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Populärvetenskaplig
sammanfattning

Förmaksflimmer är den vanligaste arytmin inom den vuxna befolkningen och an-
tas drabba mellan 1 av 3 och 1 av 4 under deras livstid [5]. Under förmaksflimmer
slår hjärtat både oregelbundet och ovanligt fort, vilket leder till försämrat blodflöde
i kroppen. Även om de allra flesta klarar av att ha förmaksflimmer utan allvarliga di-
rekta följder så ökar risken för både blodproppar och stroke.

Patienter med permanent förmaksflimmer ges oftast läkemedel som minskar pulsen,
vanligtvis betablockerare eller kalciumflödeshämmare. Man behöver ofta pröva olika
läkemedel innan man hittar ett som fungerar bra. Detta prövande tar både tid och
riskerar att landa i ett läkemedel som fungerar tillräckligt bra, men ej optimalt.

Under förmaksflimmer regleras pulsen till stor del av atrioventrikulärknutan (AV-
knutan). Detta leder till att de elektrofysiologiska egenskaperna hos denna knuta till
stor del avgör läkemedelsutfallet. Att kunna uppskatta dessa elektrofysiologiska egen-
skaper, och se hur de påverkas av olika läkemedel, är därför av stort intresse.

I denna avhandling har en matematisk modell av AV-knutan skapats, tillsammans med
ett ramverk för robust och effektiv skattning av modellparametrar baserat på enbart
EKG-mätningar. Vi har dessutom visat att olika läkemedelstyper på en populations-
nivå påverkar de elektrofysiologiska egenskaperna i AV-knutan på olika sätt. Detta,
tillsammans med att vi kan skatta de elektrofysiologiska egenskaperna hos AV-knutan
för enskilda individer, utgör ett viktigt steg mot att kunna förutse läkemedelseffekter
och på så sätt stötta och hjälpa till med val av läkemedel under förmaksflimmer.

v



vi Populärvetenskaplig Sammanfattning



Abstract

The lifetime risk of developing atrial fibrillation (AF) is estimated to be between 1
in 3 to 1 in 4 individuals, making it the most common arrhythmia in the world [5].
For persistent AF, rate control drugs with the purpose to affect the conduction prop-
erties of the atrioventricular (AV) node are the most common treatment. The drug
of choice varies between β-blockers and calcium channel blockers, often chosen em-
pirically. This can lead to long periods of time before sufficient treatment is found.
However, due to the physiological differences between the drug types, it could be
possible to predict the effect of the drugs and thus assist in treatment selection. The
main focus of this thesis is therefore to assess drug-dependent differences in the AV
node, using non-invasive measurements.

This thesis comprises an introduction to the subject as well as two papers. The first
paper proposes a framework for assessing the conduction properties of the AV node
non-invasively using a mathematical model of the AV node in combination with a
genetic algorithm.

The second paper is a continuation of the work in paper I, where the proposed work-
flow was adapted to assess the drug-dependent effect on the AV node of four different
rate control drugs during a period of 24 hours.

The methods presented in this thesis have made it possible to assess both the refractory
period and the conduction delay in the AV node in a robust way using ECG, and
by doing so found population-related differences in AV node conduction properties
between drug types.
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Introduction
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Chapter 1

Background and Aim

This chapter gives a short introduction to the background and aims of this thesis.
Firstly, atrial fibrillation (AF) is introduced followed by a description of the idea and
application of mathematical modeling, in Section 1.1, followed by the motivation
and aim for the thesis, in Section 1.2, before the outline of the thesis is presented, in
Section 1.3.

1.1 Background

Atrial fibrillation is the most common arrhythmia in the world, characterized by rapid
and irregular contraction of the atria, originating from a highly disorganized electrical
activity [5]. The prevalence of AF in the European Union per age group is shown in
Figure 1.1, where a clear correlation with age can be seen. Atrial fibrillation is also as-
sociated with an increased risk of mortality, mainly due to heart failure or stroke [6, 7].

During AF, the ventricles are partly protected from the highly disorganized electrical
activity of the atria by the atrioventricular (AV) node, which acts as a gatekeeper be-
tween the atria and the ventricles. The AV node is capable of blocking and delaying
incoming impulses, preventing the ventricles from having as rapid and irregular con-
traction as the atria. However, the blocking and delaying of impulses performed by
the AV node are in many cases not sufficient to maintain a healthy heart rate.

Fortunately, the conduction properties of the AV node can be modified using rate
control drugs. There are mainly two different types of rate control drugs used for AF
treatment, β-blockers and calcium channel blockers, with different physiological ef-
fects [5]. On a population level, both drug types have been shown to reduce the heart
rate [8]. However, on an individual level, they can have vastly different impacts on
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4 Background and Aim

the ventricular activation rate, and the ultimate choice of drug type for a given patient
is often made empirically [5]. One of the main physiological differences between the
two drug types is their effect on the autonomic nervous system (ANS), which is also
known to affect the maintenance and initiation of AF. Thus, patient-specific infor-
mation about the ANS could potentially aid in therapeutic choices. In this thesis,
we focus on quantifying circadian variation in AV-nodal conduction properties as a
marker for ANS modulation. However, directly measuring the conduction properties
in the AV node during AF non-invasively is not possible, thus, another approach is
needed.

Mathematical models have long been used as a tool to describe the world, analyze the
interaction between components of complex systems, and make predictions. From
Newton’s law to Maxwell’s equations, models are used in every field of science and
engineering, and with the ever-increasing computing power at hand, mathematical
models are now more used than ever. A model aims to represent a real-world system
in an objective, simplified, and useful way. Due to the nature of a model, all models
are wrong. However, they can still be useful. A common usage of models is to fit
them to data in order to draw conclusions about reality, which indeed is what we will
be using the models for in this thesis.

By using a mathematical model of the AV node, it is possible to assess temporal pat-
terns in the conduction properties from electrocardiogram (ECG) recordings, thereby
making it possible to assess circadian variation and indirectly the impact of the ANS.
To make a model useful in a clinical setting, it should preferably only use non-invasive
data for the fitting to reduce the risk of complications.

Figure 1.1: Prevalence of AF in the Italian population, assumed representative for the Euro-
pean Union, stratified by age and gender [9].
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1.2 Motivation and Aims

The hypothesis is thus that circadian variation in the AV node properties can provide
information useful for assisting in treatment selection. Therefore, the overall goal is to
quantify the circadian variations in the AV node properties during baseline and under
the influence of different rate control drugs in a robust and non-invasive way. This is
addressed in this research by the following three aims:

Aim 1: To create a mathematical model of the AV node during AF capable of detailed
physiological insights on an individual level.

Aim 2: To estimate model parameters in a robust and computationally efficient way
using non-invasive data.

Aim 3: To apply the model and estimation method to patient data at baseline and
under the influence of different types of drugs to analyze drug-dependent differences
in the circadian variation in the AV node properties.

1.3 Thesis Outline

This thesis comprises two parts, the introduction (part I) and the two included papers
(part II). Part I contains seven chapters. In Chapter 1, Background and Aim, the
background to AF and mathematical modeling together with the aims of this thesis
are found. Chapter 2, The Human Cardiovascular System, introduces the anatomy
of the heart, with focus on the conduction system, which needs to be understood
before modeling the heart during AF. In Chapter 3, Atrial Fibrillation, the origination,
treatment options, and ECG during AF are described, to give a deeper understanding
of the heart condition. Chapter 4, Cardiac Modeling, switches the focus from medical
to engineering. The chapter contains an introduction to cardiac modeling as well as an
overview of previous models of the AV node including the model presented in paper
I. Further, in Chapter 5, Model Fitting and Parameter Estimation, optimization is
introduced together with several optimization algorithms, which are needed in order
to find model parameters resulting in model outputs resembling data. As the name
suggests, Chapter 6, Summary of Papers, includes a summary of the two included
papers found in part II. Finally, in Chapter 7, Outlook and Conclusion, the potential
future research areas relating to this work are presented, as well as a conclusion for the
thesis.
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Chapter 2

The Human Cardiovascular
System

Before it is possible to understand the function of the heart during AF, it is necessary
to understand it during normal sinus rhythm. In this section, the anatomy of the
heart will firstly be presented, in Section 2.1; from the overall mechanics down to the
cellular events that make a heart beat. Secondly, the conduction system of the heart
will be introduced in Section 2.2, including the sinoatrial (SA) node and the AV node.

2.1 Cardiac Anatomy and Mechanical Function

The main function of the heart is to pump blood around in the body, oxygenating the
cells. As shown in Figure 2.1, the heart consists of four chambers; two atria and two
ventricles. Deoxygenated blood returns from the body to the heart via the superior
and inferior vena cava to the right atrium, which then contracts and pumps it into the
right ventricle. The right ventricle then pumps the blood to the lungs via the left and
right pulmonary arteries, where it releases carbon dioxide and receives oxygen. This
blood returns to the heart into the left atrium via the left and right pulmonary veins.
The left atrium then pumps the blood into the left ventricle, which in turn pumps
it back into the body via the aorta. In order for the chambers to pump the blood,
they need to be able to contract, thus the chambers consist mostly of cardiac muscle
tissue – the myocardium. The thickness of the myocardium section of the heart walls
differs between chambers to match the different functions. The atria have thinner
walls compared to the ventricles since the workload is less, and the left ventricle –
which pumps blood throughout the whole body – has thicker walls than the right
ventricle.

7



8 The Human Cardiovascular System

Figure 2.1: A schematic figure of the human heart with the conduction system highlighted
in yellow. The figure was created by Felix Plappert with inspiration from [10].

2.1.1 Cardiomyocytes

The myocardium is made up of cardiac muscle cells, the cardiomyocytes. Each car-
diomyocytes contains long contractile fibers, the myofibrils, which in turn contain
both thick filaments (myosin) and thin filaments (actin) that are responsible for the
contraction of the cells [11]. The contraction occurs when the heads of the myosin
bind to the actin and forms a cross-bridge between the filaments. Each myosin head
contains adenosine triphosphate – an organic compound that provides energy in living
cells – which it splits to receive energy, pulling the thick and thin filaments towards
each other shortening the myofibril. After that, the myosin head binds to another
adenosine triphosphate, detaches from the actin, and starts this process over again.
All the myosin heads in one myofibril work together to contract that specific myofib-
ril, and all myofibrils in each cell work together to contract that specific cell. For a
contraction of a whole chamber to occur, all the myocytes in said chamber contract.
However, this does not happen spontaneously. The myosin heads in a relaxed muscle
cell are blocked from binding due to the protein tropomyosin covering the binding
sites. When these blocking tropomyosins bind to calcium ions (Ca2+), they change
shape and cease to block. The Ca2+ originates from the sarcoplasmic reticulum stor-
ing Ca2+ inside the cells, and from outside the cells transmitted through Ca2+-specific
ion channels as well as the T-tubules during an action potential – a rapid rise and fall
in membrane potential across the cell membrane [11].
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The generation of said action potential depends mainly on two components; the ex-
istence of specific types of ion channels and a resting potential. The specific types of
channels allow different ions to diffuse across the plasma membrane, where the direc-
tion of diffusion occurs from higher to lower concentration, creating an ionic current
that changes the membrane potential. The ion channels are guarded by a gate, con-
trolling when and if ions can pass through. There are two types of ion channels con-
tributing to the action potential, the leaky channels, which open and close seemingly
randomly, and the voltage-gated channels, which open in response to a change in the
membrane potential. The difference in voltage between the inside and the outside
of the plasma membrane in a cardiomyocyte is created by outflow of potassium ions
(K+) through numerous leaky K+ channels and inflow of sodium ions (Na+) through
other, fewer, leaky Na+ channels. This, combined with sodium-potassium pumps,
pumping Na+ out and K+ into the cell, creates a stable resting membrane potential.

However, when a stimulus (e.g. an influx of ions from an adjacent cell) causes the
membrane potential to change from the resting potential above a threshold level, an
action potential is initiated in the cell, as shown in phase 4 in Figure 2.2a. This
stimulus starts phase 0 and activates the voltage-gated Na+ channels, rapidly raising
the membrane potential by the influx of Na+ [12]. The Na+ gates are only open for a
short amount of time before closing, which together with the opening of K+ channels
starts the decrease in membrane potential, causing phase 1. Moreover, Ca2+ channels
are also activated during phase 0, although with a slower opening and closing, causing
the influx of Ca2+ to occur later than the Na+ and persist for longer. This inflow of
Ca2+ together with the outflow of K+ causes the plateau shown in phase 2. Phase 3
starts with the closing of the Ca2+ channels, resulting in re-polarization of the cell by
the K+ channels. This results in a resting potential and phase 4. Each cardiac muscle
cell is connected to adjacent muscle cells by intercalated discs. These discs contain gap
junctions, allowing a rapid flow of ions between cells, thereby propagating potential
changes and initiating new action potentials [12].
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(a) Cardiomyocyte (b) Pacemaker cell

Figure 2.2: Action potential in a cardiomyocyte (a) and in a pacemaker cell (b). Note that
there is no distinct phase in the pacemaker cell resembling phase 1 or 2 in the cardiomyocyte.

2.2 Conduction System of the Heart

The action potential starting the contraction of the myocardium begins in the SA
node, located in the right atrial wall, and propagates throughout the whole conduc-
tion system. The SA node creates a new action potential periodically, with a rate
determent by the blood demand of the body. The blood demand, and in turn the
rate of the SA node, is regulated by the ANS. The action potential from the SA node
is conducted by gap junction in the intercalated discs throughout both atria, resulting
in simultaneous contraction.

Before the action potential reaches the ventricles, it is conducted through the lone
conduction point between the chambers, the AV node. The action potential propa-
gates from the SA node to the AV node via the three internodal pathways, as shown
in Figure 2.1, which have a higher conduction velocity compared to the other my-
ocardium in the atria [13]. The AV node acts as a gatekeeper, delaying or blocking
incoming electrical impulses based on the impulse rate. The evolutionary reason for
this delay is to regulate the timing between atrial and ventricular contractions for ef-
ficient pumping of blood. When the AV node conducts an impulse, it arrives at the
bundle of His, which splits into the right and left bundle branches. The impulse then
conducts through these branches to the Purkinje fibers, activating the contraction of
the ventricles. The Purkinje fibers consist of specialized cardiomyocytes which give
rise to a higher conduction velocity than other cardiomyocytes and the internodal
pathways [14]. This structured conduction route is altered during cardiac arrhyth-
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mias, such as AF. During AF, the normal function of the SA node is blocked by the
rapid electrical activations of the surrounding tissue, leaving it unable to initiate a new
action potential. Instead, the AV node plays a more significant role.

