
2

Trisotech Tutorial
INFN50 │Spring ‘23 │Department of Informatics
Odd Steen©

Content
Part I ... 1

Useful Resources ... 1

Step 1: Login to Trisotech Enterprise Suite ... 1

Part II ... 3

Test Grading Workflow and Decisioning .. 3

The Regulation for the Type of Exam We Will Work with Is the Following. 3

The Top-level Workflow ... 3

Step 1: Model the Workflow .. 4

A Short Aside on the Difference Between Process and Workflow, and Black-Boxed
Pools .. 5

Back to Business… .. 6

A Short Aside on Flow Arrows and Message Arrows ... 6

Back to Business… .. 6

A Short Aside on Pools and Lanes... 9

Back to Business… .. 10

A Short Aside on Data Store and Data Object ... 12

Back to Business… .. 13

Managing Sub-processes .. 13

Step 2: Modelling a Sub-process ... 13

Part III .. 25

Modelling the Business Decisions .. 25

Step 1: Adding a DRD to a Business Rule Task.. 25

Step 2: Creating Data Types for the Decisions ... 26

Step 3: Designing the DRD ... 29

Step 4: Does the Student Have Score for All Tasks? .. 30

Step 5: Test Your Decision .. 36

Step 6: Is the Achieved Score for Each Task Greater Than or Equal to the Task Pass
Score? ... 40

Step 7: Test the Decision .. 41

Step 8: Another Way to Do It ... 43

Step 8.1: Yet Another Way to Do It ... 44

Step 9: Are All Test Tasks Done and Passed? ... 45

Step 10: Test Your Decision .. 49

Step 11: What Is the Student’s Grade Calculated from The Achieved Total Score for
the Test? ... 50

Step 11.1: Test the DL .. 52

Step 11.2: Infer a Letter Grade from the Achieved Test Percentage 52

Step 11.3: Test Your Decision ... 57

Step 12: Awarded grade .. 61

Step 13: Test Your Decision .. 63

Step 14: Add Knowledge Sources to the Model .. 66

Part IV .. 67

Step 1: Connect Decision Tasks in BPM with Decisions in DMN 67

Step 2: End ... 69

References .. 70

1

Part I
Useful Resources
You will find several videos and other material at https://www.trisotech.com/webinars/

There is extensive documentation for the Trisotech Enterprise Suite at: https://lund.trisotech.
com/help/

You could start by viewing this recorded webinar: https://www.trisotech.com/how-to-capture-busi-
ness-decisions-using-dmn/

In the modelling environment you also have several resources under the LEARN ribbon.

Workflow

Decision

You could start by viewing the “DMN Free Intro” with Bruce Silver. Of some reason it wouldn’t
start in FF so I used Chrome to watch it.

It might come in handy to have a short list of all FEEL functions in Trisotech: https://www.
trisotech.com/feel-functions/

Step 1: Login to Trisotech Enterprise Suite
When you have received the confirmation email go to the login page as shown in the picture
below.

https://www.trisotech.com/webinars/
https://www.trisotech.com/how-to-capture-business-decisions-using-dmn/
https://www.trisotech.com/how-to-capture-business-decisions-using-dmn/

2

When you have successfully logged in, you should have something like the picture below. Since
I have done this earlier, I have already models under my place. You should however at least have
EU-Rent and Trisotech Examples.

3

Part II
Test Grading Workflow and Decisioning
In this tutorial you will model one workflow and one decision model for managing students’
grades on one type of exam.

The Regulation for the Type of Exam We Will Work with Is the Following.
A written exam includes one or more tasks where each task has a max score and a pass score.
The exam has a max score which is the sum of the tasks’ max scores. The grade scale for the test
is UA.

Test max score = sum(task max scores)

For each task the following applies:

0 ≤ Task pass score ≤ Task max score

If Task score < Task pass score then task = fail (U)

To calculate the grade of the exam the following LUSEM policy applies:

If total score % < 50 then the grade is U

If total score % [50..100] and all tasks are passed
then the grade is calculated according to the
policy (53 = grade E, etc.)

If total score % [50..100] and at least one task is failed
then the grade is U

The Top-level Workflow
The overarching (top-level) workflow for managing the grading of students is shown below.

The real correction and grading work is not as prescribed and structured as in this tutorial. There
is for instance no requirement that the ‘Teacher’s should use a special system to manage grades
before they are entered into Ladok. It could be done on paper, using spreadsheet or word pro-
cessor, or perhaps sometimes even directly into Ladok. It would probably be better to model this
using Case Management Model and Notation (CMMN) instead, but the tight integration between
BPMN and DMN suggests to use BPMN.

Ladok is a pure record keeping system and not a work support system. Normally, anything below
a test like an assignment or item in an exam are very hard to handle in Ladok. There is also no
automation of grading built on rules in Ladok, meaning e.g., that there is no automation for cal-
culating grade B on a test using a grade model, achieved score, and max test score. So, we could
enter 75% of test max score and grade D when it should be B.

This tutorial therefore assumes that a special system is used and if you are not authorized to use
it the process terminates. And that is quite simplified!

Normally, a test should be corrected and graded within 15 working days.

Test Grade Scale
UA

A: 85-100%

B: 75-84%

C: 65-74%

D: 55-64%

E: 50-54%

U: 0-49%

4

Step 1: Model the Workflow
First, you need to model this workflow in Trisotech Workflow Modeler.

