβ

θ̂n
yn−1

)〉
M

− θ̂n(λn+µn)
θn

∥∥∥− (2−γnβ)λn
θ̂n

xn +(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

=
(

θ̃ 2
n

2θn
+ µnγnβ

2 + λnγnβ

2 − θ̃n(λn+µn)

θ̂n
− θ̄ 2

n γ2
n β 2(λn+µn)

θ̂nθn

)
‖yn‖2

M

+2
〈

yn,
(
−λnθ̃n

θn
+ θ̃n(λn+µn)(1−αn)

θ̂n
− θ̄nλnγnβ (λn+µn)(2−γnβ)

θnθ̂n

)
xn

〉
M

+2
〈

yn,
(
− θ̃nθ ′n

2θn
+ µnγnβ

2 + θ̄nγnβ (λn+µn)(ᾱn−αn)
θn

)
pn−1

〉
M

+2
〈

yn,
(

θ̃nθ̄nᾱn
θn
− θ̄nᾱnγnβ (λn+µn)

θn

)
zn−1

〉
M

+2
〈

yn,
(
− θ̃ 2

n αn
2θn
− µnγnβ

2 + θ̃nαn(λn+µn)

θ̂n
+ αnθ̄ 2

n γ2
n β 2(λn+µn)

θnθ̂n

)
yn−1

〉
M

+λ
2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M +2〈xn,λn(−ᾱn pn−1 + ᾱnzn−1)〉M
+ µnγnβ

2 ‖pn−1− yn−1‖2
M +2〈pn−1,−ωn(zn−1− pn−1)〉M

+ 1
2 θn

∥∥∥− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

− θ̃n(λn+µn)

θ̂n
‖(αn−1)xn−αnyn−1‖2

M−
λnγnαnβ

2 ‖yn−1− pn−1‖2
M

− θ̂n(λn+µn)
θn

∥∥∥− (2−γnβ)λn
θ̂n

xn +(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

Now, we show that all the coefficients of the terms containing yn are identically
zero. For the coefficient of ‖yn‖2

M we have

(
θnθ̂nγnβ −2θnθ̃n−2θ̄

2
n γ

2
n β

2)(λn +µn)+ θ̃
2
n θ̂n

=
(
θnγnβ (2λn +2µn−λ

2
n γnβ)−2θnγnβ (λn +µn)−2θ̄

2
n γ

2
n β

2)(λn +µn)

+ θ̃
2
n θ̂n

=−
(
θnλ

2
n +2θ̄

2
n
)
(λn +µn)γ

2
n β

2 +(λn +µn)
2
γ

2
n β

2
θ̂n

=
(
(λn +µn)θ̂n−θnλ

2
n −2θ̄

2
n
)
(λn +µn)γ

2
n β

2,

99

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

which, by Proposition 4 (iii), is identical to zero. Now, for the coefficient of 〈yn,xn〉M
we have

θ̃nθn(λn +µn)(1−αn)−λnθ̃nθ̂n− θ̄nλnγnβ (λn +µn)(2− γnβ)

=
(
θn(λn +µn)(1−αn)−λnθ̂n− θ̄nλn(2− γnβ)

)
θ̃n

=
(
θn− θ̂n− θ̄n(2− γnβ)

)
λnθ̃n

which is identically zero by Proposition 4 (i). For the coefficient of 〈yn, pn−1〉M we
have

µnγnβθn +2θ̄nγnβ (λn +µn)(ᾱn−αn)− θ̃nθ
′
n

= µnγnβθn +2θ̄nθ̃n(ᾱn−αn)− θ̃n
(
(2− γnβ)µn +2ᾱnθ̄n

)
= µnγnβθn +2θ̄nθ̃nᾱn−2θ̄nθ̃nαn− (2− γnβ)µnθ̃n−2ᾱnθ̄nθ̃n

= µnγnβθn−2θ̄nθ̃nαn− (2− γnβ)µnθ̃n

= µnγnβθn−2θ̄nµnγnβ − (2− γnβ)(λn +µn)µnγnβ

= µnγnβ
(
θn−2θ̄n− (2− γnβ)(λn +µn)

)
= µnγnβ

(
θn−2

(
λn +µn−λ

2
n
)
− (2− γnβ)(λn +µn)

)
= µnγnβ

(
θn +2λ

2
n − (4− γnβ)(λn +µn)

)
which is equal to zero by the definition of θn. The equivalence of the coefficient
of 〈yn,zn−1〉M to zero follows from the definition of θ̃n. For the coefficient of
〈yn,yn−1〉M we have

2αnθ̄
2
n γ

2
n β

2(λn +µn)− θ̃
2
n θ̂nαn +2θnθ̃nαn(λn +µn)−µnγnβθnθ̂n

= 2αnθ̄
2
n γnβ θ̃n− θ̃

2
n θ̂nαn +2θnθ̃nαn(λn +µn)−αnθ̃nθnθ̂n

= αnθ̃n
(
2θ̄

2
n γnβ − θ̃nθ̂n +2θn(λn +µn)−θnθ̂n

)
= αnθ̃n

(
2θ̄

2
n γnβ − θ̃nθ̂n +θn

(
2(λn +µn)−2(λn +µn)+λ

2
n γnβ

))
= αnθ̃n

(
2θ̄

2
n γnβ − θ̃nθ̂n +θnλ

2
n γnβ

)
= αnθ̃n

(
2θ̄

2
n γnβ − θ̂nγnβ (λn +µn)+θnλ

2
n γnβ

)
= αnθ̃nγnβ

(
2θ̄

2
n − θ̂n(λn +µn)+θnλ

2
n
)

which by Proposition 4 (iii) is identical to zero. Therefore, all the coefficients of the
terms containing yn are zero and we can eliminate those terms. The remaining terms
are

∆n =

λ
2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M +2〈xn,λn(−ᾱn pn−1 + ᾱnzn−1)〉M
+ µnγnβ

2 ‖pn−1− yn−1‖2
M +2〈pn−1,−ωn(zn−1− pn−1)〉M

100

6 Deferred results and proofs

+ 1
2 θn

∥∥∥− 2λn
θn

xn− θ ′n
θn

pn−1 +
2θ̄nᾱn

θn
zn−1− θ̃nαn

θn
yn−1

∥∥∥2

M

− θ̃n(λn+µn)

θ̂n
‖(αn−1)xn−αnyn−1‖2

M−
λnγnαnβ

2 ‖yn−1− pn−1‖2
M

− θ̂n(λn+µn)
θn

∥∥∥− (2−γnβ)λn
θ̂n

xn +(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

= λ
2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M +2〈xn,λn(−ᾱn pn−1 + ᾱnzn−1)〉M
+ µnγnβ

2 ‖pn−1− yn−1‖2
M +2〈pn−1,−ωn(zn−1− pn−1)〉M

+ 2λ 2
n

θn
‖xn‖2

M +2
〈

xn,λn

(
θ ′n
θn

pn−1− 2θ̄nᾱn
θn

zn−1 +
θ̃nαn

θn
yn−1

)〉
M

+ 1
2 θn

∥∥∥ θ ′n
θn

pn−1− 2θ̄nᾱn
θn

zn−1 +
θ̃nαn

θn
yn−1

∥∥∥2

M
− λnγnαnβ

2 ‖yn−1− pn−1‖2
M

− θ̃n(λn+µn)(1−αn)
2

θ̂n
‖xn‖2

M +2
〈

xn,
θ̃nαn(λn+µn)(αn−1)

θ̂n
yn−1

〉
M

− (λn+µn)(2−γnβ)2
λ 2

n
θnθ̂n

‖xn‖2
M−

θ̃nα2
n (λn+µn)

θ̂n
‖yn−1‖2

M

+2
〈

xn,
λn(2−γnβ)(λn+µn)

θn

(
(ᾱn−αn)pn−1− ᾱnzn−1 +

αnθ̄nγnβ

θ̂n
yn−1

)〉
M

− θ̂n(λn+µn)
θn

∥∥∥(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

=
(

2λ 2
n

θn
− θ̃n(λn+µn)(1−αn)

2

θ̂n
− (λn+µn)(2−γnβ)2

λ 2
n

θnθ̂n

)
‖xn‖2

M

+2
〈

xn,
(

λnθ ′n
θn

+ λn(2−γnβ)(λn+µn)(ᾱn−αn)
θn

−λnᾱn

)
pn−1

〉
M

+2
〈

xn,
(
− 2λnθ̄nᾱn

θn
− λnᾱn(2−γnβ)(λn+µn)

θn
+λnᾱn

)
zn−1

〉
M

+2
〈

xn,
(

λnθ̃nαn
θn

+ θ̃nαn(λn+µn)(αn−1)
θ̂n

+ θ̄nαnλnγnβ (2−γnβ)(λn+µn)

θnθ̂n

)
yn−1

〉
M

+λ
2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M−
θ̃nα2

n (λn+µn)

θ̂n
‖yn−1‖2

M

+ µnγnβ

2 ‖pn−1− yn−1‖2
M +2〈pn−1,−ωn(zn−1− pn−1)〉M

+ 1
2 θn

∥∥∥ θ ′n
θn

pn−1− 2θ̄nᾱn
θn

zn−1 +
θ̃nαn

θn
yn−1

∥∥∥2

M
− λnγnαnβ

2 ‖yn−1− pn−1‖2
M

− θ̂n(λn+µn)
θn

∥∥∥(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

101

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

We want to show that all the coefficients of the terms containing xn are zero. For the
coefficient of ‖xn‖2

M we have

2λ
2
n θ̂n− (λn +µn)(2− γnβ)2

λ
2
n −θnθ̃n(λn +µn)(1−αn)

2

= 2λ
2
n θ̂n− (λn +µn)(2− γnβ)2

λ
2
n −θnλ

2
n γnβ

= λ
2
n

(
2θ̂n− (λn +µn)(2− γnβ)2−θnγnβ

)
= λ

2
n
(
2
(
2λn +2µn− γnβλ

2
n
)
− (λn +µn)

(
4−4γnβ + γ

2
n β

2)−θnγnβ
)

= λ
2
n

(
−2γnβλ

2
n − (λn +µn)

(
−4γnβ + γ

2
n β

2)
−
(
(4− γnβ)(λn +µn)−2λ

2
n
)
γnβ

)
= λ

2
n
(
−2γnβλ

2
n +2λ

2
n γnβ

)
= 0

(II.40)
where in the first equality θ̃n and αn and in the third equality θ̂n are substituted by
their definition from Algorithm 1. For the coefficient of 〈xn, pn−1〉 we have

λnθ
′
n +λn(2− γnβ)(λn +µn)(ᾱn−αn)−λnᾱnθn

= λn
(
(2− γnβ)µn +2ᾱnθ̄n

)
+λn(2− γnβ)(λn +µn)(ᾱn−αn)−λnᾱnθn

= 2λnᾱnθ̄n +(2− γnβ)(λn +µn)λnᾱn−λnᾱnθn

− (2− γnβ)(λn +µn)λnαn +(2− γnβ)λnµn

= λnᾱn
(
2θ̄n +(2− γnβ)(λn +µn)−θn

)
− (2− γnβ)λnµn +(2− γnβ)λnµn

which by Proposition 4 (ii) is zero. For the coefficient of 〈xn,zn−1〉 we have

λnᾱnθn−2λnθ̄nᾱn−λnᾱn(2− γnβ)(λn +µn)

= λnᾱn
(
θn−2θ̄n− (2− γnβ)(λn +µn)

)
which is identically zero by Proposition 4 (ii). For the coefficient of 〈xn,yn−1〉 we
have

λnθ̃nαnθ̂n + θ̄nαnλnγnβ (2− γnβ)(λn +µn)−θnθ̃nαn(λn +µn)(1−αn)

= λnθ̃nαnθ̂n + θ̄nαnλnθ̃n(2− γnβ)−θnθ̃nαnλn

= λnθ̃nαn
(
θ̂n + θ̄n(2− γnβ)−θn

)
which by Proposition 4 (i) is identically zero. Now, expanding all the remaining
terms, reordering and recollecting them give

∆n =

102

6 Deferred results and proofs

λ
2
n ‖−ᾱnzn−1 + ᾱn pn−1‖2

M−
θ̃nα2

n (λn+µn)

θ̂n
‖yn−1‖2

M

+ µnγnβ

2 ‖pn−1− yn−1‖2
M +2〈pn−1,−ωn(zn−1− pn−1)〉M

+ 1
2 θn

∥∥∥ θ ′n
θn

pn−1− 2θ̄nᾱn
θn

zn−1 +
θ̃nαn

θn
yn−1

∥∥∥2

M
− λnγnαnβ

2 ‖yn−1− pn−1‖2
M

− θ̂n(λn+µn)
θn

∥∥∥(ᾱn−αn)pn−1− ᾱnzn−1 +
αnθ̄nγnβ

θ̂n
yn−1

∥∥∥2

M

= λ
2
n ᾱ

2
n‖pn−1‖2

M +2
〈

pn−1,−λ
2
n ᾱ

2
n zn−1

〉
M +λ

2
n ᾱ

2
n‖zn−1‖2

M

+ µnγnβ

2 ‖pn−1‖2
M +2

〈
pn−1,− µnγnβ

2 yn−1

〉
M
+ µnγnβ

2 ‖yn−1‖2
M

− θ̃nα2
n (λn+µn)

θ̂n
‖yn−1‖2

M +2ωn‖pn−1‖2
M +2〈pn−1,−ωnzn−1〉M

+ θ ′n
2

2θn
‖pn−1‖2

M +2
〈

pn−1,
1
2 θ
′
n

(
− 2θ̄nᾱn

θn
zn−1 +

θ̃nαn
θn

yn−1

)〉
M

+ 2θ̄ 2
n ᾱ2

n
θn
‖zn−1‖2

M +2
〈

zn−1,− θ̄nᾱnθ̃nαn
θn

yn−1

〉
M
+ θ̃ 2

n α2
n

2θn
‖yn−1‖2

M

− λnγnαnβ

2 ‖pn−1‖2
M +2

〈
pn−1,

λnγnαnβ

2 yn−1

〉
M
− λnγnαnβ

2 ‖yn−1‖2
M

− θ̂n(λn+µn)(ᾱn−αn)
2

θn
‖pn−1‖2

M−
α2

n θ̄ 2
n γ2

n β 2(λn+µn)

θ̂nθn
‖yn−1‖2

M

− θ̂nᾱ2
n (λn+µn)

θn
‖zn−1‖2

M +2
〈

zn−1,
ᾱnαnθ̄nγnβ (λn+µn)

θn
yn−1

〉
M

+2
〈

pn−1,− θ̂n(λn+µn)(ᾱn−αn)
θn

(
−ᾱnzn−1 +

αnθ̄nγnβ

θ̂n
yn−1

)〉
M

=

(
λ

2
n ᾱ

2
n +

µnγnβ

2 +2ωn +
θ ′n

2

2θn
− λnγnαnβ

2 − θ̂n(λn+µn)(ᾱn−αn)
2

θn

)
‖pn−1‖2

M

+2
〈

pn−1,
(
−λ

2
n ᾱ

2
n −ωn− θ̄nθ ′nᾱn

θn
+ θ̂nᾱn(λn+µn)(ᾱn−αn)

θn

)
zn−1

〉
M

+2
〈

pn−1,
(
− µnγnβ

2 + θ ′nθ̃nαn
2θn

+ λnγnαnβ

2 − αnθ̄nγnβ (λn+µn)(ᾱn−αn)
θn

)
yn−1

〉
M

+
(

λ
2
n ᾱ

2
n +

2θ̄ 2
n ᾱ2

n
θn
− θ̂nᾱ2

n (λn+µn)
θn

)
‖zn−1‖2

M

+2
〈

zn−1,
(
− θ̄nᾱnθ̃nαn

θn
+ ᾱnαnθ̄nγnβ (λn+µn)

θn

)
yn−1

〉
M

+
(

µnγnβ

2 − θ̃nα2
n (λn+µn)

θ̂n
+ θ̃ 2

n α2
n

2θn
− λnγnαnβ

2 − α2
n θ̄ 2

n γ2
n β 2(λn+µn)

θ̂nθn

)
‖yn−1‖2

M

We show that all the coefficients in the expression above are identically zero. Start-
ing by the coefficient of ‖pn−1‖2

M , we have

2θnλ
2
n ᾱ

2
n +θnµnγnβ +4θnωn +θ

′
n

2−θnλnγnαnβ −2θ̂n(λn +µn)(ᾱn−αn)
2

= 2θnλ
2
n ᾱ

2
n +θnµnγnβ −4θnᾱnµn +

(
(2− γnβ)µn +2ᾱnθ̄n

)2

−θnλnγnαnβ −2θ̂n(λn +µn)(ᾱn−αn)
2

103

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

= 2ᾱ
2
n
(
θnλ

2
n +2θ̄

2
n − θ̂n(λn +µn)

)
+4µnᾱn

(
−θn + θ̄n(2− γnβ)+ θ̂n

)
+θnµnγnβ +(2− γnβ)2

µ
2
n −θnλnγnαnβ −2θ̂n(λn +µn)α

2
n

= θnµnγnβ +(2− γnβ)2
µ

2
n −θnλnγnαnβ −2θ̂nµnαn

= θnγnβ (µn−λnαn)+(2− γnβ)2
µ

2
n −2θ̂nµnαn

= θnγnβ µnαn +(2− γnβ)2(λn +µn)αnµn−2θ̂nµnαn

= µnαn

(
θnγnβ +(2− γnβ)2(λn +µn)−2θ̂n

)
where in the first equality ωn = −ᾱnµn is used and θ ′n is substituted from (II.34),
the third equality is attained from Proposition 4 (i) and Proposition 4 (iii), and the
expression to the right-hand side of the last equality is identically zero by (II.40).
For the coefficient of 〈pn−1,zn−1〉M we have

−λ
2
n ᾱ

2
n θn−ωnθn− θ̄nθ

′
nᾱn + θ̂nᾱn(λn +µn)(ᾱn−αn)

=−λ
2
n ᾱ

2
n θn−ωnθn− θ̄nᾱn

(
(2− γnβ)µn +2ᾱnθ̄n

)
+ θ̂nᾱn(λn +µn)(ᾱn−αn)

= ᾱ
2
n
(
−λ

2
n θn−2θ̄

2
n + θ̂n(λn +µn)

)
−ωnθn− θ̄nᾱnµn(2− γnβ)

− θ̂nᾱn(λn +µn)αn

= ᾱnµnθn− θ̄nᾱnµn(2− γnβ)− θ̂nᾱnµn

= ᾱnµn
(
θn− θ̄n(2− γnβ)− θ̂n

)
which by Proposition 4 (i) is equal to zero. The third equality above is attained by
using Proposition 4 (iii). For the coefficient of 〈pn−1,yn−1〉M we have