2.2.1 Sinoatrial node

As previously mentioned, cardiac electrical activation is normally initiated by the SA
node. In healthy hearts, the SA node keeps a steady pace of electrical activation. To
achieve this, the SA node consists of a specialized group of cardiomyocytes known as
pacemaker cells, which continuously produce action potentials and in turn sets the
rhythm of the heart. In contrast to the other cardiomyocytes, the pacemaker cells do
not have a resting potential but instead begin to depolarize automatically immedi-
ately after re-polarization. In order for the SA node to keep a steady pace of electrical
activation, specific anatomy and a unique set of ion channels are necessary. In the
non-SA node myocardium, a steady outward current of K+ ions by leaky K+ channels
is present, creating a stable resting potential. This stable potential is absent in the
SA node, which, together with four inward ion currents, makes pacemaking possible.
The action potential in pacemaker cells is shown in Figure 2.2b, and can be divided
into three phases; a pacemaker potential phase (4), a depolarization phase (0), and
a repolarization phase (3). The numbering of these phases is in relation to the five
phases for the action potential in non-pacemaker cardiomyocytes, as shown in 2.2a.
The most significant difference between the action potential in the cardiomyocyte and
in the pacemaker cells exists in phase 4, the resting potential phase. Phase 4 in the
pacemaker cardiomyocytes occurs directly after repolarisation, where the majority of
K-channels close, reducing the K+ ion current outward from the cell [15]. The highly
negative membrane potential of the cell also activates the hyperpolarization-activated
cyclic nucleotide-gated channels, increasing the pacemaker potential by an inward K+

and Na+ current. Further increase of the pacemaker potential is created by the release
of stored calcium inside the sarcoplasmic reticulum. This extra calcium is then ex-
changed by a trade of one Ca2+ to three Na+, creating an inwards current. The last
part of phase 4 is the opening of the so-called T-type Ca2+ channels, a fast-opening
type of Ca2+ channel, as well as the slow-opening of the so-called L-type Ca2+ chan-
nels, transporting Ca2+ back into the cell. Both of these are voltage-gated channels,
activated when the membrane potential reaches a certain threshold. During phase 0,
the membrane potential rises rapidly due to the now fully opened L-type channels,
and both the T-type channel and the hyperpolarization-activated cyclic nucleotide-
gated channels close. In phase 3, the L-type channels close and the K+ channels open.
This re-polarizes the membrane potential, creates the electrical impulse that will later
activate the heart, and sets up the situation in which phase 4 starts from [15].
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2.2.2 Atrioventricular node

The function of the AV node is twofold. The most important part for a healthy heart
is its ability to delay incoming electrical impulses, which is important in order to op-
timize the pumping of the heart. This delay of the electrical impulses is partly caused
by a lower number of gap junctions connecting the cells in the AV node and by the
relatively small diameter of the AV node cells [16]. The diameter for AV nodal cells
is 7 µm, compared to 50 µm for the Purkinje fibers [16]. Additionally, the action
potential of the AV node has a slow upstroke, caused by an absence of a large Na+

channel density, instead leaving the slower Ca2+ channels as the main driver of the
upstroke phase [17]. The other function of the AV node is to filter out high frequen-
cies among the atrial impulses, which it achieves by blocking impulses. This blocking
occurs when the cells in the AV node are in their refractory state.

Complex blocking and delaying patterns are possible in the AV node due to its dual
pathway electrophysiology. The AV node has been found to functionally have two
different pathways, one fast pathway (FP) and one slow pathway (SP) [18, 19]. The
refractory period of the FP is longer, but it conducts impulses faster compared to the
SP. The structure of the cardiomyocytes within the pathways differ, where the FP has
longer cells with a larger diameter and the SP shorter cells with a smaller diameter
[17]. The dual pathways are thought to be the main components of the complex
behavior of the AV node. It has been shown that during a standard S1-S2 protocol
– when electrodes are used to deliver impulses in a pulse train at a constant interval
(S1) between pulses, followed by a single premature pulse after a shorter interval (S2)
– the conduction occurred consistently through the FP for S2 rates slower than 600
ms [19]. Furthermore, for faster S2 rates, the AV node used both the FP and the
SP [19]. However, the precise anatomical and molecular substrate of these pathways
are not yet fully understood [20]. Moreover, the AV node junction plays an impor-
tant role in the AV node conduction properties [21]. Based on electrophysiological
recordings of the rabbit AV node junction, different types of AV node cells have been
classified; the atrial-nodal cells, the nodal cells, and the nodal-His cells [22, 23].

Another important factor of the AV node is its ability to be affected by concealed
conduction, a partial activation of the AV node that does not result in ventricular
activation. Even without a direct outcome, the concealed conduction can still impact
the conduction characteristics of the AV node for subsequent impulses [24]. More-
over, the AV node can also function as a pacemaker if the SA node is non-functioning,
with an intrinsic activation rate of 20-60 times per minute [17].



Chapter 3

Atrial Fibrillation

In order to create a mathematical model of the AV node during AF, it is first necessary
to understand the cardiac arrhythmia itself. This chapter will therefore start (Section
3.1) by discussing the origination and classification of AF, followed by information
about the different methods for AF treatments (Section 3.2), before a brief explanation
of the ECG during AF is covered (Section 3.3).

3.1 Origination of Atrial Fibrillation

As stated before, AF is categorized by rapid and irregular electrical activity in the atrial
chambers, affecting the beating of both atria and ventricles. Atrial fibrillation origi-
nates when the electrical signal activating the atrium does not terminate properly, but
instead whirls in chaotic patterns that extinguish the normal activation from the SA
node. For AF to be present, there needs to be a trigger in the atrial myocardium. This
trigger has been proposed to arise from several different phenomena, further strength-
ening the argument for individual treatment. One such trigger is the Ca2+ handling
instability, where increased spontaneous release events of sarcoplasmic reticulum Ca2+

trigger the fibrillation [25]. Other studies of the triggers found that over 90% of the
triggers originated from the pulmonary veins, the majority in the left superior vein
[26, 27].

However, a trigger by itself is not enough for AF to occur. There are also factors
related to the maintenance of AF necessary for a trigger to result in AF [28]. To
this day, there is still an ongoing debate about the mechanisms responsible for the
perpetuation of AF [29, 30], mainly between multi-wavelet reentry and focal drivers
[31]. In addition, the structure and electrical re-modeling of the atria are the main
factors for the perpetuation of AF, where the electrophysiology of the cardiomyocytes

13
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changes due to activation of fibroblasts, deposition of enhanced connective tissue,
and fibrosis [5]. The main electrical change is the slowing of conduction velocity in
the cardiomyocytes located in the atria, originating from changes to the L-type Ca2+

channels [32]. This can be caused by structural heart disease and hypertension, but
also by AF itself. Thus, AF begets AF [33]. All this results in different patients with
similar AF symptoms having different underlying physiological reasons, creating a
need for individualized treatment.

Atrial fibrillation can be classified into five different types; first diagnosed AF, if it
has not been diagnosed before; paroxysmal AF, if it terminates within seven days;
persistent AF, if it lasts longer than seven days or requires intervention for restoration
of sinus rhythm (cardioversion); long-standing persistent AF, if it continues for over
a year; and permanent AF, when it is accepted by both patient and physician [5]. For
permanent AF, the long-term variation – mainly regulated by the ANS – is of interest,
since the two recommended first-line rate control drug types, β-blockers and calcium
channel blockers, have different physiological effects in this regard.

3.2 Treatments

There are three main treatment goals for patients with AF. The first is ischemic stroke
prevention by anticoagulation therapy, which reduces the risk of stroke but does not
affect AF directly [5, 28]. The second treatment is heart rate control aimed at achiev-
ing normal heart rate during ongoing AF, to improve quality of life and reduce the
risk of other heart-related problems such as a decrease in ventricular contractile func-
tion. Rate control does not aim to terminate AF, but strives toward reducing the
heart rate [28]. The third one is rhythm control, used to prevent AF or restore nor-
mal rhythm during AF. Rhythm control is mostly used for patients where rate control
has been ineffective, or for patients who remain symptomatic despite adequate rate
control [28].

3.2.1 Rhythm control

Rhythm control includes both the restoration and maintenance of normal sinus rhythm.
Acute restoration of sinus rhythm can be achieved either by electrical cardioversion
using electrodes applied on the chest or with pharmacological cardioversion using
antiarrhythmic drugs. For pharmacological cardioversion of recent onset AF, ver-
nakalant, flecainide, and propafenone are recommended [5, 34, 35, 36]. Long-term
maintenance of sinus rhythm can be archived either by antiarrhythmic drugs or via
catheter ablation, where the latter is accomplished by isolation of the pulmonary veins
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and in some cases additional ablation lines in the atria. Furthermore, catheter ablation
has shown to be more effective than antiarrhythmic drugs if performed by experienced
teams [37].

3.2.2 Rate control

Rate control is an integral part of AF treatment and management, and is recom-
mended in most patients suffering from AF [5]. Even if, in some patients, the high
ventricular rate has no direct impact on the patient, there is still a risk of heart com-
plications such as reduction of cardiac pumping capacity if left untreated [28]. There
are several pharmacological treatments used for rate control, such as β-blockers, non-
dihydropyridine calcium channel blockers, and digitalis. However, only β-blockers
and calcium channel blockers are recommended as first-line treatments [5]. β-blockers
used for AF treatment, typically metoprolol or carvedilol, block the β1 receptors in the
heart and as a result reduce the effect of the sympathetic nervous system, thus reducing
the heart rate. A stimulus of β1 receptors increases the inward Ca2+ current through
the L-type channels, hence blocking these receptors results in a prolongation of the
action potential, as described in Section 2.1.1 [38]. The non-dihydropyridine calcium
channel blockers, typically verapamil or diltiazem, reduce the heart rate by preventing
the L-type calcium channels from opening, which reduces the conduction velocity in
the SA and AV node cells. Moreover, combination therapy of β-blockers, calcium
channel blockers, and digoxin are also used [39]. However, little robust evidence ex-
ists to inform the most efficient type and intensity of the rate control treatment [40].
Furthermore, ablation of the AV node and the implantation of a pacemaker is also an
option, however usually only used as a last resort when drugs are ineffective [5].

3.3 Electrocardiography During Atrial Fibrillation

The diagnosis of AF is based on the ECG, thus it is understandable that the ECG
of a person with AF has distinguishable features compared to an ECG of a person
without. In a healthy heart, as described in Section 2.2, the SA node starts an action
potential that propagates throughout the atria, leading to the atria contraction. This
atrial depolarization is visible in the ECG as the P-wave. After the action potential
has been conducted through the AV node, it propagates throughout the ventricles,
leading to ventricle contraction. This depolarization is visible in the ECG as the QRS
complex. The series of intervals between successive R waves in the ECG is denoted as
the RR interval series. During the QRS complex, the repolarization of the atria also
takes place, but is insignificantly noticeable on the curve. Lastly, the repolarization
of the ventricles is visible in the ECG as the T wave.
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There are three main features visible from the ECG that are used for detection and
diagnosis of AF; RR interval irregularity, P-wave absence, and presence of atrial fibril-
latory waves (f-waves), all visible in Figure 3.1 [28]. The rapid and irregular activity in
the atria during AF results in rapid and irregular stimulus to the AV node, and in turn
irregular RR intervals, as is shown in Figure 3.2a. In fact, several AF-detection algo-
rithms are based solely on the irregularity of the RR intervals [41, 42], since it is more
easily and robustly extracted from the ECG. Furthermore, the time series of intervals
between consecutive heartbeats can also be extracted from the photoplethysmogram,
often measured from a light source together with a photodetector by smartwatches.
Since the time series of intervals between consecutive heartbeats is the same as the
RR interval series, several AF-detection algorithms have in recent years been based on
the photoplethysmogram [43, 44]. During sinus rhythm, the P-wave represents the
depolarization in the atria. However, since the electrical activity in the atria during
AF is rapid and irregular, there is no clear P-wave, but instead constant f-waves. Even
though the presence of f-waves is in itself vital information for detecting AF, more
detailed parameters of the f-wave can be used for a more detailed characterization of
the atrial electrical activity. The dominant atrial frequency can be estimated from
the f-wave via the dominant peak in the frequency spectrum, and the amplitude of
the f-waves has been used in clinical studies [45]. A hidden Markov model has been
used to track the dominant frequency of the f-waves from the ECG in a robust way
[46]; which is used in paper I and paper II in this thesis. However, QRS removal is
necessary before this is possible, since the f-waves have a far smaller amplitude than
the QRS complex. This can be achieved with several different methods, such as aver-
age beat subtraction, adaptive filtering, or blind source separation [47, 48, 49]. The
f-waves have also been extracted using a voting scheme on four different template
subtraction algorithms [50].



17

Figure 3.1: Difference between the ECG during AF (top) and normal sinus rhythm (bottom),
where the three main differences; RR interval irregularity, P-wave absence, and presence of
f-waves, are shown (reprinted from [28] with permission).

3.3.1 Representations of the RR interval series during atrial

fibrillation

Since the RR interval series is a useful representation of the activity of the heart, es-
pecially during AF, it is useful to represent it explicitly. The RR interval series can
be represented and visualized by a histogram. From Figure 3.2b, it is clear that the
histogram of the RR interval series differs substantially between normal sinus rhythm
and during AF; where the histogram during sinus rhythm has a more narrow RR
interval histogram whereas the histogram during AF is much more scattered. In addi-
tion, using the number of data points in each bin, it is possible to compare data from
different models or patients, which has previously been done to estimate AV node
model parameters [51]. Another method of visualizing the RR interval series is by
using the Poincaré plot, i.e., a scatter plot of successive pairs of the RR interval series.
The Poincaré plot can be used to analyze nonlinear aspects of the heart rate, since it
captures more dynamics in the series compared with the histograms [28]. For normal
sinus rhythm, the Poincaré plot has one compact area where all points land, in con-
trast to the Poincaré plot during AF which is more spread out, as seen in Figure 3.2c.
A fitness function (see Section 5.1.3) based on the Poincaré plot was used to estimate
model parameters in paper I and paper II of this thesis. Other methods, such as au-
tocorrelation, Shannon entropy, and root mean square of the successive differences,
have also been used to characterize the RR interval series during AF [1, 52, 53].
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(a) RR interval series

(b) Histogram of the RR interval series (c) Poincaré plot of the RR interval series

Figure 3.2: A comparison of the RR interval series (a), the histogram of the RR interval series
(b), and the Poincaré plot of the RR interval series (c) during AF (green) and during normal
sinus rhythm (blue). Data from the MIT-BIH Atrial Fibrillation Database [54].



Chapter 4

Cardiac Modeling

There have been multiple mathematical models of the human heart over the years,
ranging from models describing the whole heart to models of specialized components
such as the AV node. Some models are created in order to gain a deeper understand-
ing of the heart, whiles others are designed to find interpersonal differences between
patients for personalized treatment selection. Since the focus of this thesis is on elec-
trophysiology models of the heart, only those models will be further considered.

This chapter will start with an overview of the field of cardiac electrophysiology mod-
eling, in Section 4.1, before narrowing in on models of the AV node, in Section 4.2.
Different types of AV node models will be presented, before ending the chapter with a
detailed description of the specific model designed for assessing the conduction delay
and refractory period of the AV node during AF proposed in Paper I.

4.1 Cardiac Electrophysiology Models

The electrophysiology of the heart can and has been modeled in numerous ways, de-
pending on the purpose of the model. For the electrophysiology, the action potential
is of interest. As described in Section 2.1.1, the action potential in cardiac cells is
largely dependent on the Na+, K+, and Ca2+ channels, and thus several models of
these ion channels are combined to model the action potential. These ionic currents
are often modeled using Markov models, where the Hodgkin-Huxley current model
can be seen as a subclass [55]. The Hodgkin-Huxley models [56] are dynamic descrip-
tions of voltage-dependent ion channel gating in a membrane, and are often combined
to create action potential models. The complexity of the action potential models has
evolved over the years. Comparing the first model of the action potential in the heart
which uses three ion channel sub-models [57] to more recent models [58, 59], the
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number of ion channel sub-models has had a tenfold increase.

These larger models result in a large number of model parameters, increasing the dif-
ficulty of interpreting and understanding the relationship between model parameters
and model output. Thus, the purpose of the model is important, and model reduc-
tions as well as more simplistic models are of interest. Model reduction is based on
the idea that some model parameters are redundant – often found through sensitivity
analysis – and used to create ’reduced’ versions of complex models [60]. More sim-
plistic models, often designed for a minimal phenomenological representation, such
as a simplified geometry, have also been created for the same reasons [61, 62].

4.2 AV Node Models

Several models of the AV node have been created in recent years, with different levels
of complexity for different intents. A number of AV node models relevant to this
thesis are summarized here; starting with three designed mainly to widen the un-
derstanding of the AV node, before describing two designed mainly for individual
assessment of the AV node properties.