On the Lund University Digital Enterprise Suite page, you click the on the matrix-like symbol to
the right:

5

This will open the palette of modelling tools, settings, help, etc. Select Workflow Modeler.

This should open a new tab for you with a blank canvas to the right and a tool palette to the left.
Go to the File menu and do ‘Save as…’ and name the diagram “Test grading super process”.
Select by holding down the left mouse button and drag the Pool symbol on to the canvas. Double-
click in the name field of the pool and name it “Exam Correction and Grading Workflow”.

A Short Aside on the Difference Between Process and Workflow, and Black-Boxed Pools
Since we are designing the inner workings of a workflow and in fact are prescribing how this work
should be carried out with actors, tasks, events, etc. the pool will subsequentially be filled with
such shapes. For this kind of internal and specified workflow the name should reflect that the
pool is a process or workflow.

Other pools that are external or black-boxed in relation to this process or workflow should not
prescribe the inner workings. Such a pool is empty or black-boxed and is always an external actor
and the name of the pool should reflect that it is an actor and not a workflow.

Hence, workflows that we both can and should detail and prescribe because they are internal and
in focus of our design and development effort, belong in pools named to reflect the work. Exter-
nal workflows that we shouldn’t, couldn’t, or are uninterested in detailing and prescribing their
inner workings, are always actors and the name should reflect that.

One way to separate a workflow from a process is to use the Zachman Framework for EA (ZEF)
where a process, i.e., several work tasks in a directed flow, is in the How column (column two)
whereas a workflow, i.e., several work tasks in set order that are carried out by actors, is in in the
Who column (column four). It could be discussed if a BPMN model that includes actors (Who)
is a composite of How and Who, or a primitive model in Who. Anyway, a process pure should
not consider or design data (What – column one) actors (Who – column four), geography
(Where – column three), or reason (Why – column six). It could consume and produce data
(C1) and could consider timing (C5) as at least start and end events, but should thus not consider
who does what, where does it happen, why does it happen, and how should the persistent data
be structured.

The terminology in BPMN is not that clear. I would still consider a process with actors to be a
workflow with lanes for actors and roles. Without any lanes for actors and roles it could be con-
sidered a business process. But in that case, I would find it strange with tasks that signifies an actor

6

(Manual, User, Service, etc.) in a process. According to me should a proper business process not
model and name tasks that are tied to a needed actor or role.

Back to Business…
Then select and drag the Start symbol on to the canvas. Right-click the circle symbol and change
the shape into a Message start.

Double-click the start symbol and enter “Received message about exams to correct” as the name.

Since this process starts with a received message, the message must be received from somewhere
outside the process. Hence, the origin of the message is an external actor, i.e., a black-boxed actor
in the form of a pool.

I use colours in my diagrams to more easily see what is what. To colour the shapes, you select
the artifact in the diagram and use Fill on the HOME tab.

A Short Aside on Flow Arrows and Message Arrows
BPMN is not strict in its syntax and many things can be done in many ways. One thing, however,
is quite strict in BPMN: There cannot be any sequence arrows between pools since pools com-
municate through messages. Likewise, there cannot be any messages flows inside pools since the
token of the sequence is the communication.

Back to Business…
The message received in the workflow must therefore emanate from an external actor that sends
the message to our workflow. As you just learned is an external actor a black-boxed pool. We
thus need to add that to our diagram.

7

It is the department secretary at the reception desk that is handed the pack of exams by the
invigilator. She/He emails the ‘Teacher’ in question that exams have arrived and are ready to be
picked up for correction and grading.

Connect a message arrow from the external actor edge going to the message start event in the
workflow. Right-click the message arrow and select Initiating Message under Change Shape.

Select the newly created Start event and click on the blue arrow pointing to the right and select
the task symbol from the pop-up menu.

Double-click the Task and enter “Pick up the exams from the department reception” as name.
Change the task shape into a Manual task:

8

The Manual task is explained as this in the BPMN 2.0.2 spec: “A Manual Task is a Task that is
expected to be performed without the aid of any business process execution engine or any appli-
cation.” (Object Management Group, 2013, p. 161). This means that the ‘Teacher’ in question
strolls over to the reception desk and picks up the pack of exams to correct and grade.

If you want to, you can select the shapes and fill them with colour using the Fill function in the
top menu.

The workflow model should now look like this:

9

One thing that is missing in the workflow is the ‘Teacher’ actor. That actor is the one picking up
the exams from the department reception, correcting and grading the exams, entering the grades
into the Student Grade System, sending the list of grades to the secretary for registration in Ladok,
and mailing/handing the corrected exams to the exam archive/Reception desk.

A Short Aside on Pools and Lanes
In BPMN an actor is modelled using a lane inside a pool on top-level and without any pool on
sub-level. A white-box pool contains the end-to-end process/workflow and is named that way. A
lane inside the pool is an actor or role (not an individual!) performing tasks in the process
flow/workflow.

A black-box pool represents an external actor and how they should work is not our task to specify
or is out of scope in the current design situation. They should always be named according to the
actor/role and should never have any shapes inside.

Since actors/roles represent details of the work, it might be better to use them in child (sub-) levels
and only have the pool at the parent (top-level). Since a child process is part of the parent pool it
should not have any pool of its own. If the parent process’s pool has lanes, then the child process
may only expand the lane it resides in. It may not suddenly cross lanes or add lanes that are not
considered subsumed under the lane of the parent process pool.