θ
′
nθ̃nαn−µnγnβθn +λnγnαnβθn−2αnθ̄nγnβ (λn +µn)(ᾱn−αn)

=
(
(2− γnβ)µn +2ᾱnθ̄n

)
θ̃nαn−µnγnβθn +λnγnαnβθn

−2αnθ̄nθ̃n(ᾱn−αn)

= (2− γnβ)µnθ̃nαn−µnγnβθn +λnγnβθnαn +2αnθ̄nθ̃nαn

= (2− γnβ)µn(λn +µn)γnβαn− (λn +µn)αnγnβθn

+λnγnβθnαn +2αnθ̄nµnγnβ

= (2− γnβ)µn(λn +µn)γnβαn−µnαnγnβθn +2αnθ̄nµnγnβ

= µnγnβαn
(
(2− γnβ)(λn +µn)−θn +2θ̄n

)
which by Proposition 4 (ii) is identical to zero. For the coefficient of ‖zn−1‖2

M , it is
straightforward to see its equivalence to zero by Proposition 4 (iii). Likewise, the
coefficient of 〈zn−1,yn−1〉M is identically zero by definition of θ̃n. The coefficient of
‖yn−1‖2

M is

µnγnβ θ̂nθn−2θnθ̃nα
2
n (λn +µn)+ θ̂nθ̃

2
n α

2
n −λnγnαnβ θ̂nθn

104

6 Deferred results and proofs

−2α
2
n θ̄

2
n γ

2
n β

2(λn +µn)

= (λn +µn)αnγnβ θ̂nθn−2θnθ̃nα
2
n (λn +µn)+ θ̂nθ̃

2
n α

2
n

−λnγnαnβ θ̂nθn−2α
2
n θ̄

2
n γ

2
n β

2(λn +µn)

= µnαnγnβ θ̂nθn−2θnθ̃nα
2
n (λn +µn)+ θ̂nθ̃

2
n α

2
n −2α

2
n θ̄

2
n γ

2
n β

2(λn +µn)

= µnαnγnβ θ̂nθn−2θnγnβ µnαn(λn +µn)+ θ̂nθ̃nµnγnβαn−2αnµnθ̄
2
n γ

2
n β

2

= µnαnγnβ
(
θ̂nθn−2θn(λn +µn)+ θ̂nθ̃n−2θ̄

2
n γnβ

)
= µnαnγnβ

(
θn
(
θ̂n−2λn−2µn

)
+ θ̂nγnβ (λn +µn)−2θ̄

2
n γnβ

)
= µnαnγnβ

(
−θnλ

2
n γnβ + θ̂nγnβ (λn +µn)−2θ̄

2
n γnβ

)
= µnαnγ

2
n β

2(−θnλ
2
n + θ̂n(λn +µn)−2θ̄

2
n
)

where by Proposition 4 (iii) is equivalent to zero. This concludes the proof. 2

105

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

References

Alvarez, F. (2000). “On the minimizing property of a second order dissipative
system in Hilbert spaces”. SIAM Journal on Control and Optimization 38:4,
pp. 1102–1119. DOI: 10.1137/s0363012998335802.

Alvarez, F. and H. Attouch (2001). “An inertial proximal method for maximal
monotone operators via discretization of a nonlinear oscillator with damping”.
Set-Valued Analysis 9:1/2, pp. 3–11. DOI: 10.1023/a:1011253113155.

Apidopoulos, V., J.-F. Aujol, and C. Dossal (2020). “Convergence rate of inertial
forward–backward algorithm beyond nesterov’s rule”. Mathematical Program-
ming 180:1, pp. 137–156. DOI: 10.1007/s10107-018-1350-9.

Attouch, H. and A. Cabot (2020). “Convergence of a relaxed inertial proximal algo-
rithm for maximally monotone operators”. Mathematical Programming 184:1,
pp. 243–287.

Attouch, H., Z. Chbani, J. Peypouquet, and P. Redont (2018). “Fast convergence of
inertial dynamics and algorithms with asymptotic vanishing viscosity”. Math-
ematical Programming 168:1, pp. 123–175. DOI: 10.1007/s10107- 016-
0992-8.

Attouch, H., M.-O. Czarnecki, and J. Peypouquet (2011). “Coupling forward–
backward with penalty schemes and parallel splitting for constrained varia-
tional inequalities”. SIAM Journal on Optimization 21:4, pp. 1251–1274. DOI:
10.1137/110820300.

Attouch, H. and J. Peypouquet (2016). “The rate of convergence of nesterov’s ac-
celerated forward-backward method is actually faster than 1/k2̂”. SIAM Journal
on Optimization 26:3, pp. 1824–1834. DOI: 10.1137/15M1046095.

Banert, S., J. Rudzusika, O. Oktem, and J. Adler (2021). Accelerated forward–
backward optimization using deep learning. arXiv: 2105 . 05210v1
[math.OC].

Bauschke, H. H. and P. L. Combettes (2017). Convex analysis and monotone op-
erator theory in Hilbert spaces. 2nd ed. CMS Books in Mathematics. Springer.
DOI: 10.1007/978-3-319-48311-5.

Beck, A. and M. Teboulle (2009). “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems”. SIAM journal on imaging sciences 2:1, pp. 183–
202. DOI: 10.1137/080716542.

Bruck, R. E. (1975). “An iterative solution of a variational inequality for certain
monotone operators in hilbert space”. Bulletin of the American Mathematical
Society 81, pp. 890–892. DOI: 10.1090/S0002-9904-1975-13874-2.

Chambolle, A. and C. Dossal (2015). “On the convergence of the iterates of the
“fast iterative shrinkage/thresholding algorithm””. Journal of Optimization the-
ory and Applications 166:3, pp. 968–982. DOI: 10.1007/s10957-015-0746-
4.

106

References

Chambolle, A. and T. Pock (2011). “A first-order primal–dual algorithm for convex
problems with applications to imaging”. Journal of Mathematical Imaging and
Vision 40:1, pp. 120–145. DOI: 10.1007/s10851-010-0251-1.

Chen, G. H.-G. and R. T. Rockafellar (1997). “Convergence rates in forward–
backward splitting”. SIAM Journal on Optimization 7:2, pp. 421–444. DOI:
10.1137/S1052623495290179.

Cholamjiak, W., P. Cholamjiak, and S. Suantai (2018). “An inertial forward–
backward splitting method for solving inclusion problems in Hilbert spaces”.
Journal of Fixed Point Theory and Applications 20:1. DOI: 10.1007/s11784-
018-0526-5.

Combettes, P. L. and J.-C. Pesquet (2011). “Proximal splitting methods in signal
processing”. In: Bauschke, H. H. et al. (Eds.). Fixed-point algorithms for inverse
problems in science and engineering. Springer New York, pp. 185–212. DOI:
10.1007/978-1-4419-9569-8_10.

Eckstein, J. (1989). Splitting methods for monotone operators with applications to
parallel optimization. PhD thesis. Massachusetts Insitute of Technology. URL:
http://hdl.handle.net/1721.1/14356.

Giselsson, P. (2019). Nonlinear forward–backward splitting with projection correc-
tion. arXiv: 1908.07449v3 [math.OC].

Giselsson, P., M. Fält, and S. Boyd (2016). “Line search for averaged operator iter-
ation”. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
pp. 1015–1022. DOI: 10.1109/CDC.2016.7798401.

Kim, D. (2021). “Accelerated proximal point method for maximally monotone oper-
ators”. Mathematical Programming 190:1, pp. 57–87. DOI: 10.1007/s10107-
021-01643-0.

Latafat, P. and P. Patrinos (2017). “Asymmetric forward–backward–adjoint splitting
for solving monotone inclusions involving three operators”. Computational Op-
timization and Applications 68:1, pp. 57–93. DOI: 10.1007/s10589- 017-
9909-6.

Lieder, F. (2021). “On the convergence rate of the halpern-iteration”. Optimization
letters 15:2, pp. 405–418. DOI: 10.1007/s11590-020-01617-9.

Lions, P. L. and B. Mercier (1979). “Splitting algorithms for the sum of two nonlin-
ear operators”. SIAM Journal on Numerical Analysis 16:6, pp. 964–979. DOI:
10.1137/0716071.

Lorenz, D. A. and T. Pock (2015). “An inertial forward–backward algorithm
for monotone inclusions”. Journal of Mathematical Imaging and Vision 51:2,
pp. 311–325. DOI: 10.1007/s10851-014-0523-2.

Passty, G. B. (1979). “Ergodic convergence to a zero of the sum of monotone opera-
tors in Hilbert space”. Journal of Mathematical Analysis and Applications 72:2,
pp. 383–390. DOI: 10.1016/0022-247x(79)90234-8.

107

Paper II. Incorporating History and Deviations in Forward–Backward Splitting

Polyak, B. T. (1964). “Some methods of speeding up the convergence of iteration
methods”. USSR Computational Mathematics and Mathematical Physics 4:5,
pp. 1–17. DOI: 10.1016/0041-5553(64)90137-5.

Raguet, H. and L. Landrieu (2015). “Preconditioning of a generalized forward–
backward splitting and application to optimization on graphs”. SIAM Journal
on Imaging Sciences 8:4, pp. 2706–2739. DOI: 10.1137/15m1018253.

Rockafellar, R. T. (1976). “Monotone operators and the proximal point algorithm”.
SIAM journal on control and optimization 14:5, pp. 877–898. DOI: 10.1137/
0314056.

Ryu, E. and W. Yin (2021). Large-scale convex optimization via monotone opera-
tors. URL: https://large-scale-book.%20mathopt.%20com/LSCOMO.
%20pdf.(visited%20on%2003/2021).

Ryu, E. K., A. B. Taylor, C. Bergeling, and P. Giselsson (2020). “Operator splitting
performance estimation: tight contraction factors and optimal parameter selec-
tion”. SIAM Journal on Optimization 30:3, pp. 2251–2271. DOI: 10.1137/
19M1304854.

Sadeghi, H., S. Banert, and P. Giselsson (2021a). Dwifob: a dynamically weighted
inertial forward–backward algorithm for monotone inclusions. arXiv: 2203.
00028 [math.OC].

Sadeghi, H., S. Banert, and P. Giselsson (2021b). Forward–backward splitting with
deviations for monotone inclusions. arXiv: 2112.00776 [math.OC].

Sadeghi, H. and P. Giselsson (2021). Hybrid acceleration scheme for variance re-
duced stochastic optimization algorithms. arXiv: 2111.06791 [math.OC].

Taylor, A. B., J. M. Hendrickx, and F. Glineur (2017a). “Exact worst-case perfor-
mance of first-order methods for composite convex optimization”. SIAM Jour-
nal on Optimization 27:3, pp. 1283–1313. DOI: 10.1137/16M108104X.

Taylor, A. B., J. M. Hendrickx, and F. Glineur (2017b). “Performance estimation
toolbox (pesto): automated worst-case analysis of first-order optimization meth-
ods”. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE, pp. 1278–1283. DOI: 10.1109/CDC.2017.8263832.

Themelis, A. and P. Patrinos (2019). “Supermann: a superlinearly convergent algo-
rithm for finding fixed points of nonexpansive operators”. IEEE Transactions on
Automatic Control 64:12, pp. 4875–4890. DOI: 10.1109/TAC.2019.2906393.

Tseng, P. (2000). “A modified forward–backward splitting method for maxi-
mal monotone mappings”. SIAM Journal on Control and Optimization 38:2,
pp. 431–446. DOI: 10.1137/S0363012998338806.

Zhang, J., B. O’Donoghue, and S. Boyd (2020). “Globally convergent type-I An-
derson acceleration for nonsmooth fixed-point iterations”. SIAM Journal on Op-
timization 30:4, pp. 3170–3197. DOI: 10.1137/18M1232772.

108

Paper III

DWIFOB: A Dynamically Weighted Inertial
Forward–Backward Algorithm for

Monotone Inclusions

Hamed Sadeghi Sebastian Banert Pontus Giselsson

Abstract

We propose a novel dynamically weighted inertial forward–backward algo-
rithm (DWIFOB) for solving structured monotone inclusion problems. The
scheme exploits the globally convergent forward–backward algorithm with de-
viations in [Sadeghi et al., 2021] as the basis and combines it with the extrapo-
lation technique used in Anderson acceleration to improve local convergence.
We also present a globally convergent primal–dual variant of DWIFOB and nu-
merically compare its performance to the primal–dual method of Chambolle–
Pock and a Tikhonov regularized version of Anderson acceleration applied to
the same problem. In all our numerical evaluations, the primal–dual variant of
DWIFOB outperforms the Chambolle–Pock algorithm. Moreover, our numeri-
cal experiments suggest that our proposed method is much more robust than
the regularized Anderson acceleration, which can fail to converge and be sen-
sitive to algorithm parameters. These numerical experiments highlight that our
method performs very well while still being robust and reliable.

Submitted (Available on arXiv).

109

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
1. Introduction

We consider structured monotone inclusion problems of the form

0 ∈ Ax+Cx, (III.1)

where A : H → 2H is a maximally monotone operator, C : H →H is a coco-
ercive operator, and H is a real Hilbert space. This fundamental problem emerges
in many areas such as optimization [Eckstein, 1989; Raguet and Landrieu, 2015]
and variational analysis [Attouch et al., 2011; Chen and Rockafellar, 1997; Tseng,
2000]. For instance, consider optimization problems of the form

minimize
x ∈ H

f (x)+g(Lx)+h(x), (III.2)

where f : H → R∪{+∞} and g : K → R∪{+∞} are convex closed proper and
potentially non-smooth functions, h : H → R is a convex differentiable function
with β -Lipschitz continuous gradient, and L : H →K is a bounded linear operator.
Given some constraint qualification, see for instance [Bauschke and Combettes,
2017, Corollary 16.48], a point x? ∈H is a minimizer of (III.2) if and only if it
satisfies the optimality condition

0 ∈ ∂ f (x)+L∗∂g(Lx)+∇h(x), (III.3)

where L∗ is the adjoint operator of L [Bauschke and Combettes, 2017, Theorem
16.3]. Therefore, one can solve the inclusion problem (III.3) in order to find a so-
lution of the optimization problem (III.2). With a transformation to a primal–dual
setting this problem can be reformulated as a monotone inclusion of the form (III.1),
see Section 4.

Forward–backward (FB) splitting [Bruck, 1975; Lions and Mercier, 1979;
Passty, 1979] has been widely used to solve structured monotone inclusions of the
form (III.1). The FB splitting method is given by

xn+1 = (Id+γnA)−1 ◦ (Id−γnC)(xn),

where γn > 0 is a step-size parameter. It involves evaluating the operator C in a
forward (explicit) step, followed by computing the resolvent of the operator A in a
backward (implicit) step. The FB splitting has many well-known special instances,
such as the gradient method, the proximal point algorithm [Rockafellar, 1976], and
the proximal-gradient method [Combettes and Pesquet, 2011].

The inertial proximal point algorithm in [Alvarez, 2000; Alvarez and Attouch,
2001] improves convergence by exploiting previous information in a momentum
term. By incorporating an additional cocoercive operator to the inertial proximal
point algorithm, several variations of inertial FB algorithms have been proposed
to solve monotone inclusions [Attouch and Cabot, 2020; Cholamjiak et al., 2018;

110

1 Introduction

Lorenz and Pock, 2015]. These algorithms provide enhanced performance, but are
limited to FB splitting algorithms.

Anderson acceleration [Anderson, 1965] is an acceleration scheme that is aimed
at expediting the convergence of fixed-point iterations including the FB algorithm.
This algorithm was originally developed to solve nonlinear integral equations and
was later used to solve fixed-point problems [Fang and Saad, 2009; Walker and Ni,
2011]. Lately, Anderson acceleration has gained considerable attention in the opti-
mization community [He et al., 2021; Ouyang et al., 2020; Sadeghi and Giselsson,
2021; Scieur et al., 2020; Zhang et al., 2020].

Local convergence of Anderson acceleration has been studied recently. For in-
stance, the authors of [Toth and Kelley, 2015] showed that Anderson acceleration, if
applied to a contractive fixed-point map, exhibits linear convergence provided that
the coefficients in the linear combination remain bounded. Along the same line, it
was shown in [Evans et al., 2020] that applying Anderson acceleration to a linearly
convergent fixed-point iteration improves the convergence rate in the vicinity of a
fixed point. Despite recent studies that investigate local convergence properties of
Anderson acceleration, yet, to the best of our knowledge, no global convergence
result for Anderson acceleration (and its regularized variants) has been reported in
the literature.

Recently, the FB algorithm with deviations was proposed in [Sadeghi et al.,
2021] to solve the inclusion problem (III.1). This algorithm uses two auxiliary
terms—called deviations—which are added to the iterates in order to define ex-
trapolated iterates. The algorithm uses a safeguarding norm condition in the form
of an iteration-dependent constraint on the norm of the deviations that has to be
satisfied at each iteration in order to guarantee convergence. As long as this norm
constraint is satisfied, the deviations can be chosen freely and point in any direction.
In [Sadeghi et al., 2021], one suggestion is to define the deviations along the mo-
mentum direction as an(xn− xn−1), which gives an inertial-type method. An upper
bound to the momentum coefficient an is directly obtained by the norm condition.

In this work, inspired by the extrapolation technique of Anderson acceleration,
we propose a method to generate the deviation vectors of [Sadeghi et al., 2021] by
linearly combining multiple momentum terms. The aim is to construct a version of
FB splitting that exhibits fast local convergence while maintaining global conver-
gence of the algorithm, thanks to the norm condition. This is in contrast to Anderson
acceleration and its regularized variants [Scieur et al., 2020; Shi et al., 2019] that
are only locally convergent. We call our proposed algorithm dynamically weighted
inertial forward–backward method (DWIFOB).

The notion of safeguarding has been used also in other works to ensure global
convergence of nonlinear acceleration algorithms [Giselsson et al., 2016; Sadeghi
and Giselsson, 2021; Themelis and Patrinos, 2019; Zhang et al., 2020]. These are
hybrid methods that can select between a basic globally convergent and a locally
fast converging method, as decided by a safeguarding condition in every iteration.
Although having the same objective of achieving global convergence and fast local

111

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
convergence, these safeguarding conditions are completely different compared to
what we use in DWIFOB.