A unified model describing ventricular pacing, conduction delays, and refractoriness
for the AV node during AF has been proposed by Lian et al. presented in [63]. This
model is divided into four interconnected components. The first component is an
AF generator, which generates the incoming impulses to the AV node via a Poisson
process. A Poisson process is commonly used to create incoming impulses into the AV
node, and it is a stochastic process with one parameter, often named λ, representing
the mean arrival rate. The second component describes the AV junction, including
the AV node, as a lumped structure characterized by several electrical properties such
as the refractory period and conduction delay. The dynamics of the AV junction re-
covery and delay are described using an exponential recurrence relation. The third
component models the ventricles which can affect the AV junction through retro-
grade waves. The fourth and final component in the model is an electrode capable of
regulating pacing. All four components are connected to be capable of affecting each
other. The model has been used to investigate the impact of conduction properties
and AF rate on the ventricular rate as well as the electrotonic modulation in the AV
junction. It is capable of simulating RR series similar to observed RR series during
AF. However, due to the lumped structure of the AV junction, the model lacks spatial
resolution in the AV node and dual pathway physiology.
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The AV node model proposed by Climent et al. in [64] describes the conduction
delay of the AV node for the FP and the SP. The conduction delay for both pathways
is modeled as an exponential function, and the parameters describing the exponential
functions were determined using data from in vitro pacing on rabbit hearts. For val-
idating the model during AF, irregularly distributed AA intervals were used as input
to both model and the in vitro rabbit hearts. The model incorporates concealed con-
duction, i.e., a stimulation inside the AV node that does not activate the ventricles but
leads to a change in conduction characteristics, by calculating the conduction delay of
the two pathways. The pathway with lower conduction delay retrogradely invades the
other, causing a concealed conduction. The concealed conduction affects the com-
ing impulse by a modification of the parameter values of the exponential function of
the pathway with a higher conduction delay. This model improved the knowledge of
the complex and poorly understood characteristics of the conduction time and dual
pathways of the AV node during arrhythmias such as AF by, for example, simulating
ablation of both pathways.

A biophysically detailed action potential model of the SA node, right atrium, and
AV node, describing and analyzing the functions of the conduction system, has been
proposed by Inada et al. in [65]. The model describes the rabbit heart as a one-
dimensional multicellular network of cell models. The model characterizes the AV
node in terms of three different AV node cell models describing different regions of
the AV node; the region of atrio-nodal cells representing the start of the AV node,
the region of nodal cells representing the middle of the AV node, and the region of
nodal-His cells representing the end of the AV node. All the cells for each region are
based on action potential recordings of rabbit hearts and are made up of the different
ion currents inside a cell. Each of these cells uses a nonlinear dynamic system of 26
simultaneous ordinary differential equations to describe action potential dynamics.
The SP is modeled by 200 cell models and the FP by 150, creating the standard dual
pathway structure of the AV node. To simulate AF in the model, stimuli with ran-
dom intervals were introduced into the string of atrial cells before the AV node. The
model incorporates the typical physiological characteristics of the AV node tissue and
has been used to analyze the rich behavior of the AV node such as the effect of Ca2+

channel blocking and AV node pacemaking.

A statistical model of the AV node has been proposed by Corino et al. in [66] with
further development in [67, 68], and was specially designed for AF. The purpose of
this model is to assess the electrophysiology properties of the AV node based solely on
the ECG. It is a lumped model structure that still accounts for concealed conduction,
relative refractoriness, and dual pathways. Incoming impulses from the atria are gen-
erated to the AV node following a Poisson process and each impulse into the model
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either results in a ventricular activation or is blocked due to the AV node being in its
refractory phase. The length of the refractory period is made up of a deterministic and
a stochastic part. The deterministic part is split into two parts, representing the two
pathways of the AV node. Moreover, the stochastic part is assumed to be uniformly
distributed. The mean arrival rate used for simulating atrial activation to the AV node
is estimated from the atrial activity, which in turn is extracted from the ECG using
spatiotemporal QRST cancellation [69]. The remaining model parameters are esti-
mated by jointly maximizing the log-likelihood function. This model has been shown
to replicate 88% of RR interval series, where the comparison was made between the
probability density function of the model and an empirical probability density func-
tion. However, the interpretation of the model parameters can be problematic, since
several characteristic features of the AV node are grouped together.

4.3 Network Model of the AV Node

The event-based phenomenological model I proposed in [1] following the work in
[51] has separate parameters for the refractory period and the conduction delay, which
in turn makes it easy to interpret. Similar to the previous model, the purpose is to
assess the electrophysiology properties of the AV node based on ECG. The model
describes the AV node as a network of 21 nodes, divided into the FP, the SP, and a
coupling node, as shown in Figure 4.1. The nodes correspond to a localized section
of the AV node, where each pathway is modeled with ten nodes. Each of these nodes
either transmits an incoming impulse to all adjacent nodes, adding a conduction delay,
or blocks the impulse completely. This block of the impulse will occur if the impulse
arrives during a node’s refractory phase. The refractory period and conduction delay
for the pathway node i is updated for each incoming impulse n according to Equation
4.1, 4.2 and 4.3,

Ri(n) = Rmin +∆R(1− e−t̃i(n)/τR) (4.1)

Di(n) = Dmin +∆De−t̃i(n)/τD (4.2)

t̃i(n) = ti(n)− ti(n− 1)−Ri(n− 1), (4.3)

where ti(n) is the arrival time of impulse n at node i and t̃i(n) the diastolic
interval preceding impulse n. Negative time for t̃i(n) indicates that the node is in
its refractory state and, as a consequence, the node will block incoming impulses.
The refractory period and conduction delay in the pathways are thus defined by three
parameters each; the minimum value Rmin and Dmin; the maximum prolongation
∆R and ∆D; and the time constants τR and τD. Each parameter is assumed to be
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identical for the nodes in the SP and FP, respectively. Even though all nodes associ-
ated with the same pathway will have the same parameters, each node will still have
its own value for the refractory and delay time due to the ever-changing arrival time
of the impulses to each node. Moreover, the coupling node models the connection
between the end of the AV node to the bundle of His, the bundle of His itself, and
the Purkinje fibers. In contrast to the pathway nodes, the refractory period and con-
duction delay for the coupling node are set to constant values. The refractory period
is set to the mean of the ten shortest RR intervals, and the conduction delay is set
to 60 ms, based on clinical studies. The impulses to the model are created by a Pois-
son process with mean arrival rate λ estimated from the f-waves and are propagated
throughout the network in an event-based fashion. The system is solved fast using a
modified version of Dijkstra’s algorithm [70]. By using an event-based model, sev-
eral interesting properties besides the model parameters themself can be studied, such
as the amount of concealed conduction, the ratio of impulses propagating through
the different pathways, and the histogram and Poincaré plot of modeled RR interval
series.

Figure 4.1: A schematic representation of the network model, divided into the slow pathway
(red), fast pathway (green), and a coupling node (yellow). The input to the model is created
using a Poisson process, representing atrial activation, and the output represents ventricular
activation [1].
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Chapter 5

Model Fitting and Parameter
Estimation

With a mathematical model and data at hand, the next step is to estimate the model
parameters. Estimation is often accomplished using the probabilistic approach, which
assumes that the data can be described according to a probability distribution. Some
of the more common estimators for this include maximum likelihood estimation and
the maximum a posteriori estimator [71]. However, without a probabilistic interpre-
tation, there is a need for other techniques.

Optimization is a general term for finding the optimum of some function in a pa-
rameter space. Hence, with a function describing how close the model output is to
the data, parameter estimation can be achieved by optimization. Such a function
is henceforth called a target function and its inverse an error function. Optimizing
the parameters is synonymous with finding the maximum of the target function. A
function can have several maxima, both global and local. A local maximum – the
maximum value in a limited area – can be hard to distinguish from a global one.
Given access to the analytical form of the function, it is possible to find a maximum
by differentiating and solving for zero. However, in practice, this situation is rare,
and thus other forms of optimization are needed.

In this chapter, the general differences between optimization strategies will first be
presented in Section 5.1, together with a brief description of different optimization
algorithms relevant to this thesis. Emphasis is put on the genetic algorithm and dy-
namic optimization, since paper I and paper II make use of the genetic algorithm,
and paper II focuses on dynamic optimization. This chapter will then follow with
the idea of using a mixed-effect model to estimate parameter trends, in Section 5.2,
before concluding with a description of uncertainty estimation, in Section 5.3.
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5.1 Optimization Algorithms

Optimization algorithms are here divided into two categories; iterative algorithms
converging to a solution,1 or heuristics algorithms which do not necessarily converge.
The iterative methods can further be divided depending on if they are evaluating the
Hessian, the gradient, or only function values. If the Hessians or gradients can be
calculated, they are beneficial for improving the rate of convergence. If the Hessians
or gradients cannot be calculated, numerical approximations are needed. The main
drawback with this method is local maxima, since the gradient is zero regardless if
it is a local or global maximum. In these cases, heuristic optimizers are often used.
Although they are not guaranteed to converge to a maximum, heuristic optimizers
can be very useful, for example for functions with noisy error surfaces where gradient
or Hessian methods would struggle.

An additional component in optimization adding complexity is optimization in a dy-
namic environment, when the values of the target function, and thus the global op-
timum, vary over time. Hence, the problem is not only to find the global optimum,
but to track it over time. Such a problem is named a dynamic optimization prob-
lem and is of interest since trends in model parameters give important insights into
many real-world problems. The most common algorithms for dynamic optimization
problems are the population-based heuristic optimizers, such as evolution or swarm
intelligence based algorithms [72, 73]. For these algorithms, loss of diversity, i.e., how
different parameter sets in the population are compared to each other, is one of the
most critical challenges [74, 75]. There has therefore been a great number of methods
created to address this, mostly based on replacing individuals in the populations in
clever ways.

Given a target function, which often is problem-specific, there are several optimization
algorithms to choose from. There are more optimization algorithms created than can
be discussed here, or in any document, which is why only a number of approaches
relevant to work on AV node models are presented and discussed here.

5.1.1 Gradient descent

Possibly the most commonly used approach, gradient descent is an iterative method
where the gradient or approximate gradient is explicitly used to minimize the error
function [76]. Each iteration evaluates the gradient of the error function to determine
what direction the next step should be taken. The method is based on Equation 5.1

1Given a non-pathological function and a reasonable step size.
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xn+1 = xn − γ∇F (xn), (5.1)

where xn is the current parameter vector, xn+1 is the next one, ∇F (xn) is the gra-
dient at point xn, and γ is the step size. The simplicity and effectiveness of gradient
descent make it useful when the gradient is known. However, it is prone to get stuck
at local optima if such exists. Hence, the result might not be a global optimum and
is thus highly affected by the choice of starting position. It can also be very sensitive
to the choice of step size; where a too-small step size converges slowly and a too-
large step size might prohibit the algorithm from converging to a local optima due to
overshooting.

5.1.2 Particle swarm optimization

Particle swarm optimization is a heuristic optimization algorithm based on swarm
intelligence inspired by the movement and social interaction in schools of fish and
flocks of birds [77, 78]. Particle swarm optimization is made up of a swarm of par-
ticles, where each particle is the set of parameters that should be estimated. Particle
swarm optimization has in recent years been used in a vast variety of fields, for ex-
ample to optimize the optical efficiency of solar power towers [79] and to support
decision-making in marine oil spill responses [80]. Either the search space or groups
of particles in the algorithm can be divided into different subsets called topologies.
Each particle searches by itself, with guidance and knowledge of the best-found solu-
tion in its topology. Each particle updates its position according to Equation 5.2,

vn+1 = w1vn + w2r1(p− xn) + w3r2(g − xn), (5.2)

where vn is the previous step, p is the best position the particle has previously found
(evaluated on the target function), g is the best position found by any particle in the
current topology, r1 and r2 are random vectors, w1, w2, w3 are weighting factors,
vn+1 is the step taken, and xn is the current parameter set. Hence, the next position
for the parameter vector, xn+1, is calculated as

xn+1 = xn + vn+1. (5.3)

As with all heuristic optimizers, one drawback is that it is not guaranteed to find a
maximum. However, the broadness of the search makes it less likely to get stuck in
local optima compared to the gradient descent and the genetic algorithm. The nature
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of the algorithm makes it very suitable for use on dynamic optimization problems,
since the particles will move around the error surface when the surface is changing,
gradually improving on previously found solutions for slowly changing error surfaces.

5.1.3 Genetic algorithm

The genetic algorithm is a heuristic optimization algorithm based on biological evo-
lution inspired by Darwin’s concept of natural selection, with elements of mutation,
crossover, and selection [81, 82]. A genetic algorithm is made up of a population of
individuals, where each individual is the set of parameters that should be estimated,
here denoted xn,i with n denoting the generation and i the specific individual in the
population. The population of individuals is first generated randomly before every in-
dividual is evaluated by a target function, in this context called a fitness function. The
next generation of individuals is then created through a combination of selection,
crossover, and mutation. Selection imitates natural selection and is used to choose
two ’parents’ from the population. Selection is most often performed by tournament
selection or roulette wheel selection. In tournament selection, several individuals are
randomly chosen and the fittest individual based on the fitness scores is selected with
a certain probability. For selection by the roulette wheel, each individual has a proba-
bility of selection based on their fitness score, thus fitter individuals have a larger part
of the wheel. Moreover, crossover is a concept mimicking breeding in nature and
combines the genetic information from two parents to generate a new individual for
the next generation. Mutation, on the other hand, introduces a random alteration in
an individual.

An example of selection, crossover, and mutation is shown in Figure 5.1, where the
two individuals xn,i and xn,j are first selected with a probability based on their fit-
ness value. Two points between 1 and the number of parameters in the individuals
are then randomly generated, as shown as c1 and c2 in Figure 5.1a, and the parameter
values from the two parents are switched to create two offsprings, xn+1,i and xn+1,j .
Each parameter value for these two offsprings has a probability of being mutated, as
shown in Figure 5.1b. New individuals are created in this fashion until there are as
many individuals in generation n + 1 as in the previous generation. This process
of creating new generations is further continued until a termination criterion is met,
which can be that an individual with a fitness value above a predefined threshold is
found, that a fixed number of generations or time has passed, or that the best so-
lution does not change between generations. Genetic algorithms have been used to
find solutions to complex problems such as designing a specialized antenna [83] or
predicting the inflation rate [84], and can be very useful when no gradient or Hessian
can be calculated, or when noise renders them unusable. One main drawback of this
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method is the randomness it introduces, thus the results can vary from estimation to
estimation. Moreover, it is also a heuristic algorithm, thus it is not guaranteed to find
a maximum. The nature of the genetic algorithm makes it very suitable for use on
dynamic optimization problems, since the fitness of the individuals will change over
time, similar to how a change in climate causes real-world animals to evolve.

(a) Two point crossover

(b) Mutation

Figure 5.1: A schematic representation of crossover in a genetic algorithm between two par-
ents (left) to their children (right) can be seen in (a). Following, a mutation of these children
can be seen in (b). For this illustration, the value for the eight parameters (squares) is repre-
sented by colors.

5.2 Mixed-effect Modeling

Dynamic optimization often results in parameter estimation trends, a time series of
the model parameters. It can thus be useful to analyze the trends by fitting them
to a model describing the parameters over time. When different patients and drugs
are included, as often is the case studying biomedical data, the mixed-effects model
structure – containing both fixed effects and random effects – is of interest [85]. Using
a mixed-effect model, the fixed effect can describe the overall effect of a drug on a
population, whereas the random effects describe each patient’s individual response. A
linear mixed-effect model can be represented by Equation 5.4,

y = Xβ +Zu+ ϵ, (5.4)

where y is the known vector of observations, β the unknown vector of fixed effects,
u the unknown vector of random effects, ϵ the unknown vector of random errors,
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and X and Z are the known design matrices relating the observations to the fixed
and random effects, respectively. In paper II, a simple linear mixed-effect model was
used to estimate the circadian variation in the parameter trends based on a sinusoid
with three parameters; a mean, an amplitude, and a phase shift.

5.3 Uncertainty Estimation

An important aspect when estimating model parameters is their uncertainty. With-
out a proper measure of the uncertainty, it is not possible to determine the quality
of the estimates and thus their usability. Uncertainty in this sense includes both the
uncertainty in the estimator and in the resulting parameter’s effect on the model. A
straightforward approach to understanding the estimator uncertainty when using a
heuristics optimizer is to run the optimizer several times, and compare the spread of
the resulting parameters, which was done in paper I. The uncertainty estimation using
this approach will depend on the specific parameter values, and is thus not necessarily
equal for all possible parameter values. To understand the parameter’s effect on the
model, a sensitivity analysis is often used. The simplest and most common type of sen-
sitivity analysis is the one-at-a-time approach, where only one parameter is perturbed
at a time, keeping all others at a constant value [86]. The drawback of this tech-
nique is its inability to take information about covariance between parameters into
account. An alternative is to use variance-based sensitivity analysis, often referred to
as Sobol’s method, which is a global sensitivity analysis [87]. Using Sobol’s method, it
is possible to derive the so-called ’total-effect’ index measuring the contribution to the
output variance for each parameter including the variance caused by interactions with
all other parameters. For analytically tractable functions, the total-effect index can be
analytically evaluated. However, for non-analytically tractable functions or models, it
can be estimated using a Monte Carlo method [88]. A version of Sobol’s method was
used to estimate the parameter uncertainty in paper II, where the sensitivity analysis
was computed in a limited area around the optimum parameter set.



