
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Active and Physics-Based Human Pose Reconstruction

Gärtner, Erik

2023

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Gärtner, E. (2023). Active and Physics-Based Human Pose Reconstruction. Department of Computer Science,
Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/439c532f-bc74-4863-9057-74892d32d674


Active and Physics-Based 
Human Pose Reconstruction
ERIK GÄRTNER  
DEPARTMENT OF COMPUTER SCIENCE | LUND UNIVERSITY



Active and Physics-Based Human Pose Reconstruction





Active and Physics-Based
Human Pose Reconstruction

by Erik Gärtner

Thesis for the degree of Doctor of Philosophy

Prof. Cristian Sminchisescu Supervisor
Dr. Elin A. Topp Co-supervisor

Prof. Kalle Åström Co-supervisor

Dr. Fahad Shahbaz Khan Faculty opponent

To be presented, with the permission of the Faculty of Engineering of Lund University, for public criticism in
the lecture hall MH:Hörmander at the Centre for Mathematical Sciences, Sölvegatan 18, Lund on Friday, the

13th of January 2023 at 10:15.



D
O
K
U
M
EN

TD
A
TA

B
LA

D
en

lS
IS
61

41
21

Organization

LUND UNIVERSITY
Department of Computer Science
Box 118
SE–221 00 LUND
Sweden

Author(s)

Erik Gärtner

Document name

DOCTORAL THESIS
Date of disputation

2023-01-13
Sponsoring organization

The Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wal-
lenberg Foundation.

Title and subtitle

Active and Physics-Based Human Pose Reconstruction

Abstract

Perceiving humans is an important and complex problem within computer vision. Its significance is derived from
its numerous applications, such as human-robot interaction, virtual reality, markerless motion capture, and human
tracking for autonomous driving. The difficulty lies in the variability in human appearance, physique, and plausible
body poses. In real-world scenes, this is further exacerbated by difficult lighting conditions, partial occlusions,
and the depth ambiguity stemming from the loss of information during the 3d to 2d projection. Despite these
challenges, significant progress has been made in recent years, primarily due to the expressive power of deep neural
networks trained on large datasets. However, creating large-scale datasets with 3d annotations is expensive, and
capturing the vast diversity of the real world is demanding. Traditionally, 3d ground truth is captured using motion
capture laboratories that require large investments. Furthermore, many laboratories cannot easily accommodate
athletic and dynamic motions. This thesis studies three approaches to improving visual perception, with emphasis
on human pose estimation, that can complement improvements to the underlying predictor or training data.

The first two papers present active human pose estimation, where a reinforcement learning agent is tasked with
selecting informative viewpoints to reconstruct subjects efficiently. The papers discard the common assumption
that the input is given and instead allow the agent to move to observe subjects from desirable viewpoints, e.g.,
those which avoid occlusions and for which the underlying pose estimator has a low prediction error.

The third paper introduces the task of embodied visual active learning, which goes further and assumes that the
perceptual model is not pre-trained. Instead, the agent is tasked with exploring its environment and requesting
annotations to refine its visual model. Learning to explore novel scenarios and efficiently request annotation for
new data is a step towards life-long learning, where models can evolve beyond what they learned during the initial
training phase. We study the problem for segmentation, though the idea is applicable to other perception tasks.

Lastly, the final two papers propose improving human pose estimation by integrating physical constraints. These
regularize the reconstructed motions to be physically plausible and serve as a complement to current kinematic
approaches. Whether a motion has been observed in the training data or not, the predictions should obey the
laws of physics. Through integration with a physical simulator, we demonstrate that we can reduce reconstruction
artifacts and enforce, e.g., contact constraints.

Key words

computer vision, human pose estimation, reinforcement learning, physics-based human pose estimation, active
learning

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title

1404-1219
ISBN

978-91-8039-471-0 (print)
978-91-8039-472-7 (pdf )

Recipient’s notes Number of pages

231
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date 2022-12-05



Active and Physics-Based
Human Pose Reconstruction

by Erik Gärtner

Thesis for the degree of Doctor of Philosophy
Thesis advisors: Prof. Cristian Sminchisescu, Dr. Elin A. Topp, Prof. Kalle Åström
Faculty opponent: Dr. Mårten Björkman, KTH Royal Institute of Technology,

Stockholm

To be presented, with the permission of the Faculty of Engineering of Lund University, for public criticism in
the lecture hall MH:Hörmander at the Centre for Mathematical Sciences, Sölvegatan 18, Lund on Friday, the

13th of January 2023 at 10:15.



Cover illustration front: The author partially generated this image with DALL·E 2, OpenAI’s large-
scale image-generation model. The image is a composition of multiple outputs from DALL·E 2,
together with manual edits by the author.

Funding information: The thesis work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

© Erik Gärtner 2023

Department of Computer Science
Faculty of Engineering
Lund University
Box 118
SE-221 00 Lund
Sweden

ISBN: 978-91-8039-471-0 (print)
ISBN: 978-91-8039-472-7 (pdf )
ISSN: 1404-1219
Dissertation 70, 2023
LU-CS-DISS: 2023-01

Typeset using LATEX
Printed in Sweden by Media-Tryck, Lund University, Lund 2023



Dedicated to Anders and Cecilia.





Contents

I Background v

Preface vii
1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
2 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
4 Popular Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
5 Populärvetenskaplig sammanfattning . . . . . . . . . . . . . . . . . . . xiv

1 Overview 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Human Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Human Pose and Shape Representations . . . . . . . . . . . . . 9
4.2 Neural Networks for Human Pose Estimation . . . . . . . . . . . 10
4.3 Triangulation for Multiple View Human Pose Estimation . . . . . 12

5 Active Perception Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 14

5.1.1 Policy Gradient Methods . . . . . . . . . . . . . . . . 16
5.2 Active Human Pose Estimation . . . . . . . . . . . . . . . . . . 20
5.3 Embodied Visual Active Learning . . . . . . . . . . . . . . . . . 22

5.3.1 Semantic Segmentation . . . . . . . . . . . . . . . . . 23
6 Physics-Based 3d Human Pose Estimation . . . . . . . . . . . . . . . . . 24

6.1 Physically Based Modeling . . . . . . . . . . . . . . . . . . . . 27
6.1.1 Rigid Body Simulation . . . . . . . . . . . . . . . . . 28
6.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Physical Body Model . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . 34

6.3.1 PD Joint Control . . . . . . . . . . . . . . . . . . . . 36
6.4 Differentiable Physics . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 38
8 Author Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



II Scientific Publications 61

Paper I: Domes to Drones: Self-Supervised Active Triangulation for 3D Human
Pose Reconstruction 63
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2 Human Pose Reconstruction from Active Triangulation . . . . . . . . . . 68
3 Active Triangulation Agent . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1 State-Action Representation . . . . . . . . . . . . . . . . . . . . 70
3.2 Reward Signal for Self-Supervised Active Triangulation . . . . . . 71

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 From Domes to Drones . . . . . . . . . . . . . . . . . . . . . . 76

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.1 Hyperparamters . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B Matching Multiple People . . . . . . . . . . . . . . . . . . . . . . . . . 83
C Reprojection Errors onto OpenPose 2d Estimates . . . . . . . . . . . . . 84
D Additional Dataset Insights . . . . . . . . . . . . . . . . . . . . . . . . 84

Paper II: Deep Reinforcement Learning for Active Human Pose Estimation 87
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3 Active Human Pose Estimation . . . . . . . . . . . . . . . . . . . . . . 92

3.1 Active Pose Estimation Setup . . . . . . . . . . . . . . . . . . . 93
3.2 Detection and Matching of Multiple People . . . . . . . . . . . . 93

4 Deep Reinforcement Learning Model . . . . . . . . . . . . . . . . . . . 95
4.1 Overview of the Pose-DRL Agent . . . . . . . . . . . . . . . . . 95
4.2 State-Action Representation . . . . . . . . . . . . . . . . . . . . 96
4.3 Reward Signal for Policy Gradient Objective . . . . . . . . . . . 97
4.4 Active Pose Estimation of Multiple People . . . . . . . . . . . . . 99

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B Additional Insights and Details . . . . . . . . . . . . . . . . . . . . . . 111
C Handling Missed Detections or Matchings . . . . . . . . . . . . . . . . 112
D Additional Visualizations of Pose-DRL . . . . . . . . . . . . . . . . . . 112

D.1 Using Pose-DRL the Wild . . . . . . . . . . . . . . . . . . . . . 113

Paper III: Embodied Visual Active Learning for Semantic Segmentation 117

ii



1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3 Embodied Visual Active Learning . . . . . . . . . . . . . . . . . . . . . 123

3.1 Methods for the Proposed Task . . . . . . . . . . . . . . . . . . 124
3.2 Semantic Segmentation Network . . . . . . . . . . . . . . . . . 126
3.3 Reinforcement Learning Agent . . . . . . . . . . . . . . . . . . 126

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2 Ablation Studies of the RL-agent . . . . . . . . . . . . . . . . . 132
4.3 Analysis of Annotation Strategies . . . . . . . . . . . . . . . . . 133
4.4 Pre-training the Segmentation Network . . . . . . . . . . . . . . 134

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
B Semantic Segmentation Network . . . . . . . . . . . . . . . . . . . . . 142
C Policy Network of the RL-Agent . . . . . . . . . . . . . . . . . . . . . . 142
D Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
E Variants of Bounce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Paper IV: TrajectoryOptimization for Physics-BasedReconstruction of 3dHuman
Pose from Monocular Video 147
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.1 Body model and control . . . . . . . . . . . . . . . . . . . . . . 155
3.2 Physics-based articulated motion estimation . . . . . . . . . . . . 156
3.3 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . 156
3.4 Kinematic 3d pose and shape estimation . . . . . . . . . . . . . 158

4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A Physical Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
B Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
C Additional Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
D Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.1 Human Data Usage . . . . . . . . . . . . . . . . . . . . . . . . 176
E Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
F Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . 177

Paper V: Differentiable Dynamics for Articulated 3dHumanMotion Reconstruction 179
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

3.1 Kinematic Initialization . . . . . . . . . . . . . . . . . . . . . . 185

iii



3.2 Differentiable Physics Simulation Model . . . . . . . . . . . . . 186
3.3 Physical Human Body Modeling . . . . . . . . . . . . . . . . . 187
3.4 Gradient-Based Optimization . . . . . . . . . . . . . . . . . . . 188
3.5 Optimization Objectives . . . . . . . . . . . . . . . . . . . . . 189
3.6 Optimized Initialization . . . . . . . . . . . . . . . . . . . . . . 190

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
B Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.2 Usage of data with human subjects . . . . . . . . . . . . . . . . 206

C Differentiable Physics for Human Motion . . . . . . . . . . . . . . . . . 207

iv



Part I

Background

v





1 Abstract

Perceiving humans is an important and complex problem within computer vision. Its sig-
nificance is derived from its numerous applications, such as human-robot interaction, vir-
tual reality, markerless motion capture, and human tracking for autonomous driving. The
difficulty lies in the variability in human appearance, physique, and plausible body poses.
In real-world scenes, this is further exacerbated by difficult lighting conditions, partial oc-
clusions, and the depth ambiguity stemming from the loss of information during the 3d to
2d projection. Despite these challenges, significant progress has been made in recent years,
primarily due to the expressive power of deep neural networks trained on large datasets.
However, creating large-scale datasets with 3d annotations is expensive, and capturing the
vast diversity of the real world is demanding. Traditionally, 3d ground truth is captured
using motion capture laboratories that require large investments. Furthermore, many labo-
ratories cannot easily accommodate athletic and dynamic motions. This thesis studies three
approaches to improving visual perception, with emphasis on human pose estimation, that
can complement improvements to the underlying predictor or training data.

The first two papers present active human pose estimation, where a reinforcement learning
agent is tasked with selecting informative viewpoints to reconstruct subjects efficiently. The
papers discard the common assumption that the input is given and instead allow the agent
to move to observe subjects from desirable viewpoints, e.g., those which avoid occlusions
and for which the underlying pose estimator has a low prediction error.

The third paper introduces the task of embodied visual active learning, which goes further
and assumes that the perceptual model is not pre-trained. Instead, the agent is tasked with
exploring its environment and requesting annotations to refine its visual model. Learning
to explore novel scenarios and efficiently request annotation for new data is a step towards
life-long learning, where models can evolve beyond what they learned during the initial
training phase. We study the problem for segmentation, though the idea is applicable to
other perception tasks.

Lastly, the final two papers propose improving human pose estimation by integrating phys-
ical constraints. These regularize the reconstructed motions to be physically plausible and
serve as a complement to current kinematic approaches. Whether a motion has been ob-
served in the training data or not, the predictions should obey the laws of physics. Through
integration with a physical simulator, we demonstrate that we can reduce reconstruction
artifacts and enforce, e.g., contact constraints.
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4 Popular Summary

Recent advances in artificial intelligence have opened the gate for transformative technolo-
gies such as self-driving cars, robot collaborators, and virtual reality. However, technologies
such as these rely on computers being able to see humans. For example, a self-driving car
must be able to track pedestrians as they move to avoid potentially fatal accidents. Like-
wise, virtual reality applications require capturing human motion to drive the virtual avatar’s
movement.

Unfortunately, the fundamental task of perceiving humans is difficult for computers. One
reason is that humans vary greatly in appearance; another is that humans can perform a
wide variety of actions and fast-paced motions. To make matters worse, the camera might
not be able to fully see the human subject due to occlusions or poor lighting conditions.
Despite these challenges, impressive progress has been made thanks to so-called artificial
neural networks. These mathematical models are inspired by how neurons function in
biological brains and learn how to solve tasks from labeled data. For perceiving humans,
labeled data usually means videos of humans with corresponding motion capture data in
the form of 3d body joint locations tracked over time. Unfortunately, collecting this type
of data is time-consuming and requires expensive motion capture equipment. In addition,
the capture takes place in indoor studios, limiting the kind of actions that can be captured.
Together these factors make it both expensive and challenging to create large and diverse
datasets of human motion. As a result, the neural networks often make mistakes when
given a new video of humans where the motion or camera viewpoint is different from the
examples they were trained on.

This thesis presents methods for improving visual perception through three main ideas.
First, we study how an agent equipped with a neural network for perceiving humans should
move around to better view the subjects. Imagine a drone tasked with capturing a human
athlete. It must move to avoid occlusions and observe the subject from viewpoints seen in
the training data to get accurate results. We present neural network-based agents capable
of intelligently moving to observe the subjects.

Next, we focus on how an agent should continue to train its neural network once deployed.
We study this problem for neural networks performing semantic segmentation (labeling
each pixel in an image with an object class). Imagine, for example, an autonomous house-
hold robot coming to a new home. The robot might encounter many new objects not
present in the training data. In those cases, it would be beneficial if the agent could realize
what it does not understand and request explanations from its owner. In this thesis, we
present an agent that learns to explore virtual 3d houses and ask for labels for objects it
does not recognize. To promote efficiency, we give the agent a budget of how much help
it can receive so that it only asks for help when it is crucial.

xii



Lastly, we improve the reconstruction of human motion by integrating the laws of physics.
Despite being trained on large video datasets of human motion, neural networks tend to
make physically implausible mistakes. For example, the network might predict humans
sliding along the ground rather than walking or penetrating the floor. We present a method
to combine physics simulation with a neural network perception module to make the results
physically plausible – without requiring additional training data.
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5 Populärvetenskaplig sammanfattning

Den senaste tidens framgångar inom artificiell intelligens har öppnat dörren till många
transformativa tekniker, exempelvis självkörande bilar, robotassistenter och virtuell verk-
lighet. Dessa tekniker bygger på att datorer kan “se människor”. En självkörande bil måste
kunna hålla uppsikt över fotgängare för att undvika allvarliga olyckor. Likaså kräver dator-
simulerad verklighet att datorn kan fånga användarens rörelser för att kunna driva avataren
i den simulerade verkligheten.

Tyvärr är det mycket svårt för datorer att uppfatta och urskilja människor. En av anledning-
arna är att vi människor skiljer oss mycket från varandra när det kommer till utseendet. En
annan anledning är att vi kan utföra många olika typer av snabba rörelser. Dessutom kan
robotens kamera vara utsatt för dåliga ljusförhållanden eller vara så inställd att delar av
objektet faller utanför kamerans synfält. Trots dessa utmaningar har artificiella neurala nät-
verk lett till stora framgångar. Neurala nätverk är matematiska modeller som bygger på hur
biologiska hjärnor attackerar problemen för att lösa dem. När det gäller människors rörel-
ser exemplifieras detta oftast i videor med tillhörande “motion capture” data, där man har
spelat in människans leder i 3D. Detta är tyvärr en tidskrävande process som kräver en dyr
specialutrustning. Dessutom sker inspelningen av exempel oftast i laboratorier inomhus,
vilket begränsar urvalet av rörelser som kan komma ifråga. Detta resulterar i att det är både
dyrt och svårt att spela in stora och varierade dataset av mänsklig rörelse. Resultatet blir att
de artificiella neurala nätverken, som lär sig av denna ofullständiga data, gör misstag när
de observerar människor som utför rörelser som inte finns med i träningsdatan eller när de
ser människor från en kameravinkel som avviker från den som användes vid inspelningen
i laboratoriet.

Denna avhandling presenterar tre metoder för hur neurala nätverk bättre kan uppfatta om-
givningen. I den första delen studeras hur en robot, som är utrustad med ett neutralt nätverk
designat för att uppfatta en människa, bör röra sig. Föreställ er en drönare vars uppgift är
att spela in en idrottsman. Drönaren bör röra sig så att den har full uppsikt och ser den som
idrottar ur de vinklar som det neurala nätverket har tränats för. I min avhandling presente-
rar jag en artificiell agent som lär sig hur den bäst ska röra sig för att uppfatta en människas
rörelser.

I den andra delen studeras hur en agent succesivt förbättrar sitt neurala nätverk när den väl
har satts i bruk. Föreställ er en hushållsrobot som har kommit till ett nytt hem. Det kan
finnas många nya föremål som roboten aldrig tränats att känna igen. Det vore då fördel-
aktigt om roboten kunde konkludera, att den inte känner dessa föremål och be ägaren om
hjälp med identifikationen. Denna del av avhandlingen presenterar en artificiell agent som
lär sig att utforska virtuella hus i 3D och ber om hjälp för att känna igen nya föremål. För
att roboten ska arbeta så effektivt som möjligt tillåts den endast att ställa ett begränsat antal
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frågor. Därigenom tvingas den välja sina frågor väl.

Den sista delen behandlar hur fysikaliska lagar kan tillämpas för att underlätta för ett arti-
ficiellt neuralt nätverk att känna igen en människas rörelse. Trots att nätverken har tränats
med omfattande dataset av mänskliga rörelser tenderar de ge orealistiska resultat. Nätver-
ken kan exempelvis göra fel som får det att se ut att en människa svävar istället för att gå
framåt. De sista artiklarna presenterar en metod som kombinerar en fysiksimulator med
ett neuralt nätverk, vilket gör resultaten mer realistiska. Metoden kräver ingen ytterligare
träningsdata.
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Chapter 1

Overview
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1 Introduction

As humans, it is natural that we have a particular interest in computer vision tasks related
to perceiving humans. Thus, human detection, identification, tracking, and reconstruction
are all key problems in computer vision. These problems come together in human pose es-
timation, the process of estimating the body pose configuration from, typically, monocular
images.

Solving human pose estimation enables a plethora of applications in the areas of human-
computer interaction, animation, and motion analysis. For example, a robot interacting
with humans must perceive them, human digitization for virtual reality requires markerless
motion capture, and clinical analysis of gait pathologies depends on accurately tracking the
body motion.

Recent progress in large and expressive deep neural networks has enabled impressive results
in reconstructing human body poses. However, human pose estimation remains a largely
unsolved problem in many unconstrained real-world settings. The challenge partly stems
from the difficulty of modeling the variability of human appearance, physique, and body
poses. Furthermore, difficult lighting conditions, partial occlusions, and loss of informa-
tion during the projection from 3d to 2d image plane acerbate the problem. Additionally,
training deep neural networks requires large annotated human motion datasets that are
often recorded in motion capture laboratories. Creating these datasets is expensive, and
the resulting datasets are often limited with respect to motion, environment, body shape,
and camera viewpoint diversity. One way of addressing these issues is by utilizing self-
supervised learning or weakly-labeled data. The five papers of this thesis take a different
approach and present three methods to improve visual perception, related but not limited
to human pose estimation. An overview of the problems studied in this thesis is presented
in Fig. 1.1.