Besides the DWIFOB scheme itself, we also propose a primal–dual version of the
DWIFOB scheme which is derived by a direct translation of the DWIFOB algorithm
into a primal–dual framework. We have compared the primal–dual DWIFOB algo-
rithm with the Chambolle–Pock algorithm in numerical experiments, which show a
significant advantage of our proposed method in both convergence rate and overall
computational cost. Moreover, our numerical evaluations show that regularized An-
derson acceleration, in addition to being only locally convergent, is very sensitive to
variations in the choice of parameters, while DWIFOB is more robust to parameter
selection with the significant added benefit of having global convergence guaran-
tees. The aforementioned robustness and global convergence property along with
fast local convergence make the DWIFOB algorithm well-performing and reliable.

The paper is outlined as follows. In Section 2, after presenting the notations
and stating the problem under consideration, we review two algorithms that our
algorithm is built upon. Section 3 describes our proposed DWIFOB algorithm and
Section 4 extends the DWIFOB algorithm to the primal–dual setting and suggests a
novel algorithm in this framework. Numerical evaluations are provided in Section 5
and concluding remarks are presented in Section 6.

2. Problem statement and preliminaries

In this section, we present our notation and state the monotone inclusion problem
and the associated assumptions. We then briefly review two methods [Sadeghi et
al., 2021; Walker and Ni, 2011] that can be used to solve the problem at hand.
These methods come with their own sets of weaknesses and strengths. Our proposed
method combines these two methods to benefit from their individual strengths and
avoid their drawbacks.

2.1 Notation
Throughout the paper, R and Rd indicate the sets of real numbers and d-dimensional
real column vectors respectively. Additionally, H and K denote real Hilbert
spaces that are equipped with inner products 〈·, ·〉 and induced norms ‖·‖=

√
〈·, ·〉.

A linear, bounded, self-adjoint operator M : H →H is said to be strongly positive
if there exists ρ > 0 such that 〈x,Mx〉 ≥ ρ ‖x‖2 for all x ∈H . We denote the set of
such operators M (H). For M ∈M (H), the M-induced inner product and norm
are defined by 〈x,y〉M = 〈x,My〉 and ‖x‖M =

√
〈x,Mx〉 (x,y ∈H), respectively.

By 2H , we denote the power set of H . A map A : H → 2H is characterized
by its graph gra(A) = {(x,u) ∈H ×H : u ∈ Ax}. An operator A : H → 2H is
monotone, if 〈u− v,x− y〉 ≥ 0 for all (x,u),(y,v) ∈ gra(A). A monotone operator
A is maximally monotone if there exists no monotone operator B : H → 2H such

112

2 Problem statement and preliminaries

that gra(B) properly contains gra(A). The zero-set of the operator A is defined as
zer(A) := {x ∈H : 0 ∈ Ax}.

For β > 0, a single-valued operator T : H →H is said to be 1
β

-cocoercive
with respect to ‖·‖M with M ∈M (H) if

〈T x−Ty,x− y〉 ≥ 1
β
‖T x−Ty‖2

M−1 (∀x,y ∈H).

2.2 Problem statement
We consider structured monotone inclusion problems of the form

0 ∈ Ax+Cx, (III.4)

that satisfy the following assumption.

ASSUMPTION 1 Assume that

(i) A : H → 2H is maximally monotone.

(ii) C : H →H is 1
β

-cocoercive with respect to ‖·‖M with M ∈M (H).

(iii) The solution set zer(A+C) is nonempty. 2

This assumption implies that the operator A + C is maximally monotone
[Bauschke and Combettes, 2017, Corollary 25.5].

2.3 Forward–backward splitting with deviations
The FB algorithm with deviations is an extension of the standard FB algorithm and
was introduced recently in [Sadeghi et al., 2021]. In its most general form, two ad-
ditive terms—called deviations—are added to the basic FB method to form extrap-
olations to the iterate. The algorithm uses the extrapolated points in the evaluation
of the forward and the backward steps. If the deviations are chosen wisely, this can
exhibit an improved convergence compared to standard FB splitting. Algorithm 1
presents an instance of the FB algorithm with only one deviation vector.

To ensure convergence of Algorithm 1, the deviation un+1 must satisfy the
iteration-dependent norm bound in step 6 at each iteration [Sadeghi et al., 2021].
This bound is referred to as a norm condition. The requirements on the parameters
λn, γn, and ζn are collected in Assumption 2.

ASSUMPTION 2 Choose ε ∈
(

0,min
{

1, 4
3+β

})
, and assume that, for all n∈N, the

following hold:

(i) 0≤ ζn ≤ 1− ε;
(ii) ε ≤ γn ≤ 4−3ε

β
; and

(iii) ε ≤ λn ≤ 2− γnβ

2 −
ε

2 . 2

113

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
Algorithm 1

1: Input: x0 ∈H ; and the sequences (γn)n∈N, (λn)n∈N, and (ζn)n∈N according to
Assumption 2; and the metric ‖·‖M with M ∈M (H).

2: set: y0 = x0 and u0 = 0.
3: for n = 0,1,2, . . . do
4: pn = (M+ γnA)−1 ◦ (M− γnC)(yn)
5: xn+1 = xn +λn(pn− yn)
6: choose un+1 such that

‖un+1‖2
M ≤ ζ

2
n

λn(4−2λn−γnβ)(4−2λn+1−γn+1β)
4λn+1

∥∥∥pn− xn +
2λn+γnβ−2
4−2λn−γnβ

un

∥∥∥2

M

7: yn+1 = xn+1 +un+1
8: end for

The following result, which is adopted from [Sadeghi et al., 2021], provides a
convergence guarantee for the iterates that are obtained from Algorithm 1.

THEOREM 1 Consider the monotone inclusion problem (III.4) and suppose that
Assumption 1 and Assumption 2 hold. Let (xn)n∈N be the sequence generated by
Algorithm 1. Then, the sequence (xn)n∈N converges weakly to a point in zer(A+
C). 2

Proof. In the FB splitting with deviations [Sadeghi et al., 2021, Algorithm 1], set
zn = yn. This gives the relation

vn =
2−γnβ

2−λnγnβ
un

between un and vn, which yields Algorithm 1. Therefore, Algorithm 1 is an instance
of the FB splitting algorithm with deviations; consequently, Theorem 1 is a direct
consequence of [Sadeghi et al., 2021, Theorem 1]. 2

There is a great flexibility in the choice of deviation vector un+1. This flexibility
has not been fully explored in [Sadeghi et al., 2021, Section 6], where only a simple
momentum direction has been considered. Our proposed method is an instance of
Algorithm 1 from [Sadeghi et al., 2021], where the deviations are chosen based on
ideas from the extrapolation step of Anderson acceleration with the goal of improv-
ing local performance while benefiting from the global convergence properties of
Algorithm 1.

2.4 Regularized Anderson acceleration
Consider the following fixed-point problem

find x ∈H such that x = T (x), (III.5)

114

2 Problem statement and preliminaries

where T : H →H is a nonexpansive mapping. One way to solve this problem
is to use Anderson acceleration [Anderson, 1965; Walker and Ni, 2011]. Anderson
acceleration is easy to implement and often improves the convergence of fixed-point
iterations, particularly in their terminal phase of convergence, i.e., when close to a
solution. However, Anderson acceleration (in its original form [Anderson, 1965;
Walker and Ni, 2011]) suffers from numerical instability. This issue can, to some
extent, be addressed by adding a Tikhonov regularization term to its inner least-
squares problem. A regularized formulation of Anderson acceleration is given in
Algorithm 2 [Scieur et al., 2020; Shi et al., 2019]. In spite of their popularity and
benefits, there are not yet any global convergence results for the pure Anderson
acceleration or its regularized variant, to the best of our knowledge.

Algorithm 2 Regularized Anderson acceleration

1: Input: y0 ∈H ; m≥ 1; and the regularization parameter ξ .
2: for n = 0,1,2, . . . do
3: mn = min{m,n}
4: xn = T (yn)

5: find α(n) = (α
(n)
0 , . . . ,α

(n)
mn) that solves

minimize
α(n)∈Rmn+1

∥∥∥Rnα
(n)
∥∥∥2

2
+ξ
∥∥RT

n Rn
∥∥

F

∥∥∥α
(n)
∥∥∥2

2

subject to 1T
α
(n) = 1

where Rn = (rn−mn , . . . ,rn) and r j = y j− x j for j ∈ {n−mn, . . . ,n}
6: yn+1 = ∑

mn
i=0 α

(n)
i xn−mn+i

7: end for

Anderson acceleration is retrieved from Algorithm 2 by setting ξ = 0. The orig-
inal formulation of Anderson acceleration [Anderson, 1965] is more general as it
allows for the following damped (mixed) step to be taken

yn+1 = µn

mn

∑
i=0

α
(n)
i xn−mn+i +(1−µn)

mn

∑
i=0

α
(n)
i yn−mn+i,

instead of step 6, in which µn > 0 is the damping (mixing) parameter. In this work,
we consider the regularized variant of Anderson acceleration, given in Algorithm 2,
and refer to it as RAA.

REMARK 1 Anderson acceleration (Algorithm 2 with ξ = 0) can be viewed as a
quasi-Newton method [Eyert, 1996; Fang and Saad, 2009; Walker and Ni, 2011;
Zhang et al., 2020]. To see this, first observe that the inner optimization problem of
Anderson acceleration can be written as the following unconstrained least-squares

115

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
problem

minimize
ω(n)∈Rmn

∥∥∥rn−∆Rnω
(n)
∥∥∥

2
, (III.6)

where ∆Rn = (rn−mn+1− rn−mn , . . . ,rn− rn−1) and ω(n) = (ω
(n)
0 , . . . ,ω

(n)
mn−1) with

ω
(n)
i = ∑

i
j=0 α

(n)
j for i ∈ {0, . . . ,mn − 1}. Then, defining ∆Yn = (yn−mn+1 −

yn−mn , . . . ,yn− yn−1), the extrapolation step of AA can be cast as

yn+1 = yn−Gnrn

where Gn = Id+(∆Yn−∆Rn)(∆R
T
n ∆Rn)

−1∆RT
n . In this framework, Anderson ac-

celeration can be seen a quasi-Newton method where Gn is an approximate inverse
Jacobian of x−T (x) that minimizes ‖Gn− I‖F subject to the inverse multi-secant
condition Gn∆Yn = ∆Rn. 2

3. Dynamically weighted inertial FB scheme

In this section, we present a dynamically weighted inertial forward–backward
(DWIFOB) scheme to solve the problem introduced in Section 2.2. It is based on
Algorithm 1 with a choice of deviation vectors inspired by RAA (Algorithm 2).

The DWIFOB scheme exploits a history of search directions similar to RAA to
find a deviation vector, and it uses the norm condition in step 6 of Algorithm 1 to
bound the norm of the deviation. This results in an algorithm that addresses the
drawbacks of Algorithm 1 (slow local convergence) and RAA (no global conver-
gence guarantee) and benefits from their favorable properties; namely, global con-
vergence of Algorithm 1 and the often fast local convergence of RAA.

The convergence of DWIFOB follows from Theorem 1, that shows the conver-
gence of Algorithm 1, of which DWIFOB is a special instance with a specific class
of deviations.

COROLLARY 1 Consider the monotone inclusion problem (III.4) and suppose that
Assumption 1 and Assumption 2 hold. Let (xn)n∈N be the sequence generated by
Algorithm 3. Then, the sequence (xn)n∈N converges weakly to a point in the solution
set zer(A+C). 2

4. Primal–dual variant of DWIFOB

In this section, we consider a specific type of monotone inclusion problems that,
after being translated to a primal–dual framework, can be efficiently tackled by
DWIFOB. We propose a primal–dual algorithm based on Algorithm 3 for solving
such problems.

116

4 Primal–dual variant of DWIFOB

Algorithm 3 DWIFOB

1: Input: x0 ∈H ; m≥ 1; the sequences (λn)n∈N, (γn)n∈N, and (ζn)n∈N as defined
in Assumption 2; the regularization parameter ξ ; the metric ‖·‖M with M ∈
M (H); and ε ≥ 0.

2: set y0 = x0 and u0 = 0.
3: for n = 0,1,2, . . . do
4: mn = min(m,n)
5: pn = (M+ γnA)−1 ◦ (M− γnC)yn
6: xn+1 = xn +λn(pn− yn)

7: find α(n) = (α
(n)
0 , . . . ,α

(n)
mn) that solves

minimize
α(n)∈Rmn+1

∥∥∥Rnα
(n)
∥∥∥2

2
+ξ
∥∥RT

n Rn
∥∥

F

∥∥∥α
(n)
∥∥∥2

2

subject to 1T
α
(n) = 1

where Rn = (rn−mn , . . . ,rn) and r j = x j+1− y j

8: ûn+1 = xn+1−∑
mn
i=0 α

(n)
i xn−mn+i+1

9: `2
n =

λn(4−2λn−γnβ)(4−2λn+1−γn+1β)
4λn+1

∥∥∥pn− xn +
2λn+γnβ−2
4−2λn−γnβ

un

∥∥∥2

M

10: un+1 = ζn|`n| ûn+1
ε+‖ûn+1‖M

11: yn+1 = xn+1 +un+1
12: end for

Problem statement. We consider primal inclusion problems of finding x ∈H
such that

0 ∈ Ax+L∗B(Lx)+Cx (III.7)

with the following assumptions.

ASSUMPTION 3 Assume that

(i) A : H → 2H is a maximally monotone operator;

(ii) B : K → 2K is a maximally monotone operator;

(iii) L : H →K is a bounded linear operator;

(iv) C : H →H is a 1
β

-cocoercive operator with respect to the metric ‖ · ‖;

(v) The solution set zer(A+L∗BL+C) is nonempty. 2

117

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
Translation to a primal–dual framework. The inclusion problem (III.7) can be
translated to a primal–dual setting [He and Yuan, 2012] to get the inclusion problem

0 ∈A z+C z (III.8)

in which, with some abuse of notation,

A =

[
A L∗

−L B−1

]
C =

[
C 0
0 0

]
(III.9)

and z := (x,µ)∈H ×K is a primal–dual pair. It holds that x is a solution to (III.7)
if and only if there exists some µ ∈K such that z = (x,µ) is a solution to (III.8).

In this setting, the operator A is a maximally monotone [Bauschke and Com-
bettes, 2017, Proposition 26.32] and the operator C is 1/β -cocoercive with respect
to the norm ‖·‖M , with

M =

[
I −τL∗

−τL τσ−1I

]
, (III.10)

where τ > 0 and σ > 0 are chosen such that στ‖L‖2 < 1, which ensures that M
is strictly positive. Therefore, the inclusion problem (III.8) can be solved using
the DWIFOB algorithm. Algorithm 4 describes our primal–dual DWIFOB algorithm
which is derived by a straightforward application of DWIFOB to (III.8). With C = 0
and m = 1, this algorithm is equivalent to [Sadeghi et al., 2021, Algorithm 4], an
inertial primal–dual algorithm.

The following is a result on weak convergence of the iterates generated by Al-
gorithm 4. It is based on showing that Algorithm 4 is a special case of the weakly
convergent Algorithm 1.

COROLLARY 2 Consider the monotone inclusion problem (III.7) under Assump-
tion 3 and suppose that Assumption 2 holds. Then the sequence (xn)n∈N in Algo-
rithm 4 converges weakly to a point in zer(A+L∗BL+C). 2

Proof. Comparing Algorithm 4 with Algorithm 1, we set pn = (px,n, pµ,n), yn =
(x̂n, µ̂n), define A and C as in (III.9), and let M be defined as in (III.10). Then, we
have the following update

pn = (px,n, pµ,n) = (M+ τA)−1(Myn− τC yn)

=

[
I + τA 0
−2τL τσ−1I + τB−1

]−1 [x̂n− τL∗µ̂n− τCx̂n
−τLx̂n + τσ−1µ̂n

]
=

[
(I + τA)−1(x̂n− τL∗µ̂n− τCx̂n)

(I +σB−1)−1(µ̂n +σL(2px,n− x̂n))

]
=

[
JτA (x̂n− τL∗µ̂n− τCx̂n)

JσB−1 (µ̂n +σL(2px,n− x̂n))

]
,

118

4 Primal–dual variant of DWIFOB

Algorithm 4
1: Input: (x0,µ0) ∈H ×K ; m ≥ 1; the sequences (λn)n∈N and (ζn)n∈N as de-

fined in Assumption 2; the regularization parameter ξ ; σ > 0,τ > 0 such that
στ‖L‖2 < 1; and ε ≥ 0.

2: set (x̂0, µ̂0) = (x0,µ0) and (ux,0,uµ,0) = (0,0)
3: for n = 0,1,2, . . . do
4: mn = min(m,n)
5: px,n = JτA(x̂n− τL∗µ̂n− τCx̂n)
6: pµ,n = JσB−1 (µ̂n +σL(2px,n− x̂n))
7: xn+1 = xn +λn(px,n− x̂n)
8: µn+1 = µn +λn(pµ,n− µ̂n)

9: find α(n) = (α
(n)
0 , . . . ,α

(n)
mn) that solves

minimize
α(n)∈Rmn+1

∥∥∥Rnα
(n)
∥∥∥2

2
+ξ
∥∥RT

n Rn
∥∥

F

∥∥∥α
(n)
∥∥∥2

2

subject to 1T
α
(n) = 1

where Rn = (rn−mn , . . . ,rn) where r j = (x j+1− x̂ j,µ j+1− µ̂ j)

10:

[
ûx,n+1
ûµ,n+1

]
=

[
xn+1
µn+1

]
−∑

mn
i=0 α

(n)
i

[
xn−mn+i+1
µn−mn+i+1

]
11: `2

n =
λn(4−2λn−τβ)(4−2λn+1−τβ)

4λn+1

∥∥∥∥[px,n
pµ,n

]
−
[

xn
µn

]
+ 2λn+τβ−2

4−2λn−τβ

[
ux,n
uµ,n

]∥∥∥∥2

M

12:

[
ux,n+1
uµ,n+1

]
= ζn|`n|

ε+‖(ûx,n+1,ûµ,n+1)‖M

[
ûx,n+1
ûµ,n+1

]
13: x̂n+1 = xn+1 +ux,n+1
14: µ̂n+1 = µn+1 +uµ,n+1
15: end for

which gives the resolvent steps of Algorithm 4 (steps 5 and 6). Moreover, it is also
straightforward to verify that, by substituting (xn+1,µn+1) in place of xn+1 in Algo-
rithm 1, the relaxation steps of Algorithm 4 (steps 7 and 8) are equivalent to that of
Algorithm 1. Additionally, with the devised choice of un+1 = (ux,n+1,uµ,n+1) in Al-
gorithm 4, the norm condition of Algorithm 1 holds. Therefore, since Algorithm 4
is a special instance of Algorithm 1 and due to equivalence of (III.7) and (III.8), a
direct application of Theorem 1 concludes the proof. 2

REMARK 2 For the choice of λn = 1, ux,n = 0 and uµ,n = 0 for all n ∈ N and C =
0, Algorithm 4 reduces to the standard Chambolle–Pock iteration [Chambolle and
Pock, 2011], that is

(xn+1,µn+1) =

[
JτA (xn− τL∗µn)

JσB−1 (µn +σL(2xn+1− xn))

]
. 2

119

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
4.1 Efficient evaluation of the M-induced norm
In Algorithm 4, we need to evaluate two M-induced norms per iteration, where M is
given by (III.10). This means that, in addition to evaluating L and L∗ in the resolvent
steps, two extra evaluations each of L and L∗ are needed due the M-induced norms.
These extra evaluations can be computationally expensive, which would make the
algorithm computationally inefficient. However, by utilizing a similar approach as
in [Sadeghi et al., 2021, Section 6.1], the extra evaluations can be efficiently done
by reusing some of the previous computations.