Chapter 6

Summary of Papers

The two papers included in this thesis are together addressing the three aims stated in
Section 1.2. The first aim – to create a mathematical model of the AV node during
AF capable of detailed physiological insights on an individual level – is addressed in
paper I. The second aim – to estimate model parameters in a robust and computa-
tionally efficient way using non-invasive data – is addressed in paper I and paper II.
In paper I, the parameters are estimated using 20 min long RR interval series. In
paper II, the parameter trends during 24 hours are instead estimated. The last aim –
to apply the model and estimation method to patient data at baseline and under the
influence of different types of drugs to analyze drug-dependent differences in the cir-
cadian variation in the AV node properties – is addressed in paper II, where differences
in conduction delay could be seen between different drug types.

6.1 Paper I: Non-invasive Characterization of Human
AV-Nodal ConductionDelay and Refractory Period
During Atrial Fibrillation

In the paper entitled ’Non-invasive Characterization of Human AV-Nodal Conduc-
tion Delay and Refractory Period During Atrial Fibrillation’ we propose the network
model described in Section 4.3. This model is based on the work in [51], here named
the reference model, where the coupling node in the network is changed from be-
longing to the slow pathway to its own type of node. The refractory period for the
coupling node is changed to no longer depend on the diastolic interval, and the con-
duction delay is fixed. Together with the proposed model, we also presented an associ-
ated workflow comprised of a problem-specific fitness function based on the Poincaré
plot, which utilizes the dynamics in the RR interval series, together with a problem-
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specific genetic algorithm.

In contrast to the reference model presented in [51], the proposed model in paper I
is able to replicate the dynamics in the RR interval series extracted from the ECG,
as visualized by the Poincaré plot and autocorrelation in Figure 6.1. Furthermore,
the problem-specific genetic algorithm enabled estimation of the conduction delay
and refractory period in the AV node non-invasively in a robust way, and was evalu-
ated using both ECG and simulated data. The results implied that drug-dependent
differences in the AV node conduction properties could be assessed using this model.

Figure 6.1: A comparison of the Poincaré plot (left) and autocorrelation (right) between the
proposed model and workflow in paper I (top), and the reference model and workflow in [51]
(bottom).
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6.2 Paper II: ECG Based Assessment of Circadian
Variation in AV-nodal Conduction During AF -
Influence of Rate Control Drugs

The paper entitled ’ECG Based Assessment of Circadian Variation in AV-nodal Con-
duction During AF - Influence of Rate Control Drugs’ uses the model presented in
paper I to study long-term variations in the conduction delay and refractory period. In
order to obtain a long-term assessment of these properties, a problem-specific genetic
algorithm designed for dynamic optimization problems was designed. The hyper-
parameters in the genetic algorithm were tuned during the optimization, based on
changes in the RR interval series characteristics. This enabled the genetic algorithm
to quickly search for different promising regions whenever the RR interval charac-
teristics changed rapidly, while at the same time being able to search for the optimal
solutions within an already promising region when the characteristics changed slowly.

The model and workflow were used to fit the refractory period and conduction delay
of the AV node during 24 hours from ambulatory ECGs from 59 patients acquired
during baseline and under the influence of four rate control drugs; two calcium chan-
nel blockers and two β-blockers.

From the estimated model parameter trends, a mixed-effect model was used to quan-
tify the drug-dependent mean (αm) and circadian variation (βm). This analysis re-
vealed drug-dependent differences in the conduction properties, as shown in Figure
6.2. The difference is most notable for the maximum prolongation of the conduction
delay (∆DFP and ∆DSP ), where the β-blockers reduced the circadian variation
more compared to the calcium channel blockers.
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Figure 6.2: The fixed effect deviation from baseline for the linear mixed-effect model with
corresponding 95% confidence intervals for the cosinor mean (top) and cosinor amplitude
(bottom) for each of the twelve model parameters and four drugs. The confidence intervals
not overlapping zero indicate a significant difference from baseline (p <0.05).



Chapter 7

Outlook and Conclusion

In this thesis, a method for long-term assessment of the AV node conduction proper-
ties has been developed and evaluated in detail. The method consists of a mathemati-
cal model with associated parameter estimation in form of a problem-specific genetic
algorithm. This method has enabled the analysis of drug-dependent differences in cir-
cadian variation of AV node conduction properties, which showed drug-dependent
differences in the circadian variation for the conduction delay between β-blockers and
calcium channel blockers.

As of now, the assessment of the refractory period and the conduction delay of the AV
node is comprised in the twelve model parameters. From the model parameters, the
exponential function determining the conduction properties for each pathway, shown
in Equations 4.1 and 4.2, are known. However, these are a function of the diastolic
interval. As a consequence, the refractory period or conduction delay at a given time
for each pathway is not explicitly known from the model parameters. Thus, model
reduction or combining the model parameters into four combined parameters, one
for each conduction property in the respective pathway, would increase the interpre-
tation of the model output.

The parameters of the network model of the AV node interact to a high degree, result-
ing in a high uncertainty in the model parameter estimation; since a minor change
in one parameter could be counteracted by a minor change in a related parameter.
This is especially important for the parameters relating to the minimum value and
the maximum prolongation. Thus, high-frequency variation in the estimated model
parameters shown in paper II could potentially be counteracted by a combination of
parameters or a model reduction.
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With access to Holter ECG for patients suffering from persistent AF during base-
line and with different rate control drugs, an interesting question is prediction. Is
it possible to use the estimated parameter trends during baseline together with basic
information such as age or sex to predict the outcome with the different rate control
drugs? The results from paper II, where the different drug types had different effects
on the parameters, suggest that it is. Hence, investigating the patient-specific tem-
poral patterns in the conduction properties of the AV node could potentially aid in
therapeutic choices.

In conclusion, we can now non-invasively assess the temporal patterns in the conduc-
tion delay and the refractory period in the AV node during 24 hours, which have the
potential to in an objective way assist in treatment selection for AF.
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During atrial fibrillation (AF), the heart relies heavily on the atrio-ventricular (AV) node

to regulate the heart rate. Thus, characterization of AV-nodal properties may provide

valuable information for patient monitoring and prediction of rate control drug effects. In

this work we present a network model consisting of the AV node, the bundle of His, and

the Purkinje fibers, together with an associated workflow, for robust estimation of the

model parameters from ECG. The model consists of two pathways, referred to as the

slow and the fast pathway, interconnected at one end. Both pathways are composed of

interacting nodes, with separate refractory periods and conduction delays determined by

the stimulation history of each node. Together with this model, a fitness function based

on the Poincaré plot accounting for dynamics in RR interval series and a problem specific

genetic algorithm, are also presented. The robustness of the parameter estimates is

evaluated using simulated data, based on clinical measurements from five AF patients.

Results show that the proposed model and workflow could estimate the slow pathway

parameters for the refractory period, RSPmin and 1RSP, with an error (mean ± std) of

10.3 ± 22 and −12.6 ± 26 ms, respectively, and the parameters for the conduction

delay, DSPmin,tot and 1DSPtot , with an error of 7 ± 35 and 4 ± 36 ms. Corresponding results

for the fast pathwaywere 31.7± 65,−0.3± 77, 17± 29, and 43± 109ms. These results

suggest that both conduction delay and refractory period can be robustly estimated

from non-invasive data with the proposed methodology. Furthermore, as an application

example, the methodology was used to analyze ECG data from one patient at baseline

and during treatment with Diltiazem, illustrating its potential to assess the effect of rate

control drugs.

Keywords: atrial fibrillation, atrioventricular node, rate control, mathematical modeling, genetic algorithm, ECG,

cardiac electrophysiology

1. INTRODUCTION

Atrial fibrillation (AF) is the most widespread sustained cardiac arrhythmia with an estimated
prevalence of 2–4% in the adult population (Benjamin et al., 2019). During AF, the electrical
activity in the atria is highly disorganized, leading to a rapid and irregular ventricular rhythm. In
order to reduce these effects, rate control drugs constitute one of the primary therapeutic options
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(Hindricks et al., 2020). These drugs are not designed to
terminate AF, but rather to lower the heart rate. They do this
by modulating the conduction through the AV node, preventing
some electrical signals emanating from the atria from being
transmitted to the ventricles, thereby reducing the ventricular
activation rate. Thus, rate control is often sufficient to improve
AF-related symptoms (Hindricks et al., 2020). The choice of
first-line rate control drugs can vary between beta-blockers and
non-dihydropyridine calcium channel blockers, with digoxin as a
second-line option (Hindricks et al., 2020). However, the current
method of finding the best treatment for a given patient is
largely based on trial and error (Hindricks et al., 2020). Thus,
patient specific characterization of AV node properties would be
beneficial to achieve optimal rate control.

Functionally, the AV node consists of two pathways,
connected to each other before entering the bundle of His
(Kurian et al., 2010). The two pathways are referred to as the slow
pathway (SP) and the fast pathway (FP), where the FP conducts
impulses faster than SP but has a longer refractory period.
During sinus rhythm, the impulses are typically conducted
through the FP due to its faster conduction rate. During AF,
however, conduction may alternate between SP and FP as a
result of the rapid arrival of atrial impulses. This, together with
concealed conduction, i.e., impulses inside the AV node that do
not lead to ventricular activation but still affect the conduction
characteristics of following impulses, gives rise to the complex
blocking and delay behavior the AV node has been shown
to possess.

In order to understand this blocking and delay behavior,
mathematical modeling has become an increasingly important
tool. Several models of the AV node and its function during AF
have previously been proposed, including various descriptions
of the conduction delay (Jørgensen et al., 2002; Mangin et al.,
2005; Climent et al., 2011) and the refractory period (Rashidi
and Khodarahmi, 2005). A model for simulating the ventricular
activation capable of replicating both conduction delay and
refractory period during AF was proposed by Lian et al. (2006).
Another model capable of replicating both conduction delay
and refractory period, based on the action potential of the AV
node cells and modeled by ordinary differential equations, was
proposed by Inada et al. (2009).

However, none of these models were developed with the
purpose of ECG based estimation of AV node parameters on
a patient specific basis. The models presented in Rashidi and
Khodarahmi (2005) and Lian et al. (2006) did not fit parameter
values to data, the models presented in Climent et al. (2011) and
Inada et al. (2009) were fitted to data from rabbits. The models
presented in Jørgensen et al. (2002) and Mangin et al. (2005)
were fitted to AF patients, but invasive data was required. To
make a model useful in a clinical setting, it should ideally allow
for fitting to non-invasive data such as surface electrocardiogram
(ECG). A statistical model developed for estimation of AV node
parameters from ECG data during AF was first presented in
Corino et al. (2011). This model has later been updated and
proven to replicate patient specific histograms of the time series
between two successive R waves on the ECG (RR interval series)
extracted from ECG data, as well as to assess the effect of rate

control drugs on the AV node (Henriksson et al., 2015). It
is a lumped model structure that still accounts for concealed
conduction, relative refractoriness, and dual pathways. However,
it lumps conduction delay and refractory period together, making
the estimated model parameters difficult to interpret.

In this work we present a network model of the AV
node, able to estimate patient specific conduction delay and
refractory period from ECG, building on previous work
presented in Wallman and Sandberg (2018). The model consists
of interconnected nodes forming two pathways, providing a
balance between complexity and computational efficiency, and
represents both spatial and temporal dynamics of the AV-node.
With novel additions to the model structure by including effects
from the bundle of His and Purkinje fibers, as well as a tailored
workflow taking advantage of dynamics in the data, the model
allows for estimation of parameters governing both refractory
period and conduction delay in a robust manner from non-
invasive data during AF. The ultimate aim of this work is to
monitor and predict the outcome of treatment with rate control
drugs in clinical settings to assist in treatment selection. In order
to do this, a robust characterization of the AV node is needed, and
thus the purpose of this study is to: (1) Describe and motivate
the model; (2) Present a tailored workflow for estimation of
parameters; (3) Demonstrate that presented combination of
model and workflow leads to robust parameter estimates that
mimic measured data well.

2. MATERIALS AND METHODS

The model of the AV node will be explained in section 2.1,
followed by a description of the data used to evaluate said model
in sections 2.2 and 2.3. In section 2.4, the methodology for
model parameter estimation is explained; which combined with
the optimization algorithm described in section 2.5 constitutes
the workflow.

2.1. Network Model of the Human AV Node
The model of the AV node, shown in Figure 1, consists of
a network of nodes and is based on the model presented in
Wallman and Sandberg (2018). The model consists of two
pathways, representing the SP and the FP, connected with a
coupling node. Each pathway is modeled with 10 nodes, where
each node corresponds to a localized part of the AV node.
Each node can block incoming impulses or send them through
adding a conduction delay. All nodes but the coupling node
sends impulses to all other nodes connected to it, whereas the
coupling node only receives impulses. A new refractory period
[Ri(n)] and conduction delay [Di(n)] are calculated every time
a node (i) receives a new impulse (n). The refractory period and
conduction delay are based on the stimulation history of the node
and are described using exponential functions. These exponential
functions have previously been used to fit AV node characteristics
(Shrier et al., 1987; Lian et al., 2006; Wallman and Sandberg,
2018), and can be seen in Equations (1–3).

Ri(n) = Rmin + 1R(1− e−t̃i(n)/τR ) (1)
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FIGURE 1 | A schematic representation of the proposed model. The arrow indicates the direction an impulse can conduct, and the colors represent nodes with the

same parameter sets. For simplicity, only a subset of the ten nodes in each pathway are showed.

Di(n) = Dmin + 1De−t̃i(n)/τD (2)

t̃i(n) = ti(n)− ti(n− 1)− Ri(n− 1) (3)

Here t̃i(n) refers to diastolic interval preceding impulse n, ti(n)
the arrival time of impulse n at node i, and ti(n−1) and Ri(n−1)
the arrival time and refractory period of impulse n − 1 at node
i, respectively. If t̃i(n) is negative, the node will still be in its
refractory period and thus the impulse will be blocked. The
model parameters defining minimum refractory period, Rmin;
maximum prolongation of refractory period, 1R; time constant
τR; minimum conduction delay,Dmin; maximum prolongation of
conduction delay, 1D; and the time constant τD, are assumed to
be fixed for the nodes in the SP and FP, respectively.

The coupling node models the total refractoriness and
conduction delay introduced by the connection between the AV
node and the bundle of His, the Purkinje fibers, and the bundle
of His. This node has a separate set of parameters, representing
separate functional properties, and will be denoted the His and
Purkinje (HP) node. The refractory period for the Purkinje fibers
is assumed to not affect the ventricular activation during AF.
Thus, the whole refractory period for the HP node is determined
by the bundle of His. However, the conduction delay for the HP
node is viewed as the time it takes an impulse to travel from the
start of the bundle of His to the end of the Purkinje fibers. The
conduction delay from the start of the bundle of His until the end
of the Purkinje fibers has clinically been showed to have a mean
of 60 ms with a standard deviation of 10 ms for patients suffering
from AF (Deshmukh et al., 2000). Thus, the conduction delay for
the HP node is fixed at 60 ms. The HP node’s refractory period is
estimated by the mean of the ten shortest RR intervals, RRmin.

This results in 12 free parameters for the proposed
model, denoted as a parameter vector θ = [RFPmin, 1RFP,
τFPR , RSPmin, 1RSP, τ SPR , DFP

min, 1DFP, τFPD , DSP
min, 1DSP, τ SPD ]. It

is assumed that the first node of each pathway is simultaneously
stimulated for incoming impulses from the atria. The model
can then be used to produce a RR interval series with minimal
computational demands using a modified version of Dijkstra’s
algorithm (Wallman and Sandberg, 2018). A link to the code for
the model together with a basic user example can be found at

section 5. The total minimum conduction delay and maximum
prolongation, defined as DFP

min,tot = NnD
FP
min; 1DFP

tot = Nn1DFP;

DSP
min,tot = NnD

SP
min; 1DSP

tot = Nn1DSP; where Nn = 10
are the number of nodes in each pathway, are introduced for
convenience of presentation.