The first two papers study the problem of active human pose estimation. We imagine a mov-
ing observer that must move to reconstruct the subjects in a scene efficiently using a small
set of observations. By selecting informative (e.g., non-occluded) viewpoints, the agents
can maximize the reconstruction performance of a pre-trained pose predictor. Next, the
third paper proposes embodied visual active learning, where an agent must explore an envi-
ronment and request annotation to learn a perception model efficiently. The agent is ini-
tialized with an untrained perception model and must learn to find and request annotation
for the most informative viewpoints. Thus, the paper discards the common assumption
that the dataset is already collected and annotated. Instead, the agent explores, requests
annotation, and refines its perceptual model at test time. We study the problem in the
context of semantic segmentation, but learning when to request annotations depending on
viewpoint applies to many other tasks, such as human pose estimation and object detection.
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)LJXUH ���� Overview of the three problems studied in this thesis. 7RS� Active human pose estimation, where an agent
is tasked with selecting viewpoints to reconstruct a subject given a pre-trained pose prediction network.
The agent sequentially selects viewpoints on a sphere around the subject and terminates the search either
through a ”stop” action or based on a heuristic criterion. 0LGGOH� Embodied visual active learning in which
an agent learns to refine a perception model by exploring its environment and requesting annotation.
%RWWRP� Physics-based human pose estimation where monocular human pose estimation from video is
improved through the inclusion of a reconstruction loss constrained by the dynamics of physical simulation.

Finally, the last two papers present a methodology for integrating physical constraints into
a human pose estimation process to enable physically plausible pose predictions and richer
outputs with estimated physical quantities. By incorporating physics as a constraint, we
improve the reconstruction in a principled manner complementary to any improvements
to the underlying reconstruction model and the training set.

The thesis is structured as follows. First, §2 presents the central research questions of the
thesis, followed by a summary of the papers’ contributions in §3. Next, §4-6 introduces
prior work and relevant concepts, §7 presents the conclusions and possible avenues of future
work, and finally §8 specifies the author’s contributions to each paper.
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2 Research Questions

The overall research question of this thesis is how visual perception, in particular human
pose estimation, can be improved through active perception and physical constraints. En-
tailed in the main question are the following questions:

[RQ1] How can an active observer learn to seek out informative viewpoints?

[RQ2] How can an active observer learn when it has gathered enough information from
diverse viewpoints?

[RQ3] How can an active observer learn to refine its visual system in the presence of novel
percepts?

[RQ4] How can physics be to used guide human pose reconstruction to more physically
plausible results?

[RQ5] Can differentiable physics be leveraged to make physics-based human pose estima-
tion more efficient?

These questions are studied in the papers in this thesis. RQ1 is investigated in the active
perception tasks (see §5), where agents must seek out either informative viewpoints or
novel object instances. RQ2 is studied in paper Paper II, when the active observer should be
efficient when selecting viewpoints to reduce computation and noise from poor viewpoints.
RQ3 is addressed in Paper III, where the agent is given an untrained semantic segmentation
network and must efficiently query for annotations until it can reconstruct its environment.
RQ4 is studied in Paper IV and V, when two different physics simulators are integrated
into the reconstruction process to ensure physical plausibility by incorporating the physical
constraints of the simulator. Finally, Paper V answers RQ5 by leveraging a differentiable
physics simulator to significantly speed up inference compared to the non-differentiable
approach of Paper IV.
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3 Summary of Contributions

Before introducing relevant concepts and background material, this section summarizes the
contributions of each paper.

Paper I studies how an active observer, e.g., a drone equipped with a pre-trained visual
perception model (a 2d body joint predictor), should move to gather information neces-
sary to reconstruct human subjects in 3d through triangulation. In the paper, we formalize
this by introducing the active triangulation task, wherein an agent selects multiple view-
points so that it may triangulate the body joints of human subjects from 2d to 3d. We
consider the problem an egocentric sequential decision-making problem where the agent
selects the next viewpoint based on the current and past viewpoints. We propose the rein-
forcement learning-based model ACTOR to solve the task together with a set of heuristic
baselines. The results demonstrate that our learned model outperforms the handcrafted
baselines at finding sets of viewpoints that accurately reconstruct the subjects in the scene.
Furthermore, the presented model is trained in a self-supervised fashion, thus requiring no
additional 3d ground truth data to train.

Two limitations of ACTOR were the need to observe each body joint from at least two
viewpoints and the stopping criterion being based on a heuristic. Paper II addresses the
first shortcoming by relying on a 3d rather than a 2d body joint predictor. Using such
an underlying estimator, the agent needs only to see each subject in a single camera to
obtain a prediction of the 3d joints. However, as monocular 3d joint estimation is an
ill-posed problem, it suffers more from estimation errors than 2d joint prediction. Thus
a joint may benefit from being viewed from multiple viewpoints in order to reduce the
error. The paper introduces Pose-DRL, a reinforcement learning-based agent that learns to
select informative viewpoints and when to terminate viewpoint selection. The model learns
to terminate viewpoint selection when selecting additional viewpoints is expected not to
reduce the reconstruction error significantly.

In Paper III, we no longer focus on maximizing the performance of a pre-trained predictor
by moving to the most informative viewpoints. Instead, we focus on learning and refin-
ing a visual perceptual model efficiently. We formulate the embodied visual active learning
task wherein an embodied agent must explore its environment and request annotations for
unknown elements in the scene to learn its visual perception model. The focus on adap-
tive behavior for learning a perceptual model is of great interest as no dataset will contain
all possible objects, scenes, and viewpoints. Therefore a system must be able to continue
learning once deployed into the real world. We instantiate the perception model as a se-
mantic segmentation predictor in the paper. However, the core idea of learning how to
explore novel scenarios and request annotations could be applied to other tasks, such as
object detection or human pose estimation.
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In Paper IV and V, we exploit the seemingly obvious insight that reconstructs of human
motions must adhere to the laws of physics. Paper IV, therefore, presents a method for
integrating a physics simulator into the human pose estimation process. After using a neu-
ral network to estimate the body shape and motion, we perform trajectory optimization
in physical simulation, constraining the final motion prediction to be physically plausible.
In addition, the integration of physics into the reconstruction process enables a more rich
reconstruction that includes estimated physical quantities such as body torques and contact
forces. Our results demonstrate that our approach removes unnatural movements and ar-
tifacts commonly produced by neural network predictors. However, as the reconstruction
loss is non-differentiable, we resort to gradient-free optimization, which is computation-
ally very expensive. Paper V addresses the high computational cost by formulating the
reconstruction loss using a differentiable physics simulator, thus allowing gradient-based
trajectory optimization, which reduces the computation by orders of magnitude.

4 Human Pose Estimation

The human pose estimation task is concerned with estimating the body pose of humans
from, most commonly, monocular video or images. The pose can be represented as either
a set of (2d or 3d) body joints or through an articulated body model (see §4.1).

One of the main challenges of human pose estimation is correctly recognizing the subject
despite the great variability in human appearance and body physique. This motivates inclu-
sive body models that can accommodate this wondrous variety while acting as a useful prior
during inference. For example, the body model might include learned priors over possible
body poses, anatomical joint limits, and even muscle force limits. Such constraints and
priors may act as regularizers that improve the reconstruction result despite the underde-
termined nature of the problem.

The ill-posedness of the problem stems partly from the loss of information during the pro-
jection from our 3d world to the 2d image plane. This leads to, e.g., ambiguities when
determining the depth ordering of body parts. Tough lighting conditions, as well as par-
tial occlusions due to object occlusions and subject self-occlusion from the perspective of
the camera, further exacerbates the difficulty of estimating the body pose (see examples in
Fig. 1.2). The latter issues may be addressed by changing the viewpoint and observing the
subject from a less occluded vantage point. Furthermore, in complex and crowded scenes,
no single viewpoint may contain all necessary information, and multiple viewpoints may
be required. An active observer thus requires scene understanding to select informative, un-
occluded, and complementary viewpoints such that they together yield accurate estimates
of the subject’s body pose.
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a) b) c)

d) e)
)LJXUH ���� Examples of challenges in human pose estimation. D� The camera viewpoint poorly captures the scene,

e.g., the woman with the hat occludes her right arm and occludes her friends. Furthermore, there is great
variety in appearance and clothes. E� Loose-fitting clothes can make estimation difficult by obscuring
body parts, such as a dress obscuring the lower body. F� There exist many plausible rare and complex
poses seldom present in motion capture datasets, for example, somersaults. G� Fast motions may produce
motion blur, which makes even 2d detections hard without incorporating additional information, such
as consecutive frames of the video. H� The combination of self-similarity between the legs and depth
ambiguity caused by the camera projection makes estimation of the legs very difficult.

Finally, most human pose approaches are kinematics-based and do not consider physical
quantities when reconstructing motions (series of human body poses) from video. This
lack of physical awareness leads to results that violate the laws of physics. For example, the
reconstructed motion may contain foot skating, that is, the person skates along the ground
rather than walks. Including physics in the reconstruction process may reduce artifacts
while simultaneously estimating internal and external forces acting on the human body.
The increased richness of the output could enable, for example, applications in medicine
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)LJXUH ���� Three examples of human representations frommonocular reconstructions of the same picture of a tourist
in a jumping pose at Dune du Pilat in France. The first image shows 2d landmarks produced by Open-
Pose [20], the second image shows a GHUM [143] body model predicted by THUNDR [154], and the last
image shows a 3d volume represented by an implicit function produced by PIFuHD [109]. The 2d land-
mark network produces the most accurate reconstruction though this lacks any depth information, the
parametric GHUM model captures the pose in 3d together with the body shape, and finally, the body
volume produced by the PIFuHD model produces a more detailed but incomplete surface reconstruction.
The work in this thesis relies on both 2d landmarks and parametric body models such as the GHUM body
model.

studying joint stress during exercise. Physics also provides non-learned regularization ap-
plicable to fast and dynamic motions (such as acrobatics) that are rare in motion capture
datasets and yield blurry results when recorded in the wild with consumer-grade cameras.

4.1 Human Pose and Shape Representations

There exist many different approaches to representing a human pose. This thesis will focus
mainly on human pose estimation in 3d, and below follows a selection of popular ap-
proaches. For a more comprehensive overview, refer to, for example, Wang et al. [131] and
Sigal [117].

Landmarks. The simplest representation of a pose is a set of independent landmarks or
keypoints. These may correspond to anatomical joints, such as the knees or landmarks on
the surface, such as the eyes. The main advantage of landmarks is that they are easy to
implement and usually fast to predict. The downside, however, is the lack of a coherent
structure between the points, resulting in no guarantees regarding the body’s symmetry or
consistent bone length throughout a sequence of poses. The number of landmarks recog-
nized varies from a sparse skeleton (i.e., 18 body joints) in COCO [72] to skeletons with
detailed face and hand keypoints [20].

Kinematic Tree. Rather than representing the body as a set of independent landmarks,
it is common to use a kinematic tree representation. In this representation, the pose is
expressed through a set of rotations of the joints. One advantage of this representation is
that it preserves bone length for a given subject. Furthermore, the representation allows for
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an anatomically correct number of degrees of freedom for the joints (e.g., 3-DoF for the
neck but only 1-DoF for the knee joint).

Part-Based Models. A less common approach is to divide the human body into a graph of
“parts” and express the body pose as the position, orientation, and size of these parts [118].
The body shape is represented by the volume of the geometric primitives that represent the
body parts. While mesh-based models have largely superseded part-based models, they are
worth mentioning as they are related to the physical body model presented in this thesis.

Mesh-Based Body Models. The most commonly used representation today is mesh-based
statistical body models such as SCAPE [9], SMPL [75], GHUM [143] and STAR [93].
These parametric models represent the pose as a kinematic skeleton with a pose-deformed
mesh representing the body volume. The mesh is expressed as a function M(θ,β) ∈
R3×N , where θ is a pose vector, β is a person-specific shape vector, and N is the number
of vertices on the triangular mesh. Using the pose and shape parameters, the model predicts
the person’s body mesh in articulated poses. These models are trained using large datasets of
human body scans to learn how human bodies deform during articulation. Furthermore,
modeling not only the pose but the entire body enables, for example, differentiable ren-
dering losses [32, 153] during pose estimation. Representing the body surface also enables
modeling object and inter-person contacts [38, 87, 141]. Paper IV-V rely on monocular
reconstructions of the subject in the form of statistical body model meshes.

Just as mesh-based models give more informative reconstructions than 3d skeletons, active
research exists to increase the richness even further. As an example, imGHUM [4] models
the body mesh using a signed distance field which enables the model to represent non-
normative body shapes such as one-armed people. Another active research direction is
reconstructing not only pose and body shape but also the clothes (e.g., CAPE [77]) and the
texture (e.g., PIFu [109] and SCALE [78]). This thesis focuses on improving the realism
and richness of the output through the usage of a physical body model, which includes
quantities such as masses, joint torques, and contact forces. A description of our physical
representation, which bears some resemblance to classical part-based models, can be found
in §6.2.

4.2 Neural Networks for Human Pose Estimation

This section briefly reviews neural networks in the context of human pose estimation. Early
work in human pose estimation relied on hand-crafted features such as silhouettes [1],
edges [105], SIFT [60], or spatial pyramids [60]. However, following the success of con-
volutional neural networks on the ImageNet [31] challenge pioneered by AlexNet [66] the
field started to make heavy use of deep neural networks. Prominently Toshev and Szegedy
[124] demonstrated that the AlexNet architecture could be applied to 2d human pose es-
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timation with their DeepPose model. Today, there exists a myriad of neural network ap-
proaches. See, for example, Chen et al. [25] for an in-depth review.

On a high level, a discriminative human pose network may be viewed as a function fθ
which maps an input image I to an output y

y = fθ(I), (1.1)

where θ are the parameters of the neural network. Depending on the specific model, y may,
for example, represent 2d or 3d keypoints¹. In the case of a mesh-based body model, the
network might directly regress both the pose and shape parameters [153]. The parameters
θ are learned using a gradient descent method such as ADAM [63] to minimize one or
more loss functions. The most standard loss is the L2 regression loss which is commonly
used for keypoints

L(ŷi,yi) =
1

|J|
∑

j∈J
||ŷj

i − yj
i ||

2
2 (1.2)

where ŷi is a ground-truth pose from a labeled dataset D = {(Ii, ŷi)}Ni=1 and yi is the
predicted pose using (1.1). The loss is averaged for each joint j in the set of body joints J
and then over the entire dataset of N frames.

While neural networks yield impressive results on difficult tasks such as monocular 3d hu-
man pose estimation, their performance is dependent on access to large training datasets.
Typically these are recorded using expensive motion capture equipment in laboratories [54,
58, 80, 125], which gives high accuracy but often leads to data with limited subject diversity,
pose complexity, and scene composition. Using, e.g., inertial sensors, human motion can
be captured in natural scenes [127], which allows for datasets with more complex scenes.
However, inertial sensors do not readily capture facial expressions, and as with optical mark-
ers, the inertial sensors need to be carefully placed and calibrated. The training of 3d human
pose networks may also be augmented with ground-truth 2d keypoints [61, 151, 153] as a
form of weak supervision. This is advantageous as 2d keypoints are easier to annotate and
available for complex real-world scenes and in large quantities [7, 72]. However, state-of-
the-art methods tend to require labeled 3d data in addition to any weak 2d annotations.
Finally, the use of synthetic datasets [12, 52, 94, 126] shows promising results as these al-
low for highly accurate 3d ground-truth data together with realistically rendered scenes.
However, procedurally generating semantically meaningful 3d scenes with human-object
interactions and realistic motion is still an active area of research [47, 48, 141, 147, 157].

¹It is commonplace to also predict a confidence score ci ∈ [0, 1] for each keypoint i as a way of handling
occlusions.

11



!

"!
""#!

#" ##

"#

)LJXUH ���� Schematic overview of 3d human pose estimation from multiple 2d estimates using triangulation. Given
two or more cameras with known camera matrices P i and the corresponding detection of a joint (e.g.,
the right elbow) in each camera xi, triangulation is the process of estimating the joint’s 3d positionX by
finding the intersection of the back-projected rays. In the presence of measurement noise or distortions,
the rays might not intersect exactly, and the estimated 3d location may differ from the actual location.

Monocular 3d Human Pose Estimation from Video. While a human motion usually is
represented as a series of poses that may be predicted frame-by-frame, this usually results in
jittery and temporally inconsistent results. Hence, multiple approaches exist to leverage the
temporal information present in video data to reduce artifacts and improve individual per-
frame reconstructions. For example, Kocabas et al. [64] learn a neural network predictor
which treats each frame as input to a gated recurrent unit (GRU) to capture temporal
information. In Paper IV-V, we follow Zanfir et al. [152] and perform post-optimization
of the per-frame neural network predictions with a temporal smoothness loss that promotes
temporal coherence and reduces jitter.

4.3 Triangulation for Multiple View Human Pose Estimation

In computer vision, triangulation [46] refers to the problem of recovering a 3d point given
its (possibly noisy) projection in two or more cameras (see Fig. 1.4). In Paper I, the learned
agent reconstructs the 3d human pose through triangulation of 2d poses from different
cameras. The 2d poses are represented as 2d joint locations and estimated using a neural
network predictor [20]. Triangulation is commonly used to create datasets with pseudo 3d
ground-truth from multiple camera setups [58, 70]. This approach is less expensive than
professional motion capture systems and does not require the subjects to wear motion cap-
ture markers. However, it is often less accurate and requires a large set of time-synchronized
and calibrated cameras.
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Multiple methods exist for triangulating a 3d point from 2d points given known cameras.
We use the direct linear transform [46] (DLT) in homogeneous coordinates. This method
is fast and does not require non-linear optimization, which is an advantage as we must
perform the triangulation many times when training the reinforcement learning agent in
Paper I.

Given a camera matrix¹ P i ∈ R3×4 of the calibrated camera i, the projection of a homo-
geneous 3d point X is given by

λixi = P iX (1.3)

where xi =
[
ui vi 1

]$ is the corresponding homogeneous 2d point and λi is a scale
factor. During triangulation, we wish to estimate the 3d point X given a set of N 2d
points x1 . . .xN all of which are projections of X . For a single point, we may form the
cross product λixi × P iX = 0, which gives

λi
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0



 , (1.4)

where pj$
i ∈ R1×4 is the j:th row of P i. As these equations are linear in X we may

form the system AX = 0. Where each of the N points gives two linearly independent
equations as

A =





u1p3$
1 − p1$

1

v1p3$
1 − p2$

1
...

uNp3$
N − p1$

N
vNp3$

N − p2$
N




. (1.5)

We are interested in a non-trivial solution X $= 0. If we observe a point from more
than two cameras, then A will be overdetermined. We find the approximate solution that
minimizes ||AX|| where ||X|| = 1 using singular value decomposition (see Hartley and
Zisserman [45, p. 312]). In other words, we take the unit singular vector corresponding to
the smallest singular value as the solution.

¹The camera matrix is defined as P = K[R|t], where K describes the intrinsic camera parameters (such
as focal length), and R and t describe the rotation and translation of the projection, respectively.
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)LJXUH ���� Schematic overview of reinforcement learning. Given an environment, the agent should learn to select
actions to maximize the cumulative reward. At each time step, the agent should select an action at based
on an observation of the environment’s current state st. When the agent selects an action, it receives a
reward rt+1 together with an observation of the following state st+1. The environment can, for example,
model the active human pose estimation task as introduced in Paper I-II, where the agent should select
informative camera viewpoints.

5 Active Perception Tasks

Paper I-III introduce and study two active perception tasks. We formulate these problems
in the reinforcement learning framework, briefly introduced in §5.1. Next, §5.2 describes
active human pose estimation where an active observer should move to observe and recon-
struct a human in a scene. Finally, §5.3 presents a variant on active learning called embodied
visual active learning, where an agent should explore and request annotations in a 3d envi-
ronment to learn its perception module efficiently.

5.1 Reinforcement Learning

We propose solutions to the active perception tasks using reinforcement learning (RL),
see Fig. 1.5. At a high level, reinforcement learning aims to train an agent that solves a
sequential decision problem. Rather than learning from labeled examples, the agent learns
through interaction with an environment with the goal encoded in a reward function. It
provides the agent with an immediate reward after each action, and the agent’s goal is to
maximize the expected cumulative reward. Below is a brief introduction to reinforcement
learning. Refer to the textbook of Sutton and Barto [121] for a more in-depth explanation.

Reinforcement learning formulates the sequential decision problem as a Markov Decision
Process (MDP) [14]. Formally, an MDP is defined by the tuple (S,A, R, p, p0, γ) where
S is the set of all states, A is the set of all actions, p0 is the initial state distribution,
R(s, a, s′) ∈ R is the reward function, and γ ∈ [0, 1] is the discount factor. The MDP’s
dynamics are defined by the state transition distribution p(s′|s, a) where s′ ∈ S is a suc-
cessor state of state s ∈ S following action a ∈ A. When the agent takes an action it also
receives a reward from r from the reward function. We can write a series of interactions
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s0
π(·|s0)−−−−→ a0

p(·|s0,a0), R(s0,a0,·)−−−−−−−−−−−−→ s1, r1
π(·|s1)−−−−→ . . . → sT , rT (1.6)

as the trajectory

τ = (s0, a0, s1, r1, a1, s2, r2, . . . , aT−1, sT , rT ), (1.7)

where the actions are sampled from the agent’s policy distribution at ∼ π(·|st). Note that,
according to the Markov property of the MDP, the successor state s′ depends only on the
previous state s and action a, not the full history of states and actions. Thus the probability
of a trajectory τ , assuming discrete state and action spaces, when following the policy π
can be expressed as

pπ(τ) = p0(s0)
T−1∏

t=0

π(at|st)p(st+1|st, at). (1.8)

The goal of reinforcement learning is to learn a policy π(a|s) that maximizes the expected¹
discounted cumulative return E [G0] where

Gt =
T∑

t′=t

γt
′−trt′ (1.9)

is the sum of the rewards from time t until time T discounted by γ. A large γ implies that
the agent should value future rewards higher and vice versa. Furthermore, (1.9) implies
that the discounted reward Gt associated with action at−1 only depends on actions from
time t−1 until time T but no action prior to that. The intuition is that the agent can only
affect its future, not its past.