10

Since the hierarchy of parent and child processes/workflows represent drill down and up in the
models and the design problem, lanes may be added to the child level to specify more detail than
on the parent level.

However, this must be consistent between parent and child levels. If the parent level for instance
has a ‘Teacher’ lane with a sub-process in it, that sub-process may not add other lanes that are
not specialisations of ‘Teacher’. Proper could be ‘Bachelor’ and ‘Master’ ‘Teacher’ or ‘Teacher’
and ‘Course Director’ lanes, but probably not ‘Teacher’ and ‘Secretary’ lanes, unless you consider
a secretary to be a kind of ‘Teacher’ (which I don’t).

Unless necessary and a good design decision, I would not have any lanes at the top level. In
addition, it might be complicated to have a mix of atomic tasks and sub-processes at the top level
and use lanes, at least if the tasks are inconsistent from an actor perspective. If they are in the
same lane the sub-process may not add lanes that are not consistent with the atomic task at the
top level.

The question is also whether we should have pools in child diagrams to, for instance, model sub-
processes. It would seem natural to make a pool in a sub-process and name that pool after the
sub-process. However, a pool signifies an end-to-end process and since a sub-process is part of
that it cannot itself be an end-to-end process too – you should thus not have pools in pools. There
are other reasons too that you can read about in e.g. Silver (2011).

Back to Business…
It seems better to avoid lanes on the top-level diagram and have the same granularity for all the
tasks of the top-level process/workflow. Actors and roles may be specified in sub-processes using
lanes.

However, three external actors could be added to the diagram as black-boxed pools: The ‘De-
partment secretary’, the ‘Invigilator’ that delivers the pack of exams to the department secretary,
and the ‘Exam Reception’ that stores the corrected exams and hand them to the students:

They communicate with each other and the end-to-end process using message flows.

To continue modelling the top-level process we will add tasks for the ‘Teacher’: Pick up the
exams from the department deception desk, log in to the Student Grade System which handles
grades on a granular level under Ladok and uses business rules to calculate grades, correct and
grade the exams, use the Student Grade System to store and render grades, produce a list of
grades and send it to the secretary for registration in Ladok, and finally mail/hand the exams to
the exam desk/archive.

11

To avoid the situation above of atomic and sub-processes at the same level is it better to treat all
tasks that involves some actor (human or system) at the top-level as sub-processes. In this case,
there are two types of sub-processes: Preparation and Correction, and Grading. But we need a
task after the Preparation sub-process that checks what type of test is handled, since that controls
the procedure and rules of the correction. This task is in this case a script task carried out by the
Student Grade System.

We had reached the model in the picture below but understand, based on the discussion above,
that instead of atomic tasks followed by sub-processes, we should only have tasks of the same type
on the top-level diagram without lanes.

Hence, we don’t continue to model like this and instead move the “Pick up…” task to a sub-
process. Therefore, we add a task after the “Received message…” message start event, name it
“Prepare for correction and grading”, and change it into a sub-process.

12

Click the “+” symbol of the sub-process and model the sub-process like this:

Here I added a catching Intermediate Event to the edge of the “Log in…” tasks to catch an error
generated by the system when a user tries to login but is not authorized to use the system. It is on
the edge of the task since we must not wait until the task is completed but need to catch the error
during the execution of the task. If the error is caught, it leads the flow to an End event, and we
need to process that end state on the parent level.

A Short Aside on Data Store and Data Object
The disk pack shape in the diagram above denotes a persistent data store that the workflow can
perform CRUD (Create, Read, Update, Delete) operations on (depending on access rights). This
is probably a centralized database that is not tailored to the workflow, but to many different pro-
cesses and workflows. It could be a datastore for an ERP or a CRM. The datastore is never
designed in BPMN. The architecture of the data belongs to the What (column one) in ZEF and
is often designed in EER or UML using a data design tool such as DB-Main or semantic model-
ling or ORM modelling in a tool like System Architect. It is also possible to devise such a model
in Semantics of Business Vocabulary and Rules (SBVR) with a tool that supports that.

The dog-eared paper shape denotes a data object. Data objects are never persistent and only live
during the duration of the session or workflow instance. As soon as the session or instance reaches
its end the data objects are killed and ready for garbage collection. If data of a data object should
be persisted, a service or script task in the workflow is needed to do that work.

Data objects don’t need to be in a 1:1 relationship with entities in a data model. They are more
likely to only hold data that is needed by the workflow since holding and moving redundant data
is poor from a data quality perspective and should be avoided. It could also be that a data object
is the combination of several data entities and sources through e.g., views with joins and unions.
You will discover further on that the workflow is responsible for providing the decision tasks with
the needed data. It could therefore be an idea to model the required data in a model or to detail
and explain the data objects in a dictionary.

13

Back to Business…
Next is Sub-processes.

Managing Sub-processes
There are four different types of tests with different rules for how a grade is calculated based on
a student’s performance and different data to enter – score, grade, etc. To manage this, the flow
needs to branch based on the type of the test.

Each of the four sequences after the “What is the type of the test?” gateway is too complex to
show in the same diagram without making it cluttered and hard to read. Therefore, we will intro-
duce four Sub-processes but for the tutorial you only need to develop one of them.

Step 2: Modelling a Sub-process
To add a Sub-process diagram, click the “+” sign in the task. In this case you want to model the
Sub-process for “Correct written test and register results” so you click the sign in that task. You
should now get a new browser tab with an empty diagram canvas.