2.2. ECG Data
This study was based on ambulatory ECG data from the RATe
control in Atrial Fibrillation (RATAF) study, which is approved
by the regional ethics committee and the Norwegian medicines
agency and was conducted in accordance with the Helsinki
Declaration (Ulimoen et al., 2013). The RATAF study contains
24-h Holter recordings of 60 patients under baseline and during
treatment with four different rate reducing drugs. All patients had
permanent AF, no heart failure or symptomatic ischemic heart
disease, an age of 71 ± 9 (mean ± std), and 70% were men. To
evaluate the presented model, we selected 15 min ECG segments,
one for each of five patients, obtained under baseline conditions
between 1:00 and 3:00 pm. These five patients were selected to
be representative for the whole data set, with varying RR interval
series characteristics and an average heart rate ranging between
63 and 140 bpm. In addition, corresponding ECG data obtained
during treatment with Diltiazem was also used for one of the
five patients.

The RR interval series were extracted from the ECG signals
by first detecting the R peaks, before removing RR intervals
preceding and following ectopic beats identified based on
heartbeat morphology (Lagerholm et al., 2000). Along with this,
the mean arrival rate of the atrium-to-atrium (AA) intervals
was estimated from the f-waves in the ECG by first extracting
the atrial activity from the ECG using spatiotemporal QRST
cancellation (Stridh and Sornmo, 2001), before tracking the atrial
fibrillatory rate (AFR) using a method based on a hiddenMarkov
model (Sandberg et al., 2008). Finally, correction of the atrial
fibrillatory rate by taking the atrial depolarization time into
account was used to obtain an estimate of the arrival rate. Here,
we denote the true mean arrival rate λ, and the estimated mean
arrival rate λ̂. One value of λ̂ was obtained for each ECG segment
(Corino et al., 2013).

Frontiers in Physiology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 728955



Karlsson et al. Non-invasive AV Node Characterization in AF

TABLE 1 | Characteristics of the data extracted from ECG and the simulated data, respectively, for all five patients.

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

MEASURED DATA

Average HR (ms) 76.4 62.7 90.6 111.9 139.9

λ̂ (Hz) 8.45 9.13 6.73 9.03 10.04

SIMULATED DATA

Average HR (bpm) 75.3 62.3 93.1 110.5 139.5

λ (Hz) 8.45 9.13 6.73 9.03 10.04

SP ratio (%) 54 60 85 77 92

RFPmin (ms) 210 390 379 465 378

1RFP (ms) 516 475 594 1.47 383

τ FPR (ms) 168 217 222 113 145

RSPmin (ms) 205 313 280 257 287

1RSP (ms) 469 422 233 0.00 103

τSPR (ms) 220 40 204 172 227

DFP
min (ms) 4.77 1.13 1.44 9.05 6.43

1DFP (ms) 11.2 20.6 16.0 20.3 34.4

τ FPD (ms) 155 237 40.0 40.0 145

DSP
min (ms) 21.1 25.4 21.7 16.0 20.2

1DSP (ms) 51.9 15.1 4.62 3.74 2.47

τSPD (ms) 89.9 232 166 91.1 165

2.3. Simulated Data
Simulated data were created by fitting the model to the RR
interval series from the five patients, cf. section 2.5, and using the
resulting estimated model parameters to simulate an RR interval
series of 20 min. The sequence of atrial impulses arriving to the
AV node, and thus the input to the model, were simulated using
a Poisson process with the mean arrival rate set to the value of λ̂

estimated for each patient (Corino et al., 2011; Henriksson et al.,
2015). The parameter values used for the simulated data, along
with average heart rate of the simulated RR interval series, are
summarized in Table 1.

2.4. Model Parameter Estimation
To evaluate howwell themodelmatches the extracted RR interval
series, a fitness function comparing the model output to the
RR interval series is used. In order to take the dynamics of the
RR interval series into account, the Poincaré plot is used as a
basis for the fitness function. The Poincaré plot is a scatter plot
of successive pairs of RR intervals. To use the Poincaré plot
as a fitness function, the RR interval series is binned into two
dimensional bins centered between 250 and 1,800 ms in steps of
50 ms, resulting inN = 961 bins. The error function is computed
according to Equation (4).

ǫ = 1

N

N
∑

i=1

(

(xi − x̃i)
2/

√

x̃i

)

(4)

Here ǫ is the error value, and x̃i and xi the number of RR
intervals, in the i-th bin, of the measured data and model
output, respectively. The normalization by

√
x̃i is introduced to

avoid bins with a large number of data points to dominate the
optimization. The square root is used as a trade-off between
no normalization, making the bins with a large number of data
points dominate, and normalization with the wholemeasured bin
counts, making the accuracy of every bin have the same weight
regardless of how much of the data are in that bin. A schematic
representation of the parameter estimation process can be seen
in Figure 2.

2.5. Genetic Algorithm
An initial study of how ǫ varies with varying model parameter
values revealed a highly chaotic structure with a large
number of local minima. This prompted us to minimize ǫ

using a genetic algorithm (GA). A brief description of the
algorithm is given below, with more detailed information in
the Supplementary Section 1. Due to the high dimensional
parameter space and the risk of premature convergence early
in the optimization, a variant of an island model was used
(Wahde, 2008). A schematic representation of the GA is shown
in Figure 3. As visible in the figure, the full GA can be divided
into two sections. The first section consists of five separate GA.
This was implemented by restarting the algorithm five times
with 300 individuals in each generation. The individuals in each
starting run were initialized using a latin hypercube sampling
in the ranges: {RSPmin,R

FP
min} ∈ [250, 600] ms; {1RSP,1RFP} ∈

[0, 600] ms, {τ SPR , τFPR } ∈ [50, 300] ms; {DSP
min,D

FP
min} ∈ [0, 30] ms;

{1DSP,1DFP} ∈ [0, 75] ms; {τ SPD , τFPD } ∈ [50, 300] ms. These
starting runs last for six generations, and after each run the
best 150 of the individuals are saved and used in the second
section, the main GA. Thus, the main GA uses a population
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FIGURE 2 | A block diagram of the AV node model parameter estimation workflow, starting with a measured ECG signal and ending with estimated parameters.

FIGURE 3 | A schematic representation of the genetic algorithm. Circles represent stages of the algorithm with constant number of individuals and LRR. Numbers in

circles correspond to the number of iterations before proceeding to the next stage. The last stage is always used, even if the GA terminates early.

of 750 individuals in each generation. For both the starting
runs and the main GA, the 2.5% fittest individuals in each
generation survives into the next generation unchanged, whereas
the remaining individuals are created via tournament selection,
two-point crossover, and creepmutation (Wahde, 2008). In order
to avoid premature convergence, both incest prevention in the
form of mating restriction between too similar individuals during
crossover, and a varyingmutation rate depending on the diversity
of the individuals in each generation were implemented (Wahde,
2008). This process of selection, crossover, and mutation is then
continued until termination. The termination of the starting
runs always occurs after six generations. The termination for
the main GA occurs either when ǫ for the fittest individual
in each generation does not change for three generations, or
when 15 generations have been run. The fittest individual for the

k-th generation, ǫ̂k, is deemed to have changed if the difference

between ǫ̂(k) and ǫ̂(k− 2), seen in Equation (5), is lower than 25.

ǫ̂(k) = ǫ̂k + ǫ̂k−1 + ǫ̂k−2

3
(5)

As described in section 2.3, a Poisson process with mean arrival
rate λ̂ was used as input to the model, and due to the stochastic
nature of the Poisson process, ǫ varies between realizations. The
magnitude of this variation was analyzed by finding a parameter
set replicating the extracted RR interval series from patient 3
well, before simulating that parameter set with different lengths
of the resulting RR interval series, LRR, as seen in Figure 4, left
panel. Each LRR was simulated 1,000 times. Moreover, six more
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FIGURE 4 | Estimated distribution of ǫ as a function of LRR (left). Variance of ǫ divided by mean of ǫ as a function of the mean of ǫ (right).

parameter sets with increasing ǫ were also simulated 1,000 times
with the same LRR, as seen in Figure 4, right panel.

The ǫ variation is decreasing with larger LRR, however, the
running time for the model is linearly increasing with LRR, and
thus shorter outputs are preferable. The variation of ǫ is not as
important early in the optimization since the variation relative
ǫ is smaller for larger ǫ, see Figure 4, right panel. However,
after several generations most of the ǫ for individuals found
by the GA are low, and thus the variability in ǫ has a larger
impact on the algorithm. Therefore, LRR is increased throughout
the optimization.

As seen in Figure 3, the LRR for all generations in the
starting runs were 1,000 impulses. For the main GA, the first
five generations used a LRR of 3,000 impulses, the following
five generations a LRR of 5,000 impulses, followed by three
generations with length of 7,500 impulses, before ending with two
10,000 impulses long generations. To obtain a robust estimate

of ǫ̂(k), the individual with the best fit in each generation is
evaluated again with a LRR of 10,000. After termination for the
main GA, the 15 fittest individuals were tested again, with a LRR
of 50,000; this in order to select the fittest individual with a low
variation in ǫ.

3. RESULTS

The RR interval series extracted from the ECG along with the
simulated data, cf. sections 2.2 and 2.3, are used to evaluate the
proposed methodology. In section 3.1, the proposed approach
for optimization is compared to using only the main GA
with fixed LRR. The robustness and precision of the parameter
estimation are evaluated using simulated data in section 3.2.
Further, the robustness of the estimates is set in perspective
by using the model to estimate AV node characteristics for
one of the patients during both baseline and under influence
of the calcium channel blocker drug Diltiazem. In section 3.3,

the proposed model is compared to the model presented in
Wallman and Sandberg (2018).

3.1. Genetic Algorithm
The effect of using an island based start together with varying
LRR was evaluated by comparing it to using only the main GA, as
described in section 2.5, with LRR fixed at 5,000. The initialization
for this fixed GA was the same as for the starting runs, a latin
hypercube sampling in the same ranges, and the population size
was again 750. Performances of the two methods were evaluated
by comparing the error value of the fittest individual for each
generation, ǫ̂k with the cumulative LRR used for the evaluations,
i.e., the accumulated total number of impulses in each generation.
For the different starting runs, all runs were computed in parallel
so that ǫ̂k during this stage is the lowest value out of all the
five starting runs. The average results from comparing the two
versions of the GA on all five patients, each 100 times, are
shown in Figure 5. From this it is possible to see that a lower
ǫ̂k, and thus a better fit to the RR interval series, can be found
in less computational time using the proposed methodology.
For reference, estimating the parameters for one patient using a
single core on a standard desktop computer (Intel R© CoreTM i7-
6600U Processor, @ 2.60GHz) requires on average 20 min, with
variations due to the different terminating requirements for the
GA. It is also possible to see that the termination criteria for a
maximum number of generations stated in section 2.5 is typically
achieved after the GA has converged.

3.2. Parameter Estimation Robustness
Simulated RR interval series were used to evaluate the robustness
of the model parameter estimates. The results from optimizing
the model 200 times for the five simulated RR interval series
can be seen in Table 2, where the mean and standard deviation
for each of the 12 estimated parameters, for each of the five
patients, are listed. Moreover, the mean error, defined as the
difference between the mean value of the estimated parameter
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FIGURE 5 | (solid line) Mean normalized ǫ̂k of 100 optimizations of the five set

of patient data as a function of cumulative LRR for (blue) the island start

optimization with varying LRR and (orange) only the main GA with a fix LRR at

5,000. The shaded background represents one standard deviation. Here, ǫ̂k is

normalized with the best ǫ found for each patient, to account for the fact that

the model can not fit each RR interval series equally well.

and the ground truth, averaged over the five patients, are also
listed. Furthermore, the mean and standard deviation of the error
normalized with respect to the parameter ranges, cf. section 2.5,
are presented. From the SP ratio it is evident that the SP is
used more for transmission, and from the normalized error, it
is evident that the parameters associated with the SP are more
robustly estimated. The histogram and Poincaré plots for the five
simulated patients with the transmission pathway for each RR
interval marked out can be seen in Supplementary Section 3,
together with the simulated histograms showing the effect of
changes to λ.

To set the robustness in perspective, the AV nodal properties
were estimated 200 times for a single patient during baseline
and under the influence of the non-dihydropyridine calcium
channel blocker rate control drug Diltiazem. The results, shown
in Figure 6, indicate that the uncertainty in the parameter
estimation is sufficiently low in order to reveal the drug effect.

3.3. Model Comparison
To evaluate the ability of the model and proposed workflow to
represent AF data and to have a frame of reference, the proposed
model is compared with the model presented in Wallman and
Sandberg (2018); henceforth denoted the reference model. Both
models were fitted to the RR interval series from one example
patient, and the properties of the resulting simulated RR interval
series are shown in the form of histograms, Poincaré plots,
and autocorrelations, as seen in Figure 7. For both models,
the optimizer was run until no change in error value for the
fittest individual during ten generations occurred, to assure
convergence. Both models used the optimizer described in
section 2.5, but the reference model uses a fitness function based

on the histogram (Wallman and Sandberg, 2018). It is clear from
both the Poincaré plots and the autocorrelation plots that the
proposed model can better replicate the dynamics of the RR
interval series. The fit to the Poincaré plot can be quantified
by the resulting ǫ, which for the proposed model was 1,360,
compared to 6,740 for the reference model. Similarly, the value
for the first lag autocorrelation was −0.07 for the proposed
model and 0.52 for the reference, compared to the ground
truth at−0.07.

4. DISCUSSION

In this study, a mathematical model of the AV node, bundle of
His, and Purkinje network has been presented together with a
fitness function accounting for RR interval dynamics and genetic
algorithm tailored to the model. The model and workflow have
been evaluated with respect to robustness, accuracy, and ability
to represent data, using both measured and simulated data.

Ten nodes in each pathway were used as a trade-off between
detail and computation time. A small number of nodes can make
the conduction delay larger than the refractory period, allowing
impulses to bounce back and forth, whereas a large number of
nodes leads to a higher computational demand. The inclusion
of a last node in the model as functionally distinct from the
SP and FP has previously been used in other models of the
AV node (Inada et al., 2009). The incorporation of separate
conduction properties for the connecting node introduced
both new refractory period and conduction delay parameters.
However, literature data suggests that inter-patient variability
in conduction time over the bundle of His and the Purkinje
network is around 10 ms (Deshmukh et al., 2000), indicating
that the parameters representing the conduction delay could
be reasonably approximated by a constant value. Furthermore,
an initial study was conducted in which the refractory period
of the HP node was represented by Equation (1), with three
free parameters. This study showed that the parameter values
representing the refractory period in the HP node found after
optimization matched a constant value of RRmin, independent of
t̃i(n), well; indicating a good approximation (data not shown).
For more details about the parameter values of the HP node
during the optimizations, see Supplementary Section 2.

Reducing the number of free parameters reduces the
parameter space in which the GA operates, and in turn decreases
the running time as well as increases the robustness for the
optimization. The parameters for the HP node were especially
advantageous to fix or estimate directly from data. This was partly
because the clinical data and analysis of the optimization made
it possible, and partly because the most interesting information
regarding the AV node is contained in the parameters governing
SP and FP. Thus, setting the parameters corresponding to the
bundle of His and Purkinje fibers to fixed values enhanced the
ability of our method to estimate AV node properties.

The optimizer in this work utilized the fact that the model
could be used with varying speed and precision by changing
the output length, with higher speed and lower precision at
the start and shifting it during the optimization. This change
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TABLE 2 | The mean parameter values ± standard deviation of 200 optimizations for the five simulated data sets, together with the mean error ± mean standard

deviation for each parameter.