There exist two paradigms within reinforcement learning for how to learn the policy. Fol-
lowing the model-based approach, we first seek to estimate the MDP dynamics (that is
p(s′|s, a) and R(s, a, s′)), then find the policy that solves our estimated MDP. In many
cases, it is difficult to estimate the dynamics, and the subsequent policy may be subopti-
mal due to modeling errors of the estimated MDP. The model-free approaches attempt to
directly learn the policy without first estimating the dynamics of the MDP.

A function of interest related to learning the policy is the q-value function. The optimal
q-value function is recursively defined as

¹We take the expectation as p(s′|s, a) , R(s, a, s′), and π(a|s) may all be stochastic.
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q∗(s, a) =
∑

s′

p(s′|s, a)
[
R(s, a, s′) + γmax

a
q∗(s′, a′)

]
(1.10)

and describes the expected discounted return for the action a in state s. If we knew it,
we could define the optimal policy π∗(at|st) as selecting the action with highest expected
return as

π∗(a|s) = argmax
a

q∗(s, a). (1.11)

Therefore, a popular approach is to estimate the q-value function [85]. We can also formu-
late the optimal state value function

v∗(s) = max
a

q∗(s, a) = max
a

∑

s′

p(s′|s, a)
[
R(s, a, s′) + γv∗(s)

]
, (1.12)

which gives the expected return of starting in state s and then act optimal. In practice it
is difficult to obtain the optimal value functions and we usually study the value functions
while following a policy π

qπ(s, a) =
∑

s′

p(s′|s, a)
[
R(s, a, s′) + γ

∑

a′

π(a′|s′)qπ(s′, a′)
]

(1.13)

vπ(s) =
∑

a

π(a|s)
∑

s′

p(s′|s, a)
[
R(s, a, s′) + γvπ(s)

]
. (1.14)

If the size of our state and action space |S×A| is small, we may use tabular representations
for q(s, a) and v(s). However, for complex problems, it is common to use neural networks
to approximate the functions. For example, we approximate the value function as vπθ (s) =
fθ(s), where fθ is a neural network parametrized by θ.

5.1.1 Policy Gradient Methods

In Paper I-III, we employ a class of methods called Policy Gradient Methods. They di-
rectly attempt to learn the parameters θ of the neural network fθ that represent the policy
πθ(a|s) = fθ(s). To do so using a gradient-based method, we must define the gradient
of the “performance” of the agent with respect to the policy parameters. This is difficult
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since the performance depends on the MDP’s unknown and potentially non-differentiable
dynamics.

REINFORCE. The most straightforward method for directly learning the policy parame-
ters is the REINFORCE [136] algorithm¹. It does so by maximizing the expected return
(1.9) through the objective

J(θ) = Epπ(τ)

[
T∑

t=0

γtrt+1

]
= Epπ(τ) [G0] (1.15)

under the expectation of a trajectory, see (1.8). The idea is to update the parameters θ using
gradient ascent. However, as we cannot compute the exact gradient of the expression, we
resort to a few tricks that enable us to get a sample-based estimate of the gradient ∇θJ(θ).
We begin by noting the log-derivative trick

∇θEfθ [g(x)] = ∇θ

∫
fθ(x)g(x) dx (1.16)

=

∫
fθ(x)

fθ(x)
∇θfθ(x)g(x) dx (multiply with

fθ(x)

fθ(x)
) (1.17)

=

∫
fθ(x)∇θ log fθ(x)g(x) dx (using ∇ log f(x) =

∇f(x)

f(x)
) (1.18)

= Efθ [∇θ log fθ(x)g(x)] (1.19)

which shows how we may take the gradient of the expectation of g(x) under the distribu-
tion fθ(x) with respect to θ through sampling. It then follows that (1.15) may be differ-
entiated as

∇θJ(θ) = Epπ(τ) [∇θ log pπ(τ)G0] (1.20)

Then we may rewrite ∇θ log pπ(τ) using (1.8) as

¹Also known as Monte Carlo Policy Gradient as it estimates the policy gradient through Monte Carlo
sampling.
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∇θ log pπ(τ) = ∇θ log

[
p0(s0)

T−1∏

t=0

πθ(at|st)p(st+1|st, at)
]

(1.21)

= ∇θ

[
p0(s0) +

T−1∑

t=0

(log πθ(at|st) + log p(st+1|st, at))
]

(1.22)

=
T−1∑

t=0

∇θ log πθ(at|st) (1.23)

where we can simplify (1.22) to (1.24) as only the policy depends on the neural network
parameters θ. Finally, we get to the gradient expression

∇θJ(θ) = Epπ(τ)

[
T−1∑

t=0

∇θ log πθ(at|st)Gt

]
(1.24)

= Epπ(τ)

[
T−1∑

t=0

∇θ log πθ(at|st)
(

T∑

t′=t

γt
′−trt′+1

)]
(1.25)

which may be written as the Monte Carlo estimate

∇θJ(θ) ≈
1

N

N∑

i=1

T−1∑

t=0

∇θ log πθ(a
i
t|sit)Gi

t (1.26)

where N is the number of trajectories used to estimate ∇θJ(θ). Note the change from
G0 in (1.20) to Gt in (1.24) for action at. This is common practice since the return of an
action is based on the future outcome, not what happened in the past. Finally, we have
now derived the REINFORCE loss

L(θ) = −J(θ) ≈ − 1

N

N∑

i=1

T−1∑

t=0

log πθ(a
i
t|sit)Gi

t. (1.27)

In practice, there exist many improvements to REINFORCE. For example, we may sub-
tract an action-independent baseline b(st) [121] from the return
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1

N

N∑

i=1

T−1∑

t=0

log πθ(a
i
t|sit)(Gi

t − b(sit)) (1.28)

which for a suitable choice of b, can decrease the variance. A natural baseline is the value
function in (1.14) approximated with a neural network

Lbaseline(θ) = − 1

N

N∑

i=1

T−1∑

t=0

log πθ(a
i
t|sit)(Gi

t − vw(s
i
t)) (1.29)

where w are the neural network parameters. During training, we would alternate between
updating θ and w. Commonly, the mean squared error regression loss is used to learn w
based on the observed returns from the sampled trajectories.

Proximal Policy Optimization. In Paper III we use the popular Proximal Policy Optimiza-
tion [112] (PPO) algorithm. It belongs to a class of methods called Actor-Critic methods
that jointly learn an approximation of the value function (1.14) (the critic) to improve con-
vergence when learning the policy πθ (the actor). During test time, only the policy is used
for selecting actions. PPO is more stable and has a lower variance compared to REIN-
FORCE. The loss¹ is given by

LPPO(θ) = Epπ(τ)

[
T−1∑

t=0

min

(
πθ(at|st)
πθold(at|st)

A(st, at), g(ε, A(st, at))

)]
(1.30)

where

g(ε, A) =

{
(1 + ε)A if A ≥ 0

(1− ε)A if A < 0
(1.31)

andA(st, at) = qπ(st, at)−vπ(st) is the advantage function which defines how beneficial
an action is relative to the state’s value. Using the advantage rather than return is a form
of baseline subtraction used to reduce the variance. As PPO is an actor-critic method, it
learns a neural network approximation of vπ.

Rewriting the inner expression when the advantage A(st, at) is positive versus negative
gives

¹This is not the original formulation of the loss from the paper [112] but an equivalent and simplified
formulation from OpenAI.
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)LJXUH ���� Active human pose estimation, where an agent is tasked with selecting viewpoints to reconstruct a subject
given a pre-trained pose prediction network. The agent sequentially selects viewpoints on a sphere around
the subject and terminates the search either through a ”stop” action or based on a heuristic criterion. This
process is repeated for each frame in a video and may feature multiple subjects.

min

(
πθ(at|st)
πθold(at|st)

A(st, at), g(ε, A(st, at))

)
= (1.32)

=





min

(
πθ(at|st)
πθold (at|st)

, 1 + ε
)
A(st, at) if A ≥ 0

max
(

πθ(at|st)
πθold (at|st)

, 1− ε
)
A(st, at) if A < 0

(1.33)

which can be interpreted as when the advantage is positive (the action is considered good),
it will increase πθ(at|st). However, the min operator limits the size of the update since
when πθ(at|st) > (1 + ε)πθold(at|st), we clip the expression to (1 + ε)A(at|st) and
vice versa if A < 0. The clipping makes learning more stable by preventing too large
updates and acting as a trust region around the old policy parameters θold. The clip ratio
hyperparameter is usually small, for example, ε ∈ [0.1, 0.3].

Armed with basic knowledge about reinforcement learning, we may now apply this method-
ology to solve the active perception tasks in Paper I-III, discussed in the following sections.

5.2 Active Human Pose Estimation

Paper I tasks an agent with selecting a small set of viewpoints that can be used to accu-
rately triangulate 2d body joint estimates into 3d for subjects in a scene. The agent selects
viewpoints until each joint has been seen from at least two cameras since this is the fewest
number of viewpoints required for triangulation. Paper II studies the task of an agent
equipped with a 3d monocular human pose estimation network, where the agent should
again select informative viewpoints to reconstruct the subjects. As the 3d estimation net-
work estimates even unseen joints, the agent can theoretically reconstruct the subject using
a single viewpoint. However, as predictions for occluded joints may be noisy, the agent
may wish to select multiple viewpoints to improve the reconstruction. Therefore there is
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)LJXUH ���� Embodied visual active Learning in which an agent learns to refine a perception model by exploring its
environment and requesting annotation.

no heuristic stopping criterion. Instead, the agent learns when it has observed the subject
from sufficiently many viewpoints and should stop. See Fig. 1.6 for a schematic overview.

Active human pose estimation is related to the “next-best-view” problem [27], where an
observer should sequentially select viewpoints to reconstruct a scene [27, 43] or an ob-
ject [81]. Unlike prior work, our task focuses on viewpoint selection for articulated 3d
human pose estimation from video. This is of particular interest as humans tend not to be
static. Furthermore, unlike object surface reconstruction, human pose estimation does not
require observing the subject exhaustively from all sides of the object. Furthermore, recent
advances in drone-based markerless motion capture¹ [51, 89, 90, 108, 122, 145, 159] merit
research into viewpoint selection for human pose estimation. Unlike the optimization-
based approach of Kiciroglu et al. [62], our approaches focus on training agents, which
select viewpoints that minimize reconstruction errors while considering both estimator bi-
ases and occlusions in the scene. The concurrent work of Yang et al. [146] studies how to
maximize a recognition system’s performance through movement to localize unobstructed
viewpoints. Unlike our work, their method focuses on object detection rather than articu-
lated pose reconstruction.

Since active human pose estimation is a sequential decision-making problem, we present
two reinforcement learning-based solutions. We use the Panoptic dataset [58] to address the
vast amount of samples required during training. It consists of video recordings of human
interactions from a large dome with ∼500 time-synchronized inward-facing cameras. We
use the dataset as a proxy for an active observer and simulate movement by switching camera
viewpoints. While controlling real drones poses additional challenges, our setup facilitates
reproducible experiments into learned viewpoint selection on real image data.
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5.3 Embodied Visual Active Learning

The embodied visual active learning (EVAL) task (see Fig. 1.7) for an introduced in Paper III
is a research problem that sits at the intersection of recent research into learning embodied
agents [30, 135, 160] and active learning [8, 107, 114].

In this context, embodied learning refers to the study of learning intelligent behaviors when
controlling a physical body in an (often simulated) 3d environment. That is different from,
for example, the classical object detection task where the learned algorithm can only observe
a given image and must make a prediction based solely on that input. In contrast, in embod-
ied learning, the agent may move around and explore its environment while completing its
tasks. Prior work studied embodied learning in the context of point-goal navigation [135]
(learning how to navigate to a target location), question answering [30] (learning how to
navigate an environment to answer questions about it), object-goal navigation (learning
how to navigate to an object class in the environment), and learning how to move to im-
prove the accuracy of a pre-trained recognition system [146].

Active learning studies how a learning algorithm can achieve high accuracy with few labeled
examples provided it intelligently selects what examples should be labeled. Rather than
training a model on a predetermined labeled dataset, the learner queries an oracle (often a
human annotator) to annotate a selected subset of examples. Intuitively this makes sense, as
annotations may be expensive, and not all examples are equally informative. For example,
in the case of semantic segmentation, many pixels are occupied by background classes such
as pavement, and most tasks are interested in the classification of foreground objects. There
exist multiple approaches to active learning, such as pool-based [69] where the algorithm
is given a set of unlabeled examples to query from, membership query synthesis [8] where
the algorithm generates new instances to query labels for, and stream-based [26] where the
algorithm is given a stream of instances and given a choice to either discard or query the
oracle for annotation.

Our task combines these two research areas. It can be viewed as a membership query syn-
thesis task where embodiment constrains the queries. The agent should efficiently improve
its visual perception system but must explore its environment to obtain suitable instances to
query the oracle. The task may also be viewed as an extension of the active human pose esti-
mation task introduced in §5.2. Except, rather than moving to increase the reconstruction
accuracy, it may now move to improve the underlying perception system through querying
for annotations. Such a system would be of interest as Paper I-II find that the pose esti-
mation system provides poor estimates for viewpoint, unlike those seen during training.
Enabling the agent to refine its perception would be a logical next step.

¹Essentially equipping drones with human pose estimators that follow and reconstruct subjects in outdoor
environments where traditional motion capture technology is not feasible.
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In Paper III we study the EVAL task in the context of semantic segmentation using the
Habitat simulator [110] and the photorealistic Matterport3D dataset [23]. We resort to
simulation rather than a physical robot partly because simulation makes experimentation
and model development significantly easier. The other reason is the abundance of simula-
tors [65, 110, 120] which provide ground-truth segmentation masks while affording com-
plex exploration behavior beyond the Panoptic dataset used in the active human pose es-
timation task. While experimenting with a physical robot would be of great interest, this
is a significantly more challenging task, especially when training reinforcement learning
agents, which generally require many samples during training. Despite prior work noting
that generalizing an exploration policy from simulation to the real world is non-trivial [59],
we believe simulation provides a valuable platform for reproducible experiments that may
lead to future real-world advances. Recent advances in sim-to-real transfer for embodied
agents support this belief. For example, Anderson et al. [6] deploy an embodied vision-
and-language navigation network to the real-world using domain randomization and an
adaptation module that account for the change from a discrete to a continuous world¹.
They conclude that this approach is effective, given that a map of the new environment is
provided. Such a map may be collected in a pre-processing step using a traditional Simul-
taneous Localization and Mapping (SLAM) approach.

5.3.1 Semantic Segmentation

Semantic segmentation is the fundamental computer vision task of predicting the semantic
class of each pixel in an image [84] from an application-dependent set of labels. This is
commonly formulated as: given an RGB image I ∈ RH×W×3

Y = fθ(I), (1.34)

find the parameters θ of a function fθ (for example, a deep convolutional neural network)
that predicts a tensor with the per-pixel class probabilities Y ∈ RH×W×C , where C is the
number of object classes, H and W are the image height and width, respectively. From Y
we obtain the predicted class for each pixel by taking the argmax over the class dimension.

The performance of a semantic segmentation algorithm is commonly measured using class-
balanced metrics. The reason is that most datasets tend to have large class imbalances. For
example, most pixels in a photo of a room will be dominated by “background” classes, such
as the ceiling, rather than object classes, such as “TV”. In Paper III we use the class balanced
metric mean intersection over union (mIoU) defined as

¹Datasets such as Matterport3D consist of a grid of discrete positions, unlike the real world, which is
continuous.
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mIoU =
1

N

N∑

i=1

IoUi =
1

N

N∑

i=1

|Pi ∩ Ti|
|Pi ∪ Ti|

(1.35)

where, Pi is the set of pixels predicted as belonging to class i, and Ti is the set of pixels
actually belonging to class i. This promotes the algorithm to value the classes equally. Note
that, as any single image in a dataset may contain only a few semantic classes, mIoU should
be computed for the entire dataset for the metric to be meaningful.

6 Physics-Based 3d Human Pose Estimation

While recent advances in monocular 3d human pose estimation have been propelled for-
ward significantly thanks to the advent of deep neural networks, it has been observed that
these tend to produce physically implausible results [106, 115]. For example, the subject
may penetrate the ground plane, the feet may slide unnaturally along the ground as if on ice
(commonly called foot sliding or foot skating), or the motion may contain jitter. Methods
that attempt to improve the reconstruction quality and augment the output with physical
quantities by explicitly incorporating physical constraints into the reconstruction process
are referred to as physics-based human pose estimation methods in this thesis¹.

Including physics in the reconstruction process has clear advantages. For example, it may
enable the estimation of physical quantities such as body torques and contact forces. Addi-
tionally, it constrains the reconstructed motion to obey the laws of (the simulated) physics.
However, these advantages come at the cost of increased modeling complexity, as the meth-
ods often require that the subject’s mass, moment of inertia, and muscle strength are known.
Furthermore, including physics in the reconstruction process tends to increase the compu-
tational cost compared to purely kinematic methods.

Computer vision has a long tradition of physics-based human pose estimation [17, 18, 19,
71, 82, 128, 133, 155]. For example, the early work by Metaxas and Terzopoulos [82]
presents a method for tracking an articulated upper body from 3d marker data using simu-
lation of Lagrange equations of motion and Kalman filtering. Brubaker et al. [18] perform
trajectory optimization using a reduced-dimension body model that tracks the center-of-
mass location rather than the rotations in the kinematic skeleton. Li et al. [71] estimate
ground and contact forces during human-object interactions from videos of subjects inter-
acting with tools-like objects.

¹These methods also go by other names such as “physically plausible”, “physically aware”, or “physionical”.
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More recently and closely related to our approach, Rempe et al. [106] present a physics-
based reconstruction method with the primary goal of reducing artifacts such as foot skating
compared to kinematics-based methods. Their method first reconstructs the subject from
monocular video using a 3d pose estimation network and a 2d body keypoint network.
From the 2d keypoints, a foot contact network predicts the contact timings between the
feet and the ground plane. Given the 3d poses, 2d body keypoints, and contact timings,
their method optimizes a simplified centroidal dynamics model introduced by Winkler
et al. [137] to match the estimated visual evidence. Their contact model only considers feet-
ground contacts, and the binary contact state (i.e., contact or not in contact) is considered
fixed. However, the exact contact timings are updated during optimization. Furthermore,
their method does not simulate the upper body pose with physics but infers it using inverse
kinematics from the lower body pose.

Shimada et al. [115] introduce the real-time PhysCap model, which, similarly to Rempe
et al. [106], first estimates 2d and 3d body joint positions using neural network predictors.
Their method then recovers smooth per-frame 3d joint body angles using inverse kinemat-
ics coupled with a temporal smoothness loss. Next, they detect foot-ground contact labels
and a binary stationary/non-stationary pose indicator for each frame using a neural net-
work predictor from the 2d body keypoints. The predicted contacts are used to inform
their physics optimization step which frames should contain ground reaction forces. The
stationary pose indicator is used in a pre-processing step to heuristically adjust the body
poses to such that the center of gravity is inside the subject’s base of support¹ [33]. Given
these quantities, PhysCap performs multi-stage energy-based optimization to recover joint
torques and ground reaction forces such that the physical motion is close to the estimated
visual evidence while subject to the equation of motion introduced in Featherstone [37].
As the visual evidence (2d and 3d body keypoints) obtained by the neural network predic-
tors may contain errors and be physically implausible, the authors introduce a root residual
force [149] that allows their solution to contain a (usually small) physical force applied
to the center of the character. This unrealistic force is a component that recurs in other
physics-based human pose estimation approaches [116, 150] as it makes optimization easier
in the presence of, for example, visual estimation and body modeling errors.