To move up one level, click the link (Page 1 in this case) in the bottom-left of the screen:

Select the “What is the type of the test?” gateway in the model and add a new task. Name it
“Correct written test and register results”. Iterate this three times and name the tasks respectively

14

“Correct test with assignments and register results”, “Correct plain test and register results”, and
“Correct score test and register results”. Order the layout of the model so it looks like the model
in the picture below.

Now you need to turn the new tasks into collapsed sub-processes. You do that by right clicking
each task and select Collapsed Sub-process in the contextual menu.

After this you must change the Sub-processes into parallel ones:

15

Since the policy says that a test should normally be corrected and graded within 15 working days,
we need to show that somehow in the model. You do that by dragging an Intermediate Event
shape from the palette and attach that to the edge of the first collapsed sub-process. If it can be
attached to the edge of the sub-process the edge will turn thick green. When done change the
colour to orange and add “15 workdays” as name/label.

Do this for all four tasks. You should then have the following model:

16

Continue adding symbols to the model so it looks like this:

Since we have an intermediate Timer event on each correction and grading sub-process, we need
to take care of the flows out of them. The timer event means that the subprocess starts and con-
tinues until done, unless the 15 workdays timer is triggered: That is, a timer is started when the
flow token reaches the sub-process and if 15 workdays are used before the flow continues out the
sub-process, the timer will “ring” and the flow will be directed out of the timer event and not the
sub-process itself. Hence, we need to add a flow out from the timers to a task that takes care of
the activity flowing the timer event. So, let’s add that task and simply let it notify the teacher about
the delay and flow back to the Prepare… sub-process:

17

Now we need to model the sub-processes, but in this tutorial, it suffices to model the “Correct
written test and register results”. This sub-process will eventually use Business Rule tasks for au-
tomatic and rule-based grade calculations based on each student’s achievement and details of the
test.

Click on the “+” symbol in the “Correct written test and register results” to open a new empty
diagram to model the sub-process.

Begin by adding two lanes (no pool!) and name them ‘Student Grade System’ and ‘Teacher’
respectively. Drag a Start Event and place it to the left in the ‘Student Grade System’ lane.

The first work task that needs to be performed is to get the tasks or items in the test, i.e., what are
the questions of the test? We need to know this to decide whether a particular student has an-
swered or done each task in the test and if the student has passed all mandatory tasks. We also
need to know the max score of each task since the sum of them entails the max score of the whole
test. That max score (normally 100) is used to derive the grade given the percentage of the max
score as in the table on page 5: 75 out of 100 means 75% and a B while 75 out of 120 means
62.5% and a D.

18

Add a new task in the ‘Teacher’ lane and name it “Correct test and enter written test tasks scores”.
Change it into a User task:

19

And then into a looping task:

The idea is that the user of the grading system, i.e., a ‘Teacher’, corrects each test in the manner
he or she wants to (most often Q1 for each student, then Q2… etc.) On a form in the system the
‘Teacher’ registers each student’s score for each task. Whenever he or she wants to save, save
and close (i.e., “Done”), or cancel, the person clicks on the respective button in the dialog. The
system then applies all the necessary controls, calculates the student’s test grade based on the
applicable business rules, and saves the data to the database. If the ‘Teacher’ clicked “Save” he
or she just continues with the form open. If the ‘Teacher’ clicked “Done” the system runs the
same procedures as for “Save” but closes the dialog when done. If the ‘Teacher’ clicked “Cancel”
the dialog is closed without processing any data (you should have a warning here about unsaved
work and if you want to save it first, which, if you chose to save first, tell the system to do the same
as for “Done”. We skip that here though.)

Since this click of a button could happen anytime the form is up and in focus, it is not possible
to wait until the “Correct…” task is done before handling the UI event. Hence, we cannot have a
sequence arrow to some event that takes care of the UI event, since that would mean that the full
task must be done before we reach that event. Instead, we need to throw (or maybe catch) that
event within the ongoing task whenever it happens. To do so we need to add an event to the edge

20

of the task by dragging an event shape and place it on the task shape’s edge. The event will be an
intermediate Catching Signal event:

We need to keep track of the type of interrupt to handle the different states of “Save”, “Done”,
and “Cancel” since this affects the sequence of the workflow.

The “Correct…” task must produce two data objects: One with the students and their score per
test task (so programmatically probably a collection of student result objects containing another
collection of task score objects) and one to keep track of the interrupt type.

Having done this, we must connect the “Get test…” task in the ‘Student Grade System’ lane to
the “Correct…” task in the ‘Teacher’ lane.

21

The workflow has now prepared data objects that could be used to calculate test grades for the
students and store them in the database. The next step in the flow will be to react to the interrupt
event and, depending on the type of interrupt, process the produced data.

Since we have a collection of data the Student Grade System needs to process each student and
his or her results iteratively in a loop. So, first add a task to the ‘Student Grade System’ lane and
change it into a Regular and Expanded Sub-process and set its attributes to Standard Loop. Add
a sequence flow from the “Type of interrupt?” gateway to the new sub-process. Finally, add an
input data object named “List of students' results”. You should have a model looking like the one
below.

22

Add a start event inside the sub-process and name it “New single result”. Then add a task named
“Compose collection of the student's task scores and test task details” and another task named
“Decide test grade with total score”. The first task will compose the needed data objects for the
subsequent decision service, and it should probably be a Script task. The second task will execute
a decision service to receive the test grade based on the scores on the task in the test per student.
This test grade will be stored as the student’s grade in the system.

