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Abstract

This thesis work concerns studies of two rare-earth-ions, praseodymium (Pr3+) and
europium (Eu3+), doped into a yttrium orthosilicate (Y2SiO5) crystal for applica-
tions in quantum computing. The nuclear spin levels of these ions can have very long
coherence times, up to several hours. Coherence can also be effectively transferred
between the optical and hyperfine levels. These systems, therefore, have been exten-
sively used for storing quantum information e.g. quantum memories and quantum
computing. With the goal of working towards building a rare-earth quantum com-
puter, the aim of this thesis work is to understand the processes affecting the lifetime
of the hyperfine states used as qubits and design ways to achieve high-fidelity gate
operations.

One of the mechanisms of relaxation between hyperfine levels is flip-flop processes
due to magnetic dipole-dipole interaction between neighboring ions. Modeling of
this mechanism has generally been macroscopic, characterized by an average rate de-
scribing the relaxation of all ions. One part of this thesis presents a microscopic model
of flip-flop interactions between individual nuclear spins of dopant ions. Every ion
is situated in a unique local environment in the crystal, where each ion has different
distances and a unique orientation relative to its nearest neighbors, as determined by
the lattice structure and the random doping. Thus, each ion has a unique flip-flop rate
and the collective relaxation dynamics of all ions in a bulk crystal is a sum of many
exponential decays, giving rise to a distribution of rates rather than a single average
decay rate. The model can serve as a general tool to calculate other kinds of interac-
tions at the microscopic level and it could also be used to study the dynamics of other
rare-earth ions in different materials.

Another part of this thesis identifies several limitations in the rare-earth system that
must be overcome in order to successfully perform gate operations with high fideli-
ties. This is presented in the context of ensemble qubits in rare-earth-ions. Although
single-ion qubits are essential for scalability, an approach to building small comput-
ing nodes using ensemble qubits exists. There is also reason to explore fundamental
limitations using the available technology. Two methods to tackle these limitations
are presented. One is an adiabatic approach, which is slow but resilient against several
imperfections in the system. The second method is ‘Shortcut to Adiabaticity’, which
is a faster approach and can be advantageous to perform operations with high fidelity
when the initial and final quantum states are known.
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Popular Scientific Summary

A classical computer’s workhorse is a transistor that can behave as a switch and has
two states: ‘on’ and ‘off’ (or 1 and 0). Using this simple property, integrated circuit
chips were developed to compute complex operations quickly. The computing power
increases with the number of transistors one can jam into a single chip. But tech-
nology has advanced so much today that we are approaching the limit of fitting in
more transistors to gain computing power. One approach that seeks to increase the
computing power for a specific set of problems is quantum computing. This is very
different from classical computing and requires the knowledge of a separate branch
of physics known as quantum mechanics. While a quantum computer will not re-
place our laptops, we are approaching a new era of computing using both classical and
quantum computers. One of the world’s leading companies in computing, IBM, calls
this ‘quantum-centric supercomputing’. There are also many classes of problems that
can only sufficiently be solved using quantum mechanics and can potentially pave
new paths to secure information, for example, the data stored on our credit cards.

A considerable effort has been devoted to making quantum computing a usable tech-
nology, both by industrial companies and research institutions worldwide. And a
plethora of platforms can be used as building blocks of a quantum computer. One
example of such a system is the nucleus of an atom. It can behave akin to a magnetic
compass, which always points towards the north pole. This property is historically
known as ‘spin’ and is purely quantum mechanical in nature. A key feature of quan-
tum mechanical systems is ‘superposition’: a system can have states beyond just ’0’
and ’1’ (written as |0⟩ and |1⟩) and is allowed to have different combinations of |0⟩
and |1⟩. The creation of such superposition states and the ability to manipulate them
is imperative to quantum computing.

Nuclear spin states of some elements known as ‘rare-earth-ions’ can be very long-
lived when embedded in a transparent crystal. They can also be controlled using laser
light: thus, the state can be initialized, manipulated, and read out by shining light on
these crystals. Another attractive feature is that the crystals serve as a relatively quiet
environment for the rare-earth-ions to live in, so any information stored in the states is
not easily lost due to environmental disturbances. A large part of this thesis is about
understanding the magnetic personalities of the nuclear spins of the rare-earth-ions
and exploring ways of making them dance to the tune of light.
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Chapter 1

Introduction

Why quantum computers?

The inspiration for building a quantum computer is often credited to Richard P. Feyn-
man, who ended his speech Simulating Physics with Computers [1] with the following
words:

‘..I’m not happy with all the analyses that go with just the classical theory, because nature
isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make
it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so
easy.’

The essence of his speech was that one needs a system that uses the principles of Quan-
tum Mechanics to understand other quantum mechanical phenomena. This problem
is not easy because quantum systems need to be isolated from the environment to use
them for any computing purposes. The theoretical knowledge on this problem is im-
mense, but more often than not, technological advancements fall short of achieving
this goal.

Several platforms are being used to realize a quantum computer - superconducting
qubits [2–4], trapped ions [5–7], optical photons [8, 9], and nitrogen-vacancy centers
in diamonds [10], only to mention a few. This field of research has gained momentum
in the past few decades but it is not clear which platform will ultimately become a
scalable and useful quantum computer. Most efforts today are, however, invested
into superconducting qubits including substantial efforts from major companies like
IBM, Google, Rigetti, etc. IBM has successfully made a quantum processor with
127 qubits, with a qubit connectivity of 2-3. The fidelity error on single-qubit and
two-qubit gates is 1 − 7 · 10−2 [3]. Google has 54 qubits and the fidelity error on

3



single-qubit operations could be 10−3 and the two-qubit operations could be 2 ·10−2

[11]. IonQ, a company that uses ion traps has achieved single-qubit errors of 5 · 10−4

and two-qubit gate errors of 4 · 10−3. It has demonstrated connectivity between all
of its 21 qubits [12]. Rare-earth-ions are another promising platform for quantum
computing, although they have not yet demonstrated equally impressive results. This
thesis aims towards building a rare-earth quantum computer (REQC).

1.1 Requirements for a rare-earth-quantum computer

A joint effort by several research groups in Europe, under the European Flagship
project, ‘Scalable QUAntum computing nodes with Rare-Earth ions’ (SQUARE),
has led to the laying down of a Roadmap[13] for the present status and prospects of
using rare-earth-ions for quantum computing. The criteria to be satisfied for build-
ing a quantum computer were given by DiVincenzo[14] in the year 2000. There are
five requirements and here, each point is discussed in the context of rare-earth-ion
quantum computing as envisioned in the roadmap:

1. A scalable physical system with well-characterized qubits

The most promising rare-earth (RE) approach to scalability is using single RE
ions, where one species is used for qubit operations and another species is used
as a readout ion. When rare-earth-ions are doped into crystals and cooled down
to ∼ 4 K, one can shield them from the environmental noise very well and
store quantum information for a long time. The nuclear spin states are used
as qubit levels and they are accessed via an optically excited state. There could
be several candidates to be used as the qubit ion, and europium (Eu3+) seems
to have favorable properties. Theoretical investigations have been made using
single-ion qubits in Eu3+ doped into Yttrium orthosilicate (Eu3+: Y2SiO5 or
Eu:YSO for short) with encouraging results [15, 16]. Another approach could
be to use ensemble qubits in stoichiometric crystals to build small processor
nodes[17]. This thesis explores the use of ensemble qubits in randomly doped
crystals.

2. The ability to initialize the state of the qubits to a simple fiducial state, such
as |000..⟩
Rare-earth-ion-doped crystals also have an inhomogeneous broadening, which
allows the preparation of a qubit in different spectral regions within the in-
homogeneously broadened line. Qubits can be differentiated from each other
depending on their resonant optical frequency (in other words, their spectral
position in the inhomogeneous line). The number of potentially accessible
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qubit channels is the ratio of the inhomogeneous linewidth to the homoge-
neous linewidth of the optical transitions. This could be ∼ 106, discussed in
Ch. 2.

The initialization of the state of the qubits involves principles of optical pump-
ing and spectral hole burning. Transparent spectral windows are first prepared
and then the qubits are initialized in this spectral region to isolate from other
non-qubit ions, thus minimizing off-resonant excitations. The wider the trans-
mission spectral window, the better. Nominally, qubits can be separated by
about 1 GHz. This technique is common to single-ion qubits as well as ensem-
ble qubits. This has been fairly well established, for example, initialization of
an ensemble qubit in praseodymium ion or Pr3+ doped in YSO [18]. This will
be discussed in Ch. 5. Paper II shows a new experimental technique that could
be used to initialize qubits to a known state with a fidelity of ∼ 0.98%.

Currently, the time it takes to initialize the qubit is much longer than the life-
time of the optically excited state. In a full quantum algorithm, this is not ideal
since the duration of the initialization step should be comparable to a gate op-
eration. Additionally, there are technological limitations. The laser source used
to address the qubits in frequency needs to be able to switch several GHz in
a few microseconds. The laser tuning range directly limits the connectivity of
the qubits, but with sufficient tuning range, the average connectivity per qubit
could be about 50 [13].

3. Long relevant decoherence times, much longer than the gate operation time

Europium or Eu3+ has a very long lifetime of 1.9 ms and coherence time of
1.5 ms, as will be discussed in Ch. 2. The large splitting between the hyperfine
levels also allows the use of pulses much shorter than the gate operation time.
The hyperfine levels in Eu3+ can live longer than 49 days [19] and the hyperfine
coherence time could be as long as six hours [20] in the presence of an external
magnetic field.

4. A ‘universal’ set of quantum gates

A scheme to perform arbitrary rotations on the Bloch sphere has been exper-
imentally demonstrated [21]. They are implemented using two-color optical
pulses and this technique will be discussed in Ch. 5. Including the effects of
decay, decoherence, and internal cross-talk, single-ion-qubit operations can be
∼ 3.4µs long, where the realistic fidelity errors could be ∼ 10−4 [15] in simu-
lations. Entanglement can be achieved using the dipole-blockade mechanism
[22, 23] and the simulated two-qubit gate errors can be between 10−4 − 10−3

[15], over a range of dipole-dipole shifts, of about 100 MHz.
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Unfortunately, the errors in single-qubit operations on ensembles are not this
low due to several sources of inhomogeneities. This has been shown in exper-
iments. In Pr:YSO, the experimental errors could be about 4% [21] and the
primary limitation is the coherence time. In Eu:YSO, where coherence times
are longer, the limitation is the weak oscillator strength of the transitions. The
laser power available may then be insufficient to drive the transitions and thus
longer pulses need to be designed. Spin inhomogeneity also limits the fidelity
to about 95%. These aspects and experimental results are discussed in Paper
III.

5. A qubit-specific measurement capability

For the single-ion approach, a rare-earth species different from the qubit ion is
chosen as the readout ion, whose emission can be Purcell-enhanced by using a
cavity with a high-quality factor. The readout ion needs to be coupled to one or
several qubit ions through the dipole-blockade mechanism used for two-qubit
gates. Neodymium or erbium could be favorable for this purpose. If emission
rates of 107 photons/s are achieved, readout fidelities> 99% could be possible
[13]. Several nodes can be connected via an optical interface between cavities
with readout ions.

In the ensemble approach used in this thesis work, the readout is done us-
ing absorption spectroscopy where an optical pulse chirps in frequency, across
the ensemble qubit. A full Quantum State Tomography can be done using a
scheme with two-color pulses. This has earlier been demonstrated in Pr:YSO
[21] and has the same fidelity as the single-qubit operation, ∼ 96%.

The above discussion is by no means complete. The objective here has been to provide
a glimpse into the field of rare-earth-ion quantum computing and show that rare-
earth-ions have some attractive and promising features for quantum computing. A
more detailed and thorough discussion of different protocols, their limitations, and
current progress are presented in Ref.[13].

1.2 Aim of this thesis

This thesis work aims to understand the processes affecting the lifetime of the hyper-
fine (nuclear spin) states used as qubits and design ways to achieve high-fidelity gate
operations for quantum computing using ensemble qubits in rare-earth-ion-doped
crystals. The dominant mechanism affecting the lifetime of the hyperfine states which
is relevant for this work is flip-flop interaction. Modeling of this mechanism has so
far been macroscopic, characterized by an average rate describing the relaxation of
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all ions. In Paper I, a microscopic model of flip-flop interactions between individual
nuclear spins of dopant ions is presented. Also, a new method to measure rates of
individual transitions from hole burning spectra is presented. It requires significantly
fewer fitting parameters in theoretical rate equations compared to earlier work.

Papers II and III are part of the SQUARE project (European Flagship project) and
aim to demonstrate high-fidelity single-qubit operations using ensemble qubits. Paper
II is an experimental demonstration of a new technique to perform operations in
ensemble qubits. This technique, known as ‘Shortcut to Adiabaticity’ uses pulses of
shorter duration and it is a good tool to perform operations with high fidelity when the
initial and final quantum state are known. Paper III presents an adiabatic approach
useful when pulses with low Rabi frequency are required to perform gate operations.
Limitations due to several sources of inhomogeneities in ensemble qubits are detailed
and the trade-offs to be made in the experimental design are discussed.

As has been pointed out in the section above, one needs single-ion qubits to build
a scalable rare-earth quantum computer. The primary reason is that is challenging
to find chains of strongly interacting ensemble qubits. While there has been quite
some theoretical work investigating gate operations using single-ion qubits [13, 15, 16,
24], technological advancement has been the limiting factor in exploring this area
in experiments. Reading out the state of a single ion is challenging due to the low
spontaneous emission rate. An approach to overcome this difficulty is using cavities-
based approaches. Developments in the detection of single-ions have been made in
recent years [25–28] and this is expected to bolster the experimental progress using
single-ion-qubits. During the majority of the work in this thesis, these technologies
were still in development.

The case of ensemble qubits could still be useful in stoichiometric crsytals and ensemble-
based operations in atomic frequency comb (AFC) quantum memories. The idea of
building small quantum processing nodes using ensembles in stoichiometric crystals
was proposed in Ref.[17]. It involves using a stoichiometric crystal in Eu3+, lightly
doped with another rare-earth-ion. A cluster of Eu3+ spins around the doped ion
is characterized by a ‘satellite’ line that can be resolved optically. Each cluster can
potentially be used as a qubit, and one can find up to 30 clusters in some materials
[29, 30]. Such qubits can potentially be used to perform linear operations and in
quantum memories. Another reason to explore ensemble qubits is to understand the
requirements for high-fidelity transfers in spin-wave AFC quantum memories [31–33],
where operations are done on optically inhomogeneous ensembles via the optically ex-
cited state. Papers II and III investigate several aspects relevant to such high-fidelity
transfers.
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1.3 Outline of this thesis

A primer on the properties of rare-earth-ion-doped crystals that make them attractive
for quantum computing is provided in Ch. 2. Subsequent chapters are divided into
two main topics, with the common context of rare-earth-ion quantum computing.

Nuclear spin interactions: Ch. 3 develops the concept of nuclear spins, starting from a
classical theory point of view and extends to the case of rare-earth-ions. It also gives an
overview of the Spin Hamiltonian formalism to describe the behavior of the nuclear
spins of the rare-earth-ions in the presence of an external magnetic field. Interactions
between the various nuclear spins present in a crystal are also discussed. One such
interaction, known as flip-flops are the dominant mechanism limiting the lifetime of
the nuclear spin states. Paper I develops a new method to model and measure this
interaction in rare-earth-ion-doped crystals. The main results of Paper I are described
in Ch. 4 .

Coherent control : Ch. 5 gives an overview of the tools for coherent control of ensemble
qubits in rare-earth-ions. For quantum computing, the ability to perform gate opera-
tions with high fidelity is essential. Ch. 6 describes two methods to achieve this. One
is an adiabatic approach, which is the subject of Paper III. This approach is designed
to overcome several imperfections in the rare-earth-ion system. The second method
is ‘Shortcut to Adiabaticity’, used in Paper II. The main results and some details of
both the papers are described in this chapter.

This thesis concludes with an outlook of all the papers and a personal perspective on
the progress of this thesis work in Ch. 7.
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Chapter 2

Properties of rare-earth-ions

Rare-earth elements are a group of seventeen elements in the periodic table: Scan-
dium (21Sc), Yttrium (39Y), and the lanthanide series of elements from Lanthanum
to Lutetium (57La - 71Lu). The Swedish village, Ytterby, has a rich history associated
with these elements, with several being mined here for the first time and four even
named after it. These elements have a ubiquitous presence in several consumer goods
- batteries, lights, computers, DVD players, catalysts in cars and industries - wind
turbines, magnets, lasers, fiber optics, superconductors, etc.

Of particular interest to the Quantum Information group in Lund and several other
research groups all over the world is their use in quantum technologies [13, 22, 24, 34–
43], biomedical imaging [44–49] and laser stabilization [50–54]. When these ions are
doped into inorganic crystals, they have hyperfine levels with unique properties such
as long lifetimes and coherence times. For example, Eu3+ can have a lifetime of more
than 49 days [19] and a coherence time of six hours [20], when doped into Y2SiO5.
These transitions are easily accessible via optical transitions that are inhomogeneously
broadened (up to 100’s of GHz) and also possess narrow homogeneous linewidths (≤ 1
kHz). Inhomoegeneous broadening and long lifetimes facilitate making, or ‘burning’
spectral holes in these materials, which means that one can create spectral regions
in these materials that are transparent to light. The idea of spectral hole burning in
rare-earth-ion-doped crystals for quantum computing was pioneered by Ref. [55] and
developed by Ref. [22]. Since then, this field has been explored extensively [17, 18, 21,
56–62].

In this chapter, some of the spectroscopic properties relevant to applications in quan-
tum computing are introduced. These properties can vary for different dopant ions,
host crystals, doping concentrations, temperatures, external magnetic fields, etc. First,
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Figure 2.1: Energy levels of Pr3+ as a free ion and the splitting of these levels due to different
interactions when doped into YSO. The splitting of 3H is shown here as an ex-
ample. 1D level also has a similar structure.

an overview is given that captures the essence of what makes rare-earth-ions a promis-
ing platform for quantum computing. Then, properties specific to Pr3+ and Eu3+

are given in Sec. 2.5 since they are central to this thesis.

2.1 Energy level structure

The rare-earth (RE) elements considered in this work are trivalent cations of the form
RE3+ with a configuration of [Xe]4fN . The value of the principal quantum number n
is 4, the angular momentum quantum number l is 3 (corresponds to the f orbital) and
N is the number of valence electrons. The ionic radii of all the RE3+ ions are similar,
facilitating the replacement of one RE3+ in an inorganic crystalline host with another
RE3+ ion. The ions considered in this work are Pr3+ and Eu3+. The configuration
of Pr3+ is 4f2, with a ground state 3H4, and of Eu3+ is 4f6, with a ground state 7F0

(written using the spectroscopic term 2S+1LJ ).