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Error Normalized error (%)

RFPmin (ms) 311 ± 104 394 ± 53 430 ± 49 424 ± 45 419 ± 72 31.7 ± 65 7.9 ± 16

1RFP (ms) 436 ± 74 495 ± 57 479 ± 55 164 ± 131 393 ± 69 -0.3 ± 77 -0.1 ± 12

τ FPR (ms) 184 ± 38 211 ± 35 168 ± 39 183 ± 63 167 ± 53 9.4 ± 45 3.6 ± 17

RSPmin (ms) 225 ± 17 369 ± 71 271 ± 11 247 ± 8 281 ± 5 10.3 ± 22 2.6 ± 6

1RSP (ms) 430 ± 26 358 ± 60 247 ± 14 28 ± 20 101 ± 4 -12.6 ± 26 -1.9 ± 4

τSPR (ms) 201 ± 29 56 ± 10 216 ± 26 204 ± 55 198 ± 41 2.2 ± 32 0.8 ± 12

DFP
min,tot (ms) 65 ± 31 36 ± 22 53 ± 21 69 ± 39 92 ± 38 17 ± 29 5.7 ± 10

1DFP
tot (ms) 188 ± 92 273 ± 9.6 193 ± 95 248 ± 119 336 ± 145 43 ± 109 5.7 ± 15

τ FPD (ms) 132 ± 48 150 ± 43 133 ± 47 135 ± 47 154 ± 47 17 ± 46 7.1 ± 19

DSP
min,tot (ms) 184 ± 36 245 ± 25 246 ± 23 197 ± 47 209 ± 43 7 ± 35 2.5 ± 12

1DSP
tot (ms) 395 ± 73 214 ± 45 88 ± 19 66 ± 31 35 ± 11 4 ± 36 0.5 ± 5

τSPD (ms) 173 ± 33 187 ± 42 167 ± 39 179 ± 55 183 ± 47 29 ± 43 12 ± 18

Average HR (bpm) 75.3 ± 0.7 62.6 ± 0.5 93.6 ± 0.7 110.9 ± 1 139.2 ± 1 0.2 ± 0.8 -

SP ratio (%) 54 60 85 77 92 - -

The normalized error ± standard deviation as well as the ratio of impulses passing through the SP are also presented.

FIGURE 6 | The mean ± one standard deviation, indicated by the shaded background, of the estimate refractory period and conduction delay from Equation (1) and

(2), after 200 runs, are plotted for both baseline (blue) and Diltiazem (orange).

in output length also made it possible to run a broad search
of the parameter space fast at the start of the optimization by
restarting it several times; reducing the risk that a parameter set
producing a good fit to the RR interval series was missed. This
led to finding parameter sets matching the data faster, as shown

in Figure 5. With a computing time of 20 min on a standard
desktop computer in order to estimate the parameters, it possible
to utilize the model without the use of any cloud computing or
supercomputer, making it suitable for routine off-line analysis of
Holter recordings.
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FIGURE 7 | Histogram, Poincaré plot, and autocorrelation representation of the (orange) observed and (blue) modeled RR interval series for (top) the fitted proposed

model and (bottom) the fitted reference model.

The result of taking the RR interval series dynamics into
account during the optimization can clearly be seen in Figure 7,
where the proposed model and fitness function could represent
the Poincaré plot with an ǫ five times as low as the reference
model. This shows that matching the histograms well, as both
models did, does not necessarily mean that the model represents
the RR interval dynamics well. Using the Poincaré plot as basis
for the fitness function, it was possible to account for the RR
interval distribution and the one-step autocorrelation at the same
time. It should be noted that the information from the histogram
is still indirectly included in the Poincaré plot, which is likely
the reason why the proposed fitness function also gave well
matched histograms.

Since no ground truth of the estimated parameters is available
for the clinical data, it is not possible to directly verify their
correctness. However, it is still possible to verify that the
parameter values lay within ranges reported in literature. The
conduction delay for the HP node is fixed based on clinical data,
thus it lies within reasonable ranges by default. The refractory
period for the HP node was estimated using RRmin, and for

the five patients used in this study the range was [292, 655]
ms. Comparing this to the bundle branch refractory period of
[305, 520] ms, and the His-Purkinje system relative refractory
period of [330, 460] ms, reported in Denes et al. (1974), it
seems reasonable.

It is difficult to assess AV conduction delay during AF,
due to problems in determining which atrial impulse activated
the ventricles. However, the total minimum and maximum
prolongation of conduction delay parameters of the AV node,
DFP
min,tot , 1DFP

tot , DSP
min,tot , and 1DSP

tot , have previously been
estimated by mathematical models utilizing the relationship
between diastolic interval and delay in Equation (2). One such
example is the model byMangin et al. (2005), which uses invasive
data, for which the ranges of Dmin,tot , 1Dtot , and τD were
[80,300], [15,125], and [80,340], respectively. These ranges are of
the same order of magnitude as the values obtained for Dmin,tot ,
1Dtot , and τD in the present study, cf Table 2. It should be noted
that the present model, contrary to the Mangin model, has two
pathways where shorter delays are expected for the FP than for
the SP.
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The maximum refractory period, defined as the sum of
Rmin and 1R, can be compared with electrophysiological
measurements of the AV node effective refractory period. The
values obtained in the present study were in the ranges [466,
973] and [257, 735] ms for the FP and SP, respectively. AV
node effective refractory periods from patients with reentrant
tachycardia have been reported in the ranges 361 ± 57 and
283 ± 48 ms for the FP and SP, respectively (Natale et al.,
1994). As expected, the FP has larger values in both model
and measurements.

The use of simulated data was necessary in order to have a
ground truth to compare the estimated parameters with and in
turn evaluate the methodology. From these five simulated data
sets, it is clear that all of them primarily used the SP, cf. Table 2,
although the SP ratio differed. This higher usage of the SP may be
a contributing factor to that the parameters representing the SP
were more accurately estimated than the parameters representing
the FP. Moreover, the parameters τ SPR , τFPR , τ SPD , and τFPD all have
a larger error, which might imply that they have smaller overall
effect on the model output. Further, histograms and Poincaré
plots highlighting the transmission pathway for the RR intervals
(cf. Supplementary Section 3) show that longer RR intervals
tend to be transmitted via the FP, which is to be expected given its
lower total conduction time. More interestingly, it is evident that
different histogram peaks generated by the model are not created
solely from one pathway, but stem from complex interaction
between both the FP and SP. Moreover, it should also be noted
that the difference in heart rate between the observed RR interval
series and the RR series produced by the fitted model was less
than one beat per minute.

It is evident from the example in Figure 6 that the uncertainty
in conduction delay and refractory period introduced by the
parameter estimation is generally lower than the effect of the
drug, thus suggesting that it is possible to assess the effect of
rate control drugs on the AV node from non-invasive data. For
the example patient, the difference in conduction delay for the
SP between baseline and Diltiazem is minimal for t̃i > 200 ms.
However, one patient is not enough to know if this is a feature
specific to this particular patient, a property of the investigated
drug, or an artifact of the model formulation. The effect of rate
control drugs on the AV node refractory period have previously
been investigated (Sandberg et al., 2015), and with the proposed
methodology a similar investigation can be done for AV node
conduction delay.

4.1. Limitations and Future Work
Themain limitation of the present study is the lack of comparison
between the estimated parameter and the ground truth AV node
characteristics, making the results more difficult to evaluate.
Although simulated data was used as a substitute, it is not fully
known how closely it matches reality. Another limitation is the
assumption that both pathways are activated simultaneously, an
assumption that may not be valid, since the electrical activity
in the atria is highly disorganized. The variation in output
originating from the stochastic input sequence can also be seen as
a limitation to the proposed model, since the output for a single
set of parameters can vary depending on the realization of the

input sequence. However, without electrical measurements in the
atria, it is not possible tomodel the exact behavior of the AVnode.

Moreover, due to the computational time of estimating the
parameters for each simulated RR interval series 200 times, only
a subset of RATAF was used. However, the five patients were
selected to ensure a representative subset based on their RR
interval series characteristics. It should be noted that the focus
of the present study is to evaluate the robustness in parameter
estimation rather than analysis of the RATAF data set. Using the
model to analyze the entire RATAF data set, including all patients,
drugs, and time segments for outcome prediction forms a natural
next step in this line of inquiry, and efforts toward this goal are
ongoing at the time of writing.

Example results, cf. Figure 6, suggest that the estimates of
refractory period and conduction delay are sufficiently robust
to detect changes in response to treatment with rate control
drugs. However, this needs to be verified in a larger study
population. By using the model to simulate the treatment effect
of different drugs in a patient-specific setting, it might be possible
to predict the outcome of the drug treatment and thus assist
in treatment selection. Furthermore, it could also be useful in
drug development, by aiding in understanding what AV node
properties are affected by a novel compound, and in what way.

5. CONCLUSION

We have described and motivated a network model of the
AV node, bundle of His, and Purkinje network. The model is
demonstrated to be able to represent RR interval series extracted
from ECG data well, both in the forms of histograms, Poincaré
plots, and autocorrelation. This was made possible using the
presented problem specific fitness function and optimization
algorithm, taking advantage of the model’s ability to increase
running speed at the cost of precision. The robustness in
parameter estimation enabled fitting of delay specific parameters
from the AV node solely based on the ECG. It also made it
possible to detect changes to the model parameters originating
from the use of a rate control drug.

In summary, the combination of model and parameter
estimation workflow presented here constitutes a significant
improvement on previous AV node modeling efforts, suggesting
the possibility to use ECG measurements to analyze drug effect
on the AV node on a patient specific level.
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The heart rate during atrial fibrillation (AF) is highly dependent on the conduction

properties of the atrioventricular (AV) node. These properties can be affected using

β-blockers or calcium channel blockers, mainly chosen empirically.

Characterization of individual AV-nodal conduction could assist in personalized

treatment selection during AF. Individual AV nodal refractory periods and

conduction delays were characterized based on 24-hour ambulatory ECGs

from 60 patients with permanent AF. This was done by estimating model

parameters from a previously created mathematical network model of the AV

node using a problem-specific genetic algorithm. Based on the estimated model

parameters, the circadian variation and its drug-dependent difference between

treatment with two β-blockers and two calcium channel blockers were quantified

on a population level by means of cosinor analysis using a linear mixed-effect

approach. The mixed-effects analysis indicated increased refractoriness relative to

baseline for all drugs. An additional decrease in circadian variation for parameters

representing conduction delay was observed for the β-blockers. This indicates that

the two drug types have quantifiable differences in their effects on AV-nodal

conduction properties. These differences could be important in treatment

outcome, and thus quantifying them could assist in treatment selection.

KEYWORDS

atrial fibrillation, atrioventricular node, circadian variation, mathematical modeling,
genetic algorithm, mixed effect modeling, ECG, rate control drugs

1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia in the world, with a

prevalence of 2–4% in the adult population Benjamin et al. (2019), reaching 7% for

those aged 65 and above Di Carlo et al. (2019). It is characterized by rapid and irregular

contraction of the atria, originating from highly disorganized electrical activity, and

associated with an increased risk of mortality, mainly due to stroke or heart failure

Hindricks et al. (2021).
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The electrical impulses in the atria are conducted via the

atrioventricular (AV) node to reach and activate the ventricles.

The AV node can block and delay incoming impulses based on its

refractory period and conduction delay properties. During AF -

when the AV node is bombarded with impulses from the atria -

blocking of impulses prevents the heart from racing, but may not

be sufficient to maintain a normal heart rate and will still result in

significant beat-to-beat variability in the ventricular activation

Corino et al. (2015b); Mase et al. (2017).

To remedy this, rate control drugs can be used in order to

modify the conduction properties of the AV node. There are two

main types of rate control drugs used for AF treatment; β-

blockers and calcium channel blockers Hindricks et al. (2021).

As the name suggests, β-blockers block the β-receptors in AV

node cells, decreasing the effect of the sympathetic nervous

system, whereas calcium channel blockers prevent the L-type

calcium channels from opening, thereby reducing the conduction

in the AV node cells. Both types of drugs have been shown

effective in reducing the heart rate during AF Ulimoen et al.

(2013). However, the optimal treatment for a given patient is

often chosen empirically. Since the two drug types have different

physiological effects on the AV node conduction properties,

assessing the drug-induced changes in these AV node

properties could provide an important step toward

personalized treatment. One of the main differences between

the two drug types is the effect on the sympathetic nervous

system, which can be quantified by the circadian variation in the

AV node conduction properties. Furthermore, previous studies

have shown a significant difference in the predominant RR

interval between day and night, without a difference in

dominant atrial cycle length, suggesting circadian variation in

the AV node conduction properties Climent et al. (2010).

Conduction properties of the AV node have previously been

characterized using mathematical models based on measurements of

the electrical activity in the heart Shrier et al. (1987); Billette andNattel

(1994); Sun et al. (1995). Several models of the AV node during AF

have been proposed; both based on invasive data from rabbits Inada

et al. (2009); Climent et al. (2011) and humans Jørgensen et al. (2002);

Mangin et al. (2005); Masè et al. (2012, 2015), and on non-invasive

data fromhumansCorino et al. (2011, 2013);Henriksson et al. (2015).

We have previously presented a network model of the AV node

capable of assessing the refractory period and the conduction delay of

the AV node from 20-min ECG segments Karlsson et al. (2021).

However, continuous assessment of AV conduction delay and

refractoriness from 24-hour ECG recordings has not previously

been performed; such assessment enables analysis of long-term

variations in AV conduction properties.

The aim of the present study is to develop a framework for

long-term ECG-based assessment of conduction properties in the

AV node, and to utilize this framework for analysis of circadian

variation and its drug-induced changes in a cohort of 60 patients

with persistent AF Ulimoen et al. (2013). To accomplish this, we

propose a problem-specific optimization algorithm able to

continuously estimate the model parameters from the

previously presented network model Karlsson et al. (2021).

Furthermore, the uncertainty of the parameter estimates is

assessed using a variant of Sobol’s method Sobol (2001), and

the drug-induced differences in circadian variation between β-

blockers and calcium channel blockers on a population level are

quantified using a linear mixed-effect model.

2 Materials and methods

A schematic overview of the methodology is given in Figure 1.

The ECG data (Section 2.2) is first processed in order to extract a RR

interval series and an atrial fibrillatory rate (AFR) trend, as described

in Section 2.3. The RR interval series is then divided into segments of

length N, and the AFR trend is used to estimate the atrial arrival rate

in the corresponding time interval. TheAVnodemodel (Section 2.1)

is fitted to the ECG-derived data using a tailored optimization

algorithm, as described in Section 2.4, in order to obtain model

parameter estimates. Furthermore, the Poincaré plot difference,

which quantifies the rate of change of RR series characteristics, is

used to tune hyper-parameters in the optimization algorithm during

parameter estimation. The uncertainty of the estimated model

FIGURE 1
A flowchart of the overall framework for estimating AV node conduction properties on an individual and a population level.
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parameters is investigated using a variant of Sobol’s method, as

described in Section 2.5. Finally, cosinor analysis is used to quantify

circadian variation in the model parameter trends, and a linear

mixed effects modeling approach is used to investigate drug-

dependent differences on a population level, as described in

Section 2.6.

2.1 AV node model

A network model of the human AV node, shown in Figure 2,

is used to characterize the conduction delay and refractory

period. A brief description of the model is given here, for

more details, see Karlsson et al. (2021). The model describes

the AV node as an interconnected network of nodes, each capable

of transmitting incoming impulses. The model consists of

21 nodes; divided into a fast pathway (FP) with ten nodes, a

slow pathway (SP) with ten nodes, and a coupling node. The

nodes can react to an incoming impulse either by blocking - if the

node is in its refractory state - or by conducting it to all adjacent

nodes after adding a conduction delay, after which the node

returns to its refractory state. The refractory period (Rj(n)) and

the conduction delay (Dj(n)) of node j following an impulse n are

given by,

Rj n( ) � Rmin + ΔR 1 − e
−~tj(n)
τR( ) (1)

Dj n( ) � Dmin + ΔDe
−~tj(n)
τD , (2)

where ~tj(n) is the diastolic interval preceding impulse n,

~tj n( ) � tj n( ) − tj n − 1( ) − Rj n − 1( ), (3)

and tj(n) is the arrival time of impulse n at node j. When ~tj(n) is
negative, the impulse will be blocked since the node is in

its refractory state. The parameters Rmin, ΔR, τR, Dmin, ΔD,
and τD are fixed for all nodes in the SP and

the FP, respectively. This results in the 12 model parameters

θ � [RFP
min, ΔRFP, τFPR , RSP

min, ΔRSP, τSPR , DFP
min, ΔDFP, τFPD , DSP

min,

ΔDSP, τSPD ]. For convenience, the interpretation of the model

parameters are given in Table 1. For the coupling node, the

delay is fixed to 60 ms, and the refractory period is fixed to the

mean of the ten shortest RR intervals in the data used for model

parameter estimation, RRmin.