For this to work, the new task must be changed into a Business Rule task:

23

Add all the necessary data input and output objects that are needed to calculate the test grade per
student. In addition, add annotations to explain the content in the data objects.

I like to change the colour of BR tasks in BPMN and decisions in DMN diagrams to light purple
to easily separate them from other tasks in a BPMN diagram and other shapes in a DMN dia-
gram.

Each time the BR task is done it will produce a test grade as a letter (e.g., “A”) and a text (e.g.,
“Excellent”). This grade needs to be stored properly in the database. We therefore need another
task after the BR task that composes an output data object of a result list with a collection of: Test
id, Student id, Grade, ‘Teacher’ signature, Task Scores, and result date. This task could probably
be a Script task.

The expanded sub-process will loop until there are no more results to process and then continue
to a Service task that uses the produced result list to create and execute proper update commands
for the database.

After this we need to check the interrupt status and branch back (“Save”) to the “Correct…” task
or to the end event (“Done”).

Finally, you should have the following complete model for the “Correct written test and register
results” sub-process:

24

25

Part III
Modelling the Business Decisions
Now you should have workflow models that show the flow of registering results, calculating test
grades based on those results, and storing them in the student grade system.

In the diagram you now have one Business rule task that is responsible for generating test results
based on input and decision logic. The very idea of Business Decision Management is that mod-
els and logic for decision making must be kept separate from process models, workflow models,
data models, and so on. We should thus not try and model the required decisions using BPMN.
Instead, we should use the DMN standard and design DRDs and DL that take care of the deci-
sion making needed.

The order of modelling is seldom as sequential as it is portrayed here. Probably you would model
workflows and decisions in parallel. If we are working with a decision-centric or rules-rich work-
flow/process, we should start in the decision end. As it happened, this time in this tutorial it was
easier to start with workflow modelling.

Step 1: Adding a DRD to a Business Rule Task
In this case, you will design the decisions requirements and decision logic for the Business rule
task “Decide written test grade with total score and pass scores”.

To add a decision diagram to control the decision in the workflow task, go to your Lund Digital
Enterprise Suit tab of your browser and click the matrix like symbol to the right and select Deci-
sion Modeler:

26

This will open a new tab with an empty diagram canvas to the right and the DMN 1.2 palette to
the left. Name the diagram “Test Grade”. You should now have a graphical editor looking like
this:

Before we do any modelling of decision, input data, etc. we need to create the necessary data
types that the decision making will need.

Step 2: Creating Data Types for the Decisions
A DRD models decisions that take input and use that to produce output. Input can be either data
or the output from a preceding decision. Decision logic may be designed, and it details on what
grounds a certain output is generated from input.

The BR task in the workflow inputs two data objects to the decision service: Test Gradescale and
Scores. Scores is a collection of Score objects where each score object holds the pass and max
score for the test task and the student’s achieved score for the test task.

27

To decide on the student’s test grade for this kind of test means to check if the student has results
for all tasks in the test and that the score per task is at least equal to passScore. If true, the grade
is calculated as percentage of the sum of the student’s task scores

In your DMN tab click Data Type. This will open a new dialogue where you specify the new data
type.

Here you click Add.

Write “Scores” in the Name field. Then click on the little link symbol to the right and in the pop-
up menu select Structure. Turn “Scores” into a Collection.

28

In the Name field of the first item write “Score”. Also turn that into a Structure and specify
“Score” as a collection.

Add members to the “Score” structure and type them as Number:

Continue until you have this:

29

Step 3: Designing the DRD
To decide on the final test grade for a student we first need to know if all the tasks of the test are
passed by the student. Since this is a written test, we also need to calculate the grade based on the
percentage of the maximum test score achieved by the student. Hence, the decision on final test
grade is preceded by the decision on the student having passed all test tasks and the decision on
which grade the student has achieved based on the sum of task scores:

1. Test grade
1.1. Are all test tasks passed?
1.2. What is the grade given the total score percent?

OK, but to decide whether all tasks are passed we must decide – per task – if the achieved task
score is greater than or equal to the task pass score. In addition, if a student doesn’t have scores
for all tasks included in the test, he or she has not passed the test. We then have:

1. Test grade
1.1. Are all test tasks passed?

1.1.1. Is the achieved score for each task greater than or equal to the task pass score?
1.1.2. Does the student have score for all tasks?

1.2. What is the student’s grade given his or her total score percent?

To decide the grade based on achieved total score means that we need to know the sum of the
achieved scores and compare that to the maximum test score to render a percentage. This per-
centage is the ground for deciding on the grade. We then have:

1. Test grade
1.1. Are all test tasks passed?

1.1.1. Is the achieved score for each task greater than or equal to the task pass score?
1.1.2. Does the student have score for all tasks?

1.2. What is the student’s grade given his or her total score percent?
1.2.1. What is the sum of the student’s scores for the tasks?
1.2.2. How many percent of the test maximum score is the sum of the student’s scores

for the tasks?
1.2.3. What grade matches that sum?

30

To decide whether an achieved task score is greater than or equal to or below the task pass score,
we must calculate that difference. If task score – pass score < 0 then the task is failed, otherwise
it is passed. We then have:

1. Test grade
1.1. Are all test tasks passed?

1.1.1. Is the achieved score for each task greater than or equal to the task pass score?
1.1.1.1. What is the student’s score on a task?
1.1.1.2. Is that score minus the task pass score below zero or not?