The above ionic energy levels lose their degeneracy completely due to the electric field
of the crystal, giving rise to (2J + 1) levels. Nuclear quadrupolar and hyperfine
interactions lead to (2I + 1)/2 levels. In the presence of an external magnetic field,
these levels are further split due to the nuclear Zeeman effect, resulting in (2I + 1)
levels.
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Figure 2.2: (a) Calculated energy level structure of Eu3+ and Pr3+, doped in LaF3. This image
has been reproduced from another reference. See text for details. (b) Hyperfine
structure of the lowest crystal field levels in the 3H4 - 1D2 transition at 606 nm
Pr3+, doped in YSO (c) Hyperfine structure of the lowest crystal field levels in the
7F0 -5D0 transition at 580 nm Eu3+, doped in YSO. For easy conversion between
different units : 1 cm−1 ≃ 1K ≃ 30GHz ≃ 107nm.
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A schematic of the interactions and the splitting of energy levels is shown in Fig. 2.1,
with Pr3+ as an example. For quantum computing, the hyperfine levels ± |12g⟩ and
± |32g⟩ are used as qubits. The qubit states are manipulated via an optically excited
state in the 1D level shown in Fig. 2.1, which also has a hyperfine structure similar to
3H .

2.2 Lifetime of hyperfine levels

The transitions considered in this work are electronic transitions within the 4f shell.
These transitions are not allowed for a free ion since parity is conserved (Laporte rule).
However, they become weakly allowed when doped into a crystal since the crystal
field mixes the pure 4f states. These transitions are also very sharp. The outer-lying
5s and 5p orbitals are completely filled and shield the 4f shell electrons from electric
field perturbations due to the crystal field. Additionally, the density of phonons that
can contribute to line broadening is drastically reduced when cooled down to 2 K
(discussed further in Ch. 4). This leads to long lifetimes of the hyperfine ground states
and facilitates persistent spectral hole burning in these materials. In other words, the
qubit levels used for quantum computing are long-lived. For example, hyperfine levels
in Eu:YSO can have a lifetime T1 longer than 49 days [19].

The calculated energy level structure of Pr3+ and Eu3+ doped in LaF3 is shown in
Fig. 2.2(a). This figure is adapted from Ref. [63] and originally from Ref. [64]. This
way of representing the energy levels, known as the Dieke diagram, was first used in
Ref. [65] and has been modified several times. The transitions used in this work are
highlighted, and in Fig. 2.2(b) and (c), the hyperfine structure of the transitions is
shown. The optical and hyperfine transitions are inhomogeneously broadened due to
the anisotropy of the crystal so that each ion experiences a unique chemical environ-
ment [66].

2.3 Homogeneous and Inhomogeneous linewidth

The homogeneous linewidths Γh in these materials are narrow. The optical homoge-
neous linewidth can be in the range of 0.1 Hz-1kHz [67]. Generally, different contri-
butions to the broadening of the homogeneous linewidth are given as[68, 69]:

Γh =
1

2πT1
+ ΓISD + Γphonon (2.1)
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Figure 2.3: The chemical environment around each dopant ion is different, which shifts its
resonance frequency, resulting in an inhomoegenous broadening Γinh ∼ 1−100
GHz, apparent when all the ions in the crystal are probed. The homoegeneous
linewidth of each ion is much narrower, in the range Γh ∼ 0.1− 1 kHz.

where T1 is lifetime of the optical excited state, ΓISD is the contribution from instan-
taneous spectral diffusion effects and Γphonon comes from temperature-dependent ef-
fects due to phonons. Instantaneous spectral diffusion happens due to electric dipole-
dipole interactions between dopant ions. When an ion is excited, the static electric
dipole moment changes and the resulting change in the electric field around it affects
the neighboring dopant ions. Such effects are discussed, for example in Ref. [68, 70].
Phonon-related effects are discussed in Ch.4. The homogeneous linewidth is related
to the coherence time T2 as Γh = 1

πT2
. Long T2 is another attractive feature for

quantum computing.

The homogeneous linewidth corresponds to a single ion in the crystal. When an
ensemble of ions is probed, the inhomogeneous broadening becomes apparent. Since
each dopant ion lives in a unique environment in the crystal, the resonant frequencies
shift slightly. Inhomogeneous broadening Γinh can be of the order of 1− 100 GHz
[67]. This is sketched in Fig. 2.3. The ratio Γinh

Γh
∼ 106 and this implies that one can

potentially access a million qubit channels in one crystal.

The spin homogeneous linewidths can be < kHz. With the application of small mag-
netic fields, they can be narrowed down by an order of magnitude. For example,
Pr3+ has a spin coherence time of 0.5 ms, and by applying a modest field of 2 mT,
it is increased to 6 ms [71]. By carefully selecting the magnitude and direction of the
applied field, it can be further increased to 82 ms [71]. This increase in T2 happens
due to the reduction of the magnetic noise in the host crystal and will be discussed
further in Ch.3.
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Table 2.1: Spectroscopic properties and relaxation parameters of Pr:YSO (site 1) and
151Eu:YSO (site 1). T1,opt and T2,opt are the lifetime and coherence time for the
optically excited level of the transition listed in the first row. T1,spin and T2,spin

are the lifetime and coherence time for the spin or hyperfine levels of the ground
state for their respective transition. µeg is the optical transition dipole moment.
Γinh is the inhomogeneous linewidth, given for both the optical and spin transi-
tion. α is the absorption coefficient.

Property Pr:YSO Eu:YSO
Transition 3H4(1) → 1D2(1) 5D0 → 7F0

Wavelength 605.977 nm [69] 579.879 nm [72]
T1,opt 164µs [69] 1.9 ms [72]
T2,opt 152µs [69] (B = 7.7 mT) 1.5 ms [72]
T1,spin ∼ 100 s [19] > 49 days [19]
T2,spin 0.5 ms [71, 73] 6 hours (B = 1.35 T) [20]

6 ms [71, 73] (B = 2 mT)
Oscillator strength 7.7× 10−7 [74] 1.2× 10−8 [72]
µeg 2.5× 10−32 Cm [74] 6.6× 10−33 Cm [74]
Γinh,opt 4.4 GHz (0.02% conc.) [69] 1.7 GHz (0.1% conc.) [68]
Γinh,spin 50− 75 kHz [75] 30 kHz [76]
α 47 cm−1 [66] (along D2,

0.05% conc.)
2.7 cm−1 (along D1, 0.1%
conc., measured in Lund)

2.4 Absorption coefficient

Rare-earth-ions doped into crystals are absorbing materials. The spectroscopic stud-
ies in this thesis are based on the absorption of the light incident on these crystals.
An estimation of absorption can be made using the equation I = I0e

−αL, where I0
is the light incident on a crystal of length L, α is the absorption coefficient of the
crystal and I is the transmitted light after absorption. More absorption is good for
the studies in this thesis since higher absorption means higher SNR (Signal-to-Noise
Ratio), and more will be discussed in Paper III. The host crystals can be biaxial, so the
refractive index and absorption are polarization-dependent. To drive an optical transi-
tion, the polarization of the incident light should have a component along the electric
transition dipole moment, µeg. The convention is to give the direction of µeg and,
consequently, the absorption coefficient with respect to the crystal axes D1, b,D2.

2.5 Pr3+ and Eu3+ doped in YSO

The two ions used in this thesis are Pr3+ and Eu3+. The host crystal is Yttrium
orthosilicate, Y2SiO5 ( or YSO for short). This host was chosen because it has out-
standing material properties that lead to very narrow homogeneous linewidths of the
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Figure 2.4: (a) Unit cell of Y2SiO5 in the C2/c base-centered group, with a = 1.44137 nm,
b = 0.6719 nm, c = 1.040 nm, α = 90◦, β = 122.235◦, γ = 90◦. (b) Eight
basic molecules of Y2SiO5 contained in a unit cell, constructed using the atom
coordinates from Ref. [77]. Figure taken from Ref. [16].

dopant ions. The most abundant isotopes of Si and O have no nuclear magnetic mo-
ments, while Y has a low magnetic moment. This leads to low magnetic noise and
preserves the coherence of the rare-earth-ion for longer. Fig. 2.4 shows the structure
of the unit cell of YSO [16]. It is monoclinic, biaxial, and the relation between the
principal axes a, b, c with the crystal axes D1, b,D2 is also shown in the figure. Pr3+

or Eu3+ replaces either of the Yttrium’s labeled as ‘1’ and ‘2’, commonly referred to as
site 1 and site 2, respectively. This structure was used to obtain a distribution of the
nearest neighbors, as will be discussed later in Paper I.

The reason for choosing Pr3+ and Eu3+ are discussed below. The oscillator strength of
the optical transition is strong enough so that the available laser power is sufficient to
control Pr3+ ions coherently. Thus, Pr:YSO serves as a good test bed for experiments
in many applications for quantum technologies, even though it does not have the
longest coherence time. Spectral tailoring techniques in Pr3+ are well established in
the lab here at Lund. For Paper I, Pr:YSO was chosen to study the hyperfine lifetimes,
which is ∼ 100 s, and in Paper II, it was chosen to demonstrate a new method to
perform population transfers. Eu3+ has a very long coherence time which is good for
quantum computing, but its transition oscillator strength is weaker than Pr3+ by two
orders of magnitude. To drive the transitions in Eu3+, pulses designed to work with
low Rabi frequency are needed. Several challenges regarding working with Eu3+ will
be explored in Paper III.

The most relevant properties are listed in Tab. 2.1. In this thesis, 0.05% Pr3+:Y2SiO5

and isotopically pure 0.1% 151Eu3+:Y2SiO5 were used. For the former, the transition
3H4(1) → 1D2(1) at 605.977 nm at site 1 was used (Paper I and Paper II), and for
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Table 2.2: Experimentally measured values of the relative oscillator strength for Pr:YSO (site
1) [18] and 151Eu:YSO (site 1) [78]

Pr:YSO ± |1/2e⟩ ± |3/2e⟩ ± |5/2e⟩
± |1/2g⟩ 0.56 0.38 0.06
± |3/2g⟩ 0.39 0.60 0.01
± |5/2g⟩ 0.05 0.02 0.93
Eu:YSO ± |1/2e⟩ ± |3/2e⟩ ± |5/2e⟩
± |1/2g⟩ 0.03 0.22 0.75
± |3/2g⟩ 0.12 0.68 0.20
± |5/2g⟩ 0.85 0.10 0.05

the latter, 7F0 → 5D0 at 579.879 nm at site 1 was used (Paper III). The transition
J = 0 to J = 0 is normally forbidden, but when Eu3+ is doped in a low symmetry
host like YSO, it is weakly allowed due to the mixing of the crystal field levels. This
is the reason why 5D0 has longer lifetimes compared to other rare-earth-ions. For
a thorough overview of the spectroscopic properties, the reader is referred to Ref.
[66, 68].

The hyperfine structure of Pr:YSO and Eu:YSO shown in Fig. 2.2(b) and (c), re-
spectively, have three levels in the ground and excited state each. The crystal field
mixes the levels, so the transition selection rules no longer hold, and there can be
nine transitions between these levels. The experimentally measured values of the rela-
tive oscillator strengths for the different transitions are given in Tabs.2.2. For Pr:YSO,
the values are taken from Ref. [18] but normalized to 1. For Eu:YSO, the values are
taken from Ref. [78].

The absorption signal will be proportional to the relative oscillator strengths. For
qubit operations, ideally, one should choose two transitions with similar oscillator
strengths so that they are equally easy (or difficult) to drive with the available laser
power. The excited state should be chosen so that the relative oscillator strength to
the third ground state is low so that ions in the ensemble qubit lost to this state during
the operations are minimized. Making these considerations, ± |12g⟩ and ± |32g⟩ are
chosen as the qubit levels, and the operations are done via ± |32e⟩. In Eu:YSO, the
qubit levels are again ± |12g⟩ and ± |32g⟩ while the excited state chosen is ± |52e⟩.
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Chapter 3

Nuclear spins and interactions

In this chapter, the behavior of a magnetic dipole in the presence of an external mag-
netic field is briefly described [79, 80]. The quantum mechanical description of a
nucleus with a nuclear spin I = 5

2 is given. Magnetic dipole-dipole interactions and
specifically, flip-flop interactions are also introduced. The general concepts underly-
ing magnetic dipole-dipole interactions date back to the seminal work on relaxation
effects in Nuclear Magnetic Resonance (NMR) [81] and the equations can be trans-
lated to the case of nuclear spins in rare-earth-ions. These concepts lay the background
for Paper I.

3.1 Magnetic dipoles in an external magnetic field

The objective of this section is to describe how a classical magnetic dipole behaves in
the presence of an external magnetic field. A very simple description is given but it
gives insight into the quantum mechanical description of the nuclear spin levels in
rare-earth-ions.

In classical theory, the magnetic dipole moment µ and the angular momentum J of
an object are related as:

µ = γJ (3.1)

where γ is a scalar called the ‘gyromagnetic ratio’. It is the ratio of the magnetic
moment and the angular momentum. In the presence of an external magnetic field
B, the magnetic dipole experiences a torque given by:
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Figure 3.1: Equally spaced energy levels of a system with a nuclear spin I =
5/2 according to Eq. 3.7, corresponding to the eigenvalues m =
−5/2,−3/2,−1/2,+1/2,+3/2, and + 5/2.

τ = µ×B (3.2)

And, the angular momentum vector J precesses about B with an angular frequency
known as the ‘Larmour frequency’:

ω = γB (3.3)

The energy of the dipole (‘Zeeman energy’) is:

W = −µ ·B (3.4)

In the quantum mechanical description, the mathematics of angular momentum and
spin are very closely related. A dimensionless angular momentum operator I is used:

J = ℏI (3.5)

where ℏ is the reduced Planck constant. The components of I, i.e., Ix, Iy, Iz commute
with I2, so one can simultaneously measure one of the components and I2. Thus, their
eigen values are good quantum numbers. The eigenvalues of I2 and Iz are I(I + 1)
and m = I, I − 1, ...,−I , respectively. I can be half-integer or integer. Let us
describe the energy of the dipole along one of the directions z. If the field along this
direction is Bz , the interaction energy or the Hamiltonian is written as:

H = −γℏBzIz (3.6)
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The above equation is analogous to Eq. 3.4, where the classical magnetic moment
µ has been replaced with the quantum mechanical term γℏIz . For I = 5

2 , the
eigenvalues of the above Hamiltonian are multiples of the eigenvalues of Iz :

E = −γℏBzm (3.7)

wherem = −5/2,−3/2,−1/2,+1/2,+3/2, and+5/2 and the levels are equidis-
tant, separated by γℏBz . The levels are shown in Fig. 3.1. This splitting of the levels
is known as ‘lifting the degeneracy’ of the nuclear spin.

For the rare-earths, the magnetic dipole moment is usually given in units of the nuclear
magneton µN , defined in SI units as:

µN =
eℏ
2mp

(3.8)

The value of µN = 5.05×10−27 JT−1. There can sometimes be a ‘c’ (speed of light)
in the denominator of the above equation, which means that the units are in the CGS
system. One should also be cautious with the units of the gyromagnetic ratio γ since it
can vary when one navigates through different references (which can sometimes make
the life of a new student very enjoyable). In Eq. 3.1, γ was defined as the ratio of the
dipole moment and the angular momentum. In SI units, it is expressed as rads−1T−1

and can also be expressed as γ/2π in units of MHzT−1. In this thesis, MHzT−1 is
used.

3.2 Nuclear spins of rare-earth-ions

To go from the classical picture to the quantum picture, we introduced Planck’s con-
stant ℏ and replaced vectors with operators in the previous section. To describe the
nuclear spin of a rare-earth-ion, we also need to use tensors since the host crystal can
be anisotropic. A 3 × 3 tensor T is used, where each term is Tij and i, j = x, y, z.
Thus, there are nine terms: Txx, Txy, Txz, ..., Tzy, Tzz . Instead of one vector for the
magnetic dipole moment µ, there are two tensors Q and M, arising from different
effects.

The rare-earth-ions considered in this work, Pr3+ and Eu3+ have a nuclear spin
I = 5/2. The description below applies to Pr3+, since this is relevant for Pa-
per I. The nuclear spin (or the hyperfine) levels in Pr3+ with m = ±1/2,±3/2
and ±5/2 result from the second-order hyperfine and nuclear quadrupole interac-
tions [66]. These two interactions can often not be measured independently and
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thus are clubbed together in one term, known as the ‘effective quadrupole tensor’,
Q. With an external field, the doubly-degenerate levels split, resulting in levels with
m = +1/2,−1/2,+3/2,−3/2,+5/2,−5/2. These levels, known as the ‘Zeeman’
levels are not equidistant, as in the simple case of Fig. 3.1. The extent to which the
levels are split is governed by the ‘Zeeman’ tensor, M.

These six hyperfine levels are, in reality, not represented by the pure eigenstates of Iz
and they are in fact, a linear combination of the pure eigenstates. This admixture
happens due to the mixing caused by the crystal field [66]. Thus, the selection rule
∆mI = ±1 no longer holds and all the transitions between the hyperfine levels are
allowed.

3.2.1 Spin Hamiltonian

This section describes the equations used to derive the hyperfine structure, shown
in Fig. 2.2(b), given some information on the host crystal parameters. In general,
the wavefunctions of the hyperfine levels |xi⟩ and |yj⟩ are the eigenstates of the spin
Hamiltonian and they depend on the external magnetic field B, the Zeeman tensor
M and the effective quadrupole tensor Q. They are calculated using the following
equation for the spin Hamiltonian [66, 75, 82].

Hspin = B ·M · Ĩ+ Ĩ ·Q · Ĩ. (3.9)

Ĩ is the vector of nuclear spin operators Ĩx, Ĩy, Ĩz and B is the magnetic field vector.
M is the effective Zeeman tensor and Q is the effective quadrupole tensor.

At this point, it is worth mentioning that there are multiple coordinate systems to be
considered here. One system corresponds to the crystallographic axes of the crystal
[D1 D2 b] and forms the common frame of reference for the above calculations. The
second is the system corresponding to the principal axis of the host crystal, in which
the tensors are diagonalized. Then, there is the lab coordinate system. These systems
are often different and some transformations need to be made in the calculations.

The effective Zeeman tensor, M and the effective quadrupole tensor, Q are defined
as follows:

M = RM

gx 0 0
0 gy 0
0 0 gz

RM
T =

gxx gxy gxz
gyx gyy gyz
gzx gzy gzz

 , (3.10)

Q = RQ

E − 1
3D 0 0

0 −E − 1
3D 0

0 0 2
3D

RQ
T . (3.11)
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Figure 3.2: Change in the frequencies of the hyperfine levels of the ground state 3H4 in
Pr:YSO (site 1) as the magnitude of the external magnetic field is increased be-
tween 0-1 T, along a specific direction. The frequency is plotted as an offset from
the lowest hyperfine level, refer to Fig. 2.2(b).

Each of the above matrices is transformed into the frame [D1 D2 b] using rotation
matricesRwith appropriate Euler angles: Rk = R(α, β, γ). The terms gx, gy, gz are
the gyromagnetic ratios γ/2π expressed in units of MHzT−1. The reason it is written
as g and not γ here, is because some references use the ‘g-factor’ (a dimensionless
constant) as a synonym for the gyromagnetic ratio. I have followed the notations of
Ref. [75]. The terms E and D describe the effective quadrupole effect and are also
expressed in units of MHzT−1.