We next show that we only need to apply L and L∗ once per iteration (except for
the first) in Algorithm 4. Observe that, by applying the operator L on steps 7, 10,
and 13 (after substitution of step 12) of Algorithm 4, we obtain the following rela-
tions

Lxn+1 = Lxn +λn(Lpx,n−Lx̂n),

Lûx,n+1 = Lxn+1−
mn

∑
i=0

α
(n)
i Lxn−mn+i+1,

Lx̂n+1 = Lxn+1 +
ζn|`n|

ε+‖(ûx,n+1,ûµ,n+1)‖M
Lûx,n+1.

(III.11)

In these relations, for all n > 0, we only need to evaluate Lpx,n. The rest of the quan-
tities to the right-hand sides of the above relations are already computed and can be
reused. This means that, in practice, we only need to only evaluate one of each L
(for Lpx,n) and L∗ (for L∗µ̂n) at each iteration, except for the first. Therefore, since
the most computationally expensive part of our algorithm often is evaluating L and
L∗, exploiting this technique keeps the computational cost of our algorithm similar
to that of the Chambolle–Pock method. However, in order to use this approach, one
needs to store mn +4 vectors of the same dimension as the dual variable. Hence, in
applications where storage is a bottleneck, using a large mn might be restrictive.

Evaluation of the M-induced norm of, for instance,
∥∥(ûx,n, ûµ,n)

∥∥
M can be done

as ∥∥(ûx,n, ûµ,n)
∥∥2

M = ‖ûx,n‖2 + τ

σ

∥∥ûµ,n
∥∥2−2τ

〈
ûµ,n,Lûx,n

〉
, (III.12)

where Lûx,n is already available from the stored set of quantities. The other M-
induced norm in step 11 of Algorithm 4 can be computed in the same way as above
without extra evaluations of L or L∗.

5. Numerical experiments

In this section, we evaluate the performance of the primal–dual variant of the
DWIFOB algorithm and compare it with the Chambolle–Pock primal–dual method
and RAA.

120

5 Numerical experiments

We consider a support vector machine (SVM) problem with l1-norm regulariza-
tion for classification of the form

minimize
(w,b)∈Rd×R

N

∑
i=1

max
(
0,1−φi(wT

θi +b)
)
+δ‖w‖1 (III.13)

given a labeled training data set {(θi,φi)}N
i=1, where θi ∈ Rd and φi ∈ {−1,1} are

training data and labels respectively, δ > 0 is the regularization parameter, and
x = (w,b) with b ∈ R and w ∈ Rd is the decision variable. This problem can be
reformulated as

minimize
x∈Rd+1

f (Lx)+g(x) (III.14)

with

f (y) =
N

∑
i=1

max(0,1− yi) , g(x) = δ‖ω‖1, L =

φ1θ T
1 φ1

...
...

φNθ T
N φN

 ,
where f , g : Rd+1→ R are proper, closed, and convex (and non-smooth) functions
with full domain and L is a bounded linear operator. A point x? ∈ Rd+1 solves
problem (III.14) if and only if

0 ∈ L∗∂ f (Lx)+∂g(x), (III.15)

where ∂ f and ∂g are the subdifferentials of f and g, respectively [Bauschke and
Combettes, 2017, Proposition 16.42]. By [Bauschke and Combettes, 2017, Theo-
rem 20.25], ∂ f and ∂g are maximally monotone. Therefore, we solve the monotone
inclusion (III.15) in order to find a solution to problem (III.14), which, by setting
A = ∂g, B = ∂ f , and C = 0, fits into the framework of problem (III.8). We use the
following algorithms to solve the problem:

• Chambolle and Pock’s primal–dual method (CP) [Chambolle and Pock,
2011];

• The primal–dual DWIFOB method in Algorithm 4 (Alg4);

• Regularized Anderson acceleration (RAA), Algorithm 2, [Scieur et al., 2020;
Walker and Ni, 2011], applied to the fixed-point map of Chambolle–Pock,
see Remark 2.

In the algorithms listed above, evaluating L and L∗ in the resolvent steps and
solving the least-squares problem, if there is one, are the computationally intensive
parts. Since the Chambolle–Pock algorithm does not involve solving a least-squares
problem, it has a cheaper per-iteration cost compared to the other algorithms. To

121

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
provide a fair comparison, we compare the methods using scaled iterations. Let
CCP and Calg be the average per-iteration computational cost of the Chambolle–
Pock method and one of the algorithms mentioned above (alg ∈ {CP,Alg4,RAA}),
respectively. The scaled iteration is the iteration count scaled by the ratio Calg

CCP
. The

iteration costs CCP and Calg are numerically approximated by measuring the aver-
age per-iteration elapsed time of the individual algorithms. The benefits of using
the notion of scaled iteration are two-fold. In addition to considering the relative
per-iteration computational cost of the algorithms, it eliminates the impact of com-
putational capacity/power of the platform that the algorithms are implemented on,
which makes the results more reproducible.

The experiments are done using three different benchmark datasets; the breast
cancer dataset with 683 samples and 10 features, the sonar dataset with 208 samples
and 60 features, and colon cancer dataset with 62 samples and 2000 features, all
from [Chang and Lin, 2011]. The numerical experiments are done on a laptop with a
1.4 GHz Quad-core Intel Core i5 processor with 16 GB of memory. The algorithms
are implemented using the Julia programming language (Version 1.3.1).

In all experiments, the primal and the dual step-size parameters are chosen as
τ = σ = 0.99/‖L‖2, ζn = 0.99 for all n∈N, ε = 0, and a fixed relaxation parameter
λ = 1.0 for Algorithm 4 is used. Unless otherwise stated, the algorithms are initial-
ized at (x0,µ0) = 0. We report results from the numerical experiments in a sequence
of figures. The M-induced distance to a solution is used as the convergence mea-
sure where the individual underlying solutions are found by running the standard
Chambolle–Pock algorithm until ‖xn− xn−1‖ ≤ 10−15 and ‖µn−µn−1‖ ≤ 10−15.
All algorithms that converge do so to the same solution. Moreover, all evaluations
of L, L∗, and ‖·‖M are done using the proposed recursive method of Section 4.1,
unless otherwise stated.

Figures 1 to 3 provide a comparison between the Chambolle–Pock method and
Algorithm 4 for several memory size values using different datasets. The figures
show that for the considered different values of the memory size m, Algorithm 4
outperforms the Chambolle–Pock method. It can also be seen that increasing the
memory size m in Algorithm 4 improves the local convergence rate. However, by
increasing m in Algorithm 4, the computational cost of solving the least-squares
problem increases, while the computational cost of the resolvent steps is fixed.
Therefore, it is expected that there is an optimal memory size beyond which in-
creasing m degrades the performance (compared to the optimal one). This can be
better seen in Fig. 4, which shows the number of scaled iterations until the M-scaled
distance of (xn,µn) to the solution is less than some value tol, against the memory
size. It is seen that we get good performance for a wide range of memory sizes (typ-
ically 10 ≤ m ≤ 25). It is also good to mention that even for small or large m, we
still see a considerable improvement compared to the Chambolle–Pock method.

Figure 5 shows the impact of using direct evaluation of L, L∗, and ‖·‖M instead
of the proposed recursive method of Section 4.1, on the convergence pattern of Al-

122

5 Numerical experiments

CP vs. Alg4 (λ = 1.0,m,ξ = 10−5)

0 200 400 600 800
×103 iteration

‖ (
x n
,µ

n)
−
(x

?
,µ

?
)‖

M
‖ (

x 0
,µ

0)
−
(x

?
,µ

?
)‖

M

0 200 400 600 800
×103 scaled iteration

CP m = 3 m = 5 m = 10 m = 15

Figure 1: Normalized M-induced distance to the solution vs. iteration number (left)
and scaled iteration number (right) for the l1-norm regularized SVM, problem
(III.13), with δ = 0.5, on the breast cancer dataset [Chang and Lin, 2011] with 683
samples and 10 features. Solved using the Chambolle–Pock algorithm and Alg4
(λ = 1.0, m, ξ = 10−5) for several memory sizes m, all with τ = σ = 0.99/‖L‖.

CP vs. Alg4 (λ = 1.0,m,ξ = 10−5)

0 1000 2000 3000
×103 iteration

‖ (
x n
,µ

n)
−
(x

?
,µ

?
)‖

M
‖ (

x 0
,µ

0)
−
(x

?
,µ

?
)‖

M

0 1000 2000 3000
×103 scaled iteration

CP m = 5 m = 10 m = 15

Figure 2: Normalized M-induced distance to the solution vs. iteration number (left)
and scaled iteration number (right) for the l1-norm regularized SVM, problem
(III.13), with δ = 1.0, on the sonar dataset [Chang and Lin, 2011] with 208 samples
and 60 features. Solved using the Chambolle–Pock algorithm and Alg4 (λ = 1.0,
m, ξ = 10−5) for several memory sizes m, all with τ = σ = 0.99/‖L‖.

123

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions

CP vs. Alg4 (λ = 1.0,m,ξ = 10−6)

0 1000 2000 3000
×103 iteration

‖ (
x n
,µ

n)
−
(x

?
,µ

?
)‖

M
‖ (

x 0
,µ

0)
−
(x

?
,µ

?
)‖

M

0 1000 2000 3000
×103 scaled iteration

CP m = 5 m = 15 m = 25

Figure 3: Normalized M-induced distance to the solution vs. iteration number (left)
and scaled iteration number (right) for the l1-norm regularized SVM, problem
(III.13), with δ = 0.1, on the colon cancer dataset [Chang and Lin, 2011] with 62
samples and 2000 features. Solved using the Chambolle–Pock algorithm and Alg4
(λ = 1.0, m, ξ = 10−6) for several memory sizes, m, all with τ = σ = 0.99/‖L‖.

gorithm 4. The experiment is done with the same setting as in the one reported in
Fig. 3 for the case of m = 25. The top right plot shows that the suggested method
of recursive evaluation of Algorithm 4 considerably decreases the overall computa-
tional cost, in this instance by about 30%. Additionally, it is observed that by using
the suggested recursive evaluation of L, L∗, and ‖·‖M , we might see some unex-
pected spikes in the plots, which are caused by accumulated errors due to recursive
evaluations, while using the direct evaluation method does not result in such spikes.
The bottom plot in Fig. 5 compares

Vn :=
∥∥∥∥[xn+1

µn+1

]
−
[

x?

µ?

]∥∥∥∥2

M

+λn(2−λn)

∥∥∥∥[px,n
pµ,n

]
−
[

xn
µn

]
+

λn−1
2−λn

[
ux,n
uµ,n

]∥∥∥∥2

M

(III.16)

for the case of direct and recursive evaluation methods. According to [Sadeghi et
al., 2021, Lemma 1] with exact evaluation of L, L∗, and M, this quantity should be
decreasing, which is confirmed by the figure. However, this is not the case for the
recursive evaluation method due to accumulated errors.

The results of experiments with the Chambolle–Pock method, Algorithm 4, and
RAA are shown in Fig. 6. The plots on the left-hand side compare the Chambolle–
Pock algorithm and Algorithm 4 and the plots on the right-hand side show the con-
vergence of RAA versus the Chambolle–Pock algorithm. For these experiments, the
algorithms are initialized far from the origin (at (x0,µ0) = 104×1694, where 1694 is
a vector of ones with 694 elements). We see that RAA is not globally convergent;

124

5 Numerical experiments

0 20 40 60
100

200

300

400

500

600

700

memory size m

×
10

3
sc

al
ed

ite
ra

tio
n

0 20 40 60
1000

2000

3000

4000

5000

6000

memory size m

×
10

3
sc

al
ed

ite
ra

tio
n

0 20 40 60

2500

5000

7500

10000

memory size m

×
10

3
sc

al
ed

ite
ra

tio
n

Figure 4: Number of scaled iterations until the normalized M-induced distance to
the solution gets smaller than some value tol vs. memory size with the settings in the
experiments of Fig. 1 (tol= 10−8, top left panel), Fig. 2 (tol= 10−6, top right panel),
and Fig. 3 (tol= 10−4, bottom panel); using Algorithm 4, where m = 0 corresponds
to the Chambolle–Pock method and m = 1 corresponds to the inertial primal–dual
method of [Sadeghi et al., 2021].

however, when it converges, it does so fast. It is also seen that RAA is really sensi-
tive to parameter variations; and besides that, for it to perform well, there should be
a reasonable match between the regularization parameter and its memory size (see
the middle plot of RAA). On the other hand, Algorithm 4 is more robust against
variations in parameters. These results suggest that Algorithm 4 is more reliable
than RAA in the sense of robustness against variations in parameters and also pre-
dictability of its behavior.

The distances to a solution for RAA that do not converge to zero in Fig. 6 have
not converged although they seem to have flat asymptotes. In fact, consecutive it-
erates differ a lot and the primal iterate inserted into the objective function (III.14)
gives values that are several orders of magnitude larger than the optimal value, also
at the end of the simulation. This rules out that the algorithm converges to a different
solution (if it exists) than all the other methods do.

125

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions

0 200 400 600 800
×103 iteration

‖ (
x n
,µ

n)
−
(x

?
,µ

?
)‖

M
‖ (

x 0
,µ

0)
−
(x

?
,µ

?
)‖

M

0 1000 2000 3000
×103 scaled iteration

0 200 400 600 800
×103 iteration

V n

with recursive evaluation of L, L∗, and ‖·‖M

with direct evaluation of L, L∗, and ‖·‖M

Figure 5: Comparing the impact of recursive and direct evaluation of L, L∗, and
‖·‖M on the convergence pattern of Alg4 (λ = 1.0, m = 25, ξ = 10−6) for problem
(III.13) with δ = 0.1, on the colon cancer dataset [Chang and Lin, 2011]; Top pan-
els: normalized M-induced distance to the solution vs. iteration number (top left)
and scaled iteration number (top right); bottom panel: Vn (defined in (III.16)) vs.
iteration number.

6. Conclusion

We have proposed a novel scheme to solve structured monotone inclusion prob-
lems. By combining a variant of FB splitting with deviations with an extrapolation
technique similar to that of Anderson acceleration, we introduced the DWIFOB al-
gorithm. Using the flexibility that the FB algorithm with deviations provides, we
introduced a primal–dual variant of the DWIFOB algorithm. Numerical experiments
on an l1-norm regularized SVM problem showed that the primal–dual variant of the
DWIFOB algorithm outperforms the Chambolle–Pock primal–dual method. Addi-
tionally, we compared the performance of the primal–dual variation of DWIFOB to
the regularized Anderson acceleration on the same benchmark problem. The results
showed that, in addition to only being locally (though fast) convergent, Anderson
acceleration is very sensitive to the variations in choice of parameters while primal–

126

6 Conclusion

CP vs. Alg4 (λ = 1.0,m,ξ = 10−5) CP vs. RAA (m,ξ = 10−5)

0 100 200 300 400 500
×103 iteration

‖ (
x n
,µ

n)
−
(x

?
,µ

?
)‖

M

0 100 200 300 400 500
×103 iteration

CP vs. Alg4 (λ = 1.0,m,ξ = 10−6) CP vs. RAA (m,ξ = 10−6)

0 100 200 300 400 500
×103 iteration

‖ (
x n
,µ

n)
−
(x

?
,µ

?
)‖

M

0 100 200 300 400 500
×103 iteration

CP vs. Alg4 (λ = 1.0,m,ξ = 10−7) CP vs. RAA (m,ξ = 10−7)

0 100 200 300 400 500
×103 iteration

‖ (
x n
,µ

n)
−
(x

?
,µ

?
)‖

M

0 100 200 300 400 500
×103 iteration

CP m = 5 m = 10 m = 15

Figure 6: Normalized M-induced distance to the solution vs. iteration number for
the l1-norm regularized SVM problem (III.13) with δ = 0.5 on the breast cancer
dataset [Chang and Lin, 2011] with 683 samples and 10 features. Solved using the
Chambolle–Pock algorithm, Alg4 (λ = 1.0, m, ξ) (left-hand side plots), and RAA
(m, ξ) (right-hand side plots) for several memory sizes and Tikhonov regularization
parameters, all with τ = σ = 0.99/‖L‖. In this case, the initial point is set far from
the origin, namely, at a distance of approximately 2.6×105 to the origin.

127

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
dual DWIFOB is much more robust against them. This makes the behavior of the
DWIFOB algorithm more reliable and predictable.

Acknowledgement. The authors would like to thank Bo Bernhardsson (Depart-
ment of Automatic Control, Lund University) for his valuable feedback on this
work. This research was partially supported by Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation. Sebastian Banert was partially supported by ELLIIT.

128

References

References

Alvarez, F. (2000). “On the minimizing property of a second order dissipative
system in Hilbert spaces”. SIAM Journal on Control and Optimization 38:4,
pp. 1102–1119. DOI: 10.1137/s0363012998335802.

Alvarez, F. and H. Attouch (2001). “An inertial proximal method for maximal
monotone operators via discretization of a nonlinear oscillator with damping”.
Set-Valued Analysis 9:1/2, pp. 3–11. DOI: 10.1023/a:1011253113155.

Anderson, D. G. (1965). “Iterative procedures for nonlinear integral equations”.
Journal of the ACM 12:4, pp. 547–560. DOI: 10.1145/321296.321305.

Attouch, H. and A. Cabot (2020). “Convergence of a relaxed inertial proximal algo-
rithm for maximally monotone operators”. Mathematical Programming 184:1,
pp. 243–287.