In their work on human motion synthesis, Xie et al. [142] present a physics-based human
pose estimation method from monocular video. They include physics into their recon-
struction pipeline to improve the quality of monocular pose reconstruction to high-quality
training data for their synthesis model. Like prior work, they first extract visual evidence in
the form of 2d and 3d body joint positions and then recover body joint rotations skeleton
using inverse kinematics. They do not, however, pre-detect foot contacts but instead re-

¹Aligning the subject’s center of gravity with its base of support intuitively means that the subject should
not lean excessively and that their center of gravity should be roughly above their feet when in a stationary pose
(e.g., not running).
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cover these during physics optimization. Their method supports feet-ground contacts and
models these through a soft contact penalty introduced by Mordatch et al. [86]. Contacts
are then optimized jointly with joint torques and ground reaction forces. The advantage
of their physics formulation is that it is differentiable, and their physics loss can be directly
minimized by a quasi-Newton solver such as L-BFGS [92]. However, their formulation
includes physics as a loss term among others and thus does not guarantee that the final
motion corresponds to physically plausible motion.

Similar to the approach in Paper IV-V, the SimPoE model [150] eschews using simpler
custom-made physics formulations but instead relies on a readily available physics simu-
lator. In the case of SimPoE, they simulate physics using the rigid multibody simulator
MuJoCo [123]. Following prior work [97] on learning human motion controllers from
video, the authors learn a motion controller using reinforcement learning which predicts
joint torques¹, rather than recovering them through optimization. Using a neural network
controller makes their method applicable in real-time while still allowing it to take full
advantage of the features of a full-fledged physics simulator, such as full-body contracts.
However, training a reinforcement learning model is very costly - and as prior work on
motion controllers [96, 98, 99, 140] has shown - learning a general motion controller is a
challenging and open problem. Moreover, as the authors do not evaluate their model on
real-world videos or highly dynamic motions (e.g., backflips or somersaults), its ability to
generalize to novel types of motions is unproven. Besides, their method relies on using a
non-physical root residual force. Still, the authors propose an attractive method because it
is real-time and does not simplify the physics formulation. Yu et al. [148] similarly take a
reinforcement learning-based approach, training a DeepMimic [96] motion controller for
each video they wish to reconstruct. While computationally costly, their system can recon-
struct fast-paced motions recorded by a moving camera with unknown camera parameters.

Shimada et al. [116] take a different approach from prior work. They embed physics-based
constraints into a custom layer of the neural network predictor, thus removing the need
for a multi-stage approach. Like PhysCap, their approach runs at real-time speed but only
supports foot-ground contacts, relies on unrealistic root residual forces, and does not adapt
the physical body model to match the subject’s body shape.

Aside from utilizing physics in human pose estimation, there exists a plethora of adjacent
research within other computer vision tasks. For example, Peng et al. [97] attempted to
learn motion controllers from real-world video examples using the DeepMimic [96] model.
Unlike human pose estimation - where the goal is reconstructing the motion as accurately
as possible - motion controller research often aims to reproduce motions of similar types or
characteristics. This research closely relates to decades of physics-based motion generation
research within computer graphics [16, 35, 57, 74, 98, 99, 101, 130]. The goal is to synthesize

¹To be precise, their network predicts control targets to PD controllers, which in turn generate the joint
torques, see (1.55).
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realistic and physically plausible motion rather than reconstruct motions from videos.

In addition to physical constraints, several recent works use different types of scene con-
straints to improve the reconstruction. Zou et al. [161] present a method for reducing re-
construction artifacts, specifically foot sliding, through enforcing zero velocity in the foot
joints during moments when there are foot-ground contacts. The contacts are predicted by
a neural network given the 2d joint estimates. However, this approach has clear limitations,
such as the need for the feet to be visible and that the approach considers only foot-ground
contacts. Fieraru et al. [38] condition the reconstruction based on inter-personal contacts,
Zanfir et al. [151] consider ground-plane when reconstructing multiple people in a scene,
Zhang et al. [156] jointly reconstruct people interacting with objects, and Yi et al. [147]
propose a method that considers images of the scene, objects in the scene as well as exam-
ples of human-object interactions to reconstruct a physically plausible 3d scene. However,
none of these works consider the use of dynamics to improve the physical plausibility of a
reconstructed motion nor attempt to recover physical quantities such as contact forces and
body torques, as is the focus of physics-based human pose estimation.

To summarize, the proposed approaches in this thesis integrate a physical simulator into
a video reconstruction system. Our methods support dynamic in-the-wild motions, and
since they rely on full-fledged physics simulators, they can handle full-body contacts and
self-contacts. Furthermore, unlike several other methods, our approaches do not require
unrealistic residual forces to decrease the reconstruction error at the cost of realism. While
the approach presented in Paper IV is computationally costly, Paper V demonstrates that
using a differentiable physics simulator can reduce computation by orders of magnitude.

6.1 Physically Based Modeling

Paper IV and V utilize off-the-shelf physics engines to simulate the physics of human dy-
namics, enforce physical constraints such as contacts, and approximate Newton’s laws of
motion¹. Physics-based modeling is an active research field with applications in computer
vision and computer graphics. Due to the breadth and complexity of the subject, the fol-
lowing sections will be brief and focus on building an intuition of the core concepts of
a physics engine rather than thoroughly describing its inner workings². The two main
components of physics-based modeling are simulation and control. Simulation refers to the
algorithms that emulate the laws of physics, while control refers to the algorithms steering,
in our case, the human character.

¹Since physical simulators tend to approximate the physics rather than exactly model them these are some-
times called force laws rather than laws of physics [138].

²For more in-depth explanations, the author recommends the excellent SIGGRAPH course of Witkin
and Baraff [138], the tutorial of Liu and Jain [73] and the thesis of Stępień [119].
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6.1.1 Rigid Body Simulation

Both the Bullet [28] simulator used in Paper IV and the Tiny Differentiable Simulator
(TDS) [49] employed in Paper V are rigid body simulators. That implies that they ap-
proximate the human body by a set of non-deformable geometric primitives (see §6.2).
The simulators compute the motion of the rigid bodies given external forces (e.g., gravity),
body joint torques (approximating muscle activations), and contact forces from collisions
(e.g., a foot touching the ground).

Simulation can be viewed as an initial value problem of an ordinary differential equation
(ODE) describing the dynamics of the rigid body simulator. The state update at time t
is defined as ṡ(t) and depends on the dynamics of the simulator F and the state of rigid
bodies s(t) as given by

ṡ(t) = F (s(t), t). (1.36)

In the classical formulation, the state of a rigid body is its position x(t), orientation q(t),
linear momentum p(t), and angular momentum l(t). The position and orientation are
defined with respect to a world coordinate frame. Orientation is usually represented with
unit quaternions as they are compact, do not suffer from gimbal lock, and do not have
problems with numerical drift common with rotation matrices [138]. The derivative of the
position and orientation may be written as

ẋ(t) = v(t) (1.37)

q̇(t) =
1

2
ω(t)q(t) (1.38)

whereω(t)q(t) is shorthand for multiplication between the two quaternions [0,ω(t)] and
q(t)¹. The linear velocity of a body with mass m is given by v(t) = p(t)

m and its linear
acceleration by

v̇(t) =
ṗ(t)

m
(1.39)

ṗ(t) = f(t) (1.40)

¹See Witkin and Baraff [138, Appendix B] for a derivation of the quaternion update formula.
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where f is the force acting on the center of mass of body¹. The relationship between the
angular momentum and angular velocity ω is more complicated as this depends on the
mass and how it is distributed in the body. The inertia tensor I defines the scaling between
the angular momentum and velocity as

l(t) = I(t)ω(t) (1.41)

l̇(t) = τ (t) (1.42)

where τ is the torque on the body. For simple geometric primitives, the inertial tensor can
be evaluated symbolically, while for complex shapes, the integrals over the mass distribution
would be precomputed before the simulation begins. In summary, the state s(t) for a rigid
body can be expressed as

s(t) =





x(t)
q(t)
p(t)
l(t)



 (1.43)

with the state update ṡ(t) given by

ṡ(t) =
d

dt





x(t)
q(t)
p(t)
l(t)



 =





v(t)
1
2ω(t)q(t)

f(t)
τ (t)



 =





p(t)
m

I(t)−1l(t)q(t)
f(t)
τ (t)



 . (1.44)

Constraints. Given (1.44) and an ODE solver, we could now simulate a system of un-
constrained rigid bodies. However, for our purposes, we need to be able to introduce
constraints on the system. These constraints might enforce non-penetration between two
bodies or act as joints connecting multiple bodies. There exist multiple ways to implement
constraints. One approach is through the introduction of energy functions that penal-
ize unwanted behavior. For example, we could connect two bodies by a damped spring
according to Hook’s law

fa = −
[
ks(|d|− r) + kd

ḋ× d

|d|

]
d

|d| (1.45)

¹This is analogous to the relationship a = f/m in particle simulation.
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where d = xa−xb is the distance between the two bodies, r is the rest length of the spring
ks and kd are the spring and damping constants, respectively. A spring gives rise to two
opposite directed forces fa = −f b pulling the bodies to distance r of each other. These
forces are summed along with other forces acting on the bodies and, unless strong enough,
might not cancel competing forces resulting in violated constraints.

Another method for modeling constraints is through constraint forces. In the case of a
spring-based constraint, we maintain the constraint by measuring the illegal displacement
and generating a proportional and opposite force. This force is generated after the con-
straint has been violated, and it competes against all other forces acting on the body. A
better approach would be to directly cancel out forces acting against the constraint as they
are generated. However, while doing so, we must respect the law of conservation of en-
ergy. This is accomplished by converting the body’s acceleration into “legal” acceleration
that does not violate our constraint¹. These constraints are commonly used when imple-
menting non-penetration constraints, e.g., to generate ground reaction forces.

Simulation Steps. Generally, each time step of the simulation can be summarized into the
following key steps:

1) Forward kinematics and forward dynamics. In the first step, the forces and torques act-
ing on the bodies are computed. This gives the world position of the bodies as well as
unconstrained updates.

2) Collision detection. Given the world position of the bodies, the simulator runs collision
detection to identify bodies in contact. This is a costly operation requiring, at worst,O(N2)
operations where N is the number of bodies in the system. However, in practice, many
methods exist for caching collisions and checking only for collisions between bodies that
are close to each other.

3) Solving constraints. Given the detected contacts, the simulator computes the forces re-
quired to satisfy non-penetration constraints. Additionally, other constraints may be in-
cluded in this step.

4) Integration. The constrained velocities and accelerations are integrated using an ODE
solver to compute the state at the next time step of the simulation.

¹Using the principle of virtual work [42] the constraint forces are directed such that they do not add nor
remove energy from the system’s kinematic energy while keeping the body’s state valid. See the lecture on
constrained dynamics by Witkin and Baraff [138] for a more in-depth explanation.
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)LJXUH ���� Example of two 2d rigid bodies connected by a 1-DoF hinge joint. In maximal coordinates, we would
represent the state of each bodyBi using xi, which contains the center of mass position and orientation.
In reduced or generalized coordinates, we represent the state as qi, the rotation, and translation relative
to its parent. In this example |x| = 6 and |q| = 4, though for large bodies, this difference becomes
even more significant. Note that the reduced coordinate representation implicitly enforces the constraint
between the bodies as it does not support configurations where they are separated.

6.1.2 Algorithms

The above description of rigid body simulation presented the classical Newton-Euler ap-
proach to physics-based modeling [138] in order to build intuition. However, state-of-
the-art physics engines have evolved beyond this formulation. Unfortunately, today’s al-
gorithms trade intuitive approaches for more compact state representations, speed, and
fidelity. Below is a summary of the approach of Bullet and TDS.

Featherstone’s Rigid Body Formulation. Representing the human body as rigid bodies
connected by springs is possible, but it may lead to difficulties when tuning the spring con-
stants. Improperly tuned springs may cause oscillation or limbs drifting apart [11]. Another
approach is to use a generalized-coordinate formulation¹. That is, rather than connecting a
rigid bodies through constraints; it may be parameterized such that only valid configura-
tions are possible. For example, a human body with M body parts may be represented in
two ways. In maximal coordinates, the body’s configuration is represented by the Cartesian
coordinate for each body part (that is xmaximal ∈ R3×M ). In generalized coordinates, the
system’s configuration is formulated as x ∈ RN where N is the total number of rotational
degrees of freedom in the kinematic skeleton. This reduces the parameterization size and
limits the body to only valid configurations, see the example in Fig. 1.8.

Both Bullet and Tiny Differentiable Simulator represents the state as the relative joint ro-
tations along the kinematic tree of the multibody model. In particular, they rely on the
formulation by Featherstone [37]. According to Featherstone’s formulation, the state of a
simulated body is expressed by

¹Also called reduced coordinates.
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s(t) =

[
q(t)
q̇(t)

]
, (1.46)

where q(t) and q̇(t) are vectors of joint rotations and joint velocities, respectively¹. This
compact representation comes at the cost of more complicated algorithms since each body’s
world position and orientation must be recursively computed starting from the root joint.
Computing contact forces and applying external forces (such as gravity) also becomes more
involved as these forces – usually expressed in the world coordinate system – must be trans-
formed into accelerations in the joint space.

Featherstone’s formulation builds on Lagrangian dynamics, which studies the system’s en-
ergies, unlike the Newton-Euler formulation (in §6.1.1), which studies the forces acting on
the system. The canonical equation of motion [37] is defined as

τ = M(q)q̈ + c(q, q̇), (1.47)

where τ is a vector of forces² applied in the joints, q̈ are the joint accelerations, M is a
matrix of inertia terms dependent on the current body configuration q, and c is a vector of
force terms accounting for all forces acting on the system other than τ , such as gravity. τ
and q̈ are the variables of the equation system, and H and c are the coefficients. Thus, we
control our simulated human by supplying the simulator with τ from which the forward
dynamics algorithm solves for the resulting (potentially unconstrained) joint accelerations
q̈. Below is a brief description of the algorithms featured in Bullet and TDS.

Recursive Newton-Euler Algorithm (RNEA). An inverse dynamics algorithm that com-
putes the torques τ given accelerations q̈. RNEA [37, 76] is used to compute c in (1.47).

Composite-Rigid-Body Algorithm (CRBA). An efficient approach to computing the M
given a body configuration q is the composite-rigid-body algorithm [37, 129]. It recursively
computes the inertia of each connected rigid body in O(N2), where N is the number of
bodies.

Articulated Body Algorithm (ABA). Introduced in Featherstone [36], the articulated body
algorithm is a forward dynamics algorithm for computing joint accelerations q̈ given torques
τ in O(N), where N is the number of joints in the system. ABA used by TDS.

Articulated Islands Algorithm (AIA). A forward dynamics algorithm intended improve-
ment on ABA by combining it with the constraint-solving mechanism of the sequential

¹Note the overloaded notation. In Featherstone’s formulation, q(t) denotes the joint rotations in the
kinematic skeleton, while in the maximal coordinate formulation (see (1.43)), it denotes the rigid body’s ori-
entation.

²The term forces is used as the joints may be either rotational or translational.
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Physical Body ModelGHUM Model

 qneck = {qx, qy, qz, qw}

 ≈

 τneck = {τx, τy, τz}

)LJXUH ���� The physical body model used in Paper IV-V. The model is actuated by torque motors in the joints and has
the same kinematic tree as the GHUM [143] model. The pose q is represented as the concatenation of all
joint rotations. The torque vector τ is the concatenation of all joint torque vectors.

impulse algorithm [22]. We empirically found that Bullet, which uses AIA, could support
a larger simulation step size and was generally more stable than TDS.

6.2 Physical Body Model

The methods in Paper IV-V aim to support physics-based reconstruction of various dy-
namic motions, including complex full-body contacts. Therefore, our physical model must
represent the entire body and approximate the subject’s size to accurately track the motion
in 3d. As our physical simulators require that the simulated subject consists of geometric
primitives, we convert the subject’s GHUM mesh into a rigid body approximation, see
Fig. 1.9. We optimize the size parameters of the geometric primitives to approximate the
volume of the subject’s GHUM mesh using a loss similar to Al Borno et al. [3].

We compute the physical body’s inertia tensors by estimating each body part’s mass and
computing the inertia tensors using each geometric primitive’s analytical formula. The mass
is estimated by first regressing the total mass of the subject from the volume of their GHUM
mesh. We train a neural network regressor on the CAESAR [100] dataset containing body
scans and the subjects’ weight. The total body mass is then distributed among the body
parts according to an average weight distribution from the medical literature.

The global position and pose of the physical body model is expressed through the pose
vector

q = [q0, q1, . . . , qJ ] , (1.48)
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where q0:3 contains the global position of the root joint in Cartesian coordinates, q3:7 con-
tains the global orientation of the root joint, and q7:J contains the concatenated quaternion
body joint angles. To control the physical body we provide the physical simulator with the
torque vector

τ = [τ0, τ1, . . . , τK ] , (1.49)

where τ 0:3 corresponds to the linear force and τ 3:6 corresponds to the torque acting on the
root joint. We set τ 0:6 = 0 to disable non-physical root residual forces, that is, external
forces acting directly on the root joint. τ 6:K contains the concatenated 3d torque vectors
corresponding to the body joints in q7:J , see Fig. 1.9. Given 16 3d body joints we have
J = 71 and K = 54.

While our physical body model presents a good first-order approximation, many possible
improvements exist. For example, our model uses static torque limits, while Jiang et al.
[57] synthesize body motions using learned pose-dependent torque limits. Using pose-
dependent torque limits provides a useful physical prior, especially when visual evidence
is lacking due to, e.g., blurred frames. Biomechanics researchers use OpenSim [113] and
detailed muscle models to perform, for example, gait analysis [104]. However, this type of
simulation is computationally more expensive than joint-actuated rigid body simulation.
Lee et al. [68] present a reinforcement learning model for controlling a muscle-activated
character in a rigid body simulator. However, their model only simulates the lower body
and only learns to generate a specific motion. Using a mesh-based deformable body model
would likely improve realism, especially for grasping, as noted by Jain and Liu [56]. How-
ever, simulating meshes is computationally expensive compared to rigid body simulation,
and our work currently emphasizes body motion rather than grasping.

6.3 Trajectory Optimization

In Paper IV-V, we seek to reproduce a motion from a video in physical simulation to
produce a physically constrained estimate of said motion. We first estimate the per-frame
poses using a 3d human pose estimation network. Next, we need to recover the time-
varying torques used to control the physical body model. Similar to Al Borno et al. [2],
we recover the control signal through trajectory optimization¹ explained in the following
section.

Given the forward simulation function D

¹Also referred to as optimization with spacetime constraints [139].
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st+1 = D(st, τ t) , (1.50)

which takes the current state of the body st at time t together with a joint torque vector τ t

and produces the state of the body at the next time step t+1. Controlling the body for T
time steps from an initial state of s0 would result in the following sequence

s0, τ 0
D−→ s1, τ 1

D−→ . . .
D−→ sT−1, τ T−1

D−→ sT , (1.51)

where τ 0:T−1 = {τ0, . . . , τT−1} is the time-varying torque vector controlling the body.
Assuming we have a loss function L(st, ŝt) that computes the error between the state of
the physical body st and the desired state ŝt, we can compute the loss for each time step as

s0
↓

L(s0,ŝ0)

, τ 0
D−→ s1

↓
L(s1,ŝ1)

, τ 1
D−→ . . .

D−→ sT−1
↓

L(sT−1,ŝT−1)

, τ T−1
D−→ sT

↓
L(sT ,ŝT )

(1.52)

with the total loss of the trajectory given by the sum

L(s0:T , ŝ0:T ) =
T∑

t=0

L(st, ŝt) . (1.53)

As the state st depends on the torque τ 0:t−1 and the initial state s0, we can rewrite (1.53)
to define the goal of trajectory optimization as

min
τ0:T−1

L(τ 0:T−1; s0, ŝ0:T ) , (1.54)

that is, finding the time-varying control vectors τ 0:T−1 that minimizes the reconstruction
loss. Our work estimates the reference trajectory, ŝ0:T , which we aim to imitate from the
video sequence using a neural network predictor. After optimization, the solution τ ∗

0:T−1
will produce s0:T , a motion sequence close to ŝ0:T but constrained by our dynamics D.

If (1.54) is differentiable, that is, if D and L are differentiable, then we may attempt to
minimize the loss using gradient-based methods such as steepest descent or BFGS [39].
Otherwise, we must resort to a gradient-free method, such as CMA-ES [44].
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6.3.1 PD Joint Control

The formulation in (1.54) has some practical issues. For one, physical simulators usually
run at a high simulation frequency to ensure stability (anywhere between 100-1000 Hz).
Optimizing control for one second of video at, e.g., 1000Hz would result in the vast search
space of τ ∈ R1000×54. Changing the control signal at 1000 Hz may also introduce jitter,
hurting the reconstruction quality and making the motion look unnatural. Finally, while
our simulation runs at high frequency, the video’s visual evidence is usually captured at
25-50 frames per second. Thus, for most of our time steps, we have no visual evidence to
imitate. Furthermore, if we optimize over time-varying joint torques, it is unclear how we
should select the initial guess τ 0. One approach would be inverse dynamics, however, in
the presence of contacts, this is non-trivial.