The two terms on the right-hand side of Eq. 3.9 are evaluated according to Ref.
[80]: B.M.Ĩ = gpqBpĨq and Ĩ.Q.Ĩ = Qpq ĨpĨq where p, q = x, y, z and the usual
summation rules are to be observed whenever a suffix occurs twice. This notation
omits summation signs and since the suffix p appears twice, a summation over p is
implied. Note that in this thesis work, the summation is implied only for the suffix
and not for the superscripts. Since q appears once, it can take one of the values x, y, z.
For example, if B = Bz , the following terms are summed: B.M.Ĩ = gzxBz Ĩx +
gzyBz Ĩy + gzzBz Ĩz .

The levels ± |12g⟩, ± |32g⟩ and ± |52g⟩ lose their degeneracy in the presence of a field
due to the Zeeman effect. In other words, a peak of an ensemble of ions prepared
in one of the states splits. The effect of an external magnetic field on the hyperfine
levels of the ground state 3H4 in Pr:YSO has been studied in another work, Ref. [83].
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Table 3.1: Parameters for the spin Hamiltonian in Eq. 3.9, for the ground state 3H4 in Pr:YSO
(site 1). Taken from Ref. [75]

Parameter Value
D -4.4435 MHz
E -0.56253 MHz
αQ 62.1◦

βQ 31.81◦

γQ 93.94◦

gx 26.57 MHzT−1

gy 31.01 MHzT−1

gz 113.08 MHzT−1

αM 112.0◦

βM 35.68◦

γM 101.54◦

As a sanity check that the code used in Paper I was correct, a result from Ref. [83]
was reproduced. A field was applied in a specific direction: [-0.81,0.16,0.56] along the
crystal axes [D1D2 b] with a magnitude between 0-1 T. The result is plotted in Fig. 3.2
and matches well with Fig. 4 in Ref. [83]. The spacing between the levels is different
for a given value of the external field. This figure can be qualitatively compared with
the simple case in Fig. 3.1, where the levels were equally spaced for a given value of
the external field.

The equations described in this section are used in Paper I for the calculation of the
wavefunctions of the hyperfine levels of the ground state 3H4 in Pr:YSO. The values
of all the parameters above were taken from Ref. [75] and are listed in Tab. 3.1. In
Paper I, the field applied is only 10 mT (albeit along a different direction) and thus,
the hyperfine levels do not split much.

3.2.2 Dipole-dipole interactions

From classical theory, the energy of interaction between two point magnetic dipoles
‘µi’ and ‘µj ’ separated by a distance rij ¹[80] is:

W ij =
µ0
4π

[
µi · µj − 3(µi · r̂ij)(µj · r̂ij)

] 1

|rij |3
(3.12)

For the equivalent in quantum theory, the Hamiltonian H ij
dd for magnetic dipole-

dipole interaction between an anisotropic magnetic dipolar ion ‘i’ and its neighbor ‘j’

¹Note that summation is not implied for the superscripts which occur twice.
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can be written by introducing the customary Planck’s constant and using the operator
form for nuclear spins as µi = giℏĨi and µj = gjℏĨj [79, 80, 84]:

H ij
dd =

µ0ℏ2

4π
ĨipĨ

j
q

{
gipsg

j
qs −

3rijs r
ij
t

|rij |2
gipsg

j
qt

} 1

|rij |3
(3.13)

where Ĩ is the vector of nuclear spin operators Ĩx, Ĩy, Ĩz and gxy are components of the
effective Zeeman tensor (related to nuclear magnetic moment) in MHzT−1 (Equiv-
alent to γℏ in Eq. 3.7). Each of the subscripts p, q, s, t takes the values x, y, z and
is introduced to account for the anisotropy of the magnetic dipoles. The summation
rules are to be observed whenever a suffix occurs twice.

To glean more information from Eq. 3.13, it can be expanded and written in terms of
the direction cosines of r, (l,m, n) [80]:

H ij
dd =

µ0ℏ2

4π

{
(1− 3l2)gixg

j
xI

i
xI

j
x + (1− 3m2)giyg

j
yI

i
yI

j
y + (1− 3n2)gizg

j
zI

i
zI

j
z

− 3lm(gixg
j
yI

i
xI

j
y + giyg

j
xI

i
yI

j
x)− 3mn(giyg

j
zI

i
yI

j
z + gizg

j
yI

i
zI

j
y)

− 3nl(gizg
j
xI

i
zI

j
x + gixg

j
zI

i
xI

j
z )

}
1

|rij |3
(3.14)

The above equation can be re-arranged, so it becomes more suggestive of what happens
to the spin state [79, 81]. Using the ladder operators² I+ = (Ix + iIy) and I− =
(Ix − iIy) and dropping the constants, there are five terms :

A ∝ IizI
j
z

B ∝ (Ii+I
j
− + Ii−I

j
+)

C ∝ (Ii+I
j
z + IizI

j
+)

D ∝ (Ii−I
j
z + IizI

j
−)

E ∝ (Ii+I
j
+)

F ∝ (Ii−I
j
−)

(3.15)

²Note the difference in the imaginary unit i and superscript i for the ion index.
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Figure 3.3: A representation of the flip-flop interaction between two ions ‘i’ and ‘j’, with two
levels |x⟩ and |y⟩.

One of the terms above, B, is responsible for a ‘flip-flop’ process. In a spin 1
2 system

consisting of two isotropic spins mi and mj , the flip-flop term connects the state
|mi,mj⟩ to ⟨mi + 1,mj − 1| or ⟨mi − 1,mj + 1| . Thus, one spin flips up, and
the other spin flops down simultaneously. This term is central to Paper I, where flip-
flop interactions in rare-earth-ions are modeled. Such an interaction is represented in
Fig. 3.3 between two ions ‘i’ and ‘j’, with two levels |x⟩ and |y⟩.

3.2.3 Decoherence from magnetic interactions

YSO is considered a good crystal host since it has low magnetic noise that can cause
decoherence of the qubit. Magnetic noise comes from the nuclear spins of the host
ions. Any species in the crystal with a nuclear spin has a magnetic field around it and
can influence the state of the qubit ion, Pr. If the spin state changes for any reason, the
magnetic field fluctuates, creating magnetic noise. As mentioned in Sec. 2.5, silicon
(Si) and oxygen (O) do not have a nuclear spin. Yttrium (Y) has a nuclear spin 1

2 ,
and a low magnetic moment of −0.13µN while Praseodymium (Pr) is much stronger
with a magnetic moment of 4.59µN [85].

Magnetic dipole-dipole interactions between Y-Y and Pr-Y can lead to the decoher-
ence of the spin state of Pr, and interactions between Pr-Pr change their spin states.
The topic of decoherence due to magnetic dipole-dipole interactions has been widely
explored in several references [20, 71, 76, 86–88] and is only briefly described here. In
the absence of an external field, the magnetic field experienced by the core Y ions is
due to the local Pr ion, which is of the order of ∼ 0.1 mT and a change in the spin
state of Pr flips the spin state of Y ions. Thus, the dephasing of Pr ions is dominated
by neighboring Y flips in the core. When the external field significantly exceeds the
field due to the local Pr ion, such flips are minimized, leading to the narrowing of
the homogeneous linewidth. By applying an external magnetic field with a specific
magnitude and in a specific direction, the Zeeman-shift (see Eq. 3.9) can vanish up
to the first order. This drastically reduces the magnetic interactions between Pr and
Y, resulting in an increase in coherence time by two orders of magnitude [71].
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Chapter 4

Relaxation of nuclear spins of
rare-earth-ions

This chapter concerns the mechanisms by which the nuclear spins embedded in a
crystal relax to other nuclear spin states. The mechanisms responsible for relaxation
can occur via lattice vibrations mediated by phonons (spin-lattice relaxation) or via
interactions with neighboring spins (spin-spin relaxation). First, the types of spin-
phonon relaxation are briefly described, and then the focus of the chapter shifts to a
type of spin-spin interaction known as ‘flip-flops’, which is the crux of Paper I. This
interaction is primarily responsible for the relaxation of Pr ions at 1.7 K in the presence
of a low magnetic field.

4.1 Spin-lattice relaxation

Spin-lattice relaxation processes are well understood, and the related theory coupled
with experimental verification has been described in detail in many other texts [89–91].
Here, these processes are briefly described since flip-flop interactions dominate the
relaxation processes in Paper I. There are three main spin-lattice relaxation processes
to consider here:

• Direct: It involves a single phonon resonant with the energy separation between
the hyperfine levels. The rate due to this process scales linearly with temperature
and shows a strong dependence on the magnitude and the direction of the
magnetic field (∝ B2 in non-Kramers ions and ∝ B4 in Kramers ions).
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Figure 4.1: Energy density of phonons as a function of hν
kT , adapted from Ref. [80]. For the

direct process,hν ≪ kT and thus much fewer phonons are available than those
at higher frequencies for the Raman process.

• Raman: This is a two-phonon process strongly dependent on temperature, and
its rate is proportional to T 7 in non-Kramers ions and T 9 in Kramers ions.

• Orbach: This is also a two-phonon process with a phonon resonance with a
crystal-field splitting ‘∆’ between the first excited crystal-field level above the
ground state, and its rate is proportional to e−∆/kT .

In some cases, the Direct process can be ‘phonon - bottlenecked ’ due to the lack of
sufficient phonons at the required frequency, thus making the transfer of heat from the
spins to the bath slower. In this case, the rate increases quadratically with temperature
(∝ T 2).

The energy density of phonons, given by the Debye model, is proportional to x3

(ex−1) ,
where x = hν

kT and this is plotted in Fig. 4.1. This function peaks at hν
kT = 3. So, for

a given temperature, the maximum density of phonons corresponds to the frequency
3kT
h . At 2 K, this is ∼ 130 GHz. The next crystal field level is ∼ 100cm−1 or 3000

GHz away in Pr3+, see Fig. 2.2(a). The hyperfine levels are ∼ 10 MHz so, the Direct
process governs the relaxation at liquid helium temperatures, where hν ≪ kT . As
the temperature increases, the two-phonon processes begin to dominate since they
scale faster with temperature. The entire phonon spectrum is available for the Raman
process at high temperatures. This is the reason why experiments in rare-earth-ions are
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Figure 4.2: Representation of spin relaxation via flip-flop interactions in Pr3+:Y2SiO5,
whereby two neighboring ions interchange their state. (a) Ground state hyper-
fine levels ± |a⟩, ± |b⟩, ± |c⟩ lose their degeneracy in the presence of an external
magnetic field B, forming six levels. The pathways considered for spin relaxation
in our simulations are shown with double-sided arrows. (b) Ions occupying ± |a⟩
and ± |b⟩ flip-flop strongly with each other, while those in ± |c⟩ share weak in-
teraction with either of the other hyperfine levels. (c) The interaction strength
varies with distance r as r−6, so closely-lying neighbors in the crystal can rapidly
flip-flop (shown as solid oval) while ions separated by larger distances share weaker
interaction (shown as dashed and dotted ovals).

done below liquid helium temperatures. Overall, the density of phonons in the entire
spectrum shoots up at room temperature, making it quite difficult to burn spectral
holes.

Spin dynamics of Pr3+ in various hosts like LaF3 [92], LaCl3 [93], YAlO3 [94] and
YSO [95] has been studied but the focus of these studies has been on spin-lattice
relaxation. The general conclusion from these references is that the relaxation is dom-
inated by temperature-independent Pr-Pr flip-flops at ∼ 2 K while the Orbach pro-
cess is thermally activated at higher temperatures (See Sec. 3.2.2 for a description
on flip-flop interactions). Modeling of this mechanism has so far been macroscopic,
characterized by an average rate describing the relaxation of all ions. In Paper I, a
microscopic model of flip-flop interactions is presented, where the interaction is cal-
culated between individual nuclear spins of dopant ions. In the next section, spin
relaxation due to flip-flops is described.

4.2 Relaxation via flip-flops

Interactions between Pr-Pr ions are known as ‘flip-flop’ processes whereby two neigh-
boring Pr ions exchange their spins via magnetic dipole-dipole interaction, introduced
in Sec. 3.2.2. Pr3+ is a spin 5

2 system with three hyperfine levels in the electronic
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ground state 3H4, as shown in Fig. 4.2(a). Each hyperfine level is doubly degenerate
but the degeneracy is lost in the presence of an external magnetic field, giving rise
to six levels in total. It should be noted that conventional labels for the hyperfine
levels are ± |12g⟩ ,± |32g⟩ ,± |52g⟩, but each level is, in reality, an admixture of all
six hyperfine wave functions. So I instead use the labels ± |a⟩ ,± |b⟩ ,± |c⟩. Fifteen
unique flip-flop transitions are expected for six levels, but some rates were summed
and averaged such that only three effective rates, Rab, Rbc and Rac were obtained
for each ion ‘i’. The details of reducing fifteen rates down to three are described in
Paper I. The experiments in Paper I showed that the strongest interaction is between
ions occupying ± |a⟩ and ± |b⟩ (indicated by solid double-sided arrows), while ± |c⟩
couples weakly to the other two levels (indicated by dashed and dotted double-sided
arrows). Ions initialized in ± |a⟩ and ± |b⟩ flip-flop strongly to give somewhat mixed
populations (blue and red circles shown in Fig. 4.2 (b)) while ions in ± |c⟩ (purple
circles) flip-flop with either of the other two levels with less likelihood. Fig. 4.2(c)
visualizes that the interaction strength decreases with distance. Thus, closely-lying
neighbors in a crystal interact strongly (shown as solid oval) while ions far away from
each other show weaker interaction (shown as dashed and dotted ovals).

4.3 Modeling of flip-flops

Flip-flop transition rates have traditionally been calculated or modeled using Fermi’s
Golden Rule (FGR), following the work by Bloembergen et al. [96]. More recent
studies in Kramers ions like Er3+ and Nd3+ have used a macroscopic model to explain
spectral hole decay due to flip-flop process by taking a single average rate to be related
to the dopant concentration [97] and an average ion-ion distance for the ions in the
crystal [98], resulting in a rate R ∝ n2

⟨r⟩6 . However, experiments measuring flip-flop
rates in Paper I did not show an exponential decay and a macroscopic model could
not be employed to explain the data. As pointed out earlier, non - exponential decay
has also been measured in Pr:YSO previously [95], a possible explanation provided by
the authors was that not all ions relax at the same rate since flip-flop rates are position-
dependent. This effect has not been modeled before in rare-earths and this is where
the novelty of Paper I lies. Contributions from all its ‘j’ neighbors should be summed
and thus the flip-flop rate for ion ‘i’ is Ri ∝

∑
j

1
r6 . This is represented in Fig. 4.3.

Non-exponential decay resulting from flip-flops has also been observed in other fields
of research involving spins. Nuclear spin of 31P shows a so-called ‘stretched - expo-
nential’ decay due to spin flip-flops of neighboring 29Si [99]. Spin-polarized muons,
which are used as probes to detect local magnetic fields in matter, can show non -
exponential decay of polarization [100–102]. The physics involved in this field of re-
search is closely related to Nuclear Magnetic Resonance (NMR) and similar to spin
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i

Figure 4.3: An ion ‘i’ can interact with any of its neighbors‘ j’. Depending on the relative
orientation and distance to its neighbor, the interaction can be strong (shown
as solid lines) or weak(shown as dashed and dotted lines). Contributions from
all its ‘j’ neighbors should be summed and thus the flip-flop rate for ion ‘i’ is
Ri ∝

∑
j

1
r6 .

dynamics in RE systems. The polarization of a muon depends on the local magnetic
field due to a magnetic species located at different distances from it. This effect can
be modeled as an averaged sum of decay due to every magnetic neighbor [102] or as
a ‘root - exponential’ of the form e−

√
Rt [100, 101] in the limit of low concentration

of magnetic species. Paper I adopts a model similar to the former approach and uses
Fermi’s Golden Rule (FGR) to calculate the flip-flop rates.

4.3.1 Validity of Fermi’s Golden Rule (FGR)

Fermi’s Golden Rule can only be applied in the perturbative limit, implying that
Hdd ≪ B.M.I, where Hdd is the magnetic dipole-dipole interaction (see Eq. 3.13),
B.M.I is the Zeeman term in the spin Hamiltonian, Hspin, B is the external mag-
netic field, M is the effective Zeeman tensor, and I is the vector of nuclear spin
operators (see Eq. 3.9). Since M ∼ 10-100 MHzT−1[75],Hspin ∼ 10− 100 kHz in
the presence of a magnetic field ∼ 1mT. To estimate how large Hdd can be, one can
look at the magnitude of the interaction Hdd between the two nearest Pr ions in any
of these states assuming that the hyperfine wavefunctions ± |a⟩ ,± |b⟩ and ± |c⟩ are
composed of pure ± |12g⟩ ,± |32g⟩ and ± |52g⟩ states. Fig. 4.4 shows the distribution
of distances between a Pr ion and its first nearest neighbor in a crystal doped with
0.05% concentration (left) and the magnitude of interaction corresponding to three
distances r1 = 1 nm, r2 = 7.5 nm and r3 = 4 nm (right). These values are chosen
as representative values to show how large the interaction can be depending on the
separation. Most ions are separated by a distance r3 while very few ions are separated
by r1 and r2. For a given distance, the interaction is proportional to the quantum
number mI = 1

2 ,
3
2 ,

5
2 , i.e., Hdd ∝ mi

Im
j
I . Thus, the interactions are strongest be-

tween ions with mi
I = mj

I = 5
2 . If ions are separated by r1 = 1 nm, the interaction

can be as large as 1 kHz. But, most of the nearest neighbors are located at r3 = 4
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Figure 4.4: (a) Distribution of distances between the first nearest Pr ions in a crystal doped
with 0.05% concentration. As representative values, three distances are marked
as r1, r2, r3. (b) The magnitude of interaction as a function of the nuclear spin
quantum numbermI of two Pr ions, separated by three values of distances marked
as r1, r2, r3 in (a).

nm, where the interaction can vary between 2 - 70 Hz, depending on the value of
mI . This is small compared toHspin, given above, which confirms that we are in the
perturbative limit.

It should be noted that solving the full Hamiltonian for the system including all in-
teracting ions is the more valid approach. However, since each ion has six ground
levels, directly solving this would require a system with the size of 621 ≈ 1016, which
is impossible. Therefore, simplifications must be made. A possible approach would
be to solve the case for just the nearest neighbor, then the two closest neighbors etc.,
and then try to extrapolate from there. This is however not the approach we have
chosen for this work. Furthermore, we attempt to study the flip-flop rate of a bulk
crystal in a microscopic manner, and since each ion has a unique local environment,
we must perform several thousand studies in order to build statistics to get a truthful
representation of all the different ions in the crystal.

4.3.2 Microscopic modeling

Having justified the use of FGR, the steps involved in calculating the flip-flop rates
for any RE ion are now described:

1. A small sphere of a host crystal is simulated, where ions are placed according
to the crystal lattice structure [77]. It is then randomly doped with a rare-earth
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ion with the specified concentration. Alternatively, one could also assume a
continuous random distribution function of ions to determine the position of
the nearest Nth neighbor [103]. More details about modeling the host crystal
can be found in Ref. [16]. An ion ‘i’ is picked in the sphere and the nearest
neighbors ‘j’ are found. Nuclear wave functions+ |ai⟩ ..−|ci⟩ and+ |aj⟩ ..−
|cj⟩ are calculated to be eigenstates of the spin HamiltonianHspin and depend
on the orientation of the ion in the crystal and the magnetic field.