The input to the model - representing impulses arriving from

the atria - is created using a Poisson process with mean arrival

rate λ. The output of the model represents the time points for

ventricular activation, and thus the differences between adjacent

elements in the output vector represent the RR intervals.

2.2 ECG data

The RATe control in Atrial Fibrillation (RATAF) study Ulimoen

et al. (2013) acquired 24-hour ambulatory ECGs during baseline and

under the influence of four rate control drugs; the two calcium

channel blockers verapamil and diltiazem, and the two β-blockers

metoprolol and carvedilol. The study population consists of

60 patients with permanent AF, no heart failure, or symptomatic

ischemic heart disease. The study was approved by the regional ethics

FIGURE 2
A schematic representation of the network model where the yellow node represents the coupling node, the red nodes the SP, the green nodes
the FP, and arrows the direction for impulse conduction. For readability, only a subset of the 21 nodes is shown.

TABLE 1 The interpretation of the model parameters. Superscripts
indicating the pathway (SP, FP) are omitted to avoid redundancy.

Parameter Parameter description

Rmin Minimum refractory period, attained for short diastolic intervals

ΔR Maximum prolongation of the refractory period, attained for long
diastolic intervals.

τR Time constant for the refractory period, determining the impact of
the diastolic interval

Dmin Minimum conduction delay, attained for short diastolic intervals

ΔD Maximum prolongation of the conduction delay, attained for long
diastolic intervals.

τD Time constant for the conduction delay, determining the impact
of the diastolic interval
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committee and the Norwegian Medicines Agency and conducted in

accordance with the Helsinki Declaration. The trend in the AV

node refractory period and conduction delay from these five 24-hour

ECG recordings per patient is assessed by estimations of the trends

in θ.

2.3 ECG processing

The RR interval series is extracted from the ECG, where

RR intervals following and preceding QRS-complexes with

deviating morphology are excluded from the series

Lagerholm et al. (2000). Due to excessive noise in the

ECGs, some RR intervals are missed, leading to an

unrealistically low heart rate. Thus, the data are divided

into minute-long non-overlapping segments, and all

segments with a heart rate lower than 20 bpm are

removed, occasionally resulting in gaps in the signals. The

signals with a total duration shorter than 12 h or with less

than 20 h between start and end are excluded from further

analysis. After excluding data according to these criteria, data

from 59 patients remained for inclusion in this study. The

number of patients with data considered to be of sufficient

duration for analysis and the average duration of these

recordings for the different treatments are shown in Table 2.

The f-waves in the ECG are extracted using spatiotemporal

QRST cancellation Stridh and Sornmo (2001). The AFR trends

are then estimated by tracking the fundamental frequency of the

extracted f-wave signal using a hidden Markov model-based

approach Sandberg et al. (2008); resulting in a resolution for

the AFR trends of one minute.

2.4 Parameter estimation

The atrial arrival rate, λ, is estimated by correcting the AFR

trend, taking the atrial depolarization time into account Corino

et al. (2013). Outliers in the estimated λ trends are excluded based

on visual inspection guided by cluster analysis. The resulting

trends are low-pass filtered using a sliding triangular window

filter with a width equal to 70.

The model parameters θ are assumed to vary over time,

making this a dynamic optimization problem. Thus, the data

are first divided into overlapping data segments of N = 1000

RR intervals; where N is chosen to give a good balance

between resolution and robustness of the estimates. Each

data segment contains one segment-specific mean arrival rate

λN(i) calculated as the mean of the λ trend in the segment

starting at RR interval i, as well as one RR interval series,

RRN(i). The estimated parameters of a data segment starting

at RR interval i is denoted by θ̂(i).
A fitness function based on the Poincaré plot - a scatter

plot of successive pairs of RR intervals - is used to quantify the

difference between observed and simulated RR series. The

Poincaré plots are binned into two-dimensional bins with a

width of 50 m, centered between 250 and 1800 m, forming a

two-dimensional histogram. The error function (ϵ), i.e., the
inverse fitness function, is then calculated from the number of

samples in the bins according to Eq. 4,

ϵ � 1
K

∑K
k�1

xN
k − N

Nsim
~xNsim
k( )2�������

N
Nsim

~xNsim
k

√ , (4)

where K is the number of bins,Nsim is the number of RR intervals

simulated with the model, and xN
k and ~xNsim

k are the numbers of

RR intervals in the k-th bin of the observed data and model

output, respectively.

A genetic algorithm (GA) is used to search for the values of

θ yielding the minimum ϵ. A GA consists of a population of

individuals that evolves based on their fitness value towards a

solution using selection, crossover, and mutation Wahde

(2008).

By assuming that a large change in the Poincaré plot relates to

a large change in parameter values, it is possible before starting

the optimization to decide when the optimization algorithm

should focus on exploration or exploitation. As a heuristic for

this, we introduce the difference in the Poincaré plots (ΔP(i)),
according to Eq. 5,

TABLE 2 The number of recordings and recording length (mean ± std) analyzed in this study following exclusion of recordings with insufficient signal
quality, as described in Section 2.3.

Drug Number of recordings Recordings length (h)

Baseline 51 20.88 ± 2.85

Verapamil 53 21.92 ± 2.39

Diltiazem 56 21.71 ± 2.44

Metoprolol 53 21.87 ± 1.98

Carvedilol 57 21.23 ± 2.65

Total 270 21.52 ± 2.59
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ΔP i( ) � 1
K

∑K
k�1

xNΔP
k i( ) − xNΔP

k i + 1000( )( )2, (5)

where xNΔP
k (i) and xNΔP

k (i + 1000) are the number of RR intervals

in the k-th bin of the Poincaré plot for the RR interval series

starting at interval i and i + 1000, respectively. Moreover, the

segment length NΔP is set to 2000. The Poincaré plot difference,

ΔP(i), is used to tune hyper-parameters in the optimization

algorithm.

The GA used for estimating θ̂(i) has a population size of

400 individuals - where each individual is a vector of values for θ -

and uses tournament selection, a two-point crossover, and creep

mutationWahde (2008). The number of generations the GA runs

before switching to the next data segment varies from 1 when

ΔP(i) < 800; to 2 when 800 ≤ ΔP(i) < 2000; to 3 when ΔP(i) ≥
2000. The step size for the sliding windows is determined by the

trade-off between the resolution and the computing cost, and is

set to 108 s; resulting in 800 steps for full 24-hour measurements.

Thus, there will be 800 estimated θ̂(i) for a 24-hour

measurement. As noted previously, there are also gaps in the

data. Thus, the step size will partly vary to match the start and

end of the RR segments, to ensure that all data are used. For

reference, estimating the θ̂(i) trend from a 24-hour RR and λ

series using a single core on a standard desktop computer (Intel®
CoreTM i7-6600U Processor, @ 2.60 GHz) requires on average

4 hours.

Since the Poisson process used to create the model input is

stochastic, ϵ varies between realizations. This variation is

dependent on the number of RR intervals generated from the

model, where more RR intervals reduce the variation but require

more computing power. To have a good balance between

computing power and stability, Nsim is set to 1500. However,

the ten fittest individuals in each generation are re-evaluated,

with Nsim = 5000, before the individual with the best fit for each

data segment, θ̂(i), is saved.
The individuals for the first generation are randomly

initialized using a latin hypercube sampling in the ranges:

{RSP
min, R

FP
min} ∈ [150, 650] ms; {ΔRSP, ΔRFP} ∈ [0, 700] ms;

{τSPR , τFPR } ∈ [40, 300] ms; {DSP
min, D

FP
min} ∈ [0, 30] ms; {ΔDSP,

ΔDFP} ∈ [0, 75] ms; {τSPD , τFPD } ∈ [40, 300] ms. These values are

also used as boundaries for the model parameters. Hence, the

difference between the upper bound and the lower bound for the

parameters is the range that the parameters can vary within, here

denoted r(p) and in vector form r, where p is the parameter index

ordered as in θ.

To reduce the risk of premature convergence and to maintain

a good diversity in the population, immigrants - individuals not

created from the current population - are used. These immigrants

are created using three different methods; 1) by saving and then

re-using the ten most fit individuals and their model output per

generation; 2) by running eight computationally faster GA, using

only 16 individuals and Nsim = 750, simultaneously; and 3), by

random sampling. The number of immigrants is dependent on

ΔP(i) and is created in equal proportion using the three different

creation methods. These new individuals are then introduced

into the population at the start of every new data segment by

replacing the individuals with the lowest fitness. More specific

details about the GA are found in Supplementary Material,

Section 1.

2.5 Parameter uncertainty estimation

A variant of Sobol’s method Sobol (2001) is used to derive

the uncertainty for each estimated parameter set θ̂(i). The
contribution to the output variance (v(p)) for a parameter p,

including the variation caused by its interaction with all the

other parameters, is estimated by the following procedure.

Firstly, two 30 x 12 matrices (A and B), where 30 is the

number of sampled parameter vectors, are generated by

samples from a quasi Monte Carlo procedure based on the

Latin hypercube design. Unlike Sobol’s method - which

samples in the whole parameter range - these samples are

generated within θ̂(i) ± 0.075r, hence within a hyper-

rectangle covering 15% of the total range of each

parameter. Secondly, 12 new matrices, ABp are created by

replacing the p-th column in A with the p-th from B. Thirdly,
ϵ is calculated for each parameter set in the matrices by

running the model, before the expected value of the

contribution to the output variance is estimated according

to Eq. 6 Sobol (2001).

v̂ p( ) � 1
2 · 30 ∑30

q�1
ϵAq − ϵABp,q( )2. (6)

Here ϵAq and ϵABp,q quantifies the difference between the observed

RR series and the model output as given in Eq. 4, for the

parameter sets in A and ABp, respectively.

The estimated v̂(p) are then, together with the mean (�ϵ) and
standard deviation (σϵ) of the 30 realizations of θ̂(i), used to

calculate a parameter uncertainty estimate according to Eq. 7.

u p( ) � 0.15r p( )����
v̂ p( )√

− σϵ
0.1�ϵ. (7)

Here 0.15r(p) originates from the distance between θ̂(i) and
the border of the sampled hyper-space, and

����
v̂(p)√ − σϵ from

the difference between the error variation inside the hyper-

space and at θ̂(i). Hence, the fraction relates to the slope-

intercept between the parameter distance and the

uncertainty. The remaining product relates this slope to

10% of the mean error for θ̂(i). Thus, the interpretation of

u(p) is: ‘Assuming interaction between all model parameters,

how large a step can be taken for parameter p before the

contribution to ϵ for θ̂(i) is increased by 10%‘. This was then

repeated for all θ̂(i) for all patients and drugs.

Frontiers in Physiology frontiersin.org05

Karlsson et al. 10.3389/fphys.2022.976526



2.6 Circadian variation

The drug-dependent circadian variation for the estimated

AV node parameters is quantified using linear mixed-effect

modeling, i.e., using a statistical model comprising both fixed

effects and random effects. The model used consists of a 24-hour

periodic cosine with mean m, amplitude a, and phase ϕ, as seen

in Eqs. 8, 9, and 10.

ypat,m t( ) � mpat,m + apat,m cos
2π
24

t + ϕ( ) (8)
mpat,m � α + αm + ηpat + ηpat,m (9)
apat,m � β + βm + ξpat + ξpat,m (10)

Here ypat,m(t) represents the estimated parameter trends of patient

pat during treatment m ∈ {Baseline, Verapamil, Diltiazem,

Metoprolol, Carvedilol}. Moreover, t corresponds to the time of

the day, in hours, of the RR interval i that the estimated θ̂(i) relates
to. Furthermore, α, αm, β, and βm represent the fixed-effects; with α

and β corresponding to the mean value for the mean and amplitude

during baseline, and αm and βm to the average deviation from the

baseline values, caused by the drugs. The random effects ηpat, ηpat,m,

ξpat, and ξpat,m correspond to the individual deviation from the fixed-

effects, and are assumed to be sampled from a zero-mean gaussian

distribution. During baseline,αm, βm and ηpat,m, ξpat,m are assumed to

be zero. For a given individual, ϕ is assumed to be equal for all

12 model parameters and is estimated by means of principal

component analysis of the θ̂(i) trends. The 12 vectors created by

projecting the data onto the 12 principal components are fitted to a

cosine with mean mc, amplitude ac, and phase ϕc, where c indicates

the c-th principal component, using the simplex search method

Lagarias et al. (1998). The phase, ϕ, is set equal to the ϕc associated

with the highest ac. Moreover, for cases where apat,m is negative, a

phase-shift ofπ is added to ensure that all the amplitudes are positive.

With ϕ estimated, α, αm, β, βm, ηpat, ηpat,m, ξpat, and ξpat,m are

fitted using the linear mixed-effects model function ‘fitlme ()’ in

MATLAB (The MathWorks Inc. Version R2019b); using the full

covariance matrix with the Cholesky parameterization and the

maximum likelihood for estimating parameters of the linear

mixed-effects model with trust region based quasi-Newton

optimizer as settings.

An assessment of the goodness of fit for the linear mixed-

effect model is calculated as the RMSE between the modeled

cosine and the estimated parameters. For easier comparison

between parameters, the RMSE for each parameter is

weighted by their respective range, r(p).

2.7 Statistic analysis

The estimated parameters θ̂(i), as well as AFR and HR, were

averaged for each recording, and significant difference between the

averages at baseline and under the four drugs were assessed one-by-

one using the paired two-sided Wilcoxon signed rank test Woolson

(2007) with the Benjamini–Hochberg correction Benjamini and

Hochberg (1995). Patients with missing recordings (cf. Table 2)

at baseline or the drug in questionwere excluded from the analysis. A

p-value below 0.05 after correction was considered significant.

3 Results

Figure 3 illustrates the advantages of using the GA proposed in

Section 2.4 for parameter estimation by comparing it to a standard

version of theGA. For the standardGA, all hyper-parameters, as well

as the number of generations per data segment, are fixed and thus do

not take advantage ofΔP(i). To highlight the differences between the
algorithms, we zoom in on a three hour long segment where the RR

series characteristics change rapidly. It is clear that ϵ increases along
with ΔP(i) for the standard GA, in contrast to the proposed GA.

From the GA we acquire one estimate per data segment, for all

59 patients and all drugs, resulting in a total of 175,640 θ̂(i). To give
the reader a sense of the match between the model output and RR

interval series obtained from the ECG, we present two examples of

Poincaré plots and histograms together with the associated RR

interval series. One corresponds to the median ϵ, and one where ϵ
is higher than 95% of all ϵ, as shown in Figure 4. It is evident that the
histograms and Poincaré plots from the model output and data are

similar for both cases, indicating a good match to data in most data

segments. However, there is a considerable difference on a beat-to-

beat level, as indicated by the RR interval series. Moreover, θ̂(i) for
one patient at baseline is shown in Figure 5, where clear changes over

time can be seen.

FIGURE 3
Mean (colored lines) and standard deviation (colored areas) of
the error ϵ for 100 segments for the proposed genetic algorithm
(blue) and a standard genetic algorithm (red) together with the
Poincare difference ΔP(i) (black line), defined in Eq. 5, for data
from one patient at baseline during 3 hours. The standard
deviation and mean are based on ten runs of the algorithms. Note
that ΔP(i) is scaled with 1

5 for readability.
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Recording averages of estimated model parameters, AFR, and

HR at baseline and during treatment with the four different drugs are

shown in Table 3. Significant differences, as described in Section 2.7,

are indicated in the table by ‘*’. This shows a significant increase in

the refractory period in the FP for all drugs, as well as a significant

decrease in heart rate and AFR for all drugs.