Attouch, H., M.-O. Czarnecki, and J. Peypouquet (2011). “Coupling forward–
backward with penalty schemes and parallel splitting for constrained varia-
tional inequalities”. SIAM Journal on Optimization 21:4, pp. 1251–1274. DOI:
10.1137/110820300.

Bauschke, H. H. and P. L. Combettes (2017). Convex analysis and monotone op-
erator theory in Hilbert spaces. 2nd ed. CMS Books in Mathematics. Springer.
DOI: 10.1007/978-3-319-48311-5.

Bruck, R. E. (1975). “An iterative solution of a variational inequality for certain
monotone operators in hilbert space”. Bulletin of the American Mathematical
Society 81, pp. 890–892. DOI: 10.1090/S0002-9904-1975-13874-2.

Chambolle, A. and T. Pock (2011). “A first-order primal–dual algorithm for convex
problems with applications to imaging”. Journal of Mathematical Imaging and
Vision 40:1, pp. 120–145. DOI: 10.1007/s10851-010-0251-1.

Chang, C.-C. and C.-J. Lin (2011). “LIBSVM: a library for support vector ma-
chines”. ACM Transactions on Intelligent Systems and Technology (TIST) 2:3,
pp. 1–27. DOI: 10.1145/1961189.1961199.

Chen, G. H.-G. and R. T. Rockafellar (1997). “Convergence rates in forward–
backward splitting”. SIAM Journal on Optimization 7:2, pp. 421–444. DOI:
10.1137/S1052623495290179.

Cholamjiak, W., P. Cholamjiak, and S. Suantai (2018). “An inertial forward–
backward splitting method for solving inclusion problems in Hilbert spaces”.
Journal of Fixed Point Theory and Applications 20:1. DOI: 10.1007/s11784-
018-0526-5.

Combettes, P. L. and J.-C. Pesquet (2011). “Proximal splitting methods in signal
processing”. In: Bauschke, H. H. et al. (Eds.). Fixed-point algorithms for inverse
problems in science and engineering. Springer New York, pp. 185–212. DOI:
10.1007/978-1-4419-9569-8_10.

129

Paper III. DWIFOB: A Dynamically Weighted Inertial Forward–Backward
Algorithm for Monotone Inclusions
Eckstein, J. (1989). Splitting methods for monotone operators with applications to

parallel optimization. PhD thesis. Massachusetts Insitute of Technology. URL:
http://hdl.handle.net/1721.1/14356.

Evans, C., S. Pollock, L. G. Rebholz, and M. Xiao (2020). “A proof that anderson
acceleration improves the convergence rate in linearly converging fixed-point
methods (but not in those converging quadratically)”. SIAM Journal on Numer-
ical Analysis 58:1, pp. 788–810. DOI: 10.1137/19M1245384.

Eyert, V. (1996). “A comparative study on methods for convergence acceleration of
iterative vector sequences”. Journal of Computational Physics 124:2, pp. 271–
285. DOI: 10.1006/jcph.1996.0059.

Fang, H.-r. and Y. Saad (2009). “Two classes of multisecant methods for nonlinear
acceleration”. Numerical Linear Algebra with Applications 16:3, pp. 197–221.
DOI: 10.1002/nla.617.

Giselsson, P., M. Fält, and S. Boyd (2016). “Line search for averaged operator iter-
ation”. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
pp. 1015–1022. DOI: 10.1109/CDC.2016.7798401.

He, B. and X. Yuan (2012). “Convergence analysis of primal–dual algorithms for a
saddle-point problem: from contraction perspective”. SIAM Journal on Imaging
Sciences 5:1, pp. 119–149. DOI: 10.1137/100814494.

He, H., S. Zhao, Y. Xi, J. C. Ho, and Y. Saad (2021). Solve minimax optimization
by Anderson acceleration. arXiv: 2110.02457v2 [cs.LG].

Lions, P. L. and B. Mercier (1979). “Splitting algorithms for the sum of two nonlin-
ear operators”. SIAM Journal on Numerical Analysis 16:6, pp. 964–979. DOI:
10.1137/0716071.

Lorenz, D. A. and T. Pock (2015). “An inertial forward–backward algorithm
for monotone inclusions”. Journal of Mathematical Imaging and Vision 51:2,
pp. 311–325. DOI: 10.1007/s10851-014-0523-2.

Ouyang, W., Y. Peng, Y. Yao, J. Zhang, and B. Deng (2020). “Anderson accelera-
tion for nonconvex ADMM based on Douglas–Rachford splitting”. Computer
Graphics Forum 39:5, pp. 221–239. DOI: 10.1111/cgf.14081.

Passty, G. B. (1979). “Ergodic convergence to a zero of the sum of monotone opera-
tors in Hilbert space”. Journal of Mathematical Analysis and Applications 72:2,
pp. 383–390. DOI: 10.1016/0022-247x(79)90234-8.

Raguet, H. and L. Landrieu (2015). “Preconditioning of a generalized forward–
backward splitting and application to optimization on graphs”. SIAM Journal
on Imaging Sciences 8:4, pp. 2706–2739. DOI: 10.1137/15m1018253.

Rockafellar, R. T. (1976). “Monotone operators and the proximal point algorithm”.
SIAM journal on control and optimization 14:5, pp. 877–898. DOI: 10.1137/
0314056.

130

References

Sadeghi, H., S. Banert, and P. Giselsson (2021). Forward–backward splitting with
deviations for monotone inclusions. arXiv: 2112.00776v1 [math.OC].

Sadeghi, H. and P. Giselsson (2021). Hybrid acceleration scheme for variance re-
duced stochastic optimization algorithms. arXiv: 2111.06791 [math.OC].

Scieur, D., A. d’Aspremont, and F. Bach (2020). “Regularized nonlinear accel-
eration”. Mathematical Programming 179:1–2, pp. 47–83. DOI: 10 . 1007 /
s10107-018-1319-8.

Shi, W., S. Song, H. Wu, Y.-C. Hsu, C. Wu, and G. Huang (2019). “Regular-
ized anderson acceleration for off-policy deep reinforcement learning”. In: Ad-
vances in Neural Information Processing Systems. Vol. 32. Curran Associates,
Inc. URL: https : / / proceedings . neurips . cc / paper / 2019 / file /
bb1443cc31d7396bf73e7858cea114e1-Paper.pdf.

Themelis, A. and P. Patrinos (2019). “Supermann: a superlinearly convergent algo-
rithm for finding fixed points of nonexpansive operators”. IEEE Transactions on
Automatic Control 64:12, pp. 4875–4890. DOI: 10.1109/TAC.2019.2906393.

Toth, A. and C. T. Kelley (2015). “Convergence analysis for Anderson accelera-
tion”. SIAM Journal on Numerical Analysis 53:2, pp. 805–819. DOI: 10.1137/
130919398.

Tseng, P. (2000). “A modified forward–backward splitting method for maxi-
mal monotone mappings”. SIAM Journal on Control and Optimization 38:2,
pp. 431–446. DOI: 10.1137/S0363012998338806.

Walker, H. F. and P. Ni (2011). “Anderson acceleration for fixed-point iterations”.
SIAM Journal on Numerical Analysis 49:4, pp. 1715–1735. DOI: 10.1137/
10078356X.

Zhang, J., B. O’Donoghue, and S. Boyd (2020). “Globally convergent type-I An-
derson acceleration for nonsmooth fixed-point iterations”. SIAM Journal on Op-
timization 30:4, pp. 3170–3197. DOI: 10.1137/18M1232772.

131

Paper IV

Hybrid Acceleration Scheme for Variance
Reduced Stochastic Optimization

Algorithms

Hamed Sadeghi Pontus Giselsson

Abstract

Stochastic variance reduced optimization methods are known to be globally
convergent while they suffer from slow local convergence, especially when
moderate or high accuracy is needed. To alleviate this problem, we propose an
optimization algorithm—which we refer to as a hybrid acceleration scheme—
for a class of proximal variance reduced stochastic optimization algorithms.
The proposed optimization scheme combines a fast locally convergent algo-
rithm, such as a quasi–Newton method, with a globally convergent variance
reduced stochastic algorithm, for instance SAGA or L–SVRG. Our global con-
vergence result of the hybrid acceleration method is based on specific safeguard
conditions that need to be satisfied for a step of the locally fast convergent
method to be accepted.

We prove that the sequence of the iterates generated by the hybrid acceler-
ation scheme converges almost surely to a solution of the underlying optimiza-
tion problem. We also provide numerical experiments that show significantly
improved convergence of the hybrid acceleration scheme compared to the basic
stochastic variance reduced optimization algorithm.

Submitted (Available on arXiv).

133

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
1. Introduction

We consider convex finite–sum optimization problems of the form

minimize
x∈Rd

F(x)+g(x), (IV.1)

where F : Rd → R is the average of convex and smooth functions fi : Rd → R, that
is,

F(x) = 1
N

N

∑
i=1

fi(x),

for all x ∈ Rd and g : Rd → R∪{∞} is a closed, convex, proper, and potentially
non–smooth function that can be used as a regularization term or to model convex
constraints. Such finite–sum optimization problems are common in machine learn-
ing and statistics where they are known as regularized empirical risk minimization
problems [Schmidt et al., 2017; Teo et al., 2007].

One approach to solve the finite–sum optimization problem (IV.1) is to use the
proximal–gradient method [Beck and Teboulle, 2009]. However, at each iteration,
the proximal–gradient algorithm requires as many individual gradient evaluations as
the number of component functions of the finite–sum, which can be computation-
ally expensive. Another approach is to apply stochastic proximal–gradient descent
[Nitanda, 2014; Rosasco et al., 2020], which requires only one gradient evaluation
at each iteration, but, due to the variance in the estimation of the full gradient, suf-
fers from sub–linear convergence rate, even in the strongly convex setting [Johnson
and Zhang, 2013; Kovalev et al., 2020]. Several stochastic variance–reduced op-
timization algorithms such as SDCA [Shalev-Shwartz and Zhang, 2013], SVRG
[Johnson and Zhang, 2013], and SAGA [Defazio et al., 2014], have been designed
to reduce the gradient approximation variance. These methods have been shown to
be practically efficient and achieve global (linear) convergence for (strongly) convex
problems. However, their local convergence is often slow in practice.

To improve convergence, pre–determined data preconditioning [Li, 2017; Yang
et al., 2016] or metric selection [Giselsson and Boyd, 2015] can be used. These are
generic approaches that can be applied on top of acceleration schemes. However,
finding the optimal or even a good metric is problem– and algorithm–dependent
and might be computationally expensive. Quasi–Newton type methods, such as An-
derson acceleration [Anderson, 1965; Walker and Ni, 2011] and limited–memory
BFGS [Liu and Nocedal, 1989], instead find a suitable metric on the fly. Compared
to stochastic optimization algorithms, these methods have higher per–iteration cost,
but, often exhibit very fast local convergence. However, global convergence results
are scarce for non–smooth problems, whereas some results exist for fully smooth
problems [Rodomanov and Nesterov, 2021a; Rodomanov and Nesterov, 2021b;
Rodomanov and Nesterov, 2021c].

134

1 Introduction

In this paper, we provide a generic algorithm that combines a method with lo-
cally fast convergence (that will be called acceleration method) with a globally
convergent proximal stochastic optimization algorithm (that will be called basic
method). The key feature of the general algorithm is a set of safeguard conditions
that decide if an acceleration step can be accepted while maintaining global con-
vergence. If the safeguard conditions are not satisfied, a step of the basic method is
taken. This results in a hybrid scheme that automatically selects between two dif-
ferent algorithms and benefits both from the global convergence properties of the
basic method and the fast local convergence of the acceleration method. We refer to
our proposed algorithm as the hybrid acceleration scheme.

The idea of a hybrid algorithm that selects between a globally convergent
method and locally fast, but not globally, convergent method has been explored,
e.g., in [Themelis and Patrinos, 2019; Zhang et al., 2020], whose selection criteria
are extensions of the one in [Giselsson et al., 2016]. A key difference between our
approach and [Themelis and Patrinos, 2019; Zhang et al., 2020] is that their methods
are based on a deterministic basic method, while ours is based on a variance reduced
stochastic method. This difference necessitates a completely different convergence
analysis and enables for faster progress far from the solution in our finite–sum prob-
lem setting since our method takes advantage of that particular problem structure
[Schmidt et al., 2017].

Due to the flexibility of our scheme, many different locally fast methods can be
used. For instance; limited–memory BFGS (lBFGS) [Liu and Nocedal, 1989], An-
derson acceleration [Anderson, 1965], and the class of vector extrapolation methods
[Smith et al., 1987] to which, e.g., the regularized nonlinear acceleration [Scieur et
al., 2016] and its stochastic counterpart [Scieur et al., 2017] belong.

We instantiate our hybrid method with two different local methods, namely
limited–memory BFGS (lBFGS) [Liu and Nocedal, 1989] and Anderson acceler-
ation [Anderson, 1965]. In our numerical experiments, we combine these methods
with Loop–less SVRG [Kovalev et al., 2020] in our hybrid acceleration method.
Our numerical experiments show that our hybrid acceleration scheme can exhibit
significantly improved convergence compared to the basic stochastic optimization
algorithm.

The paper is outlined as follows. In Section 2, we recall some basic definitions.
Section 3 discusses the problem formulation and the link between deterministic and
stochastic gradient methods and introduces the family of stochastic optimization
algorithms that is considered in this work. In Section 4, the hybrid acceleration
method is introduced and in Section 5, we prove its convergence. Numerical exper-
iments are presented in Section 6 and concluding remarks are given in Section 7.

135

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
2. Preliminaries

The set of the real numbers and the d-dimensional Euclidean space are denoted by
R and Rd respectively. For a symmetric positive definite matrix Γ and x,y ∈ Rd ,
〈x,y〉, ‖x‖, and ‖x‖Γ are the inner product, the induced norm, and the weighted
norm ‖x‖Γ :=

√
〈x,Γx〉 respectively. Moreover, the d×d identity matrix is denoted

by Id .
The notation 2R

d
denotes the power set of Rd . A map A : Rd ⇒ 2R

d
is charac-

terized by its graph gra(A) = {(x,u) ∈ Rd×Rd : u ∈ Ax}. The operator A is mono-
tone, if 〈u− v,x− y〉 ≥ 0 for all (x,u),(y,v) ∈ gra(A). A monotone operator A is
maximally monotone if there exists no monotone operator B : Rd ⇒ 2R

d
such that

gra(B) properly contains gra(A). A mapping T : Rd→Rd is L-Lipschitz continuous
if ‖T (x)−T (y)‖≤ L‖x−y‖ for all x,y∈Rd , and is nonexpansive if it is 1-Lipschitz
continuous. Further T : Rd → Rd is

i) firmly nonexpansive if

‖x− y− (T (x)−T (y))‖2 ≤ ‖x− y‖2−‖T (x)−T (y)‖2 ∀x,y ∈ Rd ,

ii) 1
L -cocoercive if

〈T (x)−T (y),x− y〉 ≥ 1
L‖T (x)−T (y)‖2 ∀x,y ∈ Rd .

For a mapping T , 1
L -cocoercivity implies its L-Lipschitz continuity. The other di-

rection does not hold in general. However, if the mapping is the gradient of a
convex function, then its L-Lipschitz continuity and 1

L -cocoercivity are equiva-
lent [Bauschke and Combettes, 2017, Corollary 18.17]. A differentiable function
F : Rd → R is said to be L-smooth, if its gradient is L-Lipschitz continuous.

The subdifferential of a function f : Rd → R∪ {∞} at x ∈ Rd is denoted by
∂ f (x) and defined as

∂ f (x) = {v ∈ Rd : f (y)≥ f (x)+ 〈v,y− x〉 for all y ∈ Rd}.

The proximal mapping of a closed, convex and proper function g : Rd→R∪{+∞},
is defined as proxλg(v) = argmin

x

(
g(x)+ 1

2λ
‖x− v‖2

)
, where λ > 0.

The set of fixed–points of a mapping T : Rd → Rd , is denoted by fix(T) and
defined as fix(T) = {x ∈ Rd : x = T x}. The zero–set of a map R : Rd → Rd is
indicated by zer(R) and given by zer(R) = {x ∈ Rd : 0 = Rx}. It is evident that
fix(T) = zer((Id−T)), where Id−T is the residual map of the operator T .

136

3 Problem formulation and basic method

3. Problem formulation and basic method

We are interested in solving the following convex optimization problem

minimize
x∈Rd

1
N

N

∑
i=1

fi(x)+g(x), (IV.2)

under the following assumptions.

ASSUMPTION 1 We assume that

(i) For each i∈ {1, . . . ,N}, the function fi : Rd→R is convex, differentiable and
Li-smooth.

(ii) The function g : Rd → R∪{+∞} is convex, closed and proper.

(iii) The solution set of the problem is nonempty. 2

The necessary and sufficient optimality condition for this problem is given by
Fermat’s rule as

0 ∈ ∂ (F +g)(x) =∇F(x)+∂g(x), (IV.3)

where the equality holds since all fi have full domain and g is proper [Bauschke and
Combettes, 2017, Theorem 16.3 and Corollary 16.48]. This means that any x? that
satisfies the optimality condition (IV.3), is a solution to the associated optimization
problem (IV.2). It is also known that fixed–points of the proximal–gradient operator,
namely, the set {x ∈ Rd : x = proxλg(x−λ∇F(x)),λ > 0}, are solutions of prob-
lem (IV.2). In fact, all solutions of the inclusion problem (IV.3), are fixed–points
of the proximal–gradient operator or, equivalently, zeros of its residual mapping,
which is given by

Rx = x−proxλg (x−λ∇F(x)) ,

for any λ > 0 [Parikh and Boyd, 2014, Section 4.2]. For 0 < λ < 2
L with L being the

smoothness modulus of F , iterating the proximal gradient mapping finds a solution
of problem (IV.2) [Combettes and Pesquet, 2011].

The optimality condition (IV.3), can be reformulated in a primal–dual form by
storing all gradients of component functions fi. In that case, the optimality condition
becomes

0 ∈ ∂g(x)+ 1
N ∑

N
i=1 yi

0 = y1−∇ f1(x)
...

0 = yN−∇ fN(x)

, (IV.4)

where yi denotes the i–th dual variable. This is clearly equivalent to (IV.3). There-
fore, a primal–dual solution z? := (x?,y?1, . . . ,y

?
N) satisfies (IV.4), if and only if x?