2. The dipole-dipole interaction Hamiltonian for ion ‘i’ due to interaction with
neighbors ‘j’ is calculated according to Eq. 3.13.

3. The flip-flop rate for any ion ‘i’ to flip from a hyperfine state |x⟩ to |y⟩ due to
interactions with all its ‘j’ neighbors initially in the state |y⟩ is then calculated
using Fermi’s Golden Rule (FGR):

Ri
|x⟩→|y⟩ =

2π

ℏ
∑
j

| ⟨yi ⊗ xj |H ij
dd |x

i ⊗ yj⟩ |2f(E)

(4.1)

|xi⟩ and |yj⟩ are the eigenstates of the spin Hamiltonian and depend on the external
magnetic field B. They are calculated as described in Ref. [75]. f(E) is the density
of initial and final states for transitions between two levels in the continuum of initial
and final states |xi⟩ ⊗ |yj⟩ and |yi⟩ ⊗ |xj⟩ respectively. The form of density of states
used here is:

f(E) =
1

πh

Γhom(B)

Γ2
hom(B) + [κxy(B)Γxy]2

(4.2)

where Γhom and Γxy are the homogeneous and inhomogeneous linewidths of the
transition |x⟩ ↔ |y⟩. Γhom is a function of external magnetic field B, and κxy(B) is
a phenomenological addition to describe the increase in inhomogeneous linewidths
in the presence of a magnetic field. When B = 0, κxy = 1 and when B ̸= 0, κxy is
some multiplicative factor.

It is worth noting that calculation of the matrix elements | ⟨yi ⊗ xj |H ij
dd |x

i ⊗ yj⟩ |
for all the pairs of ions makes this model ‘microscopic’, setting it apart from previous
similar works, where this was taken as an average value and related to the concen-
tration of dopants in Refs.[97, 98] Also, the form of density of states f(E) used in
previous works [97, 98], accounted for the inhomogeneous linewidth only. If only
single ions were considered (in a fully microscopic model), the flip-flop interaction
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will be limited by the homogeneous linewidth since Γxy would be zero. A derivation
of the form used here is given in an appendix of Paper I.

Two conditions need to be satisfied for two Pr ions to flip-flop: they need to be close
to each other spatially in the crystal and they also need to be spectrally close in the spin
inhomogeneous profile. The term Hdd, which is a function of the distance between
ions captures the first condition and f(E) captures the second condition.

In Pr3+: Y2SiO5, only the ions in site 1 corresponding to the 3H4 → 1D2 transition
at 606 nm were used. The radius of the sphere used was 100 nm, and the flip-flop
rate of ion ‘i’ was calculated due to the interaction with its twenty nearest neighbors.
Since Pr3+ has a nuclear spin 5

2 , Ĩ is a (3 × 1) vector where each element is a (6 ×
6) matrix. The magnetic field was directed along the crystal axis b. Homogeneous
linewidths Γhom(B) = 1

πT2
were taken from Refs.[71, 73] where the spin coherence

time T2 was measured to be 0.5 ms with zero magnetic field and 6 ms in the presence
of a magnetic field of 2 mT. The model contains six unknowns used in the density
of states f(E). Three of these are the inhomogeneous spin linewidths Γab,Γbc,Γac,
and the other three are the factors describing their dependence on the magnetic field
κab, κbc, κac.

4.4 Measuring flip-flops

Relaxation between spin levels has been measured using methods that combine opti-
cal spectral hole burning and RF fields resonant with a hyperfine transition [92–94].
Another method extracts rate constants for individual transitions using only hole-
burning spectra [104] but it requires many fitting parameters for each rate equation
to be able to keep track of the initial population of any ion that was excited during
the hole-burning. For example, since Pr:YSO has three hyperfine levels in the ground
and excited states, a laser at a single frequency on the 3H4 → 1D2 transition can
excite nine different transitions or classes of ions due to the optical inhomogeneous
broadening. To extract the rates for the three individual transitions, the method in
Ref. [104] requires 21 independent fitting parameters (18 initial spin populations and
3 rates).

The experimental method in Paper I uses spectral hole burning only and significantly
reduces the number of fitting parameters by tailoring the spectral window to isolate
some ions. First, a transmission window using optical pumping and spectral tailoring
techniques was created (see Sec. 5.2). After that, the population was initialized in
one of the ground state hyperfine levels within a spectral region of 1 MHz inside the
window (see Sec. 5.2). The decay of this state-specific hyperfine population versus its
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Figure 4.5: Hyperfine energy levels in Pr3+:Y2SiO5 corresponding to the 3H4 → 1D2 tran-
sition at 606 nm and the absorption spectrum obtained from the experiments. (a)
Transitions used for evaluating population decay in this experiment are labeled as
‘1’, ‘2’, ‘3’ (b) Absorption spectrum after initializing the population in± |a⟩ (blue),
± |b⟩ (red) and ± |c⟩ (inset, purple). Peaks labeled as ‘1’, ‘2’, ‘3’ correspond to the
transition shown in (a). An absorption region of width ∼ 1 MHz is selected as
the background for each of the peaks. These are marked with black arrows at 2
MHz, 12.2 MHz, and 38.9 MHz.

neighboring spectral background was tracked. The experiments were also repeated in
the presence of an external magnetic field in the range 5 - 10 mT, directed along the
crystal axis b. This method can be advantageous for measurements in rare-earth-ions
with more than one ground hyperfine level, where populations of many classes of ions
need to be tracked.

All the experiments were done in a Pr3+:Y2SiO5 crystal with 0.05% concentration and
dimensions 10mm x 10mm x 0.8mm along D1,D2,b axes respectively. The experimen-
tal setup used is described in Paper I. Transitions used for evaluating the population
and an example of the absorption structure after the initialization process within a 1
MHz region are shown in Fig. 4.5. The optical transitions labeled as ‘1’, ‘2’, and ‘3’
were used to evaluate the population. Three spectra in blue, red, and purple (inset)
show the absorption spectrum after initializing ions in ± |a⟩,± |b⟩ and ± |c⟩, respec-
tively. Background absorption level is indicated with black arrows at 2 MHz, 12.2
MHz, and 38.9 MHz. The pulse sequence used for creating the transmission window
and population initialization and other experimental details are described in Paper I.

4.4.1 Experimental results

The results of population decay are shown in Fig. 4.6. The figures show the experi-
mental data with error bars indicating the weighted standard deviation of three data
sets taken for decay after initializing the populations in each hyperfine level ± |a⟩
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(c)B = 5 -10 mT, microscopic model

Figure 4.6: Population decay of three ground states is shown in three colors: ± |a⟩ in blue,
± |b⟩ in red, and± |c⟩ in purple. The experimental data are shown with error bars.
(a) ) The dashed lines are the best bi-exponential fits. (b) The solid lines are the
result of simulation using the microscopic model from Paper I. (c) Experimental
data and microscopic model simulations with an external field of 5-10 mT. The
vertical dashed black line shows the time t0 at which B⃗ is reached after turning it
on.

(blue), ± |b⟩ (red) and ± |c⟩ (purple). There was no external magnetic field applied
in (a) and (b) but previous measurements indicate that there is a residual field <0.2
mT in the cryostat. To demonstrate the problems with a macroscopic model, the
previously used average value method [97, 98] is used here to evaluate the data to get
a single average value for Rab, Rbc and Rac describing the relaxation of all the ions
in the crystal. As an example of the consequence of this ‘macroscopic’ model, an
attempt at a bi-exponential fit to our data was done and is plotted using dashed-
dotted lines in Fig. 4.6(a). The best fit obtained for ± |a⟩, ± |b⟩, ± |c⟩ respec-
tively was 0.52e−t/5.52 + 0.48e−t/2193 (blue), 0.48e−t/5.52 + 0.52e−t/2193 (red)
and 0.03e−t/5.52 + 0.97e−t/2193 (purple), where time t is in seconds. While these
curves fit well to many data points, several data points do not follow the fits, especially
for ± |a⟩ and ± |b⟩.
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Each decay curve obtained in Fig. 4.6 is, in fact, an average of many exponential
decays of different ions within the 1 MHz peak shown in Fig. 4.5(b). The solid colored
lines in Fig. 4.6(b) and (c) show the fits from the simulation of the microscopic model
in the absence and presence of a magnetic field respectively. In addition to the list of
steps in simulations described in Sec. 4.3.2, a few more steps were followed to be able
to compare the simulations with the experiments:

1. Using the ratesRi
ab, R

i
bc andRi

ac for an ion ‘i’, the population decay in the lev-
els ± |a⟩,± |b⟩,± |c⟩ is calculated from the rate equations derived in Appendix
C of Paper I.

2. Steps [1-3] from the list in Sec. 4.3.2 are repeated for i = 2, 3...N , where N is
the number of ions in the sphere. An average decay of ‘N ’ ions gives a single
decay curve describing the decay of all ions in the crystal. These are the solid
colored lines in Fig. 4.6(b) and (c).

3. All of the above steps are repeated for data with an external magnetic field.

4. Parameters Γab,Γbc,Γac, κab, κbc and κac are optimized to match the experi-
mental data.

Decay from ± |c⟩ is slower than ± |a⟩ or ± |b⟩ so one can expect Rac and Rbc to be
lower thanRab. The experiments show little difference between the decay from ± |a⟩
and ± |b⟩, indicating that ions occupying these states have the strongest magnetic
dipole-dipole interaction. The optimization is relatively insensitive to Γac and the
relaxation is predominantly governed by the ratesRab andRbc. The optimized values
of spin inhomogeneous linewidths, Γab and Γbc were found to be 0.618 and 3.309
kHz, respectively. We now try to understand why these fitted values differ by a factor
of ∼ 4.4. A possible contribution to the spin inhomogeneity is the inhomogeneity in
the effective quadrupole tensorQ in Eq. 3.9, which stems from strains or defects. The
ratio of the termsQxy andQyz should correspond to the ratio of the inhomogeneous
linewidths. After the necessary rotations in Eq. 3.11,Qxy = 0.0982MHz andQyz =
0.4389 MHz. The ratio of these values is indeed ∼ 4.4.

The fitted linewidths represent the local spin inhomogeneity and could, perhaps, be
less than the measured values Γab = 50.5 kHz, Γbc =75.4 kHz [75] in a bulk crystal,
where the measurements in are sensitive toward the bulk spin inhomogeneity. On
the contrary, our simulations show that the main contribution to the flip-flop process
occurs between ions that are in the order of 10 nm apart (see inset of Fig. 4.8(c)). Thus,
we speculate that the local spin inhomogeneity between any two ions situated only 10
nm apart is much less than the measured bulk values, i.e., it lies in the range νab±Γab,
where Γab is in the order of kHz. Finally, this means that on larger scales than 10
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Figure 4.7: Absorption structure showing the Zeeman effect due to which the hyperfine levels
split. Peak labelled as ‘1’ corresponds to the transition ± | 12g⟩ → ± | 12e⟩, ‘2’
corresponds to ± | 32g⟩ → ± | 32e⟩ and ‘3’ corresponds to ± | 52g⟩ → ± | 52e⟩. (a),
(c) and (e) show the absorption without an external field B. (b),(d) and (e), show
the absorption with an external field B of 10 mT.

nm, the local average of the spin transition frequency, i.e., νab, varies in the order of
Γ′
ab ≈ 50 kHz such that if two ions that are not spatially close are compared, their

inhomogeneity is in the order of the observed bulk inhomogeneity. This description
is similar to the one depicted in Fig. 2.3 for optical inhomogeneity. Note, however,
that we found no experimental evidence of this hypothesis, and more investigations
are needed in order to confirm or deny this hypothesis.

4.4.2 Effect of magnetic field

In the presence of a magnetic field, the doubly degenerate hyperfine levels will lose
their degeneracy and the absorption peaks ‘1’, ‘2’ and ‘3’ in Fig. 4.5(b) will split, as
discussed in Sec. 3.2.1. The effect of a field of 10 mT on the peaks ‘1’, ‘2’ and ‘3’ is
shown in Fig. 4.7. Peak ‘1’ does not completely split but broadens while the largest
effect is on peak ‘3’. In the simulations corresponding to the data with field between
5-10 mT, the phenomenological terms κab and κbc introduced earlier in Eq. 4.1 to
describe the factor by which inhomogeneity increases in the presence of an external
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field are used as fitting parameters. These are the solid colored lines in Fig. 4.6(c). The
decay slows down by almost two orders of magnitude in the presence of a magnetic
field.

To understand why the rates slow down in a magnetic field, one can infer from Equa-
tion (4.1) that the cause could either be the evolution of matrix elements in the dipole-
dipole interaction term or a change in density of states f(E). While the matrix ele-
ments do not change appreciably with a small field of 5 - 10 mT (or even up to 100
mT), the density of states changes drastically due to the decrease in the homogeneous
linewidth by more than a factor of ten, as measured in Ref. [73] and this is attributed
to minimizing spin flips of the neighboring Y ions. Another factor contributing to
the change in the density of states is the increase in the spin inhomogeneous linewidth
[97, 105], characterized by the fitting parameters κab and κbc. The optimized values
were found to be 2.6 and 3.6 respectively, with a field between 5-10 mT.

4.4.3 Distribution of Rates

Distribution of ion-ion distance rNN results in a distribution of flip-flop rates. Fig.
4.8(a) and (b) show the histogram of the ratesRab andRbc, with and without a mag-
netic field. Rac is not shown sinceRab andRbc predominantly govern the relaxation.
In the absence of a field, Rab is spread over a distribution ranging from 10−4 − 102

Hz and peaks at 10−2 Hz. Rbc is slower, ranging from 10−6 − 1 Hz and peaks at
10−4 Hz. Both the rates slow down by two orders of magnitude with a field of 5 - 10
mT. The distribution of r−6

NN is shown in Fig. 4.8(c). The inset shows the distribu-
tion of rNN , where r is the distance to any of the twenty closest neighbors of any ion
considered in the simulations. The number of ions does not increase monotonically
with r since only twenty neighbors are considered.

4.4.4 Effect of concentration

The ion-ion distance rNN in Fermi’s rule in Eq. 4.1 varies with dopant concentration;
thus, the flip-flop rates strongly depend on the dopant concentrations. Although the
experiments were not performed in samples with different concentrations, one can
simulate this effect. This discussion looks at the impact on the two main terms in Eq.
4.1 separately, namely the matrix element term,

∑
j | ⟨yi ⊗ xj |H ij

dd |x
i ⊗ yj⟩ |2 and

the density of states, f(E).

The matrix element term is directly proportional to r−6
NN , where rNN is ion-ion dis-

tance. The effect of concentration on r−6
NN and matrix element term is shown in Fig.

4.9. This results from a simulation of the distances between the twenty nearest neigh-
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Figure 4.8: Distribution of flip-flop rates. (a)-(b) show a histogram of Rab and Rbc respec-
tively, for two cases: residual field <0.2 mT and external applied field of 5-10
mT. In the presence of a residual field, Rab peaks at 10−2 Hz while Rbc peaks
at 10−4 Hz. Both the rates slow down by about two orders of magnitude with a
field of 5-10 mT. The distribution of r−6 for the twenty closest neighboring ions
considered in the simulations is shown in (c). The inset shows the histogram of
r, the ion-ion distance.

bors in a 100 nm sphere of YSO. The peak of the distribution of rNN in the inset of
part (a) decreases from 19, 14 to 11 nm for concentrations of 0.01% (purple), 0.025%
(red), and 0.05% (blue) respectively. Thus, rNN (and hence the flip-flop rate) scales
quadratically with concentration, as taken in the macroscopic model [97]. The area
under each distribution is not the same since the total number of dopants differs in
each case. In part (b), the matrix element term decreases by more than an order of
magnitude when the concentration is decreased from 0.05% to 0.01%.

The effect of concentration on the density of states is difficult to predict without more
experimental data but one can make some qualitative predictions from other non-
Kramers ions like Eu3+. The spin inhomogeneous linewidth is expected to increase
as concentration increases, as evidenced in some experimental measurements in Eu3+:
Y2SiO5 [76, 86, 106, 107]. However, the homogeneous linewidth does not show such
dependence on dopant concentration but is mainly dependent on excitation densities
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Figure 4.9: The effect of dopant concentration on ion-ion distance and magnetic dipole in-
teraction for three different dopant concentrations of 0.05% (blue), 0.025% (red)
and 0.01% (purple) (a) Histogram of r−6

NN for twenty closest neighbors and rNN

in the inset, where rNN is the ion-ion distance (b) Histogram of the matrix ele-
ment term in Eq. 4.1.

and external magnetic field [68]. So overall, the density of states could decrease as the
concentration is increased.
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Chapter 5

Ensemble qubits and coherent
control

This chapter describes some tools used to control ensemble qubits, which are relevant
for Papers II and III. The type of pulses used to perform operations on ensemble qubits
is introduced, then the process of creating a transparent spectral window in Pr:YSO
and Eu:YSO is described. This step is necessary before the initialization of a qubit in
the desired state. The readout method, sources of noise in the detection, and errors
due to the post-processing of transmission signal (called deconvolution) are discussed.

5.1 Control pulses

All operations to manipulate the spin states of rare-earth-ions in this work have been
done using optical pulses. A simple square pulse performs poorly for this purpose since
it can have several frequency components that can off-resonantly excite unwanted
ions. Pulses with more complex shapes, called ‘sechyp’ and ‘sechscan’ are discussed
below. Another type of pulse referred to as ‘shortcut’ pulses, is used in Paper II and
described later in Ch.6.

5.1.1 Sechyp

Efficient population transfers robust against variations in the electromagnetic field
amplitude have been achieved using complex secant hyperbolic or ‘sechyp’ pulses,
first introduced in the context of NMR and inhomogeneities in magnetic field [108]
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Figure 5.1: Profile of Rabi Frequency amplitude |Ω0| and Frequency chirp of a (a) sechyp and
(b) sechscan pulse.

and later applied to the case of rare-earth materials [109]. They have been shown
to perform exceptionally well in inverting populations while simultaneously being
resilient to inhomogeneity in optical frequency [21, 56, 109]. The Rabi frequency of a
sechyp pulse varies as:

Ω(t) = Ω0sech[β(t− t0)]
1−iµ (5.1)

whereΩ0 is the maximum Rabi frequency. µ and β are related to the full width at half
maximum of the intensity of the sechyp envelope, tfwhm, and the frequency width
of the sechyp the frequency chirp, fwidth:

β =
2ln(1 +

√
2)

tfwhm
(5.2)

µ =
πfwidth

β
(5.3)

An example of the sechyp shape is shown in Fig. 5.1(a). The pulse parameters used
here are: fwidth = 60 kHz, tfwhm = 30µs, tcutoff = 105µs, |Ω0|max = 30 kHz,
where tcutoff is the total duration of the pulse.