We follow Al Borno et al. [2] to address these issues and infer the torque vectors using
a proportional-derivative (PD) controller. That is, rather than optimizing time-varying
torque vectors, we optimize time-varying control signals in the form of desired joint angles
and use PD controllers to compute the actual torque values. For a 1-DoF joint, we compute
the torque as

τt = kp(q̂t − qt)− kdq̇t , (1.55)

where q̂t is the controller’s target, qt is the current joint angle, q̇t is the current joint angle
velocity, and kp and kd are constants of the controller. In our approach, we tune kp and kd
manually while other methods [116, 150] predict them using neural networks. (1.55) can
be thought of as a damped spring that generates torque that pulls the current joint angle qt
towards the target joint angle q̂t.

Rewriting our trajectory loss in (1.54) using PD control in (1.55) gives

min
q̂0:T

L(q̂0:T ; s0, ŝ0:T ) , (1.56)

where we optimize the physical motion with respect to the time-varying vectors of PD
control targets q̂0:T . Note that the control targets q̂0:T are not the same as the actual joint
angles q0:T of the physical motion. The former are used to infer torque vectors using the
PD rule in (1.55), while the latter are the realized poses of the physical motion. During
optimization, we set the initial guess of the control targets q̂00:T = qkin0:T , where qkin0:T are
the per-frame body joint angles estimated from video by a neural network predictor.

To decrease the optimization search space, we may downsample the control signal by vary-
ing q̂t at the frequency of the video’s frame rate. When computing joint torques for sim-
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ulation time steps in between two video frames, we use the next frame’s control target, for
example:

τt′ = kp(q̂t2 − qt′)− kdq̇t′ , (1.57)

for t1 < t′ < t2, where t1 and t2 are two consecutive frames of the video and t′ is an
intermediate control step.

6.4 Differentiable Physics

This thesis refers to differentiable physics as physics formulations where the forward simula-
tion function D in (1.50) is differentiable. In that case, we may minimize the loss function
in (1.56) using a gradient-based method. These methods tend to converge faster and suffer
less from the curse of dimensionality than their gradient-free counterparts.

The development of differentiable physics simulators is an active area of research, with
significant progress made in recent years [21, 40, 49, 53, 67, 79, 102, 103, 134, 144]. The
different differentiable physics simulators differ both in their theoretical foundations as well
as their practical implementations. For example, a great variety exists in how they compute
contact forces, represent the rigid body state, compute gradients, and what type of collision
geometries they support. They also differ in practical matters, such as in what programming
language they are implemented, if they support automatic vectorization, and how efficient
they are in terms of memory and computation.

Despite significant progress, differentiable simulators tend to be less sophisticated than
their non-differentiable counterparts. Partly because rewriting simulation algorithms in
auto differentiation frameworks or with analytical gradients is challenging. Hu et al. [53]
found that the time-of-impact must be accurately computed. Otherwise, the gradients
during contacts might be incorrect. Zhong et al. [158] further investigated the gradients
of differentiable physics simulators and found that, depending on implementation, there
were significant errors in the gradients during contacts. Metz et al. [83] concluded that
computing gradients through multiple simulation steps (applications of D in (1.50)) had
similar issues as backpropagation through recurrent neural networks. Depending on the
system’s dynamics, gradients could vanish or explode [15]. In Paper V, we use the Tiny Dif-
ferentiable Simulator [49] (TDS), which uses a similar physics formulation as Bullet [28],
that is, Featherstone’s reduced-coordinates algorithms [37]. Gradients are computed us-
ing the automatic differentiation framework CppAD [13]. Similar to Xu et al. [144], we
empirically found that, despite the difficulties mentioned above, by optimizing over small
time windows (∼1s), gradients were stable enough for optimization using BFGS [39].
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)LJXUH ����� Overview of the publications in the thesis (in bold), their main research questions, and their follow-up
work not included in the thesis (in roman).

7 Conclusion and Outlook

The work of this thesis can roughly be divided into three separate categories (see Fig. 1.10),
each focusing on different contributions to visual perception. This section discusses the
conclusions, follow-up work, avenues for future work, and limitations of the work in this
thesis.

Paper I-III study the question posed in RQ1, and each presents different learning-based
approaches to seeking out informative viewpoints. For example, in active human pose es-
timation (studied in Paper I-II), the agent must learn to seek out occlusion-free viewpoints
that complement previously seen views to reconstruct the subjects. Using a multi-camera
dataset, we could train an active observer on real images of humans. The interesting next
step would be to adapt this policy to control real drones in a motion capture system. Nat-
urally, this would pose non-trivial challenges in terms of, for example, the sim-to-real gap
and the delay between viewpoint selection drone movement. To that aim, Fan et al. [34]
extended the active human pose estimation methodology for multiple agents and proposed
a method for synchronization and communication between the agents. For the single drone
case, Arzati and Arzanpour [10] presented a reinforcement learning-based agent similar to
ACTOR for viewpoint selection for skin cancer detection using drone-based dermoscopy.

Regarding RQ2, Paper II studies how an active observer may learn to determine when it has
gathered enough information. The Pose-DRL model learns to not only select viewpoints
but to stop when it believes additional views will not reduce the reconstruction error. Our
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experiments show that, for our problem, selecting a small set of informative views is not
only efficient but also crucial, as fusing all views will include poor estimates that negatively
impact the final reconstruction. This could be mitigated by improving the simple method
for fusing poses. Rather than taking the median of several pose estimates, a neural network-
based pose fusion function could be learned inspired by how Iskakov et al. [55] learned a
network for pose triangulation.

Paper III presents a method for how an active observer may learn to refine its visual system
(see RQ3). Unlike in classical active learning, the embodied agent must explore and seek
out novel percepts. Defining novelty is, of course, a non-trivial exercise with many possible
approaches, for example, through a self-supervised prediction error [95]. Our method
implicitly learns to seek out novel views but integrating an explicit novelty estimate could
perhaps further improve the agent’s performance, as would reconstructing the environment
into a 3d semantic map using the depth information associated with each view [24]. By
using a 3d reconstructed map of the environment, semantic labels could be propagated
much more efficiently between widely different views compared to the current approach of
propagating labels using optical flow.

Paper III studies a “tabula rasa agent” training its perceptual model from scratch. Another
setting of interest would be refining a pre-trained perceptual system deployed to a new
environment, for example, a household robot trained in one house and then deployed in
another. This problem is studied in the follow-up work of Nilsson et al. [91]. Another
exciting line of work is adapting embodied visual active learning to human pose estima-
tion. One possible approach could be to have multiple drones equipped with human pose
estimators, requesting annotations if their predictions (captured from different viewpoints)
are inconsistent. That would signify that the human pose estimator of at least one of the
drones produces incorrect results.

This thesis proposed integrating physical constraints in the pose reconstruction process via
a physical simulator to answer RQ4. The results presented in Paper IV were promising, but
there are many avenues for future work. While integrating physics allows for a richer output
with torque and force estimates, it also requires additional information about the subject
and the scene. The torque and force estimates’ accuracy depends on the body’s estimated
physical properties. Our proposed method roughly estimates the subject’s mass distribu-
tion. A more fine-grained estimation could improve the accuracy of our model’s physical
outputs. While plausible, the joint torque limits used in our model are generous, and more
biological limits, which in practice are pose-dependent, would increase the realism of the
model [57]. Furthermore, modeling the body forces as individual muscle activations rather
than the torques applied to the joints [68] would also increase physical realism. Finally,
a more accurate representation of the subject would feature a deformable body that more
closely resembles the human body, perhaps based on surface estimation [5, 132]. How-
ever, soft body simulation is traditionally more computationally expensive than rigid body
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simulation. Hence, soft body simulation would further slow down the already costly recon-
struction process. Another area for improvement when developing physics-based human
pose estimation methods is the lack of real-world ground-truth data. This stems from the
difficulty of measuring ground-truth values for physical quantities such as contact forces
and body torques. As such, the estimates produced by most methods should only be con-
sidered rough estimates until their accuracy can be thoroughly evaluated.

While our proposed solution support interactions with objects (for example, sitting on a
chair), it currently requires manual modeling of all objects in the scene. This limits what
types of videos may be reconstructed without significant manual effort. Integrating meth-
ods [29, 147] for automatic 3d scene reconstruction would be a significant first step toward
physically reconstructing subjects in more complex scenes. In the same vein, the current
limitation of a static camera could be lifted by estimating the camera movement using
structure from motion techniques [111]. Finally, the physics-based system should ideally
reconstruct both object and person interactions. Thus supporting the simultaneous recon-
struction of multiple people would be of great interest.

The thesis addressed RQ5 in Paper V by demonstrating how a differentiable physics simu-
lator can be applied to physics-based 3d human pose estimation. This proved magnitudes
faster than our gradient-free optimization technique while achieving similar results on our
test sets. However, differentiable simulators are still the subject of active research, with
many competing implementations. For example, the Tiny Differentiable Simulator used
in our paper does not support check-pointing the computational graph¹ [103] nor prun-
ing contacts based on distance. Thus, the memory usage is significant and linear with the
optimization window size and quadratic in the number of contact points.

Using a differentiable simulator enables gradient-based system identification. Prior work
has attempted system identification for simple structures using a differentiable renderer
coupled with a differentiable simulator [50, 88]. Using a similar methodology to iden-
tify the body mass distribution and properties (such as friction and elasticity constants)
of objects in the scene could increase the fidelity of the reconstruction and the estimated
quantities.

Another avenue of future work is to employ machine learning-based methods for control
together with the differentiable simulator. While capable of learning dynamic motions such
as backflips [96], motion controllers trained using reinforcement typically are slow to train
and tend not to generalize to motions different from those observed during training. How-
ever, Xu et al. [144] recently demonstrated how motion controllers may be trained magni-
tudes faster using reinforcement learning and the gradients from a differentiable simulator.
Furthermore, there is active research into skill-reuse for learned motion controllers [99]. In

¹Essentially computing parts of the graph as needed rather than storing the entire graph in memory at all
times.

40



the future, a physics-based reconstruction system might be able to quickly reconstruct com-
mon motions with learned motion controllers and only resort to trajectory optimization
in the case of especially difficult motions. Once reconstructed, a difficult motion could be
added as training examples for the learned motion controller.

Integrating a differentiable physics simulator as a component during training of 3d human
pose estimation networks could also be fruitful. For example, one could imagine a physics
loss in addition to the standard pose estimation losses. The physics loss would steer the
network toward predicting more physically plausible motions.

In addition, internal components of the physical simulator could be learned and specialized
to specific tasks to speed up inference. One such example was presented by Fussell et al.
[41]. They learn a neural network that can emulate a rigid body simulator for a human
body. Another example is Heiden et al. [49], which replaces parts of the physics engine
with learned components to bridge the sim-to-real gap by correcting artifacts caused by the
simplifications of the rigid body formulation. Physics-based reconstruction could be made
more efficient and more accurate using these approaches.

Finally, the benefits of research into active perception and physics-based inference are not
limited to 3d human pose estimation. Constructing intelligent agents that learn how to
acquire information, adapt to novel environments, and consider the effects of the phys-
ical world when reasoning are three fundamentally desirable traits. This thesis provides
some insights, but the underlying research questions are open-ended and difficult to an-
swer definitively. In the end, the author hopes that the effort put into this thesis produced
a stepping stone that other researchers may tread on along the long journey toward general
artificial intelligence.
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8 Author Contributions

Co-authors are abbreviated as follows: Mykhaylo Andriluka (MA), Erwin Coumans (EC),
Erik Gärtner (EG), David Nilsson (DN), Aleksis Pirinen (AP), Cristian Sminchisescu (CS),
and Hongyi Xu (HX).

Paper I: Domes to Drones: Self-Supervised Active Triangulation for 3D Human
Pose Reconstruction

The project was conceived by CS, EG, and AP. The method was developed by EG and
AP with continuous feedback from CS. EG and AP jointly implemented the system and
performed experiments. Finally, EG and AP wrote the manuscript with revisions from CS.
Overall, EG and AP contributed equally to the project.

Paper II: Deep Reinforcement Learning for Active Human Pose Estimation

CS conceived the main idea, refined by EG and AP. EG and AP developed the method aided
by CS. EG and AP implemented the experimental setup and performed all experiments
together. EG and AP wrote the manuscript with significant contributions from CS. Overall,
EG and AP contributed equally to the project.

Paper III: Embodied Visual Active Learning for Semantic Segmentation

DN and CS conceived the core idea of the project. The method was developed by DN
and CS with continuous feedback from EG and AP. DN implemented most of the code
with substantial contributions from EG and AP. Experiments were carried out mainly by
DN and, to a lesser extent, by EG and AP. EG contributed with compute infrastructure
software and support. Finally, DN, AP, and EG wrote the manuscript with feedback from
CS.

Paper IV: Trajectory Optimization for Physics-Based Reconstruction of 3d Hu-
man Pose from Monocular Video

CS conceived the initial project idea with input from EG, MA, and HX. The method was
developed by EG and MA with continuous feedback from CS and HX. EG and MA wrote
most of the code, while HX wrote the initial version of the kinematics pipeline. EG and
MA carried out experiments together. EG, MA, HX, and CS wrote and revised the paper.

42



Paper V: Differentiable Dynamics for Articulated 3d Human Motion Recon-
struction

EG, MA, and CS conceived the project. EG and MA developed the method. EC provided
technical expertise regarding the differentiable physics simulator and physical simulation
in general. EG wrote the vast majority of the code with help from MA. EG formulated
and performed most experiments with assistance from MA. EG wrote the manuscript with
revisions from MA and CS.
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Abstract

Existing state-of-the-art estimation systems can detect 2d poses of multiple
people in images quite reliably. In contrast, 3d pose estimation from a single
image is ill-posed due to occlusion and depth ambiguities. Assuming access to
multiple cameras, or given an active system able to position itself to observe
the scene from multiple viewpoints, reconstructing 3d pose from 2d mea-
surements becomes well-posed within the framework of standard multi-view
geometry. Less clear is what is an informative set of viewpoints for accurate
3d reconstruction, particularly in complex scenes, where people are occluded
by others or by scene objects. In order to address the view selection prob-
lem in a principled way, we here introduce ACTOR, an active triangulation
agent for 3d human pose reconstruction. Our fully trainable agent consists of
a 2d pose estimation network (any of which would work) and a deep rein-
forcement learning-based policy for camera viewpoint selection. The policy
predicts observation viewpoints, the number of which varies adaptively de-
pending on scene content, and the associated images are fed to an underlying
pose estimator. Importantly, training the view selection policy requires no
annotations – given a pre-trained 2d pose estimator, ACTOR is trained in
a self-supervised manner. In extensive evaluations on complex multi-people

*Denotes equal contribution, order determined by coin flip.
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scenes filmed in a Panoptic dome, under multiple viewpoints, we compare
our active triangulation agent to strong multi-view baselines, and show that
ACTOR produces significantly more accurate 3d pose reconstructions. We
also provide a proof-of-concept experiment indicating the potential of con-
necting our view selection policy to a physical drone observer.

1 Introduction

Estimating 2d and 3d human pose from given images or video is an active research area, with
deep learning playing a prominent role in most of today’s state-of-the-art pose and shape
estimation models [2, 5, 25, 26, 27, 31, 38]. Monocular 3d pose estimation is however
ill-posed [30] due to depth ambiguities, and these cannot always be resolved by priors or
by increasing a feed-forward model’s predictive power. Given access to multiple cameras, or
given an active observer which can capture images from multiple viewpoints, reconstructing
3d pose from 2d estimates however becomes tractable within the framework of standard
multi-view geometry. An active setup for triangulating 2d estimates also addresses many
common practical issues, such as partial observability due to occlusion, either self-induced
or due to other people or objects.

Given sufficiently many viewpoints, 3d pose reconstructions from 2d estimates can be made
robust and accurate, and such results have even been used as (pseudo)ground-truth [21, 37].
While inferring 3d reconstructions from tens or hundreds of viewpoints works in carefully
constructed setups, it is not always practical or desirable to rely on so many cameras. In
this work we take a different approach, introducing ACTOR, an active triangulation agent
for obtaining 3d human pose reconstructions. ACTOR consists of a 2d pose (human body
joints) estimation network (any of which could be used) and a deep reinforcement learning-
based policy for observer (i.e. camera location and pose) prediction, within a fully trainable
system. Instead of operating exhaustively over all cameras, ACTOR is able to select a much
smaller set of cameras yet still produces accurate 3d pose reconstructions. Our proposed
methodology is implemented in the Panoptic multi-view framework [21], where the scene
can be observed in time-freeze, from a dense set of viewpoints, and over time, providing a
proxy for an active observer. In evaluations using Panoptic we show that our system learns
to select camera locations that yield more accurate 3d pose reconstructions compared to
strong multi-view baselines. We also provide a proof-of-concept experiment indicating the
potential of connecting ACTOR to a physical drone observer. Training our policy for view
selection requires no 2d or 3d pose annotations – given a pre-trained 2d pose estimator,
ACTOR can be trained in a self-supervised manner.

Related Work. In addition to recent literature focusing on extracting 3d human repre-
sentations from a single image or video [3, 25, 26, 27, 28, 31, 33, 38, 39], a parallel line
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of work concentrates on lifting 2d estimates to 3d. [6] present an unsupervised approach
for recovering 3d human pose from 2d estimates in single images. This is achieved by a
self-consistency loss based on a lift-reproject-lift process, relying on a network that dis-
criminates between real and fake 2d poses in the reprojection step. Related ideas based on
an adversarial framework [11] are also pursued in [9]. A self-supervised learning method-
ology for monocular 3d human pose estimation is described in [23]. During training, the
system leverages multi-view 2d pose estimates and epipolar geometry to obtain 3d pose
estimates, which are then used to train the monocular 3d pose prediction system. These
weakly-supervised methods for monocular 3d pose estimation eliminate the need for ex-
pensive 3d ground-truth annotations but tend to not be as accurate as their fully-supervised
counterparts.

Multi-view frameworks can, on the other hand, rely on triangulation in order to obtain
accurate 3d pose reconstructions given 2d estimates. In contrast to methods performing
exhaustive fusion over all cameras, ACTOR actively selects a smaller subset of viewpoints
over which to triangulate. Our approach can be considered as a generalization of next-
best-view (NBV) selection, and is superficially similar to other NBV-works [14, 15, 17,
18, 20, 32, 36]. Differently from them, the number of viewpoints explored by our agent
varies adaptively based on the complexity of the scene. Also, NBV approaches typically
decide the next view by greedily and locally evaluating some hand-crafted utility function
exhaustively over a set of candidates – we instead frame the task as a deep RL problem
where the policy is trained to maximize an explicit global objective, searching over entire
sequences of viewpoints, and by triangulating as many joints as possible. In a broader
sense, ACTOR relates to work on active agents trained to perform various tasks in 3d
environments [1, 7, 8, 12, 35, 40]. We are not aware of any prior work that tackles the
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problem of active triangulation in multi-view setups.

2 Human Pose Reconstruction from Active Triangulation

We here describe the terminology and concepts of 3d human pose reconstruction from
active triangulation. The proposed framework is applicable to any number of people as we
aim for a system able to actively reconstruct all people in the scene, the number of which
may vary. We study the active triangulation problem in the CMU Panoptic multi-camera
framework [21] since its data consists of real videos of people and allows for reproducible
experiments. The subjects are filmed by densely positioned time-synchronized HD-cameras
as they perform movements ranging from basic pose demonstrations to different social
interactions. Panoptic offers 2d and 3d joint annotations, but as we will show no such
annotations are required for training our viewpoint selection system. See Fig. 1.11 for an
overview of our active 3d human pose reconstruction model.

Terminology. Triangulation of 3d pose reconstructions from 2d estimates requires observ-
ing the targets from several cameras, each capturing an image vti (referred to as a view or
viewpoint) indexed by time-step t and camera i. The set {vt1, . . . , vtN} of all views in a
time-step t is called a time-freeze. A subset of these is an active-view, Vt = {vt1, . . . , vtk},
which contains k cameras selected (by some agent or heuristic) from the time-freeze at
time t. A sequence of temporally contiguous active-views is referred to as an active-sequence,
S1: T = {V1,V2, . . . ,VT }, where T is its length. Unless the context requires both indices
we will omit the time super-script t to simplify notation, which implies that all elements
belong to the same timestep. The set of all predicted 2d pose estimates corresponding to a
view vi is denoted Xi = [x1, . . . ,xM ] ∈ R30×M , where x is a single 2d pose estimate,
based on detecting 15 human body joints, and M is the number of people observed from
that viewpoint.

Task description. Active triangulation for 3d human pose reconstruction is the task of produc-
ing active-views with corresponding accurate fused 3d pose reconstructions for all people
present, Y $ = [y1$, . . . ,yM$], given 2d pose estimates X1, . . . ,Xk associated with the
active-view. These active-views then form an active-sequence of accurate 3d pose recon-
structions. As it is challenging to select appropriate viewpoints for satisfactory triangula-
tion, especially in crowded scenes where people are often occluding each other, the task
is considered completed once each individual’s joint has been observed from at least two
different viewpoints (the minimum requirement for performing a triangulation), or after a
given exploration budget is exceeded.