137

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
satisfies (IV.3) and is a solution of (IV.2). It also holds that z? satisfies (IV.4) if and
only if it satisfies R̄z? = 0, where R̄ is the primal–dual residual mapping

R̄z :=

x−proxλg

(
x− λ

N ∑
N
i=1 yi

)
y1−∇ f1(x)

...
yN−∇ fN(x)

 , (IV.5)

in which z = (x,y1, . . . ,yN) is the primal–dual variable. We record the equivalence
between zeroes of R̄ and solutions to (IV.2), in Proposition 1 (with proof in Ap-
pendix A.1) and Lipschitz continuity of R̄ in Proposition 2 (with proof in Ap-
pendix A.2).

PROPOSITION 1 Given the residual map in (IV.5), the primal–dual point z? =
(x?,y?1, . . . ,y

?
N) satisfies R̄z? = 0, if and only if x? solves (IV.2). Furthermore, for

each index i, y?i is unique. 2

PROPOSITION 2 Let for all i∈ {1, . . . ,N}, fi(x) be Li-smooth, then the primal–dual
residual mapping, R̄ in (IV.5), is Lipschitz-continuous. 2

In order to find zeros of R̄, one way is to form iterates based on (IV.5), and
evaluate all yi’s (the full gradient) at each iteration, which would be similar to the
proximal–gradient algorithm. However, when N is very large, a key challenge is the
high per–iteration cost of N gradient evaluations which makes the algorithm very
expensive. This gives rise to the idea of using a cheaply evaluable approximation of
the true gradient instead, and randomly evaluate gradients of only one or some of
fi’s at each iteration. The following gives such an approximation

∇̂ik F(x,y), 1
N pik

(
∇ fik(x)− yik

)
+ 1

N

N

∑
i=1

yi, (IV.6)

in which ik is an index randomly drawn from {1, . . . ,N} based on some probability
distribution and pik is its associated probability. This stochastic approximation is
based on the average of the dual variables which is modified by a correction term,
(∇ fik(x)− yik)/(N pik). The correction term is added in order to progressively im-
prove the approximation by incorporating the latest gradient information and also
to make ∇̂ik F(x,y) an unbiased estimate of the true gradient.

Using the approximation ∇F(x)≈ ∇̂ik F(x,y), and inspired by the proximal gra-
dient algorithm, a family of proximal stochastic optimization algorithms can be
formulated as

xk+1 = proxλg

(
xk−λ ∇̂ik F(xk,yk)

)
,

yk+1
i = yk

i + ε
k
i (∇ fi(xk)− yk

i), ∀i ∈ {1, . . . ,N},
(IV.7)

138

4 Hybrid acceleration scheme

where k is the iteration counter, xk is the primal variable, yk = (yk
1, . . . ,y

k
N) with yk

i
being the i–th dual variable, λ > 0 is the step size, εk

i ∈ {0,1} is a random binary
variable that determines whether the i–th dual variable is to be updated at iteration
k (the associated probability of εk

i = 1 is ρi), and ∇̂ik F(xk,yk) is the stochastic ap-
proximation of the true gradient that is defined in (IV.6). This approximation of the
full gradient is unbiased since

Ek(∇̂ik F(xk,yk)) = 1
N

N

∑
i=1

(∇ fi(xk)− yk
i)+

1
N

N

∑
i=1

yk
i

= 1
N

N

∑
i=1

∇ fi(xk) = ∇F(xk),

in which, Ek denotes expected value operation given all available information up to
step k. We refer to (IV.7) as the basic method. On the other hand, there are algo-
rithms that use a biased estimation of the true gradient [Morin and Giselsson, 2019;
Roux et al., 2012], but in this work we only consider the unbiased case. The algo-
rithm in (IV.7) has been analyzed in [Davis, 2016] in the monotone operator setting
and in [Morin and Giselsson, 2020] in the strongly convex setting.

The class of stochastic optimization algorithms (IV.7) has L–SVRG [Davis,
2016; Kovalev et al., 2020] and SAGA [Defazio et al., 2014] as special cases.
The L–SVRG algorithm is extracted from (IV.7) with uniform sampling of ik ∈
{1, . . . ,N} and

ε
k
i =

{
1 if q < ρ

0 otherwise
, ∀i ∈ {1, . . . ,N},

where q is uniformly sampled from [0,1] and 0< ρ ≤ 1. Therefore, all dual variables
are updated together and on average once every ρ−1 iterations. The algorithm in
(IV.7) reduces to SAGA with ik uniformly sampled from {1, . . . ,N} and

ε
k
i =

{
1 if ik = i
0 otherwise

, ∀i ∈ {1, . . . ,N}.

Therefore, for SAGA, at each iteration, only one of the dual variables is updated
and the others remain unchanged.

4. Hybrid acceleration scheme

In this section, we introduce a novel hybrid strategy to accelerate local convergence
of proximal stochastic optimization algorithms of the form (IV.7), in which the
approximation of the true gradient and the update law of the dual variables, vary
depending on the choice of basic method. The basic method (IV.7), is devised to

139

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
solve large–scale finite–sum optimization problems of the form (IV.2), and is glob-
ally convergent while it has slow local convergence. Therefore, in our acceleration
scheme, they are combined with a locally fast convergent method. The proposed
acceleration scheme is given in Algorithm 1 and discussed below.

Algorithm 1 General framework of the hybrid acceleration scheme

1: Input: initial point z0, positive constants C, D, δ , merit function V (.), acceler-
ation algorithm A (.) and its memory size m (if needed), K0, the basic method
and its parameters, primal and dual probability distribution, the step size λ ,
Γ = blkdiag(Id ,

λ

Nρ1L1
Id , . . . ,

λ

NρN LN
Id), and the maximum permissible number

of iterations kmax.
2: set k = kaa = 0
3: while k < kmax do
4: mkaa = min{m,kaa}
5: find z+ = A (zk,zkaa−1, . . . ,zkaa−mkaa) from acceleration algorithm

6: if V (z+)≤ CV (z0)

(kaa+1)(1+δ) and
∥∥z+− zk

∥∥
Γ
≤ DV (zk) then

7: set zk+1 = z+ and kaa← kaa +1
8: k← k+1 and kaa← kaa +1
9: else

10: set (x̃0, ỹ0
1, . . . , ỹ

0
N) = zk

11: for s = 0,1, · · · ,K0−1 do{
x̃s+1 = proxλg

(
x̃s−λ ∇̂isF(x̃s, ỹs)

)
,

ỹs+1
i = ỹs

i + εs
i (∇ fi(x̃s)− ỹs

i), ∀i ∈ {1, . . . ,N}.

zk+1 = (x̃s+1, ỹs+1
1 , . . . , ỹs+1

N)

k← k+1

12: end for
13: end if
14: end while

Description of the algorithm. In order to initialize the scheme one needs to se-
lect (i) the parameters and probability distributions used in the basic method; (ii)
an acceleration algorithm A (.) along with its associated parameters; and (iii) an
initial point z0. The acceleration algorithm A (.) can be algorithms such as lBFGS
or Anderson acceleration that both store and use a history of past m iterates to find a
next iterate. Then, the algorithm works as follows: at the beginning of each iteration
the iterate from the acceleration algorithm, z+, has to be computed. If z+ satisfies
some safeguard conditions, that we will discuss below, we set it as the true next iter-

140

5 Convergence results

ate, zk+1, and the main counter of the loop, k, and also the acceleration algorithm’s
counter, kaa, are increased by one; then, we proceed to the next iteration. Otherwise,
K0 steps of the basic method are performed in the inner loop of the algorithm. It is
evident that K0 can differ among different iterations of the outer loop of the scheme,
but, we considered it as a constant for simplicity. The algorithm is to be run as above
until the last iteration is reached or some termination criteria are met. Note that if
the iterate from the acceleration algorithm is accepted, the basic method steps need
not to be performed, that is, the basic method and the acceleration algorithm are not
being run in parallel.

Safeguard conditions and merit function. For a nominal next iterate of the ac-
celeration algorithm, z+, to be accepted as the actual next iterate of the scheme, the
following conditions have to be satisfied

V (z+)≤CV (z0)(1+ kaa)
−(1+δ), (IV.8)∥∥∥z+− zk

∥∥∥
Γ

≤ DV (zk), (IV.9)

where δ , C and D are positive constants, V : R(N+1)d → R is a merit function (that
is discussed below), and

Γ = blkdiag(Id ,
λ

Nρ1L1
Id , . . . ,

λ

NρN LN
Id).

The safeguard condition (IV.8) enforces the merit function to be convergent to zero.
Condition (IV.9), is to ensure that the sequence (‖zk+1− zk‖Γ)k∈Iaa , where Iaa is the
set of indices for which the next iterate is obtained from acceleration algorithm, is
diminishing and finally convergent to zero.

Our convergence theory, that will be given in the next section, assumes that;
i) the merit function outputs nonnegative values, ii) for any sequence (zk)k∈N, the
merit function is such that

V (zk)→ 0 =⇒
∥∥∥R̄zk

∥∥∥→ 0.

Therefore, a feasible choice for the merit function can be the following scaled l2–
norm of R̄zk

V (zk) =
∥∥∥R̄zk

∥∥∥
Γ

. (IV.10)

For this choice of merit function, which we use in this work, both requirements on
the merit function are met. Other options for the merit function could be the sum or
maximum of the vector of the last p scaled l2–norm of residuals.

5. Convergence results

In this section, we provide results on convergence of the basic method and the hybrid
acceleration scheme. Before proceeding to convergence results, we summarize the

141

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
notations and the assumptions that are used in the theorems and their proofs. The
proofs are given in the Appendix.

Notation. X ? indicates the solution set of problem (IV.2), z = (x,y1, . . . ,yN) de-
notes a primal–dual variable for (IV.5), R̄ is the primal–dual residual operator de-
fined in (IV.5), z? = (x?,y?1, . . . ,y

?
N) is an arbitrary point in the set of zeros of the

primal–dual residual mapping with y?i = ∇ fi(x?), pi is primal sampling probability,
ρi is the i–th dual variable update probability, λ > 0 is the step size, Ek denotes
the expected value operator given all the information up to the k–th iteration, and
Γ = blkdiag(Id ,

λ

Nρ1L1
Id , . . . ,

λ

NρN LN
Id). Moreover, zk = (xk,yk

1, . . . ,y
k
N) denotes the

k–th primal–dual iterate; and (zk)k∈N, (xk)k∈N, and (yk
i)k∈N are the sequences of

primal–dual-, primal-, and the i–th dual iterates, respectively.
The following is a result that is used in proof of Theorem 2. The proof can be

found in Appendix A.3.

PROPOSITION 3 Under Assumption 1, almost sure (a.s.) convergence of (zk)k∈N
to a z̄ ∈ zer(R̄), implies a.s. convergence of (xk)k∈N and (yk

i)k∈N to a x̄ ∈X ? and
ȳi = ∇ fi(x̄) respectively. 2

The result in Theorem 1 and its proof (given in Appendix A.5) share similarities
with [Davis, 2016; Morin and Giselsson, 2020].

THEOREM 1 Let zk be the k–th primal–dual iterate associated with the basic
method iterates in (IV.7), then given Assumption 1, the following holds

Ek ‖zk+1− z?‖2
Γ ≤ ‖zk− z?‖2

Γ−ζk,

with

ζk =
N

∑
i=1

λ

N (
1
Li
− 2λ

N pi
)
(
‖∇ fi(xk)−∇ fi(x?)‖2 +‖yk

i − y?i ‖2
)

+ 2λ 2

N2 ‖
N

∑
i=1

(yk
i − y?i)‖2 +λ

2‖∇F(xk)−∇F(x?)‖2

+Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2.

(IV.11)

Furthermore, if 0< λ <mini{N pi
2Li
}, then (zk)k∈N converges a.s. to a random variable

z̄ ∈ zer(R̄) and (xk)k∈N and (yk
i)k∈N converge a.s. to random variables x̄ ∈X ? and

ȳi = ∇ fi(x̄) respectively. 2

REMARK 1 In order to ensure a.s. convergence in Theorem 1, the coefficient of all
terms in ζk must be positive. Then, from relation (IV.11), it is evident that for each
i, 0 < λ < N pi

2Li
must hold. Therefore, the smallest of these has to be set as the upper

142

6 Numerical experiments

bound of λ , that is, 0 < λ < mini{N pi
2Li
}. The largest upper bound of the step size

is attained when we have Lipschitz probability distribution for primal sampling,
namely, pi =

Li
∑

N
i=1 Li

. 2

The following result is on a.s. convergence of the sequence of iterates that are
obtained from Algorithm 1. The proof is presented in Appendix A.6.

THEOREM 2 Suppose that Assumption 1 holds, that 0 < λ < mini{N pi
2Li
}, and that

the merit function V : R(N+1)d → R is nonnegative and such that for all sequences
(zk)k∈N satisfying V (zk)→ 0 we have ‖R̄zk‖ → 0. Then (zk)k∈N in Algorithm 1
converges a.s. to a random variable z̄ ∈ zer(R̄). Moreover, (xk)k∈N and (yk

i)k∈N
converge a.s. to random variables x̄ ∈X ? and ȳi = ∇ fi(x̄) respectively. 2

6. Numerical experiments

We solve a regularized logistic regression problem for binary classification of the
form

minimize
x=(w,b)

N

∑
i=1

log(1+ eθ T
i w+b)−ui(θ

T
i w+b)+ ξ

2 ‖w‖
2
2, (IV.12)

where θi ∈ Rd and ui ∈ {0,1} are training data and labels respectively, and ξ > 0
is a regularization parameter. The optimization problem variable is x = (w,b) with
w ∈ Rd and b ∈ R.

In the hybrid acceleration scheme, we use L–SVRG as the basic method and ei-
ther Anderson acceleration or lBFGS as the acceleration algorithms. The following
lists the algorithms that are used in the numerical experiments

• GD: Gradient descent method with fixed step size,

• L–SVRG: Loopless Stochastic Variance Reduced Gradient method,

• L–SVRG+AA: L–SVRG as the basic method combined with Anderson ac-
celeration,

• L–SVRG+lBFGS: L–SVRG as the basic method combined with limited–
memory BFGS.

In order to use Anderson acceleration as the acceleration algorithm in the hy-
brid acceleration scheme, an associated fixed–point mapping of problem (IV.12) is
needed. Let F(x) denote the objective function of problem (IV.12). Then, the as-
sociated mapping of the problem that is used by Anderson acceleration is given
by

Tgd(x) = x−λ∇F(x)

143

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
for λ ∈ (0,2/L), where L is smoothness modulus of F . On the other hand, since
the objective function at hand has no non–smooth part, the lBFGS algorithm can
also be utilized in the hybrid acceleration scheme to solve problem (IV.12). Unlike
Anderson acceleration, lBFGS method does not need an associated fixed–point map
of the problem, rather, it requires gradients of the objective function in order to
find a solution. See Appendix B.1 and Appendix B.2 for descriptions of Anderson
acceleration and lBFGS methods, respectively.

A rough approximation of the per–iteration count of floating point operations
for the different algorithms are as follows

• 4Nd for gradient descent,

• 12Nd for L–SVRG,

• 4Nd + 4
3 m3 +2m2d for Anderson acceleration,

• 4Nd +2d2 +13md +ξbt4Nd for lBFGS,

where, N is the number of the component functions (which is the same as the num-
ber of samples in the training dataset), d is the dimension of the optimization prob-
lem variable, m is the size of memory stack for either Anderson acceleration or
lBFGS and ξbt is a coefficient to include an approximate average cost for back-
tracking line search of lBFGS.

Numerical simulations are done using two datasets; UCI Madelon [Chang and
Lin, 2011] with 2000 samples and 500 features, and UCI Sonar [Chang and Lin,
2011] with 208 samples and 60 features. In the numerical experiments, the regular-
ization parameter in the objective function is set to ξ = 0.01, we used a memory size
of m = 5 for both Anderson acceleration and lBFGS, the constants of the safeguard
condition of the hybrid acceleration scheme is C = D = 106, and δ = 10−6, and the
parameter K0 is set to the number of samples of the associated dataset. Moreover,
we used the merit function as is defined in (IV.10).

In Figure 1 and Figure 2, the left plots show relative value of objective func-
tion versus step number (which is basically equal to the total number of full gra-
dient evaluations up to that step), and the right plot illustrates the relative value of
objective function versus weighted iteration counts. The weighted iteration is in-
tended to include a rough approximation of computational cost in such a way that
different methods at each weighted iteration have roughly the same computational
expense. Therefore, it provides a better comparison in terms of computational com-
plexity among different algorithms. The simulation results show remarkable im-
provement in convergence rate and overall computational cost of the hybrid accel-
eration scheme compared to those of the basic method.

144

6 Numerical experiments

0 100 200 300 400 500

10-6

10-5

10-4

10-3

10-2

10-1

100

0 100 200 300 400 500

10
- 6

10
- 5

10
- 4

10
- 3

10
- 2

10
- 1

10
0

Figure 1: Normalized sub-optimality vs. number of passes over data (the plot to
the left) and weighted iteration number (the plot to the right) for the logistic re-
gression problem (IV.12), on UCI Madelon dataset (2000 samples, 500 features),
solved using GD, L–SVRG, L–SVRG+AA and L–SVRG+lBFGS methods with
regularization parameter ξ = 0.01.

0 500 1000 1500 2000
10-6

10-5

10-4

10-3

10-2

10-1

100

0 500 1000 1500 2000

10
- 6

10
- 5

10
- 4

10
- 3

10
- 2

10
- 1

10
0

Figure 2: Normalized sub-optimality vs. number of passes over data (the plot to the
left) and weighted iteration number (the plot to the right) for the logistic regression
problem (IV.12), on UCI Sonar dataset (208 samples, 60 features), solved using
GD, L–SVRG, L–SVRG+AA and L–SVRG+lBFGS methods with regularization
parameter ξ = 0.01.

145

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
7. Conclusion

In this paper, we proposed and showed almost sure convergence of a hybrid ac-
celeration scheme. It combines a globally convergent variance reduced stochastic
gradient method—the basic method—with a fast locally convergent method—the
acceleration method—to benefit from the strengths of both methods; global conver-
gence of the basic method and fast local convergence of the acceleration method.
Our numerical experiments show that our algorithm performs significantly better
than the basic method in isolation, while preserving global convergence guarantees
that the local acceleration methods lack.

Acknowledgements. The authors would like to thank Bo Bernhardsson for his
fruitful feedback on this work. This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

Appendix A

In what follows, we provide the proofs of the propositions and the theorems that are
not addressed in the body of the paper.

A.1 Proof of Proposition 1
From R̄z? = 0 and for any λ > 0 we have

x?−proxλg

(
x?− λ

N ∑
N
i=1 y?i

)
= 0

y?1 = ∇ f1(x?)
...

y?N = ∇ fN(x?)