5.1.2 Two-color pulses

Sechyp pulses are good at performing population transfers between ground states but
to create and manipulate superposition states, one needs to use two sechyp pulses
simultaneously resonant on two transitions, as shown in Fig. 5.2(a). Both pulses have
the same Rabi frequency Ω0. By varying the phase ϕ between the two pulses, one can
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Figure 5.2: (a) Transitions for the two-color pulses. (b) Bloch sphere showing the bright and
dark states, |B⟩ and |D⟩, respectively. 1/2g corresponds to |0⟩ and 3/2g corre-
sponds to |1⟩.

create a pair of states called bright |B⟩ and dark states |D⟩. Due to the interference
of the two light fields, |B⟩ interacts with the light, and |D⟩ does not interact with the
light. They are written as:

|B⟩ = 1√
2
(|0⟩+ e−iϕ |1⟩)

|D⟩ = 1√
2
(|0⟩ − e−iϕ |1⟩)

One two-color (TC) pulse takes the ‘bright’ part of the wavefunction of the ensemble
qubit to the excited state and another two-color pulse phase-shifted by π − θ brings
it down to |B⟩ with an added phase eiθ. In the basis of |B⟩ and |D⟩ states, this
operation is written as:

UBD
TC =

[
eiθ 0
0 1

]
= eiθ |B⟩ ⟨B|+ |D⟩ ⟨D| (5.4)

If one looks at the Bloch sphere representation where |0⟩ and |1⟩ lie at the poles of
the sphere, |B⟩ and |D⟩ will lie in the equatorial plane, diametrically opposite to each
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other. This is shown in Fig. 5.2(b). One pair of such two-color pulses result in rota-
tions of the initial state around |D⟩ on the Bloch sphere. Arbitrary rotations can be
performed by varying the |D⟩ state (i.e., varying ϕ). Additional phase-compensation
pulses will be needed so that another pair of TC pulses target the dark part of the
wavefunction, |D⟩. |B⟩ will remain untouched in this stage and |D⟩ acquires the
same spread in phases as |B⟩ did in the first pair of TC pulses. This sequence is used
to perform arbitrary gate operations and fidelities ranging between 92-96 % have been
obtained in Ref. [21]. It will also be used in Paper III but using sechscan pulses instead
of sechyp.

5.1.3 Sechscan

The oscillator strength of Eu3+, doped into YSO, is much weaker than Pr3+, which
demands pulses with higher laser intensity to reach the same Rabi frequency. Another
way to reach the required pulse area is to use a longer pulse, but may not achieve
good inversion over the entire qubit peak, and longer pulses are not good because of
increased decoherence. One needs to design a way to invert the entire qubit peak
while not compromising on the duration of the pulse too much. For this purpose,
the sechyp pulses were modified so that there are three regions in the profile of Ω: a
rising edge which is one-half of a sechyp pulse, a region of constant amplitude over
which frequency is linearly chirped and a falling edge which is the next half of a sechyp
pulse. Such pulses have earlier been used with the name ‘sechscan’ pulse in [56] and
‘hyperbolic-square-hyperbolic pulse’ in [110]. It has also been used for simulating
two-qubit interaction gates in Ref. [15].

The Rabi frequency Ω and instantaneous phase, ϕ, of the pulse are defined[15] below,
where Ω(t) = |Ω0(t)|e−iϕ(t):

|Ω(t)| =


Ω0sech[β(t− t0)], 0 ≤ t < t0,

Ω0, t0 ≤ t ≤ t0 + tscan

Ω0sech[β(t− t0 − tscan)], t0 + tscan < t < tcutoff

0, otherwise

(5.5)
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Figure 5.3: Simulation of the absorption spectrum of the optimal transparent spectral window
(TSW). The black line shows the total absorption while colored lines show the
absorption corresponding to a particular transition, indicated in the legend. The
qubit ions now live in the | 52g⟩ state (yellow lines) to the right side of the TSW,
ready for the initialization step.

ϕ(t) =



−µ ln{sech[β(t− t0)]} − 2πfscan
2 t, 0 ≤ t < t0,

2πfscan
2 (−t+ (t−t0)2

tscan
), t0 ≤ t ≤ t0 + tscan

−µ ln{sech[β(t− t0)]}
+2πfscan

2 [−t0 + (t− t0 + tscan)], t0 + tscan < t < tcutoff

0, otherwise.

(5.6)

The parameters t0 and tscan are defined as:

tscan =
2πfscan

µβ2
(5.7)

t0 =
tcutoff − tscan

2
(5.8)

where fscan is the range of the linear frequency chirp applied for the duration, tscan.

An example of is sechscan pulse is shown in Fig. 5.1(b). The parameters used to plot
this pulse are: fwidth = 300 kHz, fscan = 300 kHz, tfwhm = 1.75µ s, tcutoff =
14µs, |Ω0|max = 0.5 MHz. This pulse has been used to perform transfers in Paper
III and the performance of this pulse will be discussed in Sec. 6.3.6.
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5.2 Creating ensemble qubits

There are two steps involved in creating ensemble qubits :

1. Creating a transparent spectral window (TSW): This step pumps away any un-
wanted ions spectrally close to the qubit ions so that there are no ions absorbing
in the region spectrally close to the qubits.

2. Initialize qubit ions: The qubit ions are targeted and initialized to the desired
state.

The basic principles in creating the TSW are optical pumping and spectral hole burn-
ing. A brief and simplified description is given here using Pr:YSO as an example, and
the reader is referred to Ref. [18] for a thorough explanation. The laser can couple to
nine different transitions from the ground to the excited state (shown in Fig. 2.2(b))
at a given frequency due to the optical inhomogeneous broadening. Let us call the
ions excited at the nine different transitions different ‘classes’ of ions. The objective is
to isolate one class of ions that we can use as the ensemble qubit and the other eight
classes (the non-qubit ions) need to be pumped away to other hyperfine levels to limit
off-resonant excitations.

When the laser excites ions repeatedly at one frequency, a spectral hole is created since
the ions are pumped away to another hyperfine level. This hole lives quite long since
the hyperfine lifetime is long. If such an excitation occurs over a range of frequencies,
a transparent spectral window (just a wider hole) can be created, where the ions have
been pushed away to other levels in a wide spectral region. One can create an optimal
set of pulses to do this in a way that creates the widest transmission window possible
[18]. A simulated optimal pit in Pr:YSO is shown in Fig. 5.3. The qubit class of ions
has been shelved in the |52g⟩ state to the right of the transparent window (shown as
the yellow lines) and the non-qubit ions have been pushed to the |12g⟩ state (shown
as the blue lines). The qubit ions are now ready to be initialized into the desired state.
The type of pulses used in this thesis are sechscan pulses, described in Sec. 5.1.3, and
the exact sequence of pulses used in Pr:YSO and Eu:YSO is described below.

5.2.1 Pr:YSO

Fig. 2.2(b) is used as a reference here for the energy levels. The complete sequence of
pulses [111] to create a TSW in Pr:YSO, used in Paper I and II is listed in Tab. 5.1. The
pulse parameters used here are: fwidth = 500 kHz, tfwhm = 3µs, tcutoff = 86µs.
The frequency scan range is fscan, set by the start and end frequencies νstart and νend,
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Table 5.1: Sequence of pulses used for creating the transmission window in Pr:YSO, with the
start and end frequencies of fscan. The intensity for each pulse is adjusted to target
the transitions listed in the column Transition. The energy levels referred to here
are shown in Fig. 2.2(b).

Pulse νstart (MHz) νend (MHz) Transition
BurnPit1 +32 +24 ± | 3

2
g⟩ → ± | 1

2
e⟩

BurnPit2 +24 +16 ± | 3
2
g⟩ → ± | 5

2
e⟩

BurnPit3 +16.1 +7.5 ± | 3
2
g⟩ → ± | 5

2
e⟩

BurnPit4 -17 -9 ± | 5
2
g⟩ → ± | 5

2
e⟩

BurnPit5 -9 -1 ± | 5
2
g⟩ → ± | 1

2
e⟩

BurnPit6 +7.5 -1.1 ± | 3
2
g⟩ → ± | 1

2
e⟩

BurnPit7 -1.1 +7.5 ± | 5
2
g⟩ → ± | 1

2
e⟩

BurnPit8 +7.5 +15.95 ± | 5
2
g⟩ → ± | 1

2
e⟩

respectively. The intensity of each pulse is adjusted to target the transitions listed in
column ‘Transition’. These pulses (‘BurnPit’) are repeated in the following sequence:

1. Repeat 120 times: BurnPit4 and BurnPit5.

2. Repeat 90 times: BurnPit1-3 and BurnPit5-8.

3. Repeat 40 times: BurnPit1-3 and BurnPit5.

4. Repeat 60 times: BurnPit4 and BurnPit6-8.

5. Repeat 60 times: BurnPit7.

A waiting pulse of 1000 µs follows each pulse to allow the system to decay to the
ground states. This step empties the ± |12g⟩ and± |32g⟩ levels and shelves the ions to
± |52g⟩, as shown in Fig. 5.3. The absorption profile after this step in the experiments
is shown in Fig. 5.4(a). This can be compared with the simulated result in Fig. 5.3.
The region between 0−15MHz is transparent, where the qubit ions can be initialized.

For population initialization in either± |12g⟩ or±|32g⟩, a weak sechscan pulse (‘Burn-
Back’) targeting the transition ± |52g⟩ → |12e⟩ was used repeatedly. This sequence
‘burns back’ ions to ± |12g⟩ and± |32g⟩. Depending on the target initialization state,
ions in ± |12g⟩ or ± |32g⟩ are cleaned away. The absorption profile after this step is
shown in Fig. 5.4(b). It shows two traces: the blue shows that the qubit is in ± |12g⟩
and the red shows it in ± |32g⟩. For the blue trace, there are three peaks correspond-
ing to ions absorbing to the three excited states and the height varies since the relative
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Figure 5.4: (a) Transparent spectral window in Pr:YSO, after emptying the qubit states |0⟩ and
|1⟩ in experiments. (b) Qubit peaks |0⟩ (blue) and |1⟩ (red), after the initialization.
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Figure 5.5: (a) Transparent spectral wells in Eu:YSO, after emptying the qubit states |0⟩ and
|1⟩. (b) Absorption profile showing qubit peak in |0⟩ (blue) corresponding to
| 12g⟩ → | 52e⟩ at 0 MHz and qubit peak in |1⟩ corresponding to | 32g⟩ → | 52e⟩
(red) at 34.5 MHz. The blue and red lines are Gaussian fits. (c) Qubit initialization
using two methods: coherent transfer and optical pumping.

oscillator strength for each transition is different, see Tab. 2.2. The blue trace has only
two transitions within the TSW. The frequency shift between the red and blue traces
is an error from the analysis.

To initialize ions in ± |52g⟩, the transmission window is created by shifting all the
‘BurnPit’ pulses by f0 = −27.5 MHz to target another class of ions and empty the
± |52g⟩ level. Then, ions are initialized in ± |32g⟩ by burning back from the transition
± |12g⟩ → |52e⟩ at f0+(4.8+4.6)MHz. Any ions absorbing inside the transmission
window that belong to a different ion class than intended are cleaned away using
sechscan pulses with the same parameters as the ‘BurnPit’ pulses. The pulse parameters
for the ‘burn back’ pulses used here are: fwidth = 120 kHz, tfwhm = 11.6µs,
tg = 150µs, fscan = 1 MHz.
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Table 5.2: The sequence of pulses used for creating the transparent wells in Eu:YSO, with
the start and end frequencies of fscan. The intensity used for each pulse was the
maximum value available for use in the experiments. The energy levels referred to
here, are shown in Fig. 2.2(c).

Pulse νstart (MHz) νend (MHz)
BurnPit1 -2.5 +2.5

BurnPit2 +21.54 +28.34

BurnPit3 +28.24 +33.34

BurnPit4 33.14 +39.34

5.2.2 Eu:YSO

Fig. 2.2(c) is used as a reference here for the energy levels. The excited state frequency
splitting in Eu:YSO is higher than that of the ground state so there are two ‘transparent
wells’ created around the qubit transitions ± |12g⟩ → ± |52e⟩ and ± |32g⟩ → ± |52e⟩.
The sequence of pulses in this case, is not as sophisticated as in Pr:YSO, but the
unwanted ions in a wide spectral region are cleared away. The complete sequence
of pulses, used in Paper III is listed in Tab. 5.2. The pulse parameters used here are:
fwidth = 500 kHz, tfwhm = 4µs, tcutoff = 86µs. The frequency scan range is fscan,
set by the start and end frequencies νstart and νend, respectively. The intensity of each
pulse is adjusted to target the transitions listed in column ‘Transition’. These pulses
(‘BurnPit1-4’) are repeated sequentially 120 times. A wait pulse of 2 ms follows each
pulse to allow the system to decay to the ground states and the sequence ends with
a wait pulse of duration of 3 ms. A longer wait time may have been better since the
lifetime of the excited state is 1.9 ms. The absorption profile after this step is shown in
Fig. 5.5(a). A region of about ±2.5 MHz around 0 MHz is transparent and the qubit
|0⟩ will be initiliazed at 0 MHz. The transparent well around 34.5 MHz is wider
- about 13 MHz on the left and about 5 MHz on the right. The qubit |1⟩ will be
initialized at 34.5 MHz.

Two methods were tried for qubit initialization. To initialize the qubit in ± |32g⟩, the
first method involves optical pumping on the transitions |12g⟩ → |12e⟩ and |32g⟩ →
|12e⟩ repeatedly, with weak pulses separated by a delay of 2 ms. Since the pulses are
weak, the off-resonant excitations are not significant. The second method involves
coherently transferring ions from |52g⟩ → |12e⟩ and then |12e⟩ → |32g⟩, without any
delay. The result of doing this is shown in Fig. 5.5(c). The second method relies on
the transfer efficiency of the pulse used. In contrast, the first method is not limited by
the transfer efficiency of the pulse since the pulses are repeated several times, resulting
in qubit peaks with higher absorption. The first method was chosen in Paper III.
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5.3 Calibrating the available Rabi frequency

Having created an ensemble qubit, one needs to calibrate the available Rabi frequency
(corresponding to the available laser power) for the qubit transitions and check if the
ions experience an optimal value of Rabi frequency. One way of doing this is to run a
Rabi flopping sequence on each of the qubit transitions. The idea is to target the qubit
transition with a sequence of square pulses with increasing pulse areas. By reading out
the population after each pulse is sent, one can judge how much population is left in
each state. In the case of rare-earth ensemble qubits, a square pulse will not achieve a
full π pulse (see Sec. 5.1). However, one can still use this method to judge what is the
maximum Rabi frequency available for each transition and the gate operations need to
be designed using this calibration. Additionally, there could be a large inhomogeneity
in the Rabi frequency experienced by the ions due to Gaussian propagation through
the crystal (discussed in Paper III) and it is good to estimate an average value for all
the ions.

For the case of Pr:YSO, the calibration between the laser power and Rabi frequency
is pretty well established in the lab here in Lund. Rabi flopping is routinely used to
adjust the position of the light focus inside the crystal. Optimally, the focal plane
should be in the center of the crystal so that the ions experience maximum Rabi
frequency. If it is far from the optimal position, Rabi flopping will occur at a frequency
lower than expected. A square pulse of duration 2 µs targets the qubit transition
|12g⟩ → |12⟩ e. By varying the Rabi frequency of this pulse, one can determine the
value needed to completely flip the population from |12g⟩ to |12e⟩. The result of doing
this is shown in Fig. 5.6(a) and the flop occurs at 273 kHz. Note that the y-axis here is
the area of the peak corresponding to the above transition. When it is maximum, ions
are completely in |12g⟩, and when it is at its minimum, the ions have been transferred
to |12e⟩.

For the case of Eu:YSO, we knew from calculations, that we may not have enough
Rabi frequency to do a good flop and we may need to use the maximum laser power.
For this purpose, the amplitude of the square pulse was fixed to the maximum available
power and the duration was varied between 400 ns and 4.8 µs. The result of Rabi-
flopping the |12g⟩ → |52e⟩ transition is shown in Fig. 5.6(b). The flop occurs at
800 ns, which implies that the Rabi frequency Ω/2π is 625 kHz. The frequency
bandwidth of the square pulse may not cover the entire peak width (100 kHz) toward
the end of the sequence. However, it still gives enough information to capture the
first flop. Similarly, for the transition |12g⟩ → |52e⟩, it was measured to be 357 kHz.
This information is used to design the gate operations and is discussed in Paper III.
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Figure 5.6: Calibration of Rabi frequency on the transition (a) | 12g⟩ → | 12e⟩ in Pr:YSO (b)
| 12g⟩ → | 52e⟩ transition in Eu:YSO.

5.4 Readout

The readout was done using chirped readout techniques developed in [112, 113]. The
pulse is chirped in frequency at constant amplitude. Due to the fast readout scan rate,
the transmission signal contains Free Induction Decay from each peak that needs to
be deconvoluted as described in [112]. To resolve a spectral feature of width fres, the
readout pulse needs to be as long as Tafter feature =

1
fres

after it encounters the spectral
feature. This is due to the fact that a square pulse of duration T has a sinc shape in
its Fourier space (frequency) with a majority of its frequency content within [−1

T ,
1
T ].

If the available detector bandwidth is fdet, the maximum scan rate one can use is
Smax =

fdet
Tafter feature

.

5.5 Detection

To choose a detector in general, some important questions to ask are :

• What is the required SNR?

• What is the required gain and frequency bandwidth?

• How much noise can you tolerate?

• Is your signal shot noise limited?

Answers to these questions have been answered in several places throughout this thesis
and some of them are discussed in this section.

All the experiments in this thesis involve the use of two detectors, one to measure the
transmission signal from the crystal and the other is used as a reference before the
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Figure 5.7: Comparison of noise between detection using the Femto amplifier (black trace)
and Thorlabs PDB150A (orange trace). The plots on the left correspond to |0⟩ and
on the right, to |1⟩. The plots on the top and bottom are the data taken without
and with frequency filters, respectively. (a) |0⟩, no filtering (b) |1⟩, no filtering (c)
|0⟩, with filtering (d) |1⟩, with filtering.

crystal to record the fluctuations in laser power. The transmission signal is divided
by the reference to remove any correlated noise. For paper I, Thorlabs PDB150A was
used as both the reference and transmission detector. For paper II, Thorlabs PDB150A
was used as the reference detector and for the transmission detector, a combination Si
PIN photodiode (Hamamatsu, S5973-02) and a current amplifier (Femto, DHPCA-
100) were chosen. The latter was used for both reference and transmission in Paper III
due to higher demands on the noise level. (Only one Femto amplifier was available
during the experiments in Paper II but another became available for the experiments
in Paper III.)

Thorlabs PDB150A has a bandwidth of 5 MHz at a transimpedence gain of 105 V/A.
The responsitivity is ∼0.4 A/W at 600 nm and the Noise Equivalent Power is 12
pW/

√
Hz (in other words, the input noise current density or the background noise

is 4.8 pA/
√

Hz). The Si diode also has a photosensitivity of 0.4 A/W and the Femto
amplifier has a bandwidth of 1.8 MHz at a transimpedence gain of R = 106 V/A.
This amplifier has low input noise current density (in,b), equal to 140 fA/

√
Hz and

the Johnson noise is 122 fA/
√

Hz. All the values are taken from their respective data
sheets from the supplier.
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Figure 5.8: Noise spectrum obtained using homodyne detection using readout pulse which
was ∼ 100µs long (purple) and a longer trace of duration ∼ 100ms (blue). See
text for details.