Matching and triangulating people. The active triangulation system must tackle the prob-
lems of tracking and identifying people across various views and through time. The agent
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receives appearance models¹ for the different people at the beginning of an active-sequence.
For each view, the agent compares the people detected by the 2d pose estimator with the
given appearance models and matches them across space and time using the Hungarian
algorithm. To reconstruct 3d poses from 2d estimates associated with the selected view-
points, we compute triangulation between each pair of viewpoints [16, 24] and perform
per-body-joint fusion (averaging) of the associated 3d reconstructions. More sophisticated
triangulation methods would be possible; here we selected pairwise averaging due to com-
putational efficiency which is important during training.

3 Active Triangulation Agent

We now introduce our active triangulation agent, ACTOR, and describe its state represen-
tation and action space in §3.1. In §3.2 we describe the annotation-free reward signal for
training ACTOR to efficiently triangulate the joints of all people.

In the first active-view V1, the agent is given an initial random view v11 . It then predicts
camera locations v12, . . . , v1k until the active-view is completed. An active-view is consid-
ered completed once the agent has triangulated the joints of all people within the time-
freeze, or after a given exploration budget has been exceeded. The 2d pose estimator is
computed for images collected at every visited viewpoint vti , yielding estimates Xt

i for all
visible people. Camera locations are specified by the relative azimuth and elevation angles
(jointly referred to as spherical angles) on the viewing sphere.

Once the agent has triangulated the joints of all people within a time-freeze, it continues
to the next active-view Vt+1. At this time the triangulated 3d pose reconstructions Y t

are temporally fused with the reconstructions Y t−1
$ from the previous active-view, Y t

$ =
f(Y t−1

$ ,Y t). As the 2d pose estimator we use in this work is accurate, we have opted for
a straightforward temporal fusion. We define I = Itri∪Imiss, where I indexes all joints, Itri
indexes the successfully triangulated joints in the current time-step, and Imiss indexes joints
missed in the current time-step. Then we set Y t

$[Itri] = Y t[Itri] for the joints that were
successfully triangulated in the current time-step, and Y t

$[Imiss] = Y t−1
$ [Imiss]. Hence

we temporally propagate from the previous time-step only those joint reconstructions that
were missed in the current time-step. The initial viewpoint vt+1

1 for Vt+1 is set to the
final viewpoint vtk of Vt, i.e. vt+1

1 = vtk. The process repeats until the end of the active-
sequence. Fig. 1.11 shows a schematic overview of ACTOR.

¹Instance-sensitive features generated using a VGG-19 based [29] siamese instance classifier, trained with
a contrastive loss to differentiate people on the training set.

69



3.1 State-Action Representation

In this section, while describing the state and action representations, we will assume that
the agent acts in a single time-freeze. This allows us to simplify notation and index steps
within the active-view by t. The state is represented as a tuple St = (Bt,Ct,ut), where
Bt ∈ RH×W×C is the deep feature map from the 2d pose estimator. Ct ∈ Nw×h×2 is
a camera history, which encodes¹ the previously visited cameras on the rig. It also contains
a representation of the distribution of cameras on the rig. The auxiliary array ut ∈ R17

contains the number of actions taken, the number of people detected, as well as a binary
vector indicating which joints have been triangulated for all people.

A deep stochastic policy πθ(ct|St) parametrized by θ is used to predict the next camera
location ct = (φt

a,φ
t
e), were (φt

a,φ
t
e) is the azimuth-elevation angle pair encoding the

camera location. To estimate the camera location probability density, the base feature map
Bt is processed through two convolutional blocks. The output of the second convolutional
block is concatenated with Ct and ut and fed to the policy head, consisting of 3 fully-
connected layers with tanh activations.

As the policy predicts spherical angles, we choose to sample these from the periodical von
Mises distribution. We use individual distributions in the azimuth and elevation directions.
The probability density function for the azimuth angle is given by

πθ
(
φt
a|St

)
=

1

2πI0(ma)
exp{ma cos(φ

t
a − φ̃a(w

$
a z

t
a + ba))} (1.58)

where the zeroth-order Bessel function I0 normalizes (1.58) to a probability distribution
on the unit circle. Here φ̃a is the mean of the distribution (parameterized by the deep
network), ma is the precision parameter,² and wa and ba are trainable weights and bias,
respectively. The second to last layer of the policy head outputs zt

a. For the azimuth
prediction, the support is the full circle. Therefore we set

φ̃a(w
$
a z

t
a + ba) = π tanh(w$

a z
t
a + ba) (1.59)

The probability density for the elevation prediction has the same form (1.58) as the azimuth.
As there are no cameras below the ground-plane of the rig, nor cameras directly above the
people (cf. Fig. 1.11), we limit the elevation angle range to [−κ,κ], where κ = π/6. Thus
the mean elevation angle becomes

φ̃e(w
$
e z

t
e + be) = κ tanh(w$

e z
t
e + be) (1.60)

¹The camera history consists of w bins in the azimuth direction and h bins in the elevation direction. It
is agent-centered, i.e. relative to the agent’s current viewpoint. We set w = 9 and h = 5.

²The precision parameters ma and me are treated as constants, but we anneal them over training as the
policy becomes better at predicting camera locations.
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3.2 Reward Signal for Self-Supervised Active Triangulation

As explained in §3, ACTOR predicts camera locations until the individual body joints
of all people have been detected from at least two different views (minimum requirement
for 3d triangulation) or after a given exploration budget B is exceeded; we set B = 10
during training. We use the indicator variable dt to denote whether or not the agent has
triangulated all joints (dt = 1 if all joints have been triangulated). We want to encourage
the agent to fulfill the task while selecting as few camera locations as possible, which gives
rise to the reward design in (1.61) below. Note that our reward is not based on ground-truth
pose annotations – it relies solely on automatic 2d pose (body joint) detections.

rt =






−β/M, if dt = 0, t < B and camera not already visited
−β/M − ε, if dt = 0, t < B and camera already visited
1, if dt = 1, t ≤ B

τmin, if dt = 0, t = B

(1.61)

The first and second rows of (1.61) reflect intermediate rewards, where the agent receives a
penalty ε (we set ε = 2.5) if it predicts a previous camera location. To encourage efficiency
the agent also receives a time-step penalty β for not yet having completed the triangulation
(β is set to 0.2). This penalty is normalized by the number of people M for scaling pur-
poses, as we expect more cameras be required to triangulate multiple people. The third and
fourth rows represent rewards the agent obtains at the end of the active-view. It receives+1
if it triangulates the joints of all M persons within its exploration budget B. The fourth
row defines the reward if the agent fails to triangulate some joints within the exploration
budget. It then receives the minimum fraction of covered joints for any person, τmin. Pol-
icy gradients are used to learn ACTOR’s policy parameters, where we maximize expected
cumulative reward on the training set with the objective J(θ) = Es∼πθ

[∑|s|
t=1 r

t
]
, where

s denotes state-action trajectories. This objective function is approximated using REIN-
FORCE [34].

4 Experiments

Dataset. We consider both multi-people scenes (namedMafia andUltimatum in Panoptic)
and single-people ones (Pose). The scenes with multiple people are expected to be partic-
ularly challenging for the agent, as occlusions are common. Panoptic data comes as 30
FPS time-synchronized videos. To make the size more manageable and increase movement
between frames we downsample the data to 2 FPS. We use the HD cameras, of which there
are about 30 per scene, since they provide better image quality than VGA and are suffi-
ciently dense, yet spread apart far enough to make each viewpoint unique. We select 20
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7DEOH ���� Mean 3d reconstruction error (mm/joint) for ACTOR and baselines on the Panoptic test sets. Multi denotes
multi-people data (union of Mafia and Ultimatum); single is the single-person Pose split. We show total
errors which include translation errors (top) and hip-aligned errors (bottom). Columns indicate the number
of cameras inspected, ranging from 2 to 10. We also show results for auto-mode, where camera location
selection terminates when the joints of all people have been triangulated, but using 10 cameras atmost. For
this column we also show the average number of cameras inspected in parentheses. ACTOR outperforms
both the heuristic baselines on all types of scenes. The advantage of a trained system ismost pronounced for
complex multi-people scenes where selecting informative viewpoints is important. ACTOR-ob and ACTOR-
ntf denote ablated versions of our agent, cf. §4.2.

Model Data Auto 2 3 4 5 6 7 8 9 10

ACTOR
multi 125.6 (8.84) 502.4 281.5 201.0 168.4 151.6 141.2 132.1 126.1 122.1

96.2 (8.84) 247.2 179.3 146.4 131.1 118.5 111.6 101.9 95.2 92.3

single 74.6 (4.28) 172.1 107.5 81.9 71.2 67.1 64.9 63.3 62.1 61.3
60.5 (4.28) 151.3 92.8 68.9 59.4 55.6 53.2 51.3 49.9 49.0

ACTOR-
ob

multi 148.9 (8.79) 555.2 372.9 276.4 217.4 185.2 166.6 154.0 146.1 142.5
108.1 (8.79) 299.6 305.7 231.2 182.4 155.9 131.9 119.4 112.3 109.3

single 80.2 (4.58) 187.3 122.6 95.1 80.6 72.4 68.9 67.4 67.0 66.8
67.3 (4.58) 159.7 104.4 77.7 64.2 56.6 53.3 52.3 51.8 51.6

ACTOR-
ntf

multi 138.9 (8.84) 925.7 565.2 353.1 242.8 196.5 172.2 154.8 143.7 136.6
102.0 (8.84) 334.4 258.0 198.4 159.1 138.4 124.5 112.0 102.9 98.3

single 75.9 (4.28) 274.0 151.4 99.6 79.3 71.8 67.9 65.5 63.9 62.7
61.6 (4.28) 228.1 132.4 85.3 66.9 59.8 55.9 53.3 51.5 50.3

Random
multi 142.7 (9.34) 570.1 469.9 316.1 259.9 269.3 238.5 220.2 198.8 188.3

125.9 (9.34) 347.3 406.4 350.1 278.0 263.0 218.8 196.2 179.5 160.0

single 82.6 (4.90) 203.6 139.4 107.2 89.9 81.1 75.1 71.0 67.9 65.8
68.7 (4.90) 178.0 125.7 93.8 76.4 67.6 61.3 56.8 53.4 51.0

Max-Azim
multi 132.0 (9.01) 479.3 375.8 288.4 226.0 195.7 170.2 149.2 137.7 128.6

102.7 (9.01) 259.4 282.1 235.0 200.0 196.8 158.2 131.3 114.1 103.7

single 75.5 (4.41) 185.7 119.5 88.0 79.5 73.7 68.8 64.5 63.2 62.1
63.61 (4.41) 161.2 106.3 76.5 67.7 61.0 56.3 52.0 50.0 48.5

Oracle
multi 94.5 (6.67) 254.4 147.6 113.1 98.2 90.3 86.4 84.1 82.8 81.9

74.0 (6.67) 163.1 110.3 89.2 78.8 72.8 69.0 66.4 64.5 63.0

single 54.0 (2.97) 123.0 60.2 49.2 45.3 43.6 42.8 42.3 42.2 42.4
48.1 (2.97) 108.2 54.5 43.3 39.5 37.5 36.2 35.2 34.6 34.2
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)LJXUH ����� Column 1-2: Mean 3d reconstruction error per joint vs number of cameras on the test sets (means and
standard errors over 5 seeds). Column 1: Multi-people data. Column 2: Single-people data. ACTOR
decreases errors faster than baselines, particularly for multi-people data with occlusions. The oracle uses
3d ground-truth and is shown as gold standard. ACTOR also outperforms the ablated variants ACTOR-ob
and ACTOR-ntf, cf. §4.2. Ablated models are not plotted in the single-people setting to avoid visual
clutter – see Table 1.1 for these results. Column 3: Runtime (log-scale) per active-view vs number of
cameras for a 3-people scene. The oracle computes errors using 3d ground-truth for all views and persons
to select its next camera, making it very slow.

scenes (343k images) which are split randomly into training, validation and test sets with
10, 4, and 6 scenes, respectively. There is no overlap of scenes between the three sets, which
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forces the agent to learn a fairly general policy.

Implementation details. ACTOR is implemented on top of the OpenPose 2d pose estima-
tion system [5], though any 2d pose predictor would work. As described in §3, temporal
fusion of 3d reconstructions across active-views ensures that missed joints are instead cov-
ered by the associated estimates from an earlier point in time. In case there is no previous
estimate for a missing joint, it is set to the average of the successfully triangulated ones (to
be able to compute errors). We use per-joint median averaging for fusing 3d pose recon-
structions across views and temporal steps.

Training. We train the policy network with batches consisting of experiences from 5 active-
sequences, each of length 10. Adam [22] is used for parameter updates. We normalize
cumulative rewards for each episode to zero mean and unit variance over each batch to
reduce variance in the policy updates. The exploration budget B (maximum trajectory
length) is set to 10 camera locations per active-view, including the initial camera. The
policy is trained for 75k episodes with learning rate initially set to 5e-7, then halved after
720k steps and again after 1440k steps. The precision parameters (ma,me) of the von
Mises distributions are linearly annealed from (1, 10) to (25, 50) during training, which
makes the camera prediction increasingly deterministic as the training progresses.

Baselines. We evaluate ACTOR against several multi-view baselines. They use the same
2d pose estimator, matching algorithm, triangulation method and temporal fusion. All
methods receive the same initial random camera at the start of an active-sequence. We
compare to the following baselines: i) Random: Selects random cameras (it never selects the
same camera twice); Max-Azim: The first three views are selected at 90, 180 and 270 degrees
azimuth relative to the initial view, so the four first views are at 90 degrees azimuth from each
other. The subsequent four views are also selected at 90 degrees azimuth from each other,
but at a 45 degree azimuth offset relative to the first four views. At each azimuth, it samples
a random elevation angle. The last 2 cameras are selected randomly, and we ensure each
camera is different. This baseline produces a wide coverage of the viewing sphere without
the need to know in advance how many cameras will be selected; iii)Oracle: Before selecting
one camera, this computes the improvement in 3d pose reconstruction error associated
with all available cameras. It then selects the camera that maximally decreases the error.
In addition to cheating when it selects views, the oracle is also impractically slow since it
exhaustively computes errors for all cameras in each step. Thus it is only shown as a gold
standard.

4.1 Main Results

Our ACTOR agent is compared to the baselines on the Panoptic test sets on active-sequences
consisting of 10 active-views. We train ACTOR with 5 different random network initializa-
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)LJXUH ����� Column 1-2: Mean 3d reconstruction error per joint vs exploration budgetB (maximum number of cam-
eras) on the test sets. As mentioned in §3.2, ACTOR was trained solely at budget B = 10. Column 1:
Multi-people data. Column 2: Single-people data. The relative gain to the baselines is higher at smaller
exploration budgets (e.g. 93 mm/joint improvement over Max-Azim on multi-people data at B = 5),
where the system quickly needs to select cameras triangulating the joints of all people. The accuracy
curves are flatter for single-people data, as in general the systems need fewer cameras to triangulate
the joints of a single person – the models hence tend to stop before their budget is exhausted. Column
3: Runtime (log-scale) when varying the number of people in a scene while keeping the the number of
selected cameras constant at 6 per active-view.

tions and report average results with standard errors of the means (we early stop training for
each network initialization based on errors on the validation set). For the non-deterministic
heuristic baselines (Random and Max-Azim – the oracle is deterministic) we report results
across 5 seeds, including standard errors of the means. In Table 1.1 we report 3d pose re-
construction errors for auto stopping and for a fixed number of views. ACTOR is more
accurate and uses fewer cameras on average, compared to the heuristic baselines. Fig. 1.12
shows 3d pose reconstruction error versus number of views. ACTOR significantly outper-
forms the heuristic baselines, especially for complex multi-person scenes (e.g. 103 and 78
mm/joint improvements over Max-Azim at 3 and 6 cameras, respectively). Multi-people
scenes are more difficult to analyze due to occlusions and thus require intelligent viewpoint
selection – one clearly sees the advantages of a learned system in such scenarios.

Fig. 1.13 shows how the exploration budgetB (max number of views) affects 3d reconstruc-
tion error. At smaller budgets ACTOR’s improvements over the heuristic baselines are even
larger, which shows that our trained system is significantly more efficient at finding good
views over which to triangulate the body joints. Runtimes versus number of cameras are
shown in column 3 of Fig. 1.12 and versus number of people in column 3 of Fig. 1.13.
OpenPose runs at about 0.134 seconds per image, while the policy network inference has
an overhead of 0.005 seconds per action, which is negligible compared to the 2d pose
estimator. For visualizations¹ of ACTOR operating in various scenes, see Fig. 1.15.

¹In this case we equip ACTOR with an OpenPose system that estimates detailed faces, hands and feet.
We do not refine the pre-trained ACTOR model that was trained using the standard OpenPose estimator.
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initial view
(no joints triangulated yet)

)LJXUH ����� )URP GRPHV WR GURQHV� Proof-of-concept experiment illustrating that ACTOR can be connected to an
active drone observer to reconstruct 3d poses from informative viewpoints. Above the dashed line to
the left we show the drone’s loop (the sharp peak is due to take-off and landing), with sampled camera
locations as green arrows. We also show the 3d pose reconstructions obtained by triangulating from all
33 sampled camera locations. The 9-by-9 cm Crazyflie drone used is shown in the very top left corner;
it can be used safely due to its small size and weight. Sample locations of the drone are also shown
above the line (drone locations are highlighted with red circles in images). Below the line we show
views seen by ACTOR and aggregated 3d pose reconstructions. After observing 5 viewpoints, the two
bodies are fully 3d reconstructed, with an average 2d reprojection error of 11.5 pixels (averaged over all
33 cameras), significantly better than the exhaustively triangulated reconstructions to the left, with an
average reprojection error of 35.4 pixels.

4.2 Ablation Studies

In this section we study how ACTOR is affected by i) removing all state features except
the deep feature blob Bt (ACTOR-ob; ob stands for only blob), and ii) using no temporal
fusion of 3d pose reconstructions (ACTOR-ntf ). Similarly as for the main ACTOR model,
ACTOR-ob is trained over 5 different network initializations with individual early stop-
ping on the validation set (ACTOR-ntf uses the same parameters as ACTOR but without
temporal fusion during inference). The results are shown in Table 1.1 and Fig. 1.12. The full
ACTOR agent outperforms the ablated variants for all data splits. For multi-people data,
ACTOR drastically outperforms ACTOR-ob, which indicates the need of representing ear-
lier visited cameras (Ct) as part of the state space. For single-people data, ACTOR-ob is
almost as good as ACTOR, but this data is very simple and occlusion-free and does not
require too sophisticated camera selection. Finally, the full agent outperforms ACTOR-ntf
when operating using few cameras, which makes sense as there is a big risk of the system
missing to triangulate some joints, in which case a backup from earlier active-views may
help.
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4.3 From Domes to Drones

The dense Panoptic multi-camera dome provides an idealization in which we can generate
controllable and reproducible experiments. It is also useful for training ACTOR, as we
do not actually have to move a camera around. However, in many practical scenarios one
does not have access to a multi-view setup and may instead have to resort to a single but
moving camera. One such scenario is that of a drone circling a set of people, and aiming
to reconstruct their 3d poses.

To test ACTOR’s drone-controlling capacity, we captured three small scenes where a drone
circles around two people performing various poses. We then fine-tuned ACTOR with
learning rate 1e-6 for 3k episodes (15 minutes) on two scenes, keeping all other hyperpa-
rameters the same, and ran the model on the third scene. In Fig. 1.14, ACTOR selects 5
different views to reconstruct the targets. It should be noted that the setting of this drone
experiment differs drastically from that of Panoptic. For example, the drone’s camera qual-
ity is worse (VGA rather than HD), and the loop generated by the drone has a much smaller
radius than Panoptic’s viewing sphere (about 1.5 meters for the drone versus about 3 meters
for Panoptic), so there are fewer views where e.g. the feet are visible. In future work we
plan to more tightly integrate ACTOR in the loop, so as to direct the drone to observe
targets from informative views.