⇐⇒ x?−proxλg (x
?−λ∇F(x?)) = 0

⇐⇒ 0 ∈ ∇F(x?)+∂g(x?)

⇐⇒ 0 ∈ ∂ (F +g)(x?),

where the last equivalence holds due to fi’s and g having full domain [Bauschke
and Combettes, 2017, Theorem 16.3 and Corollary 16.48]. Therefore, by Fermat’s
rule x? is a solution of problem (IV.2).

Now suppose that x?1 and x?2 are two distinct solutions to the problem, that is

−∇F(x?1) ∈ ∂g(x?1),

−∇F(x?2) ∈ ∂g(x?2).

146

7 Conclusion

Then using the fact that ∂g is monotone and that each ∇ fi is 1
Li

-cocoercive, we have

0≥ 〈x?2− x?1,∇F (x?2)−∇F (x?1)〉 ≥
N

∑
i=1

1
NLi
‖∇ fi(x?2)−∇ fi(x?1)‖

2 ≥ 0,

which gives that y?i = ∇ fi(x?2) = ∇ fi(x?1) for all i’s. Hence it follows that y?i =
∇ fi(x?) is unique.

A.2 Proof of Proposition 2
In the following proof, we use nonexpansiveness of the proximal operator and Li-
Lipschitz continuity of ∇ fi(x) for all i

∥∥R̄ ẑ− R̄z
∥∥2

=

∥∥∥∥∥x̂−proxλg

(
x̂− λ

N

N

∑
i=1

ŷi

)
− x+proxλg

(
x− λ

N

N

∑
i=1

yi

)∥∥∥∥∥
2

+
N

∑
i=1
‖ŷi−∇ fi(x̂)− yi +∇ fi(x)‖2

≤

(
‖x̂− x‖+

∥∥∥∥∥x̂− λ

N

N

∑
i=1

ŷi−

(
x− λ

N

N

∑
i=1

yi

)∥∥∥∥∥
)2

+
N

∑
i=1

2
(
‖ŷi− yi‖2 +‖∇ fi(x̂)−∇ fi(x)‖2

)
≤ 2‖x̂− x‖2 +2

∥∥∥∥∥x̂− λ

N

N

∑
i=1

ŷi−

(
x− λ

N

N

∑
i=1

yi

)∥∥∥∥∥
2

+
N

∑
i=1

2
(
‖ŷi− yi‖2 +‖∇ fi(x̂)−∇ fi(x)‖2

)
≤ 6‖x̂− x‖2 +4 λ 2

N2

∥∥∥∥∥ N

∑
i=1

(ŷi− yi)

∥∥∥∥∥
2

+
N

∑
i=1

2
(
‖ŷi− yi‖2 +L2

i ‖x̂− x‖2)
≤ (6+2

N

∑
i=1

L2
i)‖x̂− x‖2 +(2+4 λ 2

N)
N

∑
i=1
‖ŷi− yi‖2

≤ ᾱ

(
‖x̂− x‖2 +

N

∑
i=1
‖ŷi− yi‖2

)
= ᾱ‖ẑ− z‖2,

where

ᾱ = max

(
6+2

N

∑
i=1

L2
i ,2+4 λ 2

N

)
.

147

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
The first inequality is given by the triangle inequality and nonexpansiveness of prox-
imal operator for the first term and by Young’s inequality for terms in the sum. The
second and third inequalities is given by Young’s inequality, and the fourth one
is given by ‖a1 + . . .+ aN‖2

2 ≤ N(‖a1‖2
2 + . . .+ ‖aN‖2

2). Therefore, R̄ is Lipschitz
continuous.

A.3 Proof of Proposition 3
Using the definition of the primal–dual residual operator at z̄ = (x̄, ȳ1. . . . , ȳN)

R̄ z̄,

x̄−proxλg

(
x̄− λ

N ∑
N
i=1 ȳi

)
ȳ1−∇ f1(x̄)

...
ȳN−∇ fN(x̄)

= 0

gives ȳi = ∇ fi(x̄) for all i. This in turn yields

x̄−proxλg

(
x̄− λ

N

N

∑
i=1

∇ fi(x̄)

)
= x̄−proxλg (x̄−λ∇F(x̄)) = 0,

which evidently means that x̄ ∈X ?, i.e., 0 ∈ ∂g(x̄)+∇F(x̄). Since zk converges to
z̄ almost surely, xk and yk

i , respectively, converge to x̄ and ȳi = ∇ fi(x̄) almost surely.
This concludes the proof.

A.4 Lemmas for proof of Theorem 1
The following lemmas are needed in our proof of Theorem 1.

LEMMA A.1 Let R̄ be the primal–dual residual operator (IV.5), (x?,y?) ∈ zer(R̄),
fi be convex and Li-Lipschitz continuous, and y?i = ∇ fi(x?) for all i ∈ {1, ...,N} ,
then for the iterates given in (IV.7), the following bounds the variance of the primal
variable

Ek ‖xk+1− x?‖2 ≤ ‖xk− x?‖2−
N

∑
i=1

2λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2

−Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2

+λ
2Ek ‖∇̂ik F(xk,yk)−∇F(x?)‖2.

(IV.13)
2

Proof. Using firm nonexpansiveness of the proximal operator, we have

‖xk+1− x?‖2 =
∥∥∥proxλg

(
xk−λ ∇̂ik F(xk,yk)

)
−proxλg (x

?−λ∇F(x?))
∥∥∥2

148

7 Conclusion

≤
∥∥∥xk−λ ∇̂ik F(xk,yk)− (x?−λ∇F(x?))

∥∥∥2
−

‖xk−λ ∇̂ik F(xk,yk)−proxλg(x
k−λ ∇̂ik F(xk,yk))

− (x?−λ∇F(x?))+proxλg(x
?−λ∇F(x?))‖2

= ‖xk− x?‖2−2λ 〈xk− x?, ∇̂ik F(xk,yk)−∇F(x?)〉

+λ
2‖∇̂ik F(xk,yk)−∇F(x?)‖2

−‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2.

The second equality above, is given by x? = proxλg(x
? − λ∇F(x?)) and by the

primal update formula xk+1 = proxλg(x
k− λ ∇̂ik F(xk,yk)). Taking expected value

conditioned on all available information up to step k, yields

Ek ‖xk+1− x?‖2 ≤ ‖xk− x?‖2−2λ 〈xk− x?,∇F(xk)−∇F(x?)〉

−Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2

+λ
2Ek ‖∇̂ik F(xk,yk)−∇F(x?)‖2

≤ ‖xk− x?‖2−2λ

N

∑
i=1

1
NLi
‖∇ fi(xk)−∇ fi(x?)‖2

−Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2

+λ
2Ek ‖∇̂ik F(xk,yk)−∇F(x?)‖2.

In the first inequality, we used Ek ∇̂ik F(xk,yk) = ∇F(xk) and the second inequality
is given by cocoercivity of ∇ fi(x).

LEMMA A.2 Let R̄ be the primal–dual residual operator (IV.5), (x?,y?) ∈ zer(R̄)
and y?i = ∇ fi(x?) for all i ∈ {1, ...,N}, then for the iterates given in (IV.7), the fol-
lowing holds:

Ek

(
N

∑
i=1

λ

NρiLi
‖yk+1

i − y?i ‖2

)
=

N

∑
i=1

λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2

+
N

∑
i=1

(1−ρi)
λ

NρiLi
‖yk

i − y?i ‖2,

(IV.14)

where ρi is the probability of εk
i being 1 for yi. 2

Proof. By substitution of yk+1
i from (IV.7) we get

Ek

(
N

∑
i=1

λ

NρiLi
‖yk+1

i − y?i ‖2

)
= Ek

(
N

∑
i=1

λ

NρiLi
‖yk

i + ε
k
i (∇ fi(xk)− yk

i)− y?i ‖2

)

149

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms

=
N

∑
i=1

λ

NρiLi
Ek ‖yk

i + ε
k
i (∇ fi(xk)− yk

i)− y?i ‖2

=
N

∑
i=1

λ

NρiLi

(
ρi‖∇ fi(xk)− y?i ‖2 +(1−ρi)‖yk

i − y?i ‖2
)

=
N

∑
i=1

λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2

+
N

∑
i=1

(1−ρi)
λ

NρiLi
‖yk

i − y?i ‖2.

In the third equality we used the fact that the only random variable in the expression
to the right of the second equality is εk

i ∈ {0,1} and the probability of εk
i being 1 is

assumed to be ρi.

LEMMA A.3 Let R̄ be the primal–dual residual operator of the problem, (x?,y?) ∈
zer(R̄) and y?i = ∇ fi(x?) for all i ∈ {1, ...,N}, then for the iterates given in (IV.7),
the following gives the update variance bound:

Ek ‖∇̂ik F(xk,yk)−∇F(x?)‖2 ≤
N

∑
i=1

2
N2 pi

(
‖∇ fi(xk)−∇ fi(x?)‖2 +‖yk

i − y?i ‖2
)

−2‖ 1
N

N

∑
i=1

(yk
i − y?i)‖2−‖∇F(xk)−∇F(x?)‖2.

(IV.15)
2

Proof. We start with the left-hand side of (IV.15). Using the identity E‖X‖2 =
‖EX‖2 +E‖X−EX‖2, gives

Ek ‖∇̂ik F(xk,yk)−∇F(x?)‖2 = ‖∇F(xk)−∇F(x?)‖2

+Ek ‖∇̂ik F(xk,yk)−∇F(xk)‖2.
(IV.16)

Now for the second term in the right-hand side, substitution of ∇̂ik F(xk,yk) yields

Ek

∥∥∥∇̂ik F(xk,yk)−∇F(xk)
∥∥∥2

= Ek

∥∥∥∥∥ 1
N pik

(∇ fik(x
k)− yk

ik)+
1
N

N

∑
i=1

yk
i −∇F(xk)

∥∥∥∥∥
2

= Ek

∥∥∥∥∥ 1
N pik

(∇ fik(x
k)−∇ fik(x

?)+ y?ik − yk
ik)

150

7 Conclusion

+ 1
N

N

∑
i=1

yk
i − 1

N

N

∑
i=1

y?i +∇F(x?)−∇F(xk)

∥∥∥∥∥
2

≤ 2Ek

∥∥∥ 1
N pik

(∇ fik(x
k)−∇ fik(x

?))− (∇F(xk)−∇F(x?))
∥∥∥2

+2Ek

∥∥∥∥∥ 1
N pik

(yk
ik − y?ik)− (1

N

N

∑
i=1

yk
i − 1

N

N

∑
i=1

y?i)

∥∥∥∥∥
2

= 2Ek

∥∥∥ 1
N pik

(∇ fik(x
k)−∇ fik(x

?))
∥∥∥2
−2
∥∥∥∇F(xk)−∇F(x?)

∥∥∥2

+2Ek

∥∥∥ 1
N pik

(yk
ik − y?ik)

∥∥∥2
−2

∥∥∥∥∥ 1
N

N

∑
i=1

(yk
i − y?i)

∥∥∥∥∥
2

= 2
N

∑
i=1

1
N2 pi

∥∥∥∇ fi(xk)−∇ fi(x?)
∥∥∥2
−2
∥∥∥∇F(xk)−∇F(x?)

∥∥∥2

+2
N

∑
i=1

1
N2 pi

∥∥∥yk
i − y?i

∥∥∥2
−2

∥∥∥∥∥ 1
N

N

∑
i=1

(yk
i − y?i)

∥∥∥∥∥
2

.

The inequality above is given by Cauchy-Schwarz and Young’s inequalities. The
third equality is given by the identity E‖X−EX‖2 =E‖X‖2−‖EX‖2. Substituting
in (IV.16) yields

Ek

∥∥∥∇̂ik F(xk,yk)−∇F(x?)
∥∥∥2

≤
N

∑
i=1

2
N2 pi

∥∥∥∇ fi(xk)−∇ fi(x?)
∥∥∥2
−
∥∥∥∇F(xk)−∇F(x?)

∥∥∥2

+
N

∑
i=1

2
N2 pi

∥∥∥yk
i − y?i

∥∥∥2
−2

∥∥∥∥∥ 1
N

N

∑
i=1

(yk
i − y?i)

∥∥∥∥∥
2

.

A.5 Proof of Theorem 1
We first use the definition of Γ:

‖zk− z?‖2
Γ = ‖xk− x?‖2 +

N

∑
i=1

λ

NρiLi
‖yk

i − y?i ‖2. (IV.17)

Then, adding (IV.13) to (IV.14) and reordering the terms, yield

Ek ‖xk+1− x?‖2 +Ek

(
N

∑
i=1

λ

NρiLi
‖yk+1

i − y?i ‖2

)

≤ ‖xk− x?‖2−
N

∑
i=1

2λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2

151

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms

+λ
2Ek ‖∇̂ik F(xk,yk)−∇F(x?)‖2

−Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2

+
N

∑
i=1

λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2 +

N

∑
i=1

(1−ρi)
λ

NρiLi
‖yk

i − y?i ‖2

= ‖xk− x?‖2 +
N

∑
i=1

λ

NρiLi
‖yk

i − y?i ‖2−
N

∑
i=1

2λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2

+λ
2Ek ‖∇̂ik F(xk,yk)−∇F(x?)‖2

−Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2

+
N

∑
i=1

λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2−

N

∑
i=1

λ

NLi
‖yk

i − y?i ‖2

Now, we use (IV.17) and (IV.15) in the above inequality, which gives

Ek ‖zk+1− z?‖2
Γ ≤ ‖zk− z?‖2

Γ−
N

∑
i=1

2λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2−λ

2‖∇F(xk)−∇F(x?)‖2

+
N

∑
i=1

λ

NLi
‖∇ fi(xk)−∇ fi(x?)‖2 +

N

∑
i=1

(2λ 2

N2 pi
− λ

NLi
)‖yk

i − y?i ‖2

+
N

∑
i=1

2λ 2

N2 pi
‖∇ fi(xk)−∇ fi(x?)‖2− 2λ 2

N2 ‖
N

∑
i=1

(yk
i − y?i)‖2

−Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2

= ‖zk− z?‖2
Γ−

N

∑
i=1

(λ

NLi
− 2λ 2

N2 pi
)‖∇ fi(xk)−∇ fi(x?)‖2

−
N

∑
i=1

(λ

NLi
− 2λ 2

N2 pi
)‖yk

i − y?i ‖2− 2λ 2

N2 ‖
N

∑
i=1

(yk
i − y?i)‖2

−Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2

−λ
2‖∇F(xk)−∇F(x?)‖2

= ‖zk− z?‖2
Γ−ζk

where

ζk =
N

∑
i=1

(λ

NLi
− 2λ 2

N2 pi
)‖∇ fi(xk)−∇ fi(x?)‖2

+
N

∑
i=1

(λ

NLi
− 2λ 2

N2 pi
)‖yk

i − y?i ‖2 + 2λ 2

N2 ‖
N

∑
i=1

(yk
i − y?i)‖2

152

7 Conclusion

+Ek ‖xk+1− xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2 +λ
2‖∇F(xk)−∇F(x?)‖2.

This proves the first part of the theorem. To show a.s. convergence of (xk)k∈N to a
random variable in X ?, in view of [Combettes and Pesquet, 2015, Proposition 2.3],
we need to show that the set of sequential cluster points of the sequence (xk)k∈N is
a subset of X ?, then a.s. convergence of (xk)k∈N to an X ?-valued random variable
will follow. In the following, all limits and convergences are to be considered to
hold almost surely, also if it is not explicitly written.

We choose λ such that 0 < λ < mini{N pi
2Li
} holds. This choice of λ , enforces

non-negativeness to all the coefficients in relation (IV.11); thus, we have ζk ≥ 0 for
all k ∈ N. Now using [Combettes and Pesquet, 2015, Proposition 2.3.i], we get that
(ζk)k∈N is a.s. summable. It follows by a.s. summability of (ζk)k∈N that both (yk

i)k∈N
and (∇ fi(xk))k∈N converge to ∇ fi(x?) almost surely. This in turn means that, as k→
∞, ∇̂ik F(xk,yk)→∇F(x?) almsot surely. Moreover, a.s. summability of (ζk)k∈N im-
plies that (Ek(‖xk+1−xk +λ (∇̂ik F(xk,yk)−∇F(x?))‖2))k∈N a.s. converges to zero
as k→∞ and since ∇̂ik F(xk,yk)−∇F(x?)→ 0, we have that Ek(‖xk+1−xk‖2)→ 0,
which implies xk+1−xk→ 0 almost surely. Now, since the Euclidean space R(N+1)d

is separable and zer(R̄) is closed, using [Combettes and Pesquet, 2015, Proposition
2.3.iii], for every z? ∈ zer(R̄), the sequence (‖zk−z?‖)k∈N converges almost surely.
Summability of (ζk)k∈N implies that ‖zk−z?‖2

Γ
−‖xk−x?‖2→ 0, and therefore, we

infer that for every x? ∈X ?, the sequence (‖xk− x?‖2)k∈N is a.s. convergent, and
therefore, the sequence (xk)k∈N is bounded. Boundedness of (xk)k∈N implies that
it has at least one convergent subsequence. Denote this subsequence by (xnk)k∈N.
Now, from the optimality condition of the proximal operator we get

0 ∈ λ∂g(xnk+1)+(xnk+1− (xnk −λ ∇̂ik F(xnk ,ynk)))⇔

λ∇F(xnk+1)−λ∇F(xnk+1) ∈ λ∂g(xnk+1)+(xnk+1− (xnk −λ ∇̂ik F(xnk ,ynk)))⇔
unk ∈ ∂g(xnk+1)+∇F(xnk+1)⇔
unk ∈ ∂ (g+F)(xnk+1)⇔

(xnk+1,unk) ∈ gra(∂ (g+F))

where unk = λ−1(xnk − xnk+1) + ∇F(xnk+1)− ∇̂ik F(xnk ,ynk). As nk → ∞, xnk −
xnk+1 → 0 and ∇F(xnk+1)− ∇̂ik F(xnk ,ynk)→ 0. Thus, unk → 0 almost surely. In
the second to last equivalence above, since ∂F has full domain, we used the identity
∂ (g+F) = ∂g+∂F by [Bauschke and Combettes, 2017, Corollary 16.48]. Let us
assume that the subsequence converges to x̄, that is xnk → x̄. Now by [Bauschke and
Combettes, 2017, Corollary 25.5] since ∂F has full domain, ∂ (g+F) is maximally
monotone. Using [Bauschke and Combettes, 2017, Proposition 20.37.ii], we get
(x̄,0) ∈ gra(∂ (g+F)) which implies that 0 ∈ ∂g(x̄)+∇F(x̄). This clearly means
that all sequential cluster points of (xk)k∈N belong to X ?. Now, invoking [Com-

153

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
bettes and Pesquet, 2015, Proposition 2.3.iv], implies that (xk)k∈N converges almost
surely to a X ?-valued random variable. Invoking Proposition 1 concludes the proof.