The noise level of both the choices was compared by reading out the qubits |0⟩ and
|1⟩ in Eu:YSO and is plotted in Fig. 5.7. The plots on the left correspond to |0⟩ and
on the right, to |1⟩. The plots on the top and bottom are the data taken without
and with frequency filters (3 dB at 7.25 MHz), respectively. From the plots on the
top, it is evident that the Femto amplifier performs much better. The noise can be
further reduced with additional spectral filtering by the oscilloscope during the data
acquisition. For paper III, where the absorption and SNR were low, it was essential
to minimize the noise in the detection.

5.5.1 Noise characterization

Next, one needs to characterize the sources of noise in the measurements using the
Femto amplifier, and below, it is shown that the detection was limited by shot noise.
Details are described, for the reference of another student, if they want to repeat
similar measurements. The characterization was done using homodyne detection,
where the signal was split into two parts S1 and S2, using a 50:50 beamsplitter and
detected using a detector on each arm of the beamsplitter. The signal consisted of
the readout pulse ∼ 100 µs long or a longer trace of duration ∼ 100 ms to capture
low-frequency noise. S1 and S2 were recorded using an oscilloscope and divided by
each other to eliminate any correlated noise like laser noise and the current spectral
density was generated using the ‘pwelch’ function in Matlab and the result is shown
in Fig. 5.8. It has a fairly flat profile, about 1000 fA/

√
Hz in the frequency range 1

kHz - 1 MHz.

53



The expected shot noise that could add up to the above value can be calculated as
follows. The optical signal on each of the two detectors (readout pulse or 100ms long
trace) was ∼ 1.7µW, generating a current is = 0.7µA in the photodiode (since the
photosensitivity is 0.4 A/W). The shot noise is given as [114]:

in,s =
√

2qis∆f

where∆f = 1
∆t and∆t is the time spent measuring the spectral feature, calculated as

∆t = fres
scan rate . In Paper III, fres = 30 kHz and scan rate = 50 kHz/ µs. The current

density in Fig. 5.8 is in units of fA/
√

Hz so one can also write the above formula as
in,s = 0.57 x 106

√
is fA/

√
Hz, where is is in A. Thus, the shot noise in signal S1

is 480 fA/
√

Hz, which is larger than the input noise current density of the amplifier.
It can thus be concluded that the measurements are shot noise limited ¹. The total
noise (shot noise in,s, input noise current density in,b and Johnson noise in,j) after
the two signals S1 and S2 are divided can be added in quadrature [114], as follows:

in,tot =
√
i2n,s1 + i2n,s2 + i2n,b1 + i2n,b2 + i2n,j1 + i2n,j2 ≈ 727 fA/

√
Hz

In Fig. 5.8, the noise level is ∼ 1000 fA/
√

Hz, which is fairly close to the calculated
value.

The electrical SNR can then be calculated using the values noted above:

SNR =
is
in,tot

=
is√

2qis∆f
≈ 1000

However, the SNR in the absorption signal after post-processing (deconvolution, dis-
cussed in Sec. 5.6) is only about 10 and not as impressive. This is evident in Fig. 5.5(b)
when one compares the height of the absorption peaks |0⟩ and |1⟩ to the noise floor.

5.6 Deconvolution errors

The readout chirp rate is fast relative to the width of the qubit peak, and the Free
Induction Decay from the qubit peak distorts the transmission signal. To retrieve the
spectral shape of the peak, a deconvolution algorithm[112] is used. However, it is de-
signed for an optically thin medium and can introduce some errors if the absorption
is high. It does not handle sharp changes in absorption very well. One consequence

¹A good rule of thumb for shot noise limited detection in photodiodes is to have a signal voltage
above 200 mV or 0.4 µA in our case. See Tab. 18.2 in Ref. [114].
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Figure 5.9: The deconvolution algorithm overestimates the absorption of a peak of width 200
kHz and underestimates the absorption of a peak of width 1 MHz. The correction
factor shown here is defined in Eq. 5.9.

is that spectral peaks with higher absorption have some artifacts. Some artifacts are
discussed below using simulations with the Lindblad equation, including the effects
of propagation in an absorbing material. The Lindblad equation to describe the evo-
lution of a quantum system will be introduced in Sec. 6.1.

Six levels of Pr3+ doped into a YSO crystal were used in the simulations. The value
of the absorption coefficient, α was fixed. An ensemble peak of optically inhomoge-
neous ions was initialized in one of the ground states. The peak was read out using a
chirped pulse of constant amplitude, and the transmission signal was obtained after
propagation through the crystal. The transmission signal is in the units of intensity,
and the standard method is to convert it to the absorption depth, αL, where L is
the length of the crystal. After the deconvolution, the absorption depth obtained was
αdconL. αdcon can be different from α if the absorption is high. One must introduce
a dimensionless correction factor labeled here as β. To recover the ‘true’ absorption
α, the following correction needs to be made:

α =
αdcon

β
(5.9)

The simulations can be repeated for different values of absorption and width of the
spectral peak. The result is shown in Fig. 5.9, for two peaks of width 1 MHz and
200 kHz (These widths were chosen because they were used in Paper I and II, respec-
tively). The y-axis of Fig. 5.9 is the correction factor β that needs to be divided by the
absorption αL value obtained from the deconvolution. The absorption of a 1 MHz
peak is slightly under-estimated, but that of a 200 kHz peak is over-estimated by a
more significant margin.
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Figure 5.10: Results of a simulation of a chirped pulse reading out a spectral peak of width 1
MHz, with varying absorption, after propagation through a crystal. (Top) The
blue lines are the simulated transmission signal of the chirped pulse, and the
orange lines are the signal after the blue lines are deconvoluted. (Bottom) The
deconvoluted signal shown in the plots above is converted to AbsorptionαdconvL,
according to Beer - Lambert’s law. Plots on the top and bottom share a common
x-axis.

Another artifact is discussed in Paper II, where features with negative absorption are
present. This results in an error in the calculated peak area or the population, but
the propagated error in calculating the fidelity of an operation is within the error
bars. An example of such a negative feature is shown in Fig. 5.10. Peaks of varying
absorption were simulated. The plots on the top show the transmission signal (blue)
and the result after deconvolution (orange). The deconvoluted signal is converted
to the absorption αL using the equation I = I0e

−αL, where I is the transmission
intensity and I0 is the input intensity. The negative feature on the left part of each
peak becomes prominent with increased absorption. Also, the top of the peak is not so
flat and starts to ‘split’ as absorption in the crystal increases. This will also be evident
in Paper I, where the top of the peak at 36.9 MHz shows a similar split feature.

Several of the errors mentioned above occur since the deconvolution algorithm used
here is based on linear signal processing[112], and some of the irregularities have been
addressed in another work [115] based on nonlinear signal processing techniques.
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Chapter 6

High fidelity transfers

This chapter concerns the transfer of population between two quantum states. Coher-
ent control of atoms is imperative for efficient population transfers since incoherent
radiation can result in, at best, an efficiency of 50%. Coherent resonant pulses result
in Rabi oscillation of the population between the two states but are highly sensitive
to errors in pulse areas.

There are several challenges in designing pulses for highly efficient population transfers
in RE systems:

1. The pulse needs to be robust against variations in pulse area or variations in Rabi
frequency. The variation can result from various factors, as will be detailed in
Sec. 6.3.4.

2. The pulse needs to work well all across the ensemble qubit width with minimal
off-resonant excitations.

3. Population needs to be transferred between two hyperfine states via an electron-
ically excited state which has a finite coherence time. Thus, the time for which
the excited state is occupied needs to be minimized in order to limit dephasing
errors.

4. An additional challenge in working with Eu3+ is that it has a low transition
dipole moment and thus there is a cap on attainable Rabi frequencies due to
limited laser power.

Problems (1), (2), and (4) can be solved by pulses based on adiabatic following [116,
117]. Paper III follows this approach by using ‘sechscan’ pulses. Composite pulses
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[118, 119] are also robust albeit long. Problem (3) above can be solved by design-
ing short pulses, a solution offered by hard resonant pulses but they are not robust
against inhomogeneities. Several techniques combine the speed of resonant pulses
and robustness of adiabatic pulses, for example, optimal control theory [58, 120] and
‘Shortcut to Adiabaticity’ [121, 122]. While different techniques [123–125] exist to
achieve a shortcut to adiabaticity, the approach used in Paper II is a combination of
inverse engineering based on Lewis-Reisenfeld (LR) invariants and optimization of
pulse parameters.

This chapter is structured in the following manner: First, the Lindblad master equa-
tion is introduced, which will be used in all the simulations in this chapter. Then, the
concepts involved in Paper II are described - ‘LR invariant’, ‘inverse engineering’, and
‘shortcut to adiabaticity’. The main results of Paper II are discussed. Then, the focus
of this chapter shifts to Paper III. The compromises to be made in order to design
an experiment to achieve high fidelity are discussed. The results of simulations and
experiments in Paper III are summarized.

6.1 Evolution of a quantum system using Lindblad equation

In this section, the evolution of a two-level quantum system is described. A simple
description using two levels is given but the concept can be extended to all the simu-
lations in this chapter. The need for using the Lindblad equation is briefly motivated
and two examples are shown, where this equation is relevant.

A quantum state evolves in time according to the Schrödinger equation:

iℏ
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ (6.1)

where ψ(t) is the wave-function of a pure state andH(t) is the system Hamiltonian.
The simulations in this chapter involve ensembles, so the density matrix formalism
is used to describe the ensemble qubit, where ρ ≡

∑
i pi |ψi⟩ ⟨ψi|. For a two-level

system with one ground and one excited state, |g⟩ and |e⟩, respectively, the density
matrix is:

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
=

(
|pg|2 pgp

∗
e

pep
∗
g |pe|2

)
(6.2)

The diagonal elements |pg|2 and|pe|2 are the populations and the off-diagonal ele-
ments describe the coherences. The Schrödinger equation, Eq. 6.1 can be written
using the density matrix as:
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ρ̇(t) = − i

ℏ
[H, ρ(t)] (6.3)

To describe any effects that include the interaction of the quantum system with the
environment, Eq. 6.1 is not used since it describes closed systems without accounting
for the environment. Instead, the Lindblad master equation[126] is used as a standard
approach to describing the evolution of an open system, which is the combination of
the quantum system and its environment.

dρ

dt
= − i

ℏ
[H, ρ] +

∑
j

[
2LjρL

†
j − {L†

jLj , ρ}
]

(6.4)

where, {x, y} = xy + yx is an anticommutator, H is the system Hamiltonian as
before and represents the coherent part of the dynamics, and Lj are the Lindblad
operators representing the interaction of the system with the environment, summed
over ‘j’ interactions. Two examples of the interaction of a two-level system with the
environment will be described below to show the form of the Lindblad operator used
in this work [127]:

1. Pure dephasing without relaxation

Let us assume that the lifetime of the excited state |e⟩ is infinite and the ground
state |g⟩ has infinite coherence. The dephasing is governed by the coherence
time T2,opt of the optically excited state, |e⟩. The Lindblad operator for pure
dephasing in the basis |e⟩ and |g⟩ is:

Ldephase =

 1√
2T2,opt

0

0 1√
2T2,opt

 (6.5)

2. Relaxation without additional dephasing

Let us now assume that the lifetime of the excited state |e⟩ is T1,opt. The Lind-
blad operator for relaxation without pure dephasing (T2,opt = ∞) in the basis
|e⟩ and |g⟩ is:

Lrelax =

(
0 0
1√

T1,opt
0

)
(6.6)

All the simulations in this chapter are done using software developed in the Quantum
Information group here in Lund, based on Eq. 6.4. Values of T1 and T2 are given in
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each section when relevant. If more than two levels are used in the simulations, the
decay will also be governed by the relative oscillator strengths for the transitions, as
listed in Tab. 2.2.

6.2 Shortcut to Adiabaticity

6.2.1 Lewis-Reisenfeld Invariants

According to the Lewis-Reisenfeld theory [128], any linear summation of the eigen-
states of an invariant is also a solution to Eq. 6.1. The shortcut method based on
Lewis-Reisenfeld invariants drives the initial state (chosen to be |1⟩ in this work) to
the final state |ψtg⟩ = sinθ |0⟩ + cosθ eiϕ |1⟩, along the eigenstate of a dynamical
invariant I(t) such that the following condition is satisfied[123, 129]:

dI

dt
≡ ∂I(t)

∂t
+

1

iℏ
[I(t),H(t)] = 0 (6.7)

This method is employed in a three-level system, as shown in Fig. 6.1(a). The Hamil-
tonian with the rotating wave approximation in the basis |1⟩ , |e⟩ and |0⟩ is:

H(t) = −ℏ
2

 0 Ωp(t)e
iϕ 0

Ωp(t)e
−iϕ 0 Ωs(t)

0 Ωs(t) 0

 (6.8)

, whereΩi =
µiEi

ℏ (i = p, s) is the Rabi frequency, µ is the transition dipole moment,
E is the electric field of the laser and ϕ is the phase applied to the field Ωp.

The invariant I(t), is given by:

I(t) =
hΩ0

2

 0 cos(γ) sin(β) eiϕ −i sin(γ) eiϕ
cos(γ) sin(β) e−iϕ 0 cos(γ) cos(β)

i sin(γ) eiϕ cos(γ) cos(β) 0

 (6.9)

, where Ω0 is a constant in units of frequency, γ and β are auxiliary parameters. I(t)
has three eigenstates and one is chosen for this work, given by:

|ϕ0(t)⟩ =

cos(γ) cos(β) eiϕ−i sin(γ)
−cos(γ) sin(β)

 (6.10)
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Figure 6.1: (a) The qubit is represented by ground state levels |0⟩ and |1⟩. They are coupled
through optical transitions |0⟩ → |e⟩ and |1⟩ → |e⟩, driven with Rabi frequencies
Ωs and Ωp, respectively. (b) Absorption spectrum showing the qubit initialized
in |1⟩, represented by the peaks ‘4’ and ‘5’. The inset shows the qubit in |0⟩,
represented by the peaks ‘1 - 3’.

One can ensure that H(t) drives the initial state |1⟩ along |ϕ0(t)⟩ such that it coin-
cides with the final state |ψtg⟩. This is done by imposing some boundary conditions
and engineering the functional form of Ωp and Ωs, based on the restrictions of the
physical system. This is termed ‘inverse engineering’ and is discussed in the next sec-
tion.

6.2.2 Inverse engineering

The physical system used was 0.5% doped Pr3+:Y2SiO5 and the transition was 3H4

→ 1D2 at 606 nm. The hyperfine structure of this transition and the qubit levels are
marked in Fig. 6.1(a). The different conditions considered for the ‘inverse engineering’
of transfer pulses in this work are:

1. To ensure the initial state is |1⟩ and the final state is an arbitrary superposition
state |ψtg⟩ = sinθ |0⟩ + cosθ eiϕ |1⟩, the boundary conditions chosen are:
γ(0) = 0, γ(tf ) = π, β(0) = 0, β(tf ) = π − θ [124].

2. There is some freedom to choose the functional form of the auxiliary parameters
γ and β as long as they satisfy the above boundary conditions [124]. The form
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chosen in Paper II are:

γ(t) =
π

tf

n=8∑
n=1

an sin

(
nπ

tf
t

)
(6.11)

β(t) =
(π − θ)

2
[1− cos γ(t)] (6.12)

Practically, the various sinusoidal components are generated using Acousto-
optic-modulators. Starting from Eqn.6.7, 6.8 and 6.9, the form of the Rabi
frequencies can be written as:

Ωp = − ˙γ(t)[(π − θ) cos γ(t) sin β(t) + 2 cos β(t)] (6.13)

Ωs = − ˙γ(t)[(π − θ) cos γ(t) cos β(t)− 2 sin β(t)] (6.14)

3. One can also ensure that the pulses start and end at zero amplitude so that
there are no unwanted frequency components. Thus, Ωp(0) = Ωp(tf ) = 0
and Ωs(0) = Ωs(tf ) = 0. This implies the following conditions:

a1 + 3 a3 + 5 a5 + 7 a7 = 0 (6.15)

a2 + 2 a4 + 3 a6 + 4 a8 = −0.5 (6.16)

As long as the above conditions Eq. 6.11, 6.15 and 6.16 on the values of an are satisfied,
a transfer is achieved from |1⟩ to |ψtg⟩. However, to ensure high transfer efficiencies
that are robust against the imperfections in the system, one should optimize the val-
ues of an. The optimization was done using a simulation of a six-level system, which
includes the optical inhomogeneity of the Pr ions and the optical lifetime and coher-
ence time, listed in Tab. 2.2. The fidelity was maximized for a region of ions within
±500 kHz of the ensemble peak while minimizing any effect on the population of
ions outside the TSW (discussed in Sec. 5.2). The pulse length was set to tf = 4µs
and the shape of the optimized pulses is shown in Fig. 6.2. Three cases of transfers
were considered in this work:

• Case 1: |1⟩ → |0⟩. The envelopes and phases of Ωp and Ωs are interchanged
for transfers from |0⟩ → |1⟩.

• Case 2: |1⟩ → |ψsup
tg ⟩. The ‘an’ parameters are the same for any superposition

state but a different constant phase eiϕ is applied toΩp depending on the target
final state.

• Case 3: |ψsup
tg ⟩ → |1⟩
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Figure 6.2: Profile of the pulses used for the shortcut transfers. Ωs and Ωp are the Rabi fre-
quencies which couple the optical transitions |0⟩ → |e⟩ and |1⟩ → |e⟩, respec-
tively. (a) Transfer from |1⟩ → |0⟩ (b) Transfer from |1⟩ → |ψsup

tg ⟩. (c) Transfer
from |ψsup

tg ⟩ → |1⟩ .

6.2.3 Experimental implementation

This section describes the steps involved in implementing the method of inverse en-
gineering Shortcut to Adiabaticity based on LR invariants in experiments with rare-
earth-ion-doped crystals. The experimental setup used is described in Paper II. A
schematic of the pulse sequences used is shown in Figure 6.3. Each step is described
below:

1. Create a TSW: A transparent spectral window (TSW) is first created. The
basic principle involved here is optical pumping, where the ions are shelved
into a third ground state outside the TSW, which is not involved in the qubit
operations (see Sec. 5.2). This window remains transparent for several seconds,
which is much longer than the operations to follow.

2. Create a qubit in state |1⟩: An ensemble qubit of width 170 kHz is created in
|1⟩, by burning back some ions from the third ground state. A qubit initialized
in |1⟩ has two absorption peaks inside the TSW, shown in blue in Figure 6.1(b).
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Figure 6.3: Schematic of the pulse sequence used in the experiments. SC stands for shortcut.
Steps on the left show the case for transfers between |1⟩ ↔ |0⟩ and on the right,
the case for transfers between |1⟩ ↔ |ψsup

tg ⟩ is shown.

3. Perform Shortcut transfer: ‘N’ consecutive transfers are performed between
|1⟩ and the target state using the shortcut pulses described earlier. The target
state is either |0⟩ or one of the four superposition states (|0⟩+ |1⟩)/

√
2, (|0⟩−

|1⟩)/
√
2, (|0⟩+ i |1⟩)/

√
2 or (|0⟩ − i |1⟩)/

√
2.