5 Conclusions

We have presented ACTOR, a deep RL-based agent to actively reconstruct 3d poses from 2d
estimates via triangulation. Training the viewpoint selection policy requires no annotations
and only uses an off-the-shelf 2d human pose estimator for self-supervision. We evaluated
the model in complex scenarios with multiple interacting people and showed that by intel-
ligently selecting informative views the agent outperforms strong multi-view baselines in
both speed and accuracy. We also provided proof-of-concept results which indicate that
ACTOR can be used in single-camera settings, e.g. to control a physical drone observer.
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SEED, CNCS-UEFISCDI PN-III-P4-ID-PCE-2016-0535 and PCCF-2016-0180, the EU Horizon
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gram, as well as the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by
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with the drone experiments.
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initial view
(no joints triangulated yet)

initial view
(no joints triangulated yet)

initial view
(no joints triangulated yet)

)LJXUH ����� ACTOR operating in three different multi-people scenes (examples delimited by dashed lines). Visual-
izations are shown for initial active-views and thus have no propagated 3d pose estimates from earlier
time steps. Each example shows the views selected by ACTOR, including 2d pose estimates (first view
randomly given). Below these we show aggregated 3d pose reconstructions. Top: 3-person scene. One
of the persons is reconstructed already at the 2nd view; all of them are reconstructed at the 5th view.
The mean 3d reconstruction error decreases from 268 to 51 mm/joint between the 2nd and last view.
Middle: 5-person scene, where 3d pose reconstructions improve over the 6 views. The error decreases
from 296 to 68 mm/joint. Bottom: 6-person scene, where people stand quite close to each other, which
makes it difficult to triangulate all joints due to occlusions. ACTOR observes the scene from 8 diverse
views, and the error decreases from 342 to 69 mm/joint.

77



References

[1] Phil Ammirato, Patrick Poirson, Eunbyung Park, Jana Košecká, and Alexander C
Berg. A dataset for developing and benchmarking active vision. In ICRA, pages
1378–1385. IEEE, 2017. 67

[2] A Arnab, C Doersch, and A Zisserman. Exploiting temporal context for 3d human
pose estimation in the wild. In CVPR, 2019. 66

[3] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero,
and Michael J Black. Keep it SMPL: Automatic estimation of 3d human pose and
shape from a single image. In ECCV, 2016. 66

[4] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
Signature verification using a” siamese” time delay neural network. In NIPS, pages
737–744, 1994. 83

[5] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. OpenPose:
realtime multi-person 2D pose estimation using Part Affinity Fields. In CVPR, 2017.
66, 73, 82

[6] Ching-Hang Chen, Ambrish Tyagi, Amit Agrawal, Dylan Drover, Rohith MV, Stefan
Stojanov, and James M Rehg. Unsupervised 3d pose estimation with geometric self-
supervision. In CVPR, pages 5714–5724, 2019. 67

[7] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv
Batra. Embodied question answering. In CVPR, volume 5, page 6, 2018. 67

[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st Annual
Conference on Robot Learning, pages 1–16, 2017. 67

[9] Dylan Drover, Ching-Hang Chen, Amit Agrawal, Ambrish Tyagi, Cong Phuoc
Huynh, et al. Can 3d pose be learned from 2d projections alone? In ECCV, pages
78–94. Springer, 2018. 67

[10] Erik Gärtner. Hyperdock. https://github.com/ErikGartner/Hyperdock,
2019. 82

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
NIPS, pages 2672–2680, 2014. 67

78

https://github.com/ErikGartner/Hyperdock


[12] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Di-
eter Fox, and Ali Farhadi. Iqa: Visual question answering in interactive environments.
In CVPR, pages 4089–4098, 2018. 67

[13] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning
an invariant mapping. In CVPR, pages 1735–1742. IEEE, 2006. 83

[14] Xiaoguang Han, Zhaoxuan Zhang, Dong Du, Mingdai Yang, Jingming Yu, Pan Pan,
Xin Yang, Ligang Liu, Zixiang Xiong, and Shuguang Cui. Deep reinforcement learn-
ing of volume-guided progressive view inpainting for 3d point scene completion from
a single depth image. In CVPR, pages 234–243, 2019. 67

[15] Sebastian Haner and Anders Heyden. Covariance propagation and next best view
planning for 3d reconstruction. In ECCV, pages 545–556. Springer, 2012. 67

[16] Richard I. Hartley and Peter Sturm. Triangulation. Computer Vision and Image Un-
derstanding, 68(2):146–157, 1997. doi: 10.1006/cviu.1997.0547. 69

[17] Dinesh Jayaraman and Kristen Grauman. Look-ahead before you leap: end-to-end
active recognition by forecasting the effect of motion. In ECCV, pages 489–505.
Springer, 2016. 67

[18] Dinesh Jayaraman and Kristen Grauman. Learning to look around: Intelligently
exploring unseen environments for unknown tasks. In CVPR, 2018. 67

[19] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM international conference
on Multimedia, pages 675–678. ACM, 2014. 82

[20] Edward Johns, Stefan Leutenegger, and Andrew J Davison. Pairwise decomposition
of image sequences for active multi-view recognition. In CVPR, pages 3813–3822,
2016. 67

[21] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade,
Shohei Nobuhara, and Yaser Sheikh. Panoptic studio: A massively multiview system
for social motion capture. In ICCV, 2015. 66, 68, 84

[22] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
ICLR, 2015. 73

[23] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Self-supervised learning of 3d
human pose using multi-view geometry. In CVPR, 2019. 67

79



[24] Manolis Lourakis. Stereo triangulation. https://www.mathworks.com/
matlabcentral/fileexchange/67383-stereo-triangulation, Nov 2018.
Retrieved May 22, 2019. 69

[25] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Moham-
mad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt.
Vnect: Real-time 3d human pose estimation with a single rgb camera. ACM Trans-
actions on Graphics (TOG), 36(4):44, 2017. 66

[26] Alin-Ionut Popa, Mihai Zanfir, and Cristian Sminchisescu. Deep multitask architec-
ture for integrated 2d and 3d human sensing. In CVPR, 2017. 66

[27] Helge Rhodin, Nadia Robertini, Dan Casas, Christian Richardt, Hans-Peter Seidel,
and Christian Theobalt. General automatic human shape and motion capture using
volumetric contour cues. In ECCV, 2016. 66

[28] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. Lcr-net: Localization-
classification-regression for human pose. In CVPR, 2017. 66

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2015. 69, 83

[30] C. Sminchisescu and B. Triggs. Building Roadmaps of Minima and Transitions in
Visual Models. International Journal of Computer Vision, 61(1), 2005. 66

[31] Bugra Tekin, Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Learning
to fuse 2d and 3d image cues for monocular body pose estimation. In ICCV, pages
3941–3950, 2017. 66

[32] J Irving Vasquez-Gomez, L Enrique Sucar, Rafael Murrieta-Cid, and Efrain Lopez-
Damian. Volumetric next-best-view planning for 3d object reconstruction with po-
sitioning error. International Journal of Advanced Robotic Systems, 11(10):159, 2014.
67

[33] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional
pose machines. In CVPR, pages 4724–4732, 2016. 66

[34] R.J. Williams. Simple statistical gradient-following algorithms for connectionist re-
inforcement learning. Machine Learning, 1992. 71

[35] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. Gibson env: Real-world perception for embodied agents. In CVPR, pages
9068–9079, 2018. 67

[36] Bo Xiong and Kristen Grauman. Snap angle prediction for 360 panoramas. In ECCV,
pages 3–18, 2018. 67

80

https://www.mathworks.com/matlabcentral/fileexchange/67383-stereo-triangulation
https://www.mathworks.com/matlabcentral/fileexchange/67383-stereo-triangulation


[37] Zhixuan Yu, Jae Shin Yoon, Prashanth Venkatesh, Jaesik Park, Jihun Yu, and
Hyun Soo Park. Humbi 1.0: Human multiview behavioral imaging dataset. arXiv
preprint arXiv:1812.00281, 2018. 66

[38] Andrei Zanfir, Elisabeta Marinoiu, and Cristian Sminchisescu. Monocular 3d pose
and shape estimation of multiple people in natural scenes–the importance of multiple
scene constraints. In CVPR, pages 2148–2157, 2018. 66

[39] Andrei Zanfir, Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut Popa, and Cristian
Sminchisescu. Deep network for the integrated 3d sensing of multiple people in
natural images. In NeurIPS, pages 8410–8419, 2018. 66

[40] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-
Fei, and Ali Farhadi. Target-driven visual navigation in indoor scenes using deep
reinforcement learning. In ICRA, pages 3357–3364. IEEE, 2017. 67

81



Supplementary Material

This supplementary provides more insight into our ACTOR model and experimental setup.
Section §A describes the details of the network architecture, implementation, and hyper-
parameters. §B elaborates on how we match 2d pose estimates in space and time using
instance features. In §C we provide 2d reprojection errors onto 2d OpenPose [5] estimates
on the Panoptic test splits. Finally, §D describes further dataset details.

A Model Architecture

See Fig. A.16 for a full description of the ACTOR network architecture. ACTOR was
implemented in Caffe[19] and MATLAB. We used an open-source TensorFlow implemen-
tation of OpenPose¹. All code and pre-trained weights have been made publicly available.²

!"
CNN

Rig + Aux

FC FC FC

OpenPose

('(, '*)MaxPool CNN

Policy Head

)LJXUH $���� ACTOR policy architecture. A multi-people 2d pose estimation system (here OpenPose, but any similar
deep system would would work) processes an input image. The deep feature maps Bt produced by
OpenPose (conv4_4_CPM) is fed into the ACTOR policy network and is processed by two convolutional
layers with ReLU-activations. The first and second convolutional layers both have 3 × 3 kernels with
stride 1. Their output dimensions are 8×39×21 and 4×18×9, respectively. The max pooling layer has
a 2 × 2 kernel with stride 2. The output from the second convolutional layer is then concatenated with
agent-centric camera rig information about previously visited cameras relative to current position (Rig),
and auxiliary information such as the number of joints triangulated and number of people detected in
the view (Aux). The flattened and concatenated data is then fed into three fully-connected layers with
tanh-activations with 1024, 512 and 2 neurons respectively. The final output is scaled by two constants
to produce radial angles on the viewing sphere.

A.1 Hyperparamters

Hyperparameter search was performed using two powerful workstations equipped with sev-
eral NVIDIA Titan V100 GPU:s. Training a single model for 40k episodes took about 32
hours using one GPU and to speed up results while searching for optimal hyperparameters
we trained several model configurations in parallell using Hyperdock[10]. The most im-
portant parameters for training ACTOR were learning rate, precision of the the von Mises
(ma, me) and the annealing rate of the precision. See Table A.2 for a summary of the val-
ues tested for these hyperparameters. In total we trained around 10 different versions of the

¹https://gist.github.com/alesolano/b073d8ec9603246f766f9f15d002f4f4
²https://github.com/ErikGartner/actor
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final model with varying hyperparameters and evaluated each of them on the validation set.
Finally, the best model was evaluated on the test dataset and retrained with four additional
random seeds to measure the model’s sensitivity to the random seed (the model is not very
sensitive as indicated in Fig. 2, main paper).

7DEOH $��� The values tested for the most important hyperparameters when training ACTOR. The final and best values
are highlighted in bold. For the von Mises precisions, the arrow indicates linear annealing performed
during training (e.g. from (ma,me) = (1, 10) to (ma,me) = (25, 50) for the best configuration).

Hyperparameter Attempted values
Learning Rate {1e-7, 5e-7, 1e-6, 5e-6}

von Mises precision {(1, 10) → (25, 50), (10, 50) → (20, 100), (10,50) → (100, 500)}

B Matching Multiple People

ACTOR reconstructs multiple people in both space and time from 2d pose estimates. In
order to track and match these estimates we compute instance sensitive features. These
deep features can then be stably matched to each other using the Hungarian algorithm,
where the L2 distance is used to compute the matching cost.

We trained an instance classifier structured as a siamese network[4] using a contrastive
loss [13] that aims to produce 50-dimensional features for each person that can be used to
distinguish individuals. As input the instance classifier takes VGG-19[29] features from the
bounding box of the 2d pose estimate. The instance classifier is trained for 40k iterations
on the training set with a mini-batch size of 16 where half contains positive pairs and the
other half contains negative pairs. The training examples are sampled randomly in both
space and time yielding a robust classifier. Lastly, the instance classifier is fine-tuned for
2k iterations on each scene, creating scene-specific versions of the classifier that are slightly
adapted to the environment of those scenes. This tuning is performed outside the range of
the active-sequence in which the agent operates.

At the start of an active-sequence the agents is given an appearance model for each target it
should reconstruct. These appearance models are averages of K different instance features
computed for each target in the scene but from time-freezes that are not part of the current
active-sequence. We denote the i:th instance feature for the l:th person by ul

i, with i =
1, . . . ,K . In practice we use K = 10. Then we set as appearance model ml to:

ml = median(ul
1, . . . ,u

l
K) (62)

For each camera location we compute the distance between the instance features of each
detected person to all appearance models in that scene. This gives us a cost matrix whose

83



elements are cj,l = ‖uj −ml‖22, i.e., the cost to match detection j to person l. Given this
matrix we assign detections according to the Hungarian algorithm. Since there might be
false detections by the 2d pose estimator and not all people are visible from every camera
location we filter out matches with a cost larger than a threshold C, such that all matches
satisfy cj,l ≤ C (we set C = 0.5).

If a person is never detected in an active-view, and if it does not have a previous temporal
backup to use as 3d pose reconstruction (cf. §3 and the implementation details in §4 of the
main paper), we set each joint estimate to the ground-truth center hip location. Obviously,
this estimate is implausible and highly inaccurate – it is used only to compute average errors
(not including such an estimate when computing average errors would be another option,
but this would not penalize missed persons).

C Reprojection Errors onto OpenPose 2d Estimates

The 3d ground-truth in Panoptic is generated from exhaustive triangulation of 2d pose
estimates [21], but those 2d pose estimates are not from OpenPose. Thus it is relevant to
also look at reprojection errors onto the OpenPose 2d estimates, since these errors are not
affected by any potential incorrect bias in the 3d ground-truth. Such reprojection errors
are shown in Fig. D.17. We note that ACTOR is more accurate relative to the oracle in this
metric. For single-people data the agent even converges close to the oracle, while the oracle
is still slightly better for multi-people data due to its more difficult nature with occlusions.
ACTOR yields lower reprojection errors than the heuristic baselines, with an exception at
2 cameras for multi-people data where Max-Azim is more accurate. Note however that
ACTOR was not trained to produce accurate estimates at any fixed number of cameras,
but rather to quickly triangulate all joints. Despite this, we outperform the baselines in the
vast majority of cases.

D Additional Dataset Insights

Table D.3 shows the size and split of the Panoptic dataset [21] into train, validation and
test sets. The data was created using scripts that downsampled from 30 FPS to 2 FPS to
increase movement between frames.
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)LJXUH '���� Mean 2d reprojection errors per joint relative to OpenPose 2d estimates vs number of cameras on the
test sets. Left: Multi-people data. Right: Single-people data. ACTOR reduces the 2d reprojection error
faster than the heuristic baselines, particularly for multi-people data. Single-person scenes are easier to
reconstruct, especially when using many cameras – also note that all models converge close to the error
of the oracle in this case.

7DEOH '��� The number of images in our dataset categorized by scene type and subset type (training, validation, and
testing). Note thatMafia and Ultimatum are complex multi-people scenes and that they account for more
than half of the dataset.

Train Val Test All

Mafia 53,100 27,900 33,728 114,728

Ultimatum 27,960 4,340 55,825 88,125

Pose 51,079 29,672 59,288 140,039

All 132,139 61,912 148,841 342,892
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Abstract

Most 3d human pose estimation methods assume that input – be it images of
a scene collected from one or several viewpoints, or from a video – is given.
Consequently, they focus on estimates leveraging prior knowledge and mea-
surement by fusing information spatially and/or temporally, whenever avail-
able. In this paper we address the problem of an active observer with freedom
to move and explore the scene spatially – in ‘time-freeze’ mode – and/or tem-
porally, by selecting informative viewpoints that improve its estimation accu-
racy. Towards this end, we introduce Pose-DRL, a fully trainable deep rein-
forcement learning-based active pose estimation architecture which learns to
select appropriate views, in space and time, to feed an underlying monocular
pose estimator. We evaluate our model using single- and multi-target estima-
tors with strong result in both settings. Our system further learns automatic
stopping conditions in time and transition functions to the next temporal
processing step in videos. In extensive experiments with the Panoptic multi-
view setup, and for complex scenes containing multiple people, we show that
our model learns to select viewpoints that yield significantly more accurate
pose estimates compared to strong multi-view baselines.

*Denotes equal contribution, order determined by coin flip.
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1 Introduction

Existing human pose estimation models, be them designed for 2d or 3d reconstruction,
assume that viewpoint selection is outside the control of the estimation agent. This problem
is usually solved by a human, either once and for all, or by moving around and tracking
the elements of interest in the scene. Consequently, the work is split between sufficiency
(e.g. instrumenting the space with as many cameras as possible in motion capture setups),
minimalism (work with as little as possible, ideally a single view, as given), or pragmatism
(use whatever is available, e.g. a stereo system and lidar in a self-driving car). While each
of these scenarios and their underlying methodologies make practical or conceptual sense
in their context of applicability, none covers the case of an active observer moving in the
scene in order to reduce uncertainty, with emphasis on trading accuracy and computational
complexity. There are good reasons for this, as experimenting with an active system faces
the difficulty of linking perception and action in the real world, or may have to resort on
simulation, which can however lack visual appearance and motion realism, especially for
complex articulated and deformable structures such as people.

In this work we consider 3d human pose estimation from the perspective of an active ob-
server, and operate with an idealization that allows us to distill the active vision concepts,
develop new methodology, and test it on real image data. We work with a Panoptic massive
camera grid [14], where we can both observe the scene in time-freeze, from a dense variety
of viewpoints, and process the scene temporally, thus being able to emulate a moving ob-
server. An active setup for 3d human pose estimation addresses the incomplete body pose
observability in any monocular image due to depth ambiguities or occlusions (self-induced
or produced by other people or objects). It also enables adaptation with respect to any
potential limitations of the associated monocular pose estimation system, by sequentially
selecting views that when combined yield accurate pose predictions.

In this context we introduce Pose-DRL, a deep reinforcement learning (RL) based active
pose estimation architecture operating in a dense camera rig, which learns to select appro-
priate viewpoints to feed an underlying monocular pose predictor. Moreover, our model
learns when to stop viewpoint exploration in time-freeze, or continue to the next temporal
step when processing video. In evaluations using Panoptic we show that our system learns
to select sets of views yielding more accurate pose estimates compared to strong multi-view
baselines. The results not only show the advantage of intelligent viewpoint selection, but
also that often ‘less is more’, as fusing too many possibly incorrect viewpoint estimates leads
to inferior results.

As our model consists of a deep RL-based active vision module on top of a task module,
it can be easily adjusted for other visual routines in the context of a multi-camera setup
by simply replacing the task module and retraining the active vision component, or refin-
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ing them jointly in case of access and compatibility. We show encouraging results using
different pose estimators and task settings.

2 Related Work

Extracting 2d and 3d human representations from given images or video is a vast research
area, recently fueled by progress in keypoint detection [20, 31], semantic body parts seg-
mentation [25], 3d human body models [18], and 3d motion capture data [10, 30]. Deep
learning plays a key role in most human pose and shape estimation pipelines [3, 16, 19,
21, 25, 27, 28, 36], sometimes in connection with non-linear refinement [3, 36]. Systems
integrating detailed face, body and hand models have also been proposed [15]. Even so,
the monocular 3d case is challenging due to depth ambiguities which motivated the use of
additional ordering constraints during training [22].

In addition to recent literature for static pipelines, the community has recently seen an
increased interest for active vision tasks, including RL-based visual navigation [2, 8, 33, 39].
In [2] a real-world dataset of sampled indoor locations along multiple viewing directions is
introduced. An RL-agent is trained to navigate to views in which a given instance detector
is accurate, similar in spirit to what we do, but in a different context and task.

A joint gripping and viewing policy is introduced in [5], also related to us in seeking policies
that choose occlusion-free views. The authors of [6] introduce an active view selection
system and jointly learn a geometry-aware model for constructing a 3d feature tensor, which
is fused together from views predicted by a policy network. In contrast to us, their policy
predicts one of 8 adjacent discrete camera locations, they do not consider moving objects,
their model does not automatically stop view selection, and they do not use real data. In [11,
34], active view selection is considered for panoramic completion and panorama projection,
respectively. Differently from us, their view selection policies operate on discretized spheres
and do not learn automatic stopping conditions. An approach for active multi-view object
recognition is proposed in [13], where pairs of images in a view trajectory are sequentially
fed to a CNN for recognition and for next best view prediction. Optimization is done over
discretized movements and pre-set trajectory lengths, in contrast to us.

Most related to us is [24], who also consider active view selection in the context of human
pose estimation. However, they work with 2d joint detectors and learn to actively trian-
gulate those into 3d pose reconstructions. Thus we face different challenges – while [24]
only require each joint to be visible in two views for triangulation, our model has to con-
sider which views yield accurate fused estimates. Furthermore, their model does not learn a
stopping action that trades accuracy for speed, and they do not study both the single-target
and multi-target cases, as we do in this paper.
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)LJXUH ���� Overview of our Pose-DRL agent for active human pose estimation. The agent initially observes the scene
from a randomly given camera on the rig. In each visited viewpoint, the associated image is processed by
a 3d pose estimation network, producing the base state Bt of the agent and pose estimate(s) xt

i . The
pose estimate is fused together with estimates from previous viewpoints xt

1, . . . ,x
t
i−1 and the previous

temporal step xt−1
! . Both the current and fused estimate are fed as additional features to the agent.