A.6 Proof of Theorem 2
In the following proof, all the convergences and limits hold almost surely, even if it
is not explicitly mentioned.

Let Ibm and Iaa be the sets of indices for which the next iterate is obtained by a
basic method step and an acceleration algorithm step, respectively. These index sets
satisfy Ibm ∩ Iaa = /0 and Ibm ∪ Iaa = N. Note that if the cardinality of Iaa is finite,
after a finite number of steps, the algorithm will reduce to the basic method, which
we know is convergent by Theorem 1. Therefore, we assume that |Iaa| is infinite.

From Theorem 1, for all k ∈ Ibm and all z? ∈ zer(R̄) we have

Ek

∥∥∥zk+1− z?
∥∥∥2

Γ

≤
∥∥∥zk− z?

∥∥∥2

Γ

−ζk, (IV.18)

where ζk ≥ 0. Using the identity E‖X − EX‖2 = E‖X‖2 − ‖EX‖2, we have
‖EX‖2 ≤ E‖X‖2. Thus, from (IV.18) and ζk ≥ 0 for all k ∈ Ibm we have(

Ek

∥∥∥zk+1− z?
∥∥∥

Γ

)2
≤ Ek

∥∥∥zk+1− z?
∥∥∥2

Γ

≤
∥∥∥zk− z?

∥∥∥2

Γ

−ζk ≤
∥∥∥zk− z?

∥∥∥2

Γ

.

Therefore, for all k ∈ Ibm we have

Ek

∥∥∥zk+1− z?
∥∥∥

Γ

≤
∥∥∥zk− z?

∥∥∥
Γ

. (IV.19)

On the other hand for all k ∈ Iaa, by the triangle inequality and for all z? ∈ zer(R̄),
we have ∥∥∥zk+1− z?

∥∥∥
Γ

≤
∥∥∥zk− z?

∥∥∥
Γ

+
∥∥∥zk+1− zk

∥∥∥
Γ

.

Using the safeguard condition (IV.9) and that z+ = zk+1 for all k ∈ Iaa, we obtain∥∥∥zk+1− z?
∥∥∥

Γ

≤
∥∥∥zk− z?

∥∥∥
Γ

+DV (zk). (IV.20)

Using the fact that Ek
∥∥zk+1− z?

∥∥
Γ
=
∥∥zk+1− z?

∥∥
Γ

holds for all k ∈ Iaa since the ac-
celeration method is deterministic, by combining (IV.19) and (IV.20), we conclude
that

Ek

∥∥∥zk+1− z?
∥∥∥

Γ

≤
∥∥∥zk− z?

∥∥∥
Γ

+σk (IV.21)

holds for all k ∈ N, where

σk =

{
0 k ∈ Ibm

DV (zk) k ∈ Iaa
.

154

7 Conclusion

Due to (IV.8), (σk)k∈N is summable and (
∥∥zk− z?

∥∥)k∈N converges a.s. [Combettes
and Pesquet, 2015, Lemma 2.2] and is therefore a.s. bounded. Next, by squaring
both sides of (IV.20), for all k ∈ Iaa, we get∥∥∥zk+1− z?

∥∥∥2

Γ

≤
∥∥∥zk− z?

∥∥∥2

Γ

+2
∥∥∥zk− z?

∥∥∥
Γ

DV (zk)+(DV (zk))2.

Defining βk := 2
∥∥zk− z?

∥∥
Γ
DV (zk) + (DV (zk))2 and using Ek

∥∥zk+1− z?
∥∥

Γ
=∥∥zk+1− z?

∥∥
Γ

for all k ∈ Iaa, we get for all k ∈ Iaa that

Ek

∥∥∥zk+1− z?
∥∥∥2

Γ

≤
∥∥∥zk− z?

∥∥∥2

Γ

+βk. (IV.22)

Since we have concluded that (‖zk − z?‖Γ)k∈Iaa is bounded a.s. and (V (zk))k∈Iaa

is absolutely summable, (βk)k∈Iaa is a.s. absolutely summable as well. Combining
(IV.18) and (IV.22) implies that

Ek

∥∥∥zk+1− z?
∥∥∥2

Γ

+νk ≤
∥∥∥zk− z?

∥∥∥2

Γ

+ηk, (IV.23)

where

ηk =

{
0 k ∈ Ibm

βk k ∈ Iaa
, and νk =

{
ζk k ∈ Ibm

0 k ∈ Iaa
.

Therefore, by [Combettes and Pesquet, 2015, Proposition 2.3.i], (νk)k∈N is
summable. Now, in [Combettes and Pesquet, 2015, Proposition 2.3] setting
φ : z 7→ z2, [Combettes and Pesquet, 2015, Proposition 2.3.iii] implies that
(
∥∥zk− z?

∥∥2
Γ
)k∈N and evidently (

∥∥zk− z?
∥∥)k∈N are convergent.

For the last part of the proof, fix z? ∈ zer(R̄) and denote the set of sequential
cluster points of (zk)k∈N by C . Since (‖zk − z?‖)k∈N is convergent, the sequence
(zk)k∈N is bounded, and therefore, it has at least one convergent subsequence by
the Bolzano–Weierstrass theorem. Denote this subsequence by (znk)k∈N and its as-
sociated sequential cluster point by z?c = (x?c ,y

?
1, . . . ,y

?
N). As the problem is finite-

dimensional, using Lipschitz continuity of the operator R̄ (Proposition 2) we have

‖znk − z?c‖→ 0 =⇒
∥∥R̄znk − R̄z?c

∥∥→ 0

which means that R̄znk → R̄z?c . Note that (znk)k∈N is constructed by the points
that are generated by either the basic method or the acceleration algorithm. For the
subsequence of points in (znk)k∈N that are obtained from the basic method, that is
(znk+1)k∈Ibm , since (νnk)k∈N is summable, so is (ζnk)k∈N. Then, using the same ap-
proach as in the last part of the proof of Theroem 1, we can show that (R̄znk+1)k∈Ibm
converges to zero. For the subsequence of the points in (znk)k∈N which are generated
by the acceleration algorithm, that is (znk+1)k∈Iaa , it is evident from the definition
of the merit function in (IV.10), that convergence of (V (znk+1))k∈Iaa to zero—which

155

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
is dictated by the safeguard condition—enforces convergence of (R̄znk+1)k∈Iaa to
zero as well. Therefore, for (znk)k∈N as a whole, we have znk → 0 as k→∞. Then, it
follows from R̄znk → R̄z?c that R̄z?c = 0. Thus, z?c belongs to zer(R̄). The same im-
plication can be made for all other sequential cluster points of (zk)k∈N which means
that all sequential cluster points of (zk)k∈N belong to zer(R̄), that is C ⊂ zer(R̄).
Finally, by [Combettes and Pesquet, 2015, Proposition 2.3.iv], the sequence (zk)k∈N
converges a.s. to a point z̄ ∈ zer(R̄). Now, by Proposition 3, xk → x̄ and for all i,
yk

i → ∇ fi(x̄) a.s., where x̄ is the solution of problem (IV.2). By this, the proof is
complete.

Appendix B

B.1 Anderson acceleration
Anderson acceleration can be exploited to accelerate convergence of the the fixed–
point iteration of the form

xk+1 = T (xk)

where T : Rn → Rn is either a contraction or an averaged operator. A variant of
Anderson acceleration, which is equipped with Tikhonov regularization on its inner
least–squares problem, is given in Algorithm B.1 [Scieur et al., 2016].

Algorithm B.1 Anderson Acceleration

1: input: y0 ∈ Rd , m≥ 1.
2: for k = 0,1,2, . . . do
3: set mk = min{m,k}
4: find the iterate using the fixed-point map xk = T (yk)
5: form Rk = (rk−mk , . . . ,rk) where r j = y j− x j for j ∈ {k−mk, . . . ,k}
6: determine α(k) = (α

(k)
0 , . . . ,α

(k)
mk) that solves

minimize
α(k)∈Rmk+1

∥∥∥Rnα
(k)
∥∥∥2

2
+ξk

∥∥∥α
(k)
∥∥∥2

2

subject to 1T
α
(k) = 1

7: yk+1 = ∑
mk
i=0 α

(k)
i xk−mk+i

8: end for

B.2 Limited–memory BFGS
If the objective function of a convex optimization problem is twice continuously
differentiable, an effective way of solving it, is to use quasi–Newton methods.
One of the most well-known quasi–Newton methods is the limited–memory BFGS

156

7 Conclusion

(lBFGS) which has been vastly used in many areas. lBFGS is a variant of BFGS
method that uses a limited amount of computer’s memory and in that sense is
cheaper than its parent, BFGS method. Hence, unlike BFGS algorithm, its limited–
memory version can be used to solve large–scale problems. The lBFGS method can
be stated as in Algorithm B.2 [Nocedal and Wright, 2006].

Algorithm B.2 limited–memory BFGS

1: Define: sk = xk+1− xk, uk = ∇ f (xk+1)−∇ f (xk) and ρk = ((uk)T sk)−1.
2: input: x0 and the memory stack size m≥ 1.
3: for k = 1,2, . . . do
4: Hk

0 = (sk−1)T uk−1

(uk−1)T uk−1 I

5: q = ∇ f (xk)
6: for i = k−1, . . . ,min{k−m,0} do
7: αi = ρi(si)T q
8: q = q−αiui

9: end for
10: r = Hk

0 q
11: for i = min{k−m,0}, . . . ,k−1 do
12: β = ρi(ui)T r
13: r = r+ si(αi−β)
14: end for
15: pk = r
16: compute xk+1 = xk−λk pk, where λk is to satisfy a line search condition
17: if k > m then
18: discard sk−m and uk−m

19: compute and save sk and uk

20: end if
21: end for

157

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
References

Anderson, D. G. (1965). “Iterative procedures for nonlinear integral equations”.
Journal of the ACM 12:4, pp. 547–560. DOI: 10.1145/321296.321305.

Bauschke, H. H. and P. L. Combettes (2017). Convex analysis and monotone op-
erator theory in Hilbert spaces. 2nd ed. CMS Books in Mathematics. Springer.
DOI: 10.1007/978-3-319-48311-5.

Beck, A. and M. Teboulle (2009). “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems”. SIAM journal on imaging sciences 2:1, pp. 183–
202. DOI: 10.1137/080716542.

Chang, C.-C. and C.-J. Lin (2011). “LIBSVM: a library for support vector ma-
chines”. ACM Transactions on Intelligent Systems and Technology 2 (3). Soft-
ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 27:1–
27:27.

Combettes, P. L. and J.-C. Pesquet (2011). “Proximal splitting methods in signal
processing”. In: Fixed-point algorithms for inverse problems in science and en-
gineering. Springer, pp. 185–212.

Combettes, P. L. and J.-C. Pesquet (2015). “Stochastic quasi-fejér block-coordinate
fixed point iterations with random sweeping”. SIAM Journal on Optimization
25:2, pp. 1221–1248.

Davis, D. (2016). “Smart: the stochastic monotone aggregated root-finding algo-
rithm”. arXiv preprint arXiv:1601.00698.

Defazio, A., F. Bach, and S. Lacoste-Julien (2014). “Saga: a fast incremental gra-
dient method with support for non-strongly convex composite objectives”. In:
Advances in neural information processing systems, pp. 1646–1654.

Giselsson, P. and S. Boyd (2015). “Metric selection in fast dual forward–backward
splitting”. Automatica 62, pp. 1–10.

Giselsson, P., M. Fält, and S. Boyd (2016). “Line search for averaged operator iter-
ation”. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
pp. 1015–1022. DOI: 10.1109/CDC.2016.7798401.

Johnson, R. and T. Zhang (2013). “Accelerating stochastic gradient descent using
predictive variance reduction”. In: Advances in neural information processing
systems, pp. 315–323.

Kovalev, D., S. Horváth, and P. Richtárik (2020). “Don’t jump through hoops and
remove those loops: svrg and katyusha are better without the outer loop”. In:
Algorithmic Learning Theory. PMLR, pp. 451–467.

Li, X.-L. (2017). “Preconditioned stochastic gradient descent”. IEEE transactions
on neural networks and learning systems 29:5, pp. 1454–1466.

Liu, D. C. and J. Nocedal (1989). “On the limited memory bfgs method for large
scale optimization”. Mathematical programming 45:1, pp. 503–528.

158

References

Morin, M. and P. Giselsson (2019). “Svag: unified convergence results for sag-saga
interpolation with stochastic variance adjusted gradient descent”. arXiv preprint
arXiv:1903.09009.

Morin, M. and P. Giselsson (2020). “Sampling and update frequencies in
proximal variance reduced stochastic gradient methods”. arXiv preprint
arXiv:2002.05545.

Nitanda, A. (2014). “Stochastic proximal gradient descent with acceleration tech-
niques”. In: NIPS.

Nocedal, J. and S. Wright (2006). Numerical Optimization. Springer Science &
Business Media.

Parikh, N. and S. Boyd (2014). “Proximal algorithms”. Foundations and Trends in
optimization 1:3, pp. 127–239.

Rodomanov, A. and Y. Nesterov (2021a). “Greedy quasi-newton methods with ex-
plicit superlinear convergence”. SIAM J. Optim. 31, pp. 785–811.

Rodomanov, A. and Y. Nesterov (2021b). “New results on superlinear convergence
of classical quasi-newton methods”. Journal of Optimization Theory and Appli-
cations 188, pp. 744–769.

Rodomanov, A. and Y. Nesterov (2021c). “Rates of superlinear convergence for
classical quasi-newton methods”. Mathematical Programming, pp. 1–32.

Rosasco, L., S. Villa, and B. C. Vũ (2020). “Convergence of stochastic proximal
gradient algorithm”. Applied Mathematics & Optimization 82:3, pp. 891–917.

Roux, N. L., M. Schmidt, and F. R. Bach (2012). “A stochastic gradient method
with an exponential convergence rate for finite training sets”. In: Advances in
neural information processing systems, pp. 2663–2671.

Schmidt, M., N. Le Roux, and F. Bach (2017). “Minimizing finite sums with the
stochastic average gradient”. Mathematical Programming 162:1-2, pp. 83–112.

Scieur, D., F. Bach, and A. d’Aspremont (2017). “Nonlinear acceleration of
stochastic algorithms”. Advances in Neural Information Processing Systems
30. URL: https : / / proceedings . neurips . cc / paper / 2017 / file /
fca0789e7891cbc0583298a238316122-Paper.pdf.

Scieur, D., A. d’Aspremont, and F. Bach (2016). “Regularized nonlinear
acceleration”. Advances In Neural Information Processing Systems 29.
URL: https : / / proceedings . neurips . cc / paper / 2016 / file /
bbf94b34eb32268ada57a3be5062fe7d-Paper.pdf.

Shalev-Shwartz, S. and T. Zhang (2013). “Stochastic dual coordinate ascent meth-
ods for regularized loss minimization”. Journal of Machine Learning Research
14:Feb, pp. 567–599.

Smith, D. A., W. F. Ford, and A. Sidi (1987). “Extrapolation methods for vector
sequences”. SIAM review 29:2, pp. 199–233.

159

Paper IV. Hybrid Acceleration Scheme for Variance Reduced Stochastic
Optimization Algorithms
Teo, C. H., A. Smola, S. Vishwanathan, and Q. V. Le (2007). “A scalable mod-

ular convex solver for regularized risk minimization”. In: Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 727–736.

Themelis, A. and P. Patrinos (2019). “Supermann: a superlinearly convergent algo-
rithm for finding fixed points of nonexpansive operators”. IEEE Transactions on
Automatic Control 64:12, pp. 4875–4890. DOI: 10.1109/TAC.2019.2906393.

Walker, H. F. and P. Ni (2011). “Anderson acceleration for fixed-point iterations”.
SIAM Journal on Numerical Analysis 49:4, pp. 1715–1735. DOI: 10.1137/
10078356X.

Yang, T., R. Jin, S. Zhu, and Q. Lin (2016). “On data preconditioning for regularized
loss minimization”. Machine Learning 103:1, pp. 57–79.

Zhang, J., B. O’Donoghue, and S. Boyd (2020). “Globally convergent type-i ander-
son acceleration for nonsmooth fixed-point iterations”. SIAM Journal on Opti-
mization 30:4, pp. 3170–3197.

160

Efficient and Flexible First-Order
Optimization Algorithms
Hamed Sadeghi
Department of Automatic Control

Popular science summary of the doctoral thesis Efficient and Flexible First-Order
Optimization Algorithms, December 2022. The thesis can be downloaded from:
http://www.control.lth.se/publications

There are many applications in science, engineering, and in human daily life in
which some sort of optimization is being used. For instance, manufacturers aim at
designing processes that maximize efficiency of production lines; shipping compa-
nies seek to obtain the best routes for delivering parcels to their destination; design
engineers try to find the optimal design of a load-carrying structure; and investors
seek to create portfolios that maximize the return while avoiding high risks. To find
the best (or optimal) solution for such processes, one usually builds a mathemat-
ical model to describe the underlying optimization problem. The resulting math-
ematical model includes a quantitative performance measure of the process under
study; this measure depends on characteristics or attributes of the process. There is
also the possibility of reflecting physical limitations of the underlying process on
the mathematical model. In most cases, the mathematical model (of the optimiza-
tion problem) is complex and includes many parameters and variables; therefore,
computer-based optimization algorithms are usually used to find its solution. An
optimization algorithm is a program that takes a mathematical optimization prob-
lem, and after performing a set of mathematical operations on it, finds and returns
an approximation to the true solution.

Depending on the mathematical model of the optimization problem, there are a
variety of algorithms that can be used to solve it; however, not all of them perform
equally fast and efficient. This thesis is an attempt to improve performance of a
family of optimization algorithms such that they can solve optimization problems—
that they are applicable to—faster and more efficiently. In this thesis, several novel
optimization algorithms are proposed. These algorithms are mainly built upon the
existing ones, however, they are altered such that, they can exhibit a more favorable
behavior than their existing counterparts, i.e., they can find a solution of mathemat-
ical optimization problems considerably faster. For instance, for an optimization
problem that we considered, using the proposed algorithms, we managed to achieve
a 5-10 times speed up—compared to an existing counterpart algorithm—in finding
a solution.

1