4. Readout: A frequency scanning pulse of low intensity is used to read out the
populations in |0⟩ and |1⟩. If a superposition state is being read out, full Quan-
tum State Tomography [21] is performed before reading out the state.

5. Erase the center of the TSW: Strong pulses are sent in to erase the center of the
TSW, resetting the conditions to step 2 above. Thereafter, the above procedure
is repeated until ‘N’ transfers are completed.
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Figure 6.4: Results of population transfer between |1⟩ and |0⟩. (a) Populations in |1⟩ and
|0⟩ are shown in red and blue respectively. (b) Fidelity of transfer, F01 (equal to
F10): Blue line is calculated from experiments and the shaded region is a result of
simulation.

6.2.4 Experimental results

6.2.4.1 Transfers between two ground states

The results of population transfer between |1⟩ and |0⟩ are shown in Fig. 6.4(a). The
decoherence error increases with the number of transfers as the time spent by ions
in the excited state increases. Additionally, a small portion of the total population is
lost to the third ground state as the number of transfers increases. In Fig. 6.4(b), the
operational Fidelity F01 or F10 is plotted using the product F01F10 in the following
equation:

F01F10 =
F (N + 2)

F (N)
, N = 1, 2, 3...16 (6.17)

The above equation is an approximation that holds true for the first six transfers or the
first four points in Fig. 6.4(b). The average fidelity for these points is 97±2%. The
shaded region is the result of the simulation assuming two different optical coherence
times, 44µs and 132µs. This range is chosen to account for the effects of instantaneous
spectral diffusion[72], whereby the coherence time of some ions in the ensemble qubit
is affected by the excitation of their neighboring ions due to dipole-dipole interaction.

6.2.4.2 Transfer between ground and superposition state

For reading out a superposition state, QST is performed but the two-color pulses
used for QST can have state-dependent errors resulting in a fidelity of about ∼95%.
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plane of the Bloch sphere (b)QST fidelity of randomly generated states close to
|1⟩ (c) QST fidelity of randomly generated superposition states, with and without
averaging.

This needs to be accounted for before calculating the operational fidelity. Results of
simulating the error due to the tomography pulses are shown in Fig. 6.5. The QST
fidelity for reading out a state depends on the angle by which the state is rotated, with
respect to the +X, +Y, -X, and -Y axes (see Fig. 6.5(a)). However, when the fidelity
due to reading out the states rotated by the same angle with respect to the +X, +Y,
-X, and -Y axes are averaged, the error is drastically reduced. The error is larger for
superposition states (see Fig. 6.5(c)) than for states close to the ground state |1⟩ (see
Fig. 6.5(b)). Thus, it was concluded that the QST error can be minimized if the
fidelity of creating all four superposition states was averaged. The average fidelity,
F (N), is shown in Fig. 6.6(a). This depends on the fidelity of transfer from |1⟩ →
|ψsup

tg ⟩, F1s, the fidelity of transfer from |ψsup
tg ⟩ → |1⟩, Fs1, and the fidelity of QST

for reading out superposition and ground states,QTs andQT1 respectively. F (N) is
given as:
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QST fidelity) as a function of the number of transfers. (b) The calculated transfer
fidelity F1s or Fs1. The simulations are shown with a shaded region and are done
using two values of coherence times, 44 µs and 132 µs.

F (N) = F
(N+1)/2
1s F

(N−1)/2
s1 QTs, N = 1, 3, 5 (6.18)

F (N) = F
N/2
1s F

N/2
s1 QT1, N = 2, 4, 6 (6.19)

The division of F (N + 2)/F (N) gives the product F1sFs1:

F1sFs1 = F (N + 2)/F (N), N = 1, 2, 3, 4 (6.20)

Assuming F1s = Fs1, the fidelity for transfer between |1⟩ and |ψsup
tg ⟩ can be obtained

and is shown in Fig. 6.6(b). The average value is 98 ± 1%.

6.2.5 Conclusions

The experiments in Paper II are an implementation of a protocol that combines in-
verse engineering based on LR invariants and optimization of transfer pulse parame-
ters. The main advantage of this method is that the known boundary conditions i.e.,
the known initial and target states, allow the use of shorter pulses and thus minimize
the dephasing errors. In comparison with an earlier work [21], the error in fidelity is
reduced from ∼7% to 2%. Although the shortcut pulses used here cannot be used
to perform arbitrary gate operations, they can be used, for example, in the state ini-
tialization of ancilla qubits in a quantum error correction protocol. Additionally,
state-dependent errors of the pulses used for QST were identified and characterized.
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6.3 Adiabatic Approach

This section describes the technical and fundamental challenges towards achieving
high fidelities in REQC using ensemble qubits in 151Eu3+:Y2SiO5. An adiabatic ap-
proach is employed by designing long pulses that do not need very high laser intensi-
ties. The section begins by describing the material properties of 151Eu3+:Y2SiO5 and
the reasons for choosing this crystal. Then, the details of the power budget which leads
to limited Rabi frequency as well as its variation across the crystal are outlined. The
pulses used for creating ensemble qubits, the design of efficient state transfers robust
against variations in Rabi frequency, and the details of shot noise limited detection are
also given. Experimental results of state transfers and gate operations are presented.
The section ends with comments on limitations that are relevant for achieving high
fidelity in ensemble qubits.

6.3.1 Choice of material

153Eu3+:Y2SiO5 at site 1 is considered the best candidate for high-fidelity gate op-
erations in the Roadmap for rare-earth quantum computing [13]. It has long optical
[68] and spin coherence times [86] and a large separation between the energy levels
that allow for shorter pulses in time to minimize gate errors. However, the required
frequency bandwidth could not be achieved experimentally (explained in Sec. 6.3.3).
So another isotope, 151Eu3+ with lower energy splitting between the qubit levels was
used. The transition used was 5D0 → 7F0 transition in 151Eu3+:Y2SiO5, site 1 at
580 nm, shown in Figure 6.7. The transitions |12g⟩ → |52e⟩ and |32g⟩ → |52e⟩, with
relative oscillator strengths of 0.75 and 0.20, respectively are used for qubit manip-
ulation and are marked in blue. The transitions marked in red, |52g⟩ → |12e⟩ and
|32g⟩ → |12e⟩ were used for initializing the qubit in |1⟩ using optical pumping. Rele-
vant optical properties are listed earlier in Section 2.5.

6.3.2 Trade-off in experimental design

There are several things to think about while designing an experiment to measure high
fidelity. These are discussed below:

1. Absorption Signal: To maximize the signal, a sample with maximum absorp-
tion should ideally be chosen. Ref. [68] shows the dependence of absorption
coefficient and optical inhomogeneous linewidth on the doping concentration
of Eu ions. While the optical inhomogeneous broadening increases with con-
centration, the absorption coefficient does not change very much for concen-
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Figure 6.7: Hyperfine structure of the 5D0 → 7F0 transition at 580 nm in 151Eu:YSO, site 1.
The transitions marked in blue are used for qubit manipulation and red are used
for initializing the qubit in |1⟩.

trations between 0.1 and 1%. This means that a higher concentration increases
the number of qubit channels but the absorbed signal does not simultaneously
increase. Additionally, a higher concentration can also result in a larger spin
inhomogeneity, causing more gate errors (This will be discussed later in Sec-
tion 6.3.8). Thus, it is a balance between maximizing the absorption signal and
minimizing gate errors, so 0.1% is ideal.

2. Crystal length: The length of the crystal determines how large the absorption
signal,αL can be. A longer crystal would increase the absorption signal but also
increases the inhomogeneity in Rabi frequency across the length of the crystal.
For a doping concentration of 0.1%, the expected absorption at the center of the
inhomogeneous linewidth is α = 3.5 cm−1 [68]. After optical pumping for
the qubit initialization process, the expected absorption from the qubit peak is
reduced to about one-third of this value. Due to the different relative oscillator
strengths (0.75 and 0.2), the expected absorption signal for the qubit two peaks
in |0⟩ and |1⟩ is respectively, α|0⟩ = 0.88 cm−1 and α|1⟩ = 0.23 cm−1. If the
crystal length is at least 5 mm, αLsignal,|0⟩ ∼ 0.43 and αLsignal,|1⟩ ∼ 0.11.

3. SNR: The detection Is ensured to be limited by shot noise since the readout
power normally used is ∼ µW. The readout is done using chirped techniques
[112]. Since the chirp is fast, the transmission signal from the crystal contains
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Free Induction Decay from the qubit peak, which needs to be deconvoluted.
The SNR after this step needs to be good enough to measure high fidelity. This
work aims to achieve an SNR of at least 10 when the qubits are initialized in
|1⟩ and |0⟩. The upper limit on the noise floor can be estimated as below:

αLnoise ≤
αLsignal

SNR

4. Rabi frequency: Optical coherence time is long for the chosen material but it
also means that the oscillator strength is low and relatively high laser intensity
is required to drive the transition. Two ways to maximize the Rabi frequency
from the available laser power are to focus tightly and place the crystal in a
cavity (for example, by coating the surfaces with reflective material).

The first method leads to inhomogeneity in Rabi frequency in the longitudinal
direction. The transfer pulses can be designed to work well beyond a threshold
Rabi frequency and the transfer efficiency will be limited by the ions experienc-
ing a Rabi frequency lower than the threshold (discussed in Sec. 6.3.6). The
second method of using a cavity leads to standing waves in the crystal. At the
position of nodes, there will be no absorption of light by ions. Thus, this option
is not ideal.

Optimizing the above factors independently does not always lead to minimizing errors
since the factors are interconnected. One could choose a longer crystal to increase the
absorption signal and use a very tight focus to maximize Rabi frequency but both
options increase the inhomogeneity in Rabi frequency. One could also increase the
doping concentration but there is also evidence that spin inhomogeneous broadening
increases with concentration (discussed in detail in Sec. 6.3.8) and can decrease gate
fidelity. There is thus a trade-off to be made in choosing various values to obtain
optimal transfer efficiencies. In the next section, the choices made for the setup and
consequent challenges are discussed.

6.3.3 Technical challenges and experimental setup

The chosen sample was an isotopically pure bulk crystal of 151Eu3+ (site 1) with di-
mensions 5 x 5 x 8 mm along the crystal axes b, D1 and D2, respectively and light
propagated along the b axis. The electric field of light was chosen to be parallel to the
crystal axis D1 since it has a higher absorption coefficient than the other two axes [68].
The absorption coefficient was measured to be 2.7cm−1 along D1. There was also an
attempt at using a shorter crystal, of length 3 mm (0.1% concentration, grown in P.
Goldner’s group in Paris) but the absorption signal was much lower than expected.
Thus, this sample was not investigated further.
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Eu:YSO has a long optical coherence time but this also means that the oscillator
strength is rather weak. Thus, it is difficult to drive the chosen transition and re-
quires high laser intensity. The maximum laser power from the dye laser used for
these experiments is ∼1 W at 580 nm but this is reduced to 30 mW at the position of
the crystal, thus aggravating the problem of the availability of enough laser power to
drive the transitions. C.D Hobbs aptly said [114] :

Photons are like money: A certain number are needed for the job at hand, and they’re
easier to lose than to gain back.

The various stages of power losses are listed below:

• A PM (polarization-maintaining) fiber needs to be used directly after the laser
output to clean the mode before being guided to the AOMs (Acousto-optic
modulator). This step eats away ∼50% of the power but improves the spatial
mode coupling to AOM1.

• AOM1 is used in double-pass configuration to avoid the ‘beam walk’ seen in
single-pass when the frequency is changed. This also increases the frequency
bandwidth but the diffraction efficiency can, at best be about 50%. Thus we
have about 250 mW remaining.

• AOM2 is used to create the two-color pulses separated by 34.5 MHz. A chal-
lenge here is to overlap the two colors in the crystal. An alternate method is
to couple both colors simultaneously into a PM fiber which will also clean the
mode. This requires a short focal length of 75mm, giving a focal spot size of
100µm inside the AOM. Although the quoted diffraction efficiency is about
80%, practically only about 60% was achieved. If we wish to increase the band-
width to more than 34.5 MHz, the diffraction efficiency of AOM’s reduces
further.

• The experimental fiber, has a coupling efficiency of only 50%, probably due
to sub-optimal spatial modes after the AOMs. Thus, only about 75 mW is
obtained on the cryostat table.

• Further loss due to polarization optics and cryostat windows occur and at the
crystal position inside the cryostat, about 30 mW is available.

Limited laser power requires focusing of the beam at the center of the crystal to max-
imize the intensity and hence the available Rabi frequency. There is a limit on how
tight the focus can be since a tighter focus also results in a larger variation in intensity
across the length of the crystal. For this experiment, the focus was decided so that the
length of the crystal xL is less than twice the Rayleigh length zR given by zR =

nπw2
0

λ ,
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where w0 is the beam waist radius and λ is the wavelength of light in vacuum and
n is the refractive index of YSO (1.8). Since xL = 5 mm (along crystal axis b), the
beam waist radius was decided to be w0 = 20 µm which has a Rayleigh length zR =
3.9 mm. The expected maximum intensity at the focal plane is:

I =
1

2
ϵ0nc

(
Ωℏ

µ
√
frel

)2

and thus the Rabi frequency is:

Ω =
µ
√
frel

ℏ

√
2

ϵ0nc

P

πw2
0

, where ‘P’ is the available power (about 30 mW), ‘n’ is the refractive index of YSO,w0

is the beam waist radius, µ is the optical transition dipole moment for the transition
7F0 → 5D0 (7.2 x 10−33 Cm) and ‘frel’ is the relative oscillator strength. For the
strongest transition i.e., |0⟩ → |e⟩ with relative oscillator strength 0.8, the available
Rabi frequency was Ω = 890 kHz, and for the weakest transition i.e., |1⟩ → |e⟩
with relative oscillator strength 0.2, Ω = 445 kHz. After the above considerations,
the setup used in the experiments is detailed in Paper III.

6.3.4 Inhomogeneity in Rabi Frequency

Tight focusing of light in the crystal leads to a large variation across the crystal length
due to Gaussian propagation. In addition, light is absorbed as it propagates a distance
‘L’ through the crystal, estimated by the equation I = I0e

−αL. Figure 6.8 shows the
variation in intensity due to Gaussian propagation in free space and in an absorbing
medium (α|0⟩ = 0.88 cm−1). Edges of the crystal are shown as red lines at ±2.5
mm. After absorption, the intensity varies between 0.83I0−0.46I0 (shown as a solid
black line) and the Rabi frequency is 0.91Ω0 − 0.68Ω0 since it scales with intensity
as Ω =

√
I (shown as solid blue line). A similar calculation for α|1⟩ = 0.23 cm−1

results in a variation from 0.97I0 − 0.80I0 and 0.94Ω0 − 0.64Ω0. For the strongest
transition, it drops to the range 605 − 810 kHz and for the weakest transition, it
drops from 445 kHz to the range 284−418 kHz. The transfer pulses can be designed
to work well beyond a threshold Rabi frequency. However, the transfer efficiency will
still be limited by the ions experiencing Rabi frequency lower than the threshold in
the wings of a Gaussian beam in the transverse direction.

Since the beam has a Gaussian profile, there is also variation in intensity in the trans-
verse plane. The transfer pulses will not work efficiently for the ions sitting at the
wings of this Gaussian profile. In previous works where the focal spot diameter was

72



-4 -2 0 2 4
Distance from focal plane (mm)

0

0.2

0.4

0.6

0.8

1

In
te

ns
it
y

0

0.2

0.4

0.6

0.8

1

R
ab

i F
re

qu
en

cy

Gaussian Propagation
Absorption
Crystal edge

Figure 6.8: Variation in intensity for a Gaussian beam focused down to a spot with a diameter
40 μm. The intensity drops by 50% at a distance equal to its Rayleigh length zR =
3.9 mm, shown as the black dashed line. By introducing the crystal (red lines), a
further drop in intensity occurs due to absorption, shown as the solid black line.
The lines in blue show a similar drop in Rabi frequencies.

100µm [21, 56], this problem was solved by imaging the central portion of the beam
using a 50µm pinhole, where the intensity varied by less than 20%. Using a similar
spatial filtering technique could be difficult here since the focal spot is quite small and
a pinhole would reduce the signal further.

6.3.5 Creating and reading out ensemble qubits

It is possible to empty a spectral region of ±2.8 MHz around |0⟩ and −14.3 to +5.8
MHz around |1⟩. An ensemble qubit of width 100 kHz was created, also using optical
pumping with many weak sechyp pulses targeting |52g⟩ → |12e⟩ and |12g⟩ → |12e⟩,
thus shelving ions to |32g⟩. Any unwanted ions absorbing close to the qubit transition
at |32g⟩ → |52e⟩ were cleaned away. The sechyp pulse parameters used for creating
the qubit peak werefwidth = 60 kHz, tfwhm = 30µs, tcutoff = 105µs, |Ω0|max =
30 kHz, where tcutoff is the total duration of the pulse. The definitions of these pa-
rameters follow from Sec. 5.1.1. The profile shape in amplitude and frequency is shown
in Figure 5.1(a) and the population transferred to the excited state is shown in Figure
6.9. In the experiments, the width of the peak created using this pulse was broader
than fwidth since this sechyp pulse was repeated several times to create the peak (see
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Figure 6.9: Population transferred from ground to excited state using the sechyp pulse shown
in Fig. 5.1(a), with insets showing details zoomed into different spectral regions.

Sec. 5.2). The width was measured to be 93 kHz.

For the readout, we used 50 kHz/µs, which has a frequency resolution of fR = 30
kHz. The Rabi frequency of the readout pulse was less than 3% of a π pulse so as to
minimize disturbing the spectral feature.

6.3.6 Transfer Pulse design

The pulse parameters were optimized using a two-level simulation to include the ef-
fects of dephasing, decay, and robustness against inhomogeneity in optical and Rabi
frequencies. The aim here is to invert a 300 kHz wide peak and it should work well for
a Rabi frequency of 284 kHz and above. Thus, fwidth and fscan were both fixed to 300
kHz and the other parameters were optimized manually to achieve the highest fidelity
by numerically solving the Lindblad master equation (see Eq. 6.4). The simulation
here was done in a two-level system with one ground and excited state, with a lifetime
of 1.9 ms and coherence time 400 µs. During the optimization, there is a trade-off to
be made between having a short pulse, which reduces the dephasing errors, and a long
pulse, which is necessary if the available laser power is low. Manual optimization of
the parameters resulted in the following parameters: fwidth = 300 kHz, fscan = 300
kHz, tfwhm = 1.75µs, tcutoff = 14µs. The pulse profile is plotted in Figure 5.1(b)
using |Ω0|max = 0.5 MHz. The transfer efficiency due to a single transfer pulse from
|g⟩ → |e⟩ as a function of Rabi frequency is plotted in 6.10. The pulse works rather
poorly for |Ω0| < 0.2 MHz but for higher values, one can expect efficiencies between
0.97 − 0.992.