1.1.2. Does the student have score for all tasks?
1.2. What is the student’s grade given his or her total score percent?

1.2.1. What is the sum of the student’s scores for the tasks?
1.2.4. How many percent of the test maximum score is the sum of the student’s scores

for the tasks?
1.2.2. What grade matches that sum?

We also need to know if the student has results for all tasks in the test. In this case of a written
exam, not answering a question would mean 0 points for that task. If you hand in a blank written
exam, it will thus mean that you will score 0 on all included tasks. Not handing in a written exam
would mean no scores at all.

But when we have a test of scored assignments, not handing in one of them does not mean 0 as
score. That instead means that you will have no score for that assignment. To handle that in an
IS could be to set the score to -1 to signal lack of result (since the value needs to be numeric)

Finally, we then have:

1. Test grade
1.1. Are all test tasks passed?

1.1.1. Is the achieved score for each task greater than or equal to the task pass score?
1.2.2.1. What is the student’s score on a task?
1.2.2.2. Is that score minus the task pass score below zero or not?

1.1.2. Does the student have score for all tasks?
1.1.2.1. Is the score greater than or equal to zero?

1.2. What is the student’s grade given his or her total score percent?
1.2.1. What is the sum of the student’s scores for the tasks?
1.2.2. How many percent of the test maximum score is the sum of the student’s scores

for the tasks?
1.2.3. What grade matches that sum?

Step 4: Does the Student Have Score for All Tasks?
Let us begin with the simple question of item 1.1.2 in the list above. To decide on this, we need
to iterate through the collection of the student’s task scores and test each score to see whether it
is greater than or equal to 0.

We need one data input: A list of the “Scores” objects according to the data model and dictionary.
Drag an Input Data symbol onto the canvas, change its colour to light yellow and change its Input
Data Type…

31

Click the little link symbol far right of the Type: field:

In the pop-up menu select Existing Type.

32

Select your previously specified data type “Scores”.

Close the dialogue and you should have the following on your canvas:

The three vertical bars denotes that the input data is in the form of a collection. Use the north
arrow to add a decision to the model.

Change its colour into purple and name it “Are all tasks done?” That naming convention will tell
you that the decision outcome is either yes or no and hence a Boolean output.

33

Now we will add the decision logic to the decision, i.e., the precise way to get to the outcome
from the input data. But before that we will describe and document the question this decision will
answer and the all the possible answers.

34

Now we will add the decision logic for the decision. Right-click the purple decision shape in your
model, expand Attributes and select Decision Logic…

35

You should get this DL modeler:

The logic we want to specify is whether a student has results for all the tasks included in the test.
To do this we need to know the number of tasks in the test and the number of tasks the student
has done -- “passScore” per task in the student’s result is greater than or equal to 0 (i.e., greater
than -1 which denotes absence of a result). When we have these counts, we can check the follow-
ing:

If

The number of test tasks > number of student result tasks where achievedScore > 0

Then

 All tasks are done? = false

Else

 All tasks are done? = true

But I couldn’t make this work in FEEL. So, I had to revert to another solution.

There are several list operations in FEEL that possibly could be used to work with the list of
scores. Two of these are all(list) and any(list). The all(list) function returns false if any element in
the list is false, true if all elements are true, and null otherwise. The any(list) function returns true
if any element is true, false if all elements are false, and null otherwise.

First of all we need to establish whether the scores collection contains any score element where
score.achievedScore is below zero (< 0). To do this we use the for…in…return statement, which
is used to iterate (for) over a collection (in) and return a new list fulfilling the conditions in the
return part. We can then test the existence of true/false in the new list with all(list) or any(list).

Thus, we iterate over “Score Collection.Score” and pick each “score item” in the list and return
a new list “Undone tasks” where “score item.achievedScore” is less than zero.

The next test will be to use a conditional expression that checks whether “Undone tasks” contains
any true value, which means that at least one tasks is undone. If so, “All tasks are done” is false,
or else its true.

36

Let’s begin with the iteration over the list of score elements. Create a new Context. Name it “Un-
done tasks”.

In the new Context add an Iteration.

Enter Literal Expressions in each of the Iterator statement’s parts. Use auto completion for the
variables.

Now we need a test to find out if the “Undone tasks” list contains any true element. Click on the
yellow +-sign to add a new row below. Name the variable “Are all tasks done?” and select Condi-
tional.

Use Literal Expressions to specify the logic in the Conditional expression. Set the output to be
“Are all tasks done?”

Step 5: Test Your Decision
You should now have a first complete decision!

37

Now we will first see if it contains any errors. Click on Validate in the DMN ribbon.

You should get this message at the bottom of the screen:

So, we have no formal errors. Now we will test the DL to see if it works the way it should. Go to
Execution and select Test.

Click on the +-sign under “Score” to add an element to the collection.

38

Enter values for the fields of “Score” in “Score Collection”:

Click Submit to run the logic. The output should be this:

39

You could Save this test for later tests, so you don’t need to construct the same test data repeat-
edly.

Run a new test with “-1” for “achievedScore” which means that there is no achievedScore for this
task.

The result should be:

40

Great! This seems to work as intended. Save the test as “Test case 2: 25,50,-1”.

Step 6: Is the Achieved Score for Each Task Greater Than or Equal to the Task Pass Score?
The next step would be to check whether the student has passed all the tasks he or she has results
on. Again, it is an iteration over the collection of the student’s results and a comparison with the
tasks of the test. In this case, the comparison is between the student’s scores on tasks and the pass
limit of each task. If the score is below the pass limit the task is failed.