3.1 Uncertainty estimation

The average u(p), as explained in Eq. 7, normalized with r(p), are

shown in Figure 6. From this, it is evident that the model parameters

relating to the SP are more robustly estimated than their FP

counterpart, and that the model parameters relating to the

FIGURE 4
The Poincaré plot with associated histogram and RR interval series of data (blue) and model output (orange) for the θ̂(i) corresponding to the
median ϵ (left) and to the θ̂(i) which ϵ is higher than 95% of all ϵ (right).

TABLE 3 Recording averages of estimated model parameters, AFR, and HR at baseline and during treatment with the four different drugs (mean ±
standard deviation). Differences from baseline are evaluated using the Wilcoxon signed rank test with the Benjamini–Hochberg correction;
significant difference from baseline for the drugs, with false discovery rate at 0.05, is indicated with *.

Parameter Baseline Verapamil Diltiazem Metoprolol Carvedilol

RFP
min (ms) 435 ± 139 488 ± 134* 518 ± 118* 489 ± 126* 476 ± 123*

ΔRFP (ms) 403 ± 195 478 ± 190* 488 ± 202* 495 ± 180* 483 ± 172*

τFPR (ms) 175 ± 59 165 ± 63 163 ± 64 162 ± 58 167 ± 57

RSP
min (ms) 241 ± 102 280 ± 125* 287 ± 124* 260 ± 114 269 ± 123

ΔRSP (ms) 231 ± 176 274 ± 201 301 ± 215* 312 ± 187* 274 ± 186*

τSPR (ms) 180 ± 60 183 ± 62 171 ± 63 176 ± 62 176 ± 63

DFP
min (ms) 5.3 ± 4.5 5.4 ± 4.8 5.4 ± 4.7 5.9 ± 4.5 5.3 ± 4.5

ΔDFP (ms) 18.9 ± 16.9 21.7 ± 17.2 22.1 ± 17.3 21.8 ± 16.7 21.4 ± 16.9

τFPD (ms) 141 ± 54 144 ± 50 145 ± 53 149 ± 50 142 ± 53

DSP
min (ms) 21.0 ± 5.3 21.6 ± 5.1 22.5 ± 5.2* 21.7 ± 4.8 21 ± 5.2

ΔDSP (ms) 26.3 ± 21.4 23.8 ± 20.9 19.6 ± 20.7* 22.6 ± 21.2 21.5 ± 20.8

τSPD (ms) 185 ± 68 184 ± 57 183 ± 65 186 ± 58 180 ± 65

HR (bpm) 95 ± 13 80 ± 12* 74 ± 10* 81 ± 10* 84 ± 11*

AFR (Hz) 4.96 ± 0.34 4.56 ± 0.45* 4.71 ± 0.44* 4.86 ± 0.40* 4.81 ± 0.51*
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refractory period are more robustly estimated than their conduction

delay counterpart.Most noteworthy is the lower uncertainty forRSP
min

and ΔRSP, suggesting a higher impact on the output of the model.

The uncertainty estimates, u(p), for one patient are shown

as red background for each θ̂(i) in Figure 5, where again u(p)

for the refractory parameters in the SP is lower. There is also a

clear difference in u(p) between nighttime and daytime, where

the uncertainty is much lower at night.

3.2 Circadian variation

In Figure 5 we also show an example of the circadian

variation (blue lines) for the aforementioned patient, as

explained in Eqs. 8, 9, and 10, where a clear distinction

between night and day can be seen for most parameters. The

average RMSE for the 12 model parameters seen in Figure 5 is

0.22, which can be compared with the average RMSE for all

patients and treatment of 0.16 ± 0.03 (mean ± std).

The mean and standard deviation of the circadian variation

phase ϕwas 1.03 ± 0.74 rad; corresponding to an extreme value at

approximately 04:00 am ± 2.8 h.

The fixed-effects αm and βm and their respective 95% confidence

interval, normalizedwith r(p), are shown in Figure 7, where the fixed-

effects represent the average difference in effect with respect to

baseline that the drugs have on the population. It is evident from

αm in Figure 7 (top panel) that all rate control drugs on average

increase the refractory period in both pathways; with a significant

increase (p < 0.05) in RFP
min and ΔFP for all drugs, in RSP

min for all but

metoprolol, and in ΔRSP for all but verapamil. Moreover, differences

between the β-blockers and the calcium channel blockers can be

observed. Most noticeably for the amplitude (βm) of ΔDFP and ΔDSP,

where the two β-blockers have a distinctly negative effect in

comparison with the two calcium channel blockers.

Detailed results for the estimated fixed and random effects

can be found in the Supplementary Material, Section 2.

4 Discussion

In this study, we have presented a mathematical

framework able to continuously estimate model parameters

representing the conduction delay and refractory period of

the AV node during 24 h for patients with permanent AF

from ECG data. Trends in the estimated model parameters

were analyzed using a mixed-effects model to study the

circadian variation, where drug-dependent differences

could be seen.

FIGURE 5
Estimated model parameters θ̂(i) (black dots), with corresponding uncertainty estimates PU (red areas), along with the fitted cosine (blue lines)
used for the circadian variation, for one patient during baseline. In each panel, the RMSE is reported as a measure of goodness of fit between θ̂(i) and
the fitted cosine. Left column shows the parameters relating to the minimum conduction delay or refractory period, the middle column the
parameters relating to the maximum prolongation, and the right column to the time constants. For further explanation of the model
parameters, see Table 1.
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The model has previously been shown to be able to represent

measured data in the form of histograms and Poincaré plots for

20-min long segments Karlsson et al. (2021). However,

continuously estimating model parameters representing the

refractory period and conduction delay in the AV node has

previously not been possible. A previous study of the RR interval

series has indicated that one interval delay in the autocorrelation

gives sufficient information to replicate the dynamics of the RR

interval series Karlsson et al. (2021). Hence, the Poincaré plot was

chosen as a basis for the fitness function in order to take the one

interval delay of the RR interval series into account, something

that is not possible with an one-dimensional distribution

representation such as the histogram. Moreover, since the

model describes the impulses from the atria as a stochastic

process, it is not possible to have a beat-to-beat level of detail

in the fitness function, as evident by the RR interval series in

Figure 4.

The choice of segment length N is a trade-off between

robustness and time-resolution. The segment length N was set

to 1000 RR intervals, corresponding to a time duration of 11 :

53 ± 03 : 28 (mm:ss), to capture changes in RR series

characteristics on this time-scale while allowing sufficient

estimation accuracy. As a consequence of the choice of N =

1000, the bin size of 50 m was used for the Poincaré plot-based

error function. A smaller bin size would allow a more detailed

match between model output and data, but would require more

RR intervals.

From Figure 4, it is evident that the model and workflow can

replicate the histogram and Poincaré plot of obtained RR interval

series even for the case with the 95% highest ϵ. This was made

possible by using the problem-specific GA presented in Section

2.4. Evolutionary algorithms - such as GA - and particle swarm

optimization are the most common optimization algorithms

used for solving dynamic optimization problems Yazdani

et al. (2021); Mavrovouniotis et al. (2017).

One of the main challenges with dynamic optimization

problems is the balance between exploration and exploitation,

i.e., between searching for different promising regions of the

search space, or searching for the optimal solutions within an

already promising region. To keep a good level of exploration, the

diversity in the population - usually defined as the average

Euclidean distance between the individuals in the population -

is often monitored. Thus, diversity loss is one of the most critical

challenges Yazdani et al. (2021). A great number of methods have

been developed to address this diversity loss, often based on

randomizing individuals in the population that are too similar to

others. For example, crowding - letting new individuals replace

FIGURE 6
Mean (circles) ± one standard deviation (bars) of the
parameter uncertainty estimates u(p) over all recordings and all
patients, normalized with the parameter ranges r(p). Note that the
model parameters RSP

min and ΔRSP have a lower uncertainty,
indicating a higher impact on the resulting model outcome.

FIGURE 7
The fixed effects with corresponding 95% confidence intervals for the cosinor meanm (top) and cosinor amplitude a (bottom) for each model
parameter (cf. Table 1) and drug. Confidence intervals not overlapping zero indicate significant difference from baseline (p <0.05).

Frontiers in Physiology frontiersin.org09

Karlsson et al. 10.3389/fphys.2022.976526



the most similar individual in the population Kordestani et al.

(2014) - or based on the age of the individuals Das et al. (2013).

For GA, it is also possible to combat diversity loss by regulating

the mutation rate. However, maintaining a good level of

exploration using diversity does not take any information

about the data into account. In contrast, changing the

mutation rate, the number of immigrants, and the number of

generations per segment using ΔP(i) - as was done in this study -

takes information about the data directly into account.

Additionally, the number of immigrants in the proposed GA

ranges from 10–70%, which limits the initialization’s effect on the

overall results. Moreover, the results in Figure 3 indicate that the

proposed problem-specific optimization method yields a better

fit compared to the standard approach when the characteristics of

the data change rapidly. On the other hand, when the

characteristics of the data change slowly, the performance is

similar even though the proposed algorithm is using fewer

generations per segment. The number of RR intervals

simulated with the model for each parameter set, Nsim, was set

to 1500 in the GA based on a trade-off between computational

complexity and variation based on the stochastic input sequence

to the model. A simulation study relating the variation in ϵ and
Nsim which was used to guide the decision is shown in the

Supplementary Material, Section 1. Moreover, the thresholds

for ΔP to determine howmany generations are to be run per data

segment were set so that approximately 55% are run for

1 generation, 30% are run for 2 generations, and the

remaining 15% are run for 3.

A variation of Sobol’s method was used to estimate the

contribution to output variance for each model parameter, which

was related to an increase in error by 10%. This more complex

methodologywas preferred over a one-at-a-time approach due to the

large effect that interaction between model parameters has on the

model output. Note that, unlike more traditional uncertainty

estimates, this is not directly connected to a probability, since the

error function used does not have a proper probabilistic

interpretation. Thus, the uncertainty shall only be interpreted as a

relative measure between the model parameters, between patients,

and between the time of day. For example, it is evident in Figure 5

that the uncertainty for this patient is much lower during nighttime

than daytime.

A linear mixed-effect model based on a cosinor analysis was

used to derive the circadian variations. This method was used to

quantify the circadian variation for the different drugs over the

whole population, as well as the individual response to the drugs.

The focus of this study is on the population effects of the different

drug types in order to understand the drug-dependent

differences in the conduction properties, something that needs

to be understood before the method could be applicable on an

individual level. Even though the focus of this study is on the

population level, the individual responses are still of interest,

especially for future work. For example, to predict individual

responses to different drugs. As shown in Figure 5, the individual

match is not optimal, thus a better tool for capturing the

circadian variation is believed to be needed before robust

analysis on an individual level is feasible. However, the

cosinor analysis is an established model for characterizing

circadian variation and has previously been used on the

RATAF data-set to study heart rate variation Corino et al.

(2015a).

From Table 3, in the parameters RFP
min and ΔRFP, we see a

significantly increased refractory period relative to baseline in the

FP for all four drugs. In addition, a significant increase in the SP

for either RSP
min, or ΔRSP could also be seen for all drugs. This

increase is also visible in the fixed effect parameters αm in

Figure 7, top panel. Electrophysiological studies of the two

calcium channel blockers verapamil and diltiazem as well as

the β-blocker metoprolol have shown that the drugs increase the

refractoriness in the AV node Leboeuf et al. (1989); Talajic et al.

(1992); Rizzon et al. (1978). Moreover, carvedilol has been shown

to increase the effective refractory period in the atria during AF

Kanoupakis et al. (2004). However, to the best of our knowledge,

no studies have been conducted to determine the effect of

carvedilol specifically for the refractory period in the AV

node. Furthermore, conduction properties in the atria

influence the model through the mean arrival rate λ, and thus

affect the estimated parameters.

In addition, from Figure 7 bottom panel, it is shown that

the two β-blockers reduce the circadian variation of the

conduction delay more than the calcium channel blockers,

as evident by ΔDFP and ΔDSP. Stimulation of the β1-receptors

- regulated by the autonomic nervous system - have been

shown to increase the conduction velocity in the AV node

Gordan et al. (2015). Hence, blocking this receptor using β-

blocking drugs might decrease the autonomic nervous system

effect, and thus reduce the circadian variation, yielding the

presented results.

Also seen in Figure 7, the model parameters for the two β-

blockers often behave similarly. However, the model parameters

for the calcium channel blockers verapamil and diltiazem do not

always align. In fact, the values for αm and βm for verapamil are in

several cases - most noticeably for RFP
min for αm and ΔRFP, ΔRSP,

and DFP
min for βm - similar to those of the two β-blockers.

Interestingly, it has previously been proposed that the

pharmacological effects of verapamil may partly be due to

some degree of β-blockade Drici et al. (1993).

Moreover, the large confidence intervals in Figure 7,

where the majority includes zero, are most likely due to

the high inter-patient variability in parameter values. A

confidence interval that includes zero would indicate that

there is no significant difference from baseline. The high

inertia and simplicity of the cosine are other factors in this.

For example, some patients have more than one section with

parameter values close to those during the night - possibly

due to periods of sleep during the day - which a cosine with a

period of 24 h could not capture.
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4.1 Study limitations and future
perspectives

The present model of the AV node accounts for dual pathway

physiology and rate dependent changes in conduction delay and

refractoriness and can simulate retrograde conduction. However,

it is not able to simulate some physiological interesting

phenomena such as AV node re-entry.

A limited range for the model parameters was used to make

the optimization more efficient. The choice of the boundaries was

guided by electrophysiological measurements from previous

clinical studies while keeping a conservative range to not

exclude realistic values. The maximal refractory period for the

model - given as the sum of Rmin and ΔR - lies in the range [150,

1350] ms and was set to include the effective refractory period of

the AV node, which has been reported as 361 ± 57 and 283 ±

48 m for the FP and SP, respectively Natale et al. (1994).

Furthermore, the conduction delay of the whole model is

given by the sum of Dmin and ΔD multiplied by the number

of nodes, which lies in the range [0, 1050] ms. Thus, it includes all

realistic PR intervals, which rarely exceed 200 m Schumacher

et al. (2017). Even though the boundaries were conservatively

chosen, we cannot exclude the possibility that a different choice

would have affected the resulting parameter values. Moreover,

since the parameters might be hard to interpret, combining the

model parameters associated with the same conduction property,

i.e., the two refractory periods and the two conduction delays, to

create more interpretable representations, is interesting.

As mentioned before, high inertia and simplicity of the cosine

are limiting factors for the assessment of circadian variation.

However, the cosinor analysis is an established model for

characterizing circadian variation and is thus important for

clear and interpretable results. Using the estimated uncertainty

to weight the estimated parameters is one possible approach to

make the cosine fit the estimates better. Other methods to capture

the differences in the AV node parameters over time, such as

time-frequency analysis of the estimated parameter trends,

should also be investigated.

It should be noted that the estimated model parameters are not

clinically validated for assessment of AV node refractoriness and

conduction delay.Hence, the clinical significance of the results should

be interpreted with caution. However, the overall findings for the

different drugs on the whole population are, as discussed above, in

accordance with electrophysiological studies. Another limitation is

the sample size of 60 patients in combination with the high inter-

patient variability in parameter values, as seen in the large standard

deviation in Table 3. This makes the population estimates more

uncertain, partly causing the large confidence intervals seen in

Figure 7.

A natural continuation of this work is to analyze the

estimated model parameters during baseline, possible in

combinations with other factors such as age or gender, to

predict the mean heart rate under the influence of the

different drugs. This in turn could be used to assist in

personalized treatment selection during AF.

5 Conclusion

We have presented a framework - including a mathematical

model and a genetic algorithm - which for the first time enables

characterization of the refractory period and the conduction

delay of the AV node during 24 h for patients with

permanent AF, solely based on non-invasive data.

With ECG from AF patients during baseline and under the

influence of different rate control drugs, a mixed-model

framework was used on the estimated model parameters to

compare the impact on circadian variation between drugs.

From this, differences in conduction delay could be identified

between β-blockers and calcium channel blockers, which was

previously unknown.
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