We now look at the performance of this pulse for two consecutive transfers: |1⟩ → |e⟩
and |e⟩ → |0⟩, repeated ‘N’ times. The simulation was done using the four lev-
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Figure 6.10: Transfer efficiency of the sechscan pulse shown in Fig. 5.1(b), as a function of its
Rabi frequency amplitude Ω in the range 0-1 MHz.

els |52e⟩ , |
1
2g⟩ , |

3
2g⟩ and |52g⟩, as described in Sec. 6.1. The qubit peak used was a

Gaussian with optical inhomogeneous broadening 93 kHz (equal to the experimen-
tally measured value). The lifetime of optically excited state |52e⟩, T1,opt was 1.9 ms (see
Tab. 2.1) and the coherence time T2,opt was 400 µs (measured by P. Goldner’s group).
The relative oscillator strength of the three ground state levels |12g⟩ , |

3
2g⟩ and |52g⟩ are

0.75, 0.20 and 0.05 respectively, as listed in Tab. 2.2. The sequence used in simula-
tions is as follows:

1. Initialize qubit in |1⟩.

2. Apply the pulses |1⟩ → |e⟩, immediately followed by |e⟩ → |0⟩ and wait for
10 ms to allow any ions left behind in |e⟩ to relax back to the ground states |0⟩,
|1⟩ or |aux⟩.

3. Depending on whether another transfer is to be made, one of the two steps
needs to follow:

• If another transfer is to be made, send two more pulses: |0⟩ → |e⟩,
immediately followed by |e⟩ → |1⟩ and a 10 ms long wait pulse.

• If no more transfers are to be made, wait another 10 ms and read out the
populations in |0⟩ and |1⟩. This is the end of the sequence.

4. Repeat steps 2-3.

The above sequence was repeated for up to 10 consecutive transfers in the simulations.
Figure 6.11(a) shows the result for ions experiencing either the lower or the upper limits
of available Rabi frequency across the crystal, as discussed earlier in Sec. 6.3.4. Red
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lines indicate the population in |1⟩ and the blue lines represent population in |0⟩. The
solid lines indicate the populations for the case of ions experiencing maximum values
of |Ω0| and |Ω1| while the dashed lines indicate the populations for the case of ions
experiencing minimum values. For the stronger transition |0⟩ → |e⟩, |Ω0,max| =
810 kHz and |Ω0,min| = 605 kHz. For the weaker transition |1⟩ → |e⟩, |Ω1,max| =
418 kHz and |Ω1,min| = 284 kHz. The region between these lines represents the
range one can expect across the length of the crystal at the center of the Gaussian
profile in the longitudinal direction. The effect due to variation in the transverse
direction is not included in this simulation. Such variations need to be taken care of
using spatial filtering in the experiments. Thus, when an ensemble of ions is probed
in the crystal, one can expect 97-99% of the population transferred from |1⟩ → |0⟩
and 94-96% after the next transfer from |0⟩ → |1⟩.

There are several things to understand in Fig. 6.11(a), which are discussed in the
following sections.

Effect of different relative oscillator strengths:

There is a difference in efficiency for the blue and red lines. This is due to the fact that
the relative oscillator strengths for the two transitions |0⟩ → |e⟩ and |1⟩ → |e⟩ are
quite different, i.e., 0.75 and 0.20. Since there is a delay of 20 ms before the readout,
the ions preferentially relax to |0⟩ and thus the blue lines lie higher than the red ones.

Effect of |aux⟩ state

The total population, in |0⟩ and |1⟩ steadily declines due to the loss to the third
ground state, |aux⟩. This is shown clearly in Fig. 6.11(b), drawn as a black dashed
line corresponding to simulations with |Ω0,max| = 810 kHz and |Ω1,max| = 418
kHz. About 0.2% of the total population is lost to |aux⟩ after every transfer.

Effect of delay between transfers:

One could argue that a wait pulse between every transfer is unnecessary. State trans-
fers or operations occur consecutively without any delay between the operations in
any quantum algorithm. A standard method to infer gate errors and optimize gate
fidelities in superconducting qubits, known as ‘randomized benchmarking’ [130] uses
a long sequence of operations done consecutively. Thus, in order to measure the true
efficiency from a sequence of transfers, there should not be any delays between the
transfers and before the readout. Instead, one should do a full quantum state tomog-
raphy (QST) on the state to obtain the fidelity of any gate. In the case of RE quantum
computing, QST requires the ability to do arbitrary rotations on the Bloch sphere us-
ing two-color pulses, the efficiency of which is limited due to spin inhomogeneity, as
will be described later in Sec. 6.3.8. In the current work, the focus is on obtaining
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Figure 6.11: (a) Populations in |0⟩ (blue) and |1⟩ (red) after different numbers of state trans-
fers, shown for the range of ions experiencing different values of Rabi frequencies
across the length of the crystal. The solid lines show the case of ions experi-
encing maximum Rabi frequency |Ω0| = 810 kHz, |Ω1| = 418 kHz and the
dashed lines show the case of ions experiencing minimum values |Ω0| = 605
kHz, |Ω1| = 284 kHz. (b) Simulations showing the effect of delay between
transfers. The dashed blue and red lines correspond to the case of ions experienc-
ing maximum Rabi frequency: |Ω0| = 810 kHz, |Ω1| = 418 kHz and 10 ms
delay after each transfer between the qubit states. The dashed black line shows
the corresponding total population after every transfer. The dotted lines show
the same simulation without a delay of 10 ms between every transfer.

transfer efficiency only.

The result of a simulation showing the effect of a delay between transfers is shown
in Fig. 6.11(b), using |Ω0,max| = 810 kHz and |Ω1,max| = 418 kHz. The dotted
lines have no delay while the dashed lines show the same simulation with a delay of
10 ms between transfers. Both have a delay of 20 ms before the readout. For the case
without any delay, the transfer efficiency falls quite rapidly due to build-up of errors
from dephasing. For the case with the delay, any coherence between the excited state
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and two ground states is lost after every transfer since the duration of delay is longer
than T1,opt and the efficiency does not fall as fast. The population left behind after
every transfer grows continuously if there is no delay (evident from the dotted lines
in the bottom half of Fig. 6.11(b)). Whereas, the dashed lines remain stagnant after
the first two transfers.

6.3.7 Experimental Results

Absorption profile of the ensemble qubit peaks after initializing in the states |1⟩ and
after one transfer to |0⟩ is shown in Fig. 5.5(b). The grey line is the readout from a
single shot and the blue/red lines are Gaussian fits to the mean of three data sets. The
noise floor at 200 kHz to the left of each peak is about 0.015. The SNR on both peaks
can now be calculated:

SNR|0⟩ =
0.358

0.015
≈ 23 SNR|1⟩ =

0.097

0.015
≈ 6

The above values correspond to when 100% of the population is in |0⟩ or |1⟩. If the
population in |1⟩ falls to 1

6 th of this value or 16%, SNR|0⟩ will fall below 1. Similarly,
SNR|1⟩ will be less than 1, if the population in |0⟩ falls below 4%. For this reason, one
cannot rely on looking at the population left behind in either of the states to estimate
the transfer efficiency. The population transferred over to the other state will need to
be the only measure of transfer efficiency.

Results of repeated transfers

Once the qubit peak is initialized in |1⟩, the population was transferred to |0⟩ using
two sechscan pulses as described earlier in Sec. 6.3.6. After reading out the population
in both states, the ions were transferred back to |1⟩ and such transfers were repeated
back and forth up to 100 times. The power for each pulse was adjusted experimentally
so that the population transferred was maximized. It was found that the laser power
required for the transfer Ω0→e was about twice as high as in the opposite direction
Ωe→0. This method of optimization had low sensitivity to the true transfer efficiency
since there was a delay before readout and ions preferentially fall down to |0⟩ due to the
stronger relative oscillator strength. A better way to optimize the values experimentally
is to do a readout immediately after the transfer pulse.

The readout was done after every transfer for the first ten transfers and subsequently,
the readout was only done after the 20th, 21st, 30th, 39th, 40th, 99th, and 100th
transfers. The results are shown in Fig. 6.12. The red circles represent population
in |1⟩ and blue circles represent |0⟩. The solid lines are simulations where the Rabi
frequency was adjusted to match the experimental results, specifically the red circles
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Figure 6.12: Each red and blue dot with error bars represents the experimentally measured
population in |1> and |0> respectively. The solid lines are a result of simulation,
as described in Sec. 6.3.6. See text for details.

for even # of transfers. The adjusted values are Ω0 = 810 kHz and Ω1 = 161 kHz.
These values are different in comparison with the calculated values in Sec. 6.3.4. The
experimental results and the simulations do not match and there are several reasons
for this. Ions in the wings of the Gaussian cross-section experience much lower Rabi
frequency than the calculated values and these ions will limit the observed transfer
efficiency. The correct way to match the experimental results with the simulations
would be to run many simulations with different values of Rabi frequencies and then
average the results based on how much of the signal corresponds to a certain value of
Rabi frequency.

For the analysis in this work, the efficiency due to the first transfer from |1⟩ to |0⟩
is assumed to be 100%, but this is not reasonable to do. The reason we still chose to
do this is that the ratio of the absorption peaks in |0⟩ and |1⟩ after a single transfer is
3.94 ± 0.18 and this is equal to the ratio of their relative oscillator strengths 0.75

0.2 =
3.75 [78]. If the transfer efficiency was not 100%, the ratio of the peaks should be
less than the ratio of their relative oscillator strengths. This could explain why the
blue circles (experiments) are consistently above the blue solid line (simulation) for
the odd number of transfers. Another way to judge the transfer efficiency is to look
at the population left behind in |1⟩ after the first transfer. Due to the poor SNR for
low absorption, the population left behind in |1⟩ seems to be zero but one cannot
be certain of this. This could explain the mismatch between the simulations and
experiments for such points.
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Figure 6.13: Simulations of gate fidelities of a two-color (TC) sequence for arbitrary rotations
on the Bloch sphere as a function of spin inhomogeneity (a) Gate fidelity of TC
sequence used in Pr:YSO in Ref. [21], as a function of spin inhomogeneity (b) TC
with sechscan pulses in Eu:YSO for different values of Rabi frequency amplitude
Ω.

6.3.8 Performance of two-color gates

The next step in demonstrating high fidelities is looking at the fidelity of a gate opera-
tion or arbitrary rotations on the Bloch sphere using the two-color (TC) pulse scheme
described in Sec. 5.1.2. While this scheme compensates for optical inhomogeneity,
it is not specifically designed to be robust against spin inhomogeneity. For example,
gate fidelity as a function of spin inhomogeneity was simulated and plotted in Fig.
6.13. Part (a) shows the performance in Pr:YSO using the sechyp pulse parameters in
[21]. The spin linewidth is 50 kHz [75], and the fidelities achieved in [21] were in the
same range as seen here in the simulations. Part (b) in Fig. 6.13 shows the case of TC
sequence using sechscan pulses in Eu:YSO, where the spin inhomogeneity is 27 kHz
[76]. Fidelity with two different values of Rabi frequencies 284 and 418 kHz on both
transitions are plotted. Fidelities obtained can range between 0.8− 0.95. Two-color
pulses were tried in the experiments. A full QST was not performed, but the popu-
lation transferred was measured to be 0.89 at best. One way to overcome the prob-
lems due to spin inhomogeneity is to use materials with lower spin inhomogeneous
linewidths. There is evidence that this could depend on the doping concentration
[76, 86, 106, 107]. Lower doping concentration will also lead to a lower absorption
signal and poorer SNR, so this must be considered.

6.3.9 Summary of challenges and outlook

Sechscan pulses are exceptionally efficient for population inversion, but it is pretty
challenging to achieve inversion better than 0.992, given our system’s limitations for
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ensemble qubits. Several trade-offs in the experimental design have been identified.
The main limitation to achieving high transfer efficiencies is the considerable variation
of Rabi frequency in the transverse direction. As for the gate operations, a scheme
that also optimizes against spin inhomogeneity is needed to achieve high fidelities.
Interestingly, it is possible that the spin inhomogeneity can be as low as 7 kHz if the
concentration is 0.01% [131], but that would lead to a lower absorption signal and
poorer SNR.

In the bigger context of REQC, scalability can only be achieved for single ion qubits,
where the robustness of sechyp pulses is not necessarily required. TC gates could be
used for gate operations provided the spin transition frequencies of the single ions are
known and can be addressed with a resolution better than at least a few kHz. Shorter
pulses can potentially be used, as described in detail in other works [15]. As discussed
in Sec. 1.2, the case of ensemble qubits could still be useful in stoichiometric crys-
tals [17] and ensemble-based operations in atomic frequency comb (AFC) quantum
memories [31–33].
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Chapter 7

Conclusions

• Paper I: A new method to measure and model flip-flop rates was presented.
An average flip-flop rate cannot be used to describe the relaxation dynamics
of all the ions in a crystal. There is a distribution of flip-flop rates originating
from the fact that every ion in the crystal has a unique environment and is
located at different distances and orientations from its neighbor. A potential
explanation for the effect of an external magnetic field on the flip-flop rates was
given by using a different form of density of states compared to earlier works. A
general tool to model interactions at the microscopic level has been developed
for future use in the Quantum Information group here in Lund. One can
model interactions in other rare-earth-ions using the recipe presented in this
paper.

• Paper II: The experiments in Paper II are an implementation of a protocol that
combines inverse engineering based on Lewis-Reisenfeld invariants and opti-
mization of transfer pulse parameters. Compared with an earlier work [21], the
error in fidelity is reduced from ∼7% to 2%. However, the pulses in Ref. [21]
were designed for arbitrary gate operations. The shortcut pulses used here can-
not be used for this purpose since shortcut pulses require the knowledge of the
initial and final states before performing a transfer. They can be used, for ex-
ample, in the state initialization of ancilla qubits in a quantum error correction
protocol.

Additionally, the errors in the tomography pulses were identified. These are
essentially two-color sechyp pulses, the same kind used in Ref. [21]. Averaging
the fidelities of superposition states is not ideal, and this is not how one envi-
sions compensating for errors in a quantum computer. A way to deal with this
error more robustly and systematically needs to be developed.
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• Paper III: Several trade-offs were identified to design an experiment to achieve
high-fidelity operations in ensemble qubits. The experiments need some im-
provements to measure the true fidelity of the sechscan pulses. There should be
no delay between the transfer pulses and the reading out of the states. Ideally,
a full QST needs to be performed to measure fidelity. The Rabi frequency on
each transition needs to be optimized by reading out the population in each
state immediately after the transfer pulse without any delay. It would also help
if ways to minimize losses in laser power were implemented.

While the two-color scheme [21] is not exclusively designed to be robust against
spin inhomogeneity, it inherently reduces some error due to spin inhomogene-
ity, as identified in Ref. [132]. Still, the errors are not entirely minimized, and
spin inhomogeneity was identified as the bottleneck to achieving high fidelity
in operations on ensemble qubits. A new method that is simultaneously robust
against spin inhomogeneity and all other inhomogeneities needs to be devel-
oped. The technique in Paper II could potentially be used, but this would
restrict the case to operations between known states. It is possible that the spin
inhomogeneity can be as low as 7 kHz if the concentration is 0.01% [131], but
that would lead to a lower absorption signal and poorer SNR.

7.1 Personal perspective

When I started my thesis, I knew I would be working on projects related to Quantum
Information in rare-earth-ions, but the project details were not very well defined, and I
was lucky to have the freedom to explore. There were several times during my Ph.D.
when I felt like the work I was involved in was very exciting - when I saw liquid
helium boil, when I got my first frostbite from liquid nitrogen, when I tuned the
laser to change color from green to yellow to red, when I first detected a photon echo,
when I burnt an 11 kHz narrow hole in Eu:YSO, when the hyperfine relaxation project
finally came together... Some of these thrilling times would get normalized over time,
especially when I was battling equipment, fixing things, and playing detective to find
out what was going wrong during the experiments. But, the excitement would revive
when I discussed and shared knowledge and learned new things. I learned more when
teaching the Quantum control/Quantum Information lab than when I sat in my office
reading about it. For all of these times, I am grateful. But, some things were not
fruitful, and several took longer than planned. Below, I share some thoughts on the
progress and timeline of each paper.

The measurements on hyperfine relaxation (Paper I) started in November 2017 as one
of those things one can quickly do but developed in ways I had not planned. We were
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expecting a double-exponential decay and were baffled that the decay curves did not
follow this expectation. We tried hard for some time and thought there was some-
thing wrong with the measurements. After ruling out such possibilities, we concluded
that it could be related to the fact that the relaxation cannot be described by one or
two rates for all the ions in the crystal since it depends on the position/orientation
of each ion with respect to its neighbors. There were two routes to take; one was to
model this effect exactly using dipole-dipole interactions. And the other was to use
a distribution of neighbor-neighbor distances with some fitting parameters to match
the experimental data. We tried the first route for a long time. This required un-
derstanding spin hamiltonians and dipole-dipole interactions. These concepts were
partly new to the group, and I am glad the project developed in this direction since
it was what I enjoyed the most. But this approach did not entirely work. In the end,
we combined the two approaches. It wasn’t until we discussed the nuances of Fermi’s
Golden Rule with a theoretical physicist, Prof. Peter Samuelsson, that things started
to fall into place. There were quite a few stumbles along the way, but we used a form
of density of states that had not been used previously. We gained several insights
about nonexponential decay, and I was happy with the results. I started working on
this project a few months before the start of my Ph.D., and it wasn’t until the last year
of my Ph.D. that we submitted the manuscript.

The project on shortcut pulses (Paper II) was a collaboration with Dr.Ying Yan, who
did her Ph.D. in our lab several years ago and has now moved to China. A first attempt
at the experiments had been made during the summer of 2017 and the knowledge
gained was used in the next try in the summer of 2018, which was when I joined the
experiments. There were several unexpected hurdles that delayed the progress. We
had weird frequency components on the pulses, and the cryostat decided to give up
on us, so it had to be heated up and cooled again (twice). The laser is always a bit upset
in the summers because we sometimes do not get cold enough water to the labs, and
the stabilization does not work super well. The dye had to be changed in the middle
of the experimental run, and Yan had to return to China before the experiments were
finished. For several months after the experiments, we scratched our heads about the
tomography data and found state-dependent errors for the two-color pulses. Long-
distance communication and collaboration were also challenging, but chatting with
Yan was always a delight. It wasn’t until the winter of 2020 that this manuscript was
submitted.

The high-fidelity project (Paper III) left me with high-disappointments. It had always
been said that Eu was the star ion with its long coherence times, but there was also a
flip side. The crystal we had ordered was stuck in China when Covid hit. We started
to do experiments with another sample from Paris. To begin with, none of the pulses I
had optimized worked. The Rabi frequency was lower than expected, and a new pulse
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had to be designed. The crystal from China finally arrived, but it had lower absorption
than expected, so we continued to use the backup crystal from Paris. Running the
experiments alone in the lab was also quite challenging and demanding. There are
always continuous discussions with other group members, but having a partner while
doing the experiments can make a big difference, especially when there is limited
lab time. We were fooled by the experimental results and lulled into thinking we
had excellent results. Some discussions later, we realized we should have done the
experiments without any delays between the transfers. It was a pity that the gate
operations did not work well but we identified the cause to be spin inhomogeneity.
Maybe the next student who comes in can find new solutions.
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