Add a new decision shape from the data input and name it “Are all task passed?”

Specify its DL like this:

41

Step 7: Test the Decision
First do Validate to see if there are any formal errors. To test the DL, use the same input for
testing this DL as the previous DL above. Go to your list of test cases on the Decision Test page
and pick your intended test:

Load it. Hit Submit.

42

Correctly “All tasks are passed?” is true as is “Are all tasks done?”. It works.

Load the “Test case 2: 25,50,-1”:

43

That worked too.

Let’s try [[25,50,30],[25,50,20]]. That should give “true” and “false”.

Let’s try [[25,50,30],[25,50,25],[25,50,-1]]. That should give “false” and “true”.

Step 8: Another Way to Do It
There are many ways to set up FEEL expressions to do the same thing. The two solutions above
are clear and easy to understand, but maybe a bit long and verbose for quite simple decisions.

You will achieve the same logic by changing the FEEL expressions like this:

44

And this:

You do this by creating a Context with Literal Expression per decision that filters out elements in
“Score Collection.Score” that fulfil the expression inside the “[]” part and create a new list with
those elements. In the output the number of elements in this new list is compared to the number
of elements in the original score collection list. If the numbers are equal the result is “true” oth-
erwise “false”. This is a more compact way to do the same things as above, but perhaps a tad
more “programming”.

Step 8.1: Yet Another Way to Do It
The most compact way to do it is to use the every {range variable} in {list expression} satisfies
{Boolean expression with range variable} function as Literal Expression. The “element” evaluates
to a “Score” object in the “Score Collection” and thus has the “achievedScore”, “maxScore”, and
“passScore” attributes.

To decide if all tasks are done, we therefore check the “Score Collection” list that every “Score”
object in the list has “achievedScore” greater than -1. If so, the result is “true”, else it is “false”.

To decide if all tasks are passed, we do the similar: Every “Score” object in the list must have
“achievedScore” which is greater than or equal to “passScore”. If so, the result is “true”, else it is
“false”.

45

Step 9: Are All Test Tasks Done and Passed?
Now we can set up the decision and DL for deciding if all the tasks are done and all the done
tasks are passed. Add a new decision to your DRD and name it “Are all tasks done and passed?”

We have three possible outcomes from this decision. Fill in the Q&A of the decision.

46

From the Answer of the Q&A we see that we need an enumeration as output of the decision. We
will specify that enumeration for the output column of the Decision Table that will be the DL of
this decision.

Click on “Any” in the header of “Are all tasks done and passed?” to open the header type editor.

47

Change the Type to “Text” and set the Constraints to “Enumeration”.

Add the three output options as strings of the enumeration.

48

Close the dialogue and you should get this:

Specify the first business rule in row one by clicking in the cells and selecting the right alternatives
until you have this:

49

Step 10: Test Your Decision
Use the same input as above and you should get:

[25,50,30]

[[25,50,30],[25,50,20]]

50

[[25,50,30],[25,50,25],[25,50,-1]]

Step 11: What Is the Student’s Grade Calculated from The Achieved Total Score for the
Test?
It’s not very likely that a result is graded “complete, pass” or the like. Rather, a grade according
to a set policy is calculated/inferred from the score of a test. The first decision is thus to generate
a letter grade from a score.

Drag a decision shape onto your canvas, set its colour to purple, and name it “Grade from score
percentage”.

51

Specify the Q&A of the decision.

52

The math is quite simple:

round up(100 * (Total achieved score of the test / Total score of the test))

Add the DL to the decision as three Contexts.

Step 11.1: Test the DL
Use [25,50,30]. The achieved test percentage is 60.

Step 11.2: Infer a Letter Grade from the Achieved Test Percentage
Here we could create a new decision that infers the grade from the achieved test percentage
calculated by the preceding decision. But we will not do that. Instead, we will edit the DL above
to decide on the letter grade with the contexts already in the DL. First, we need to add the “Grade
Scale” input to the decision and change the name of the decision to reflect what is decided. We
don’t need to update the Q&A to match the added logic, since we obviously wanted this decision
from the start.

Click on the DL symbol in the upper left corner of the decision and add a new row named
“Achieved test grade”. Specify the DL as a Decision Table. Change the final output from
“Achieved test percentage” to “Achieved test grade”

53

You should now have the following:

Set up the decision table to look like this:

54

Click the Text attribute of the “Grade Scale” header and set its Constraints to “Enumeration”

Add the enum values and close the dialogue.

55

Edit the Decision Table to look like in the picture on the page 59. Before you go there, merge
input cells with equal content. Select the cells to be merged and merge them:

The cells will be merged, and it increases the readability.

56

It is probably also easier to read if the merged cells are to the left, so put the mouse over the
header of the column, press down the left mouse button, and drag the column to the far left. The
“Achieved test percentage” and the “Grade Scale” columns should swap places.

57

Save your model.

Step 11.3: Test Your Decision
Use the same test data as above and “UA” as grade scale.

[25,50,30]. The achieved test percentage is 60.

58

It worked as intended. It’s probably a good idea to output the score percentage too, so let’s edit
the decision table and add a new output “Achieved score percentage” as in the next picture.

59

Run again [25,50,30]. The achieved test percentage is 60.

60

Try with [[25,50,30],[25,50,20]]

Try with [[25,50,30],[25,50,25],[25,50,-1]]

61

Test other values to see what happens.