At each step the policy network outputs the next viewpoint, until it decides it is done and continues to
next active-view at time t + 1. The viewpoint selection action predicts spherical angles relative to the
agent’s current location on the camera rig, and the closest camera associated with the predicted angles is
visited next. When the agent is done it outputs xt

!, the per-joint fusion of the individual pose estimates
seen during the current active-view and the fused pose estimate from the previous active-view, cf. (2.2).
Pose-DRL can be used either to reconstruct a target person, or to reconstruct all people in the scene. The
underlying pose estimator is exchangeable – we show strong results using two different ones in §5.1.

Aside from active vision applications in real or simulated environments, reinforcement
learning has also been successfully applied to other vision tasks, e.g. object detection [4, 23],
object tracking [35, 38] and visual question answering [7].

3 Active Human Pose Estimation

In this section we describe our active human pose estimation framework, arguing it is a
good proxy for a set of problems where an agent has to actively explore to understand the
scene and integrate task relevant information. For example, a single view may only contain
parts of the human body (or be absent of the person altogether) and the agent needs to find
a better view to capture the person’s pose. Pose estimators are often trained on a limited set
of viewing angles and yield lower performance for others. Our setup forces the agent to also
take any estimation limitations into account when selecting multiple views. In particular,
we show in §5.1 that learning to find good views and fusing them is more important than
relying on a large number of random ones, or the full available set, as standard – see also
Fig. 2.4.

Concepts in the following sections will, for simplicity, be described assuming the model is
estimating the pose of a single target person (though scenes may contain multiple people
occluding the target). The setting in which all people are reconstructed simultaneously is
described in §4.4.
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3.1 Active Pose Estimation Setup

We idealize our active pose estimation setup using CMU’s Panoptic installation [14] as it
captures real video data of scenes with multiple people and cameras densely covering the
viewing sphere. This allows us to simulate an active agent observing the scene from multi-
ple views, without the complexity of actually moving a camera. It also enables controllable
and reproducible experiments. The videos are captured in a large spherical dome fitted
with synchronized HD cameras.¹ Inside the dome several human actors perform a range
of movements, with 2d and 3d joint annotations available. The dataset is divided into a
number of scenes, video recordings from all synchronized cameras capturing different ac-
tors and types of movements, ranging from simple pose demonstrations to intricate social
games.

Terminology. We call a time-freeze {vt1, . . . , vtN} the collection of views from all N time-
synchronized cameras at time t, with vti the image (referred to as view or viewpoint) taken by
camera i at time t. A subset of a time-freeze is an active-view Vt = {vt1, . . . , vtk} containing
k selected views from the time-freeze. A temporally contiguous sequence of active-views
is referred to as an active-sequence, S1: T = {V1,V2, . . . ,VT}. We will often omit the
time superfix t unless the context is unclear; most concepts will be explained at the level
of time-freezes. The image corresponding to a view vi can be fed to a pose predictor to
produce a pose estimate xi ∈ R45 (15× 3d joints).

Task definition. We define the task of active pose estimation at each time step as selecting
views from a time-freeze to generate an active-view. The objective is to produce an accu-
rate fused estimate x$ from pose predictions x1, . . . ,xk associated with the active-view (k
may vary between active-views). The deep pose estimation network is computationally de-
manding and therefore working with non-maximal sets of views decreases processing time.
Moreover, it improves estimates by ignoring obstructed views, or those a given pose predic-
tor cannot accurately handle. The goal of the full active pose estimation task is to produce
accurate fused pose estimates over the full sequence, i.e., to produce an active-sequence
with accurate corresponding fused pose estimates.

3.2 Detection and Matching of Multiple People

To solve active human pose estimation the model must address the problems of detect-
ing, tracking, and distinguishing people in a scene. It must also be robust to variations in
appearance since people are observed over time and from different views. We use Faster
R-CNN [26] for detecting people. At the start of an active-sequence the agent is given ap-

¹There are about 30 cameras per scene. The HD cameras provide better image quality than VGA and are
sufficiently dense, yet spread apart far enough to make each viewpoint unique.
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)LJXUH ���� Illustration of how Pose-DRL operates on an active-sequence, here shown for a single-person scenario.
Fused pose estimates are fed to subsequent active-views within the active-sequence, both as additional
state representation for action selection, and for fusing poses temporally.

pearance models, consisting of instance-sensitive features for each person. For each visited
view, the agent computes instance features for all detected persons, comparing them with
the given appearance models to identify the different people.

Obtaining appearance models. A generic instance classifier, implemented as a VGG-19
based [29] siamese network, is trained for 40k iterations on the training set with a con-
trastive loss to distinguish between different persons. Each mini-batch (of size 16) consists
of randomly sampled pairs of ground-truth crops of people in the training set. We ensure
that the training is balanced by sampling pairs of person crops such that the probability of
the two crops containing the same person is the same as that of containing two different
persons. The people crops are sampled uniformly across scenes, spatially and temporally,
yielding a robust instance classifier.

Once the instance classifier has been trained, we fine-tune it for 2k iterations for each scene
and then use it to construct appearance models at the beginning of an active-sequence. For
each person, we sample L instance features from time-freezes from the same scene, but
outside of the time span of the current active-sequence to limit overfitting. Denote by ul

i,
the i:th instance feature for the l:th person, with i = 1, . . . , L. Then we set as appearance
model:

ml = median(ul
1, . . . ,u

l
L) (2.1)

We set L = 10 to obtain a diverse set of instance features for each person, yielding a robust
appearance model.

Stable matching of detections. In each visited viewpoint during an active-sequence, the
agent computes instance features for all detected persons, comparing them with the given
appearance models to identify the different people. To ensure a stable matching, we use
the Hungarian algorithm. Specifically, the cost cj,l of matching the j:th detection with in-
stance feature uj in the current viewpoint to the appearance model ml of the l:th person is
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cj,l = ‖uj−ml‖22. Since the target person may not be visible in all viewpoints throughout
the active-sequence, we specify a cost threshold, C = 0.5, such that if the assignment cost
cj,l of the target is above it (i.e. cj,l > C), we consider the person to not be visible in the
view. In that case the associated pose is not fused into the final estimate.

4 Deep Reinforcement Learning Model

We now introduce our Pose-DRL agent for solving the active human pose estimation task
and first explain the agent’s state representation and actions, then define the reward signal
for training an agent which selects views that yield an accurate fused pose estimate while
keeping down processing time.

4.1 Overview of the Pose-DRL Agent

The agent is initiated at a randomly selected view v11 in the first active-view V1 of an active-
sequence S1: T . Within the current active-view Vt, the agent issues viewpoint selection
actions to progressively select a sequence of views vt2, . . . , vtk, the number of which may
vary between active-views. At each view vti the underlying pose estimator predicts the
pose xt

i. As seen in Fig. 2.1 the cameras are approximately located on a partial sphere, so
a viewpoint can be specified by the azimuth and elevation angles (referred to as spherical
angles). Thus for viewpoint selection the Pose-DRL agent predicts spherical angles relative
to its current location and selects the camera closest to those angles.

Once the agent is done exploring viewpoints associated to a particular time-freeze it issues
the continue action and switches to the next active-view Vt+ 1, at which time the collection
of individual pose estimates xt

i from the different viewpoints are fused together with the
estimate xt−1

$ from the previous active-view Vt− 1:

xt
$ = f(xt−1

$ ,xt
1,x

t
2, . . . ,x

t
k) (2.2)

Including the previous time step estimatext−1
$ in the pose fusion as in (2.2) often improves

results (see §5.2). After returning the fused pose estimate xt
$ for the current active-view,

the agent continues to the next active-view Vt+ 1. The initial view vt+1
1 for Vt+ 1 is set

to the final view vtk of Vt, i.e., vt+1
1 = vtk. The process repeats until the end of the active-

sequence. Fig. 2.1 and 2.2 show model overviews for active-views and active-sequences,
respectively.
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7DEOH ���� Reconstruction error (mm/joint) for Pose-DRL and baselines on active-sequences on the selected Panoptic
test splits. Results are shown both for the setting where the agent decides the number of views (auto)
and when using a fixed number of views. In the latter case, the number of views is set to the closest
integer corresponding to the average in auto mode, rounded up. The baselines are also evaluated at this
preset number of views. The average number of views are shown in parentheses. Pose-DRL models which
automatically select the number of views outperform the heuristic baselines and fixed Pose-DRL models on
all data splits, despite fusing estimates from fewer views on average. Left: Single-target mode (S), using
DMHS as pose estimator. The agent significantly outperforms the baselines (e.g. 35 mm/joint improvement
over Max-Azim on multi-people data Maf + Ult). Right: Multi-target mode (M), using MubyNet as pose
estimator. MubyNet is a more recent and accurate estimator, so the average errors are typically lower than
the DMHS-counterparts. Automatic termination is useful in the multi-target setting as well, although it
does not provide as drastic gains as in the single-target setup.

Model # Views Maf Ult Pose Maf + Ult All Model # Views Maf Ult Pose Maf + Ult All

Pose-DRL-S
auto 130.3 135.4 135.3 134.2 135.0

Pose-DRL-M
auto 114.8 116.4 104.6 115.9 110.7

(4.6) (3.4) (3.7) (3.8) (3.7) (7.5) (6.6) (2.1) (6.8) (4.5)

fixed 144.7 157.5 135.1 155.5 140.4 fixed 114.8 118.0 106.7 117.6 112.8
(5.0) (4.0) (4.0) (4.0) (4.0) (8.0) (7.0) (3.0) (7.0) (5.0)

Rand-S fixed 160.2 178.3 145.7 175.6 157.1 Rand-M fixed 128.8 134.9 115.9 131.4 126.0
(5.0) (4.0) (4.0) (4.0) (4.0) (8.0) (7.0) (3.0) (7.0) (5.0)

Max-Azim-S fixed 156.3 171.4 139.9 169.4 150.3 Max-Azim-M fixed 123.5 131.2 116.3 131.6 126.4
(5.0) (4.0) (4.0) (4.0) (4.0) (8.0) (7.0) (3.0) (7.0) (5.0)

Oracle-S fixed 103.4 108.9 106.5 108.5 105.4 Oracle-M fixed 98.6 102.4 90.2 101.6 92.6
(5.0) (4.0) (4.0) (4.0) (4.0) (8.0) (7.0) (3.0) (7.0) (5.0)

4.2 State-Action Representation

To simplify notation, we here describe how the agent operates in a given time-freeze, and
in this context will use t to index actions within the active-view, as opposed to temporal
structures. The state at step t is the tuple St = (Bt,Xt,Ct,ut). Here Bt ∈ RH×W×C

is a deep feature map associated with the underlying 3d pose estimation architecture. Xt =
{xt, x̃,xhist

$ } where xt is the current individual pose estimate, x̃ = f(x1, . . . ,xt) is the
current partially fused pose estimate, and xhist

$ is a history of fused predictions from 4
previous active-views. The matrix Ct ∈ Nw×h×2 consists of an angle canvas, a discretized
encoding¹ of the previously visited regions on the camera rig, as well as a similar encoding
of the camera distribution over the rig. Finally, ut ∈ R2 is an auxiliary vector holding the
number of actions taken and the number of people detected.

For action selection we use a deep stochastic policy πθ(At|St) parametrized by w which
predicts the action At = {θta, θte, ct}. Here (θta, θte) is the azimuth-elevation angle pair,
jointly referred to as viewpoint selection, and ct is a Bernoulli variable indicating whether to
continue to the next active-view (occurring if ct = 1), referred to as the continue action.
To produce action probabilities the base feature map Bt is fed through two convolutional
blocks which are shared between the viewpoint selection and continue actions. The out-
put of the second convolutional block is then concatenated with Xt, Ct and ut and fed
to viewpoint selection- and continue-branches with individual parameters. Both action
branches consist of 3 fully-connected layers with tanh activations. The probability of issu-

¹The camera sphere is discretized intow bins in the azimuth direction and h bins in the elevation direction,
appropriately wrapped to account for periodicity. We set w = 9 and h = 5.
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ing the continue action is computed using a sigmoid layer:

πθ(c
t = 1|St) = σ

[
w$

c z
t
c + bc

]
(2.3)

where wc and bc are trainable weights and bias, and zt
c is the output from the penultimate

fully-connected layer of the continue action branch.

Due to the periodic nature of the viewpoint prediction task we rely on von Mises distri-
butions for sampling the spherical angles. We use individual distributions for the azimuth
and elevation angles. The probability density function for the azimuth is given by:

πθ
(
θta|St

)
=

1

2πI0(ma)
exp{ma cos(θ

t
a − θ̃a(w

$
a z

t
a + ba))} (2.4)

where I0 is the zeroth-order Bessel function, normalizing (2.4) to a proper probability dis-
tribution over the unit circle [−π,π]. Here θ̃a is the mean of the distribution (parametrized
by the neural network), ma is the precision parameter,¹ wa and ba are trainable weights
and bias, respectively, and zt

a comes from the penultimate fully-connected layer of the
viewpoint selection action branch. The support for the azimuth angle should be on a full
circle [−π,π], and hence we set

θ̃a(w
$
a z

t
a + ba) = π tanh(w$

a z
t
a + ba) (2.5)

The probability density function for the elevation angle has the same form (2.4) as that for
the azimuth. However, as seen in Fig. 2.1, the range of elevation angles is more limited
than for the azimuth angles. We denote this range [−κ,κ] and the mean elevation angle
thus becomes²

θ̃e(w
$
e z

t
e + be) = κ tanh(w$

e z
t
e + be) (2.6)

In practice, when sampling elevation angles from the von Mises, we reject samples outside
the range [−κ,κ].

4.3 Reward Signal for Policy Gradient Objective

The agent should strike a balance between choosing sufficiently many cameras so the result-
ing 3d pose estimate is as accurate as possible, while ensuring that not too many cameras are
visited, to save processing time. As described earlier, the two types of actions are viewpoint
selection and continue. We will next cover the reward functions for them.

¹We treat the precision parameters as constants but increase them over training to focus the policy on
high-reward viewpoints.

²With notation analogous to that of the azimuth angle, cf. (2.5).
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)LJXUH ���� How the number of views affects pose estimation error and runtimes of Pose-DRL and baselines on multi-
people data (union ofMafia and Ultimatum test sets). We show mean and 95% confidence intervals over
5 seeds. Left: Reconstructing a single target person. Estimation error reduces with added viewpoints, and
the agent consistently outperforms the non-oracle baselines. The automatic continue action (dashed line
at 3.8 views on average) yields significantly lower reconstruction errors than any fixed viewpoint schemes.
Hence the auto-model clearly provides the best speed-accuracy trade-off. Middle: Simultaneously re-
constructing all persons. The agent outperforms the heuristic baselines in this setting too. Adaptively
determining when to continue to the next active-view (6.8 views on average) yields better results than
fusing from 7 cameras all the time. The gain is not as pronounced as in the single-target case, since more
viewpoints typically leads to increased estimation accuracy for some of the persons. Right: Runtime of
the Pose-DRL agent and baselines vs. number of views (log scale). The oracle always needs to evaluate
the deep pose estimation system and detector for all cameras due to its need to sort from best to worst,
independently of the number of viewpoints, which explains its high runtime. Our agent is as fast as the
heuristic baselines.

Viewpoint selection reward. At the end of an active-view we give a reward which is in-
versely proportional to the ratio between the final and initial reconstruction errors within
the active-view. We also give a penalty ε = 2.5 each time the agent goes to an already
visited viewpoint. Thus the viewpoint selection reward is:

rtv =






0, if ct = 0 and view not visited
−ε, if ct = 0 and view visited before
1− εk

ε1 , if ct = 1

(2.7)

where k is the number of views visited prior to the agent issuing the continue action
(ct = 1), ε1 is the reconstruction error associated with the initial viewpoint, and εk denotes
the final reconstruction error, i.e. εk = ‖x$ − xgt‖22. Here x$ is the final fused pose es-
timate for the active-view, cf. (2.2), and xgt is the ground-truth 3d pose for the time-freeze.

Continue action reward. The continue action has two purposes: (i) ensure that not too
many viewpoints are visited to reduce computation time, and (ii) stop before suboptimal
viewpoints are explored, which could happen if the agent is forced to visit a preset number
of viewpoints. Therefore, the continue action reward is:

rtc =





1−

min
j∈{t+1,...,k}

εj

εt − τ, if ct = 0

1− εk

ε1 , if ct = 1
(2.8)
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At each step that the agent decides not to continue to the next active-view (ct = 0), the
agent is rewarded relative to the ratio between the error at the best future stopping point
within the active-view (with lowest reconstruction error) and the error at the current step.
If in the future the agent selects viewpoints that yield lower reconstruction error the agent
is rewarded, and vice verse if the best future error is higher. In addition, the agent gets a
penalty τ at each step, which acts as an improvement threshold, causing the reward to be-
come negative unless the ratio is above the specified threshold τ . This encourages the agent
not to visit many viewpoints in the current active-view unless the improvement is above
the given threshold. On the validation set we found τ = 0.07 to provide a good balance.

Policy gradient objective. We train the Pose-DRL network in a policy gradient frame-
work, maximizing expected cumulative reward on the training set with objective

J(w) = Es∼πθ




|s|∑

t=1

rt



 (2.9)

where s denotes state-action trajectories, and the reward signal rt = rtv + rtc, cf. (2.7) -
(2.8). We approximate the gradient of the objective (2.9) using REINFORCE [32].

4.4 Active Pose Estimation of Multiple People

So far we have explained the Pose-DRL system that estimates the pose of a target person,
assuming it is equipped with a detection-based single person estimator. This system can
in principle estimate multiple people by generating active-sequences for each person indi-
vidually. However, to find a single active-sequence that reconstructs all persons, one can
equip Pose-DRL with an image-level multi-people estimator instead. In that case, the state
representation is modified to use the image level feature blob from the multi-people esti-
mator (Bt in Fig. 2.1). The reward signal used when learning to reconstruct all people is
identical to (2.7) - (2.8), except that the rewards are averaged over the individual pose es-
timates. Thus Pose-DRL is very adaptable in that the underlying pose estimator can easily
be changed.

5 Experiments

Dataset. We use diverse scenes for demonstrating and comparing our active pose estimation
system, considering complex scenes with multiple people (Mafia, Ultimatum) as well as
single person ones (Pose). The motions range from basic poses to various social games.
Panoptic provides data as 30 FPS-videos which we sample to 2 FPS, making the data more
manageable in size. It also increases the change in pose between consecutive frames.
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)LJXUH ���� Per-joint pose reconstruction error for the monocular human pose estimation architecture DMHS vs. num-
ber of viewpoints, both when randomly choosing viewpoints, and when using an sorting strategy which
selects viewpoints in ascending order of individual reconstruction error (note that this requires ground-
truth). Results shown for multi-people data (Mafia, Ultimatum) on the CMU Panoptic dataset. For a good
viewpoint selection policy such as Sort, estimation accuracy only improves when adding a few extra cam-
eras, but then begins to deteriorate, indicating the need to adaptively terminate viewpoint selection early
enough.

The data we use consists of the same 20 scenes as in [24]. The scenes are randomly split into
training, validation and test sets with 10, 4 and 6 scenes, respectively. Since we split the
data over the scenes, the agent needs to learn a general look-around-policy which adapts to
various circumstances (scenarios and people differ between scenes). All model selection is
performed exclusively on the training and validation sets; final evaluations are performed
on the test set. The data consists of 343k images, of which 140k are single-person and 203k
are multi-people scenes.

Implementation details. We attach Pose-DRL on top of the DMHS monocular pose esti-
mation system [25]. In the multi-people setting described in §4.4 we instead use MubyNet
[37]. Both estimators were trained on Human3.6M [10]. To avoid overfitting we do not to
fine-tune these on Panoptic, and instead emphasize how Pose-DRL can select good views
with respect to the underlying estimation system (but joint training is possible). We use
an identical set of hyperparameters when using DMHS and MubyNet, except the improve-
ment threshold τ , which is −0.07 for DMHS and −0.04 for MubyNet, which shows that
Pose-DRL is robust with respect to the pose estimator used. We use median averaging for
fusing poses, cf. (2.2).

Training. We use 5 active-sequences, each consisting of length 10, to approximate the
policy gradient, and update the policy parameters using Adam [17]. As standard, to reduce
variance we normalize cumulative rewards for each episode to zero mean and unit variance
over the batch. The maximum trajectory length is set to 8 views including the initial one (10
in the multi-target mode, as it may require more views to reconstruct all people). The view-
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point selection and continue actions are trained jointly for 80k episodes. The learning rate is
initially set to 5e-7 and is halved at 720k and 1440k agent steps. We linearly increase the
precision parameters ma and me of the von Mises distributions from (1, 10) to (25, 50)
in training, making the viewpoint selection increasingly