As you can see are the two decisions not integrated. You are not supposed to get e.g., grade “E”
when another decision is “complete, fail”. Hence, we need to change our model to work the right
way.

Step 12: Awarded grade
In this step you will complete the decision model.

Drag a Decision symbol from the palette and place it at the top of the present model. Name it
“Awarded Grade” and change its colour to purple. Connect it to the “Are all tasks done and
passed?” and “Achieved test grade” decisions. These decisions will precede the “Awarded
Grade” decision. Specify the Q&A of the decision.

62

Open the dialog for decision logic of the “Awarded Grade” decision. Edit the Decision Table to
look like in the picture below.

63

Step 13: Test Your Decision
Now the decision model is complete!

Test the model in Execution, Test mode using the same values as above.

It seems to work!

Change the score on one of the tasks to be below the pass limit score:
[[25,50,30],[25,50,25],[25,50,20]]

64

That did not work! You should not get “complete, fail” and “E” at the same time. The error is in
row two, column two of the decision table. “Are all tasks done and passed?” results in “complete,
fail” while “Achieved test grade” in “Awarded grade” results in “E”.

The “Achieved test grade” decision only derives a letter grade based on the score percentage and
grade scale without caring about whether all required tasks are passed. This is tested in another
branch of the DRD.

The upside of this is that we can use the “Achieved test grade” decision as a general decision for
all test with total score in other workflows. It could possibly be turned into a BKM. The downside
is that we don’t only get the “Achieved score percentage” from “Achieved test grade” but all
outputs. Maybe this can be controlled somehow, but I couldn’t find out how.

Given this, we need to change the top-level decision logic. To make the output clearer we also
add an “Explanation” output.

65

When we run the same test as above, we get the following:

That works fine!

Try with [[25,50,30],[25,50,25],[25,50,-1]]

Works as it should!

Try with [[25,50,30],[25,50,25],[25,50,35]]

66

Try other different combination of input data and vary the number of score triplets, their scores,
and the grade scales.

Step 14: Add Knowledge Sources to the Model
The decisions in the model are based on policies at the school and department. One very nice
and important feature of the DMN standard is that this can be recorded in the DRD itself. It is
called Knowledge Source.

Drag two Knowledge Source symbols onto the canvas.

One should be to the left and be named “INF Grading Policy“. The other to the right and be
named “LUSEM Grading Policy”.

Change the colour of the Knowledge Source symbols to light green.

Connect the “INF Grading Policy“ knowledge source to both the “Awarded grade” and the “Are
all tasks passed?” decisions.

Connect the “LUSEM Grading Policy” knowledge source to the “Achieved test grade” decision.

When you are done your model should look like in the picture below:

67

Part IV
Finally, we need to connect our decisions to the workflow we modelled before.

The workflow should look like in the picture below.

Step 1: Connect Decision Tasks in BPM with Decisions in DMN
If you click on the table-like symbol in the top left corner of the “Decide written test grade with
total score” rules task a pop-up window will show which diagram that is linked to the task.

68

Navigate to your top-level decision for awarding a grade on at test with max score and pass scores.
Select that decision and click Close. As you can see did the name of the rules task change to the
name of the decision you linked.

When you click on the table-like symbol in the rule task you should see this:

69

Step 2: End
Congratulations! You are now done with the tutorial.

70

References
Object Management Group. (2013). Business Process Model and Notation (BPMN) version

2.0.2. Retrieved from: https://www.omg.org/spec/BPMN/2.0.2/PDF
Silver, B. (2011). BPMN Method and Style: With BPMN Implementer's Guide: Cody-Cassidy

Press.

https://www.omg.org/spec/BPMN/2.0.2/PDF

	Part I
	Useful Resources
	Step 1: Login to Trisotech Enterprise Suite

	Part II
	Test Grading Workflow and Decisioning
	The Regulation for the Type of Exam We Will Work with Is the Following.
	The Top-level Workflow
	Step 1: Model the Workflow
	A Short Aside on the Difference Between Process and Workflow, and Black-Boxed Pools
	Back to Business…
	A Short Aside on Flow Arrows and Message Arrows
	Back to Business…
	A Short Aside on Pools and Lanes
	Back to Business…
	A Short Aside on Data Store and Data Object
	Back to Business…

	Managing Sub-processes
	Step 2: Modelling a Sub-process

	Part III
	Modelling the Business Decisions
	Step 1: Adding a DRD to a Business Rule Task
	Step 2: Creating Data Types for the Decisions
	Step 3: Designing the DRD
	Step 4: Does the Student Have Score for All Tasks?
	Step 5: Test Your Decision
	Step 6: Is the Achieved Score for Each Task Greater Than or Equal to the Task Pass Score?
	Step 7: Test the Decision
	Step 8: Another Way to Do It
	Step 8.1: Yet Another Way to Do It
	Step 9: Are All Test Tasks Done and Passed?
	Step 10: Test Your Decision
	Step 11: What Is the Student’s Grade Calculated from The Achieved Total Score for the Test?
	Step 11.1: Test the DL
	Step 11.2: Infer a Letter Grade from the Achieved Test Percentage
	Step 11.3: Test Your Decision
	Step 12: Awarded grade
	Step 13: Test Your Decision
	Step 14: Add Knowledge Sources to the Model

	Part IV
	Step 1: Connect Decision Tasks in BPM with Decisions in DMN
	Step 2: End

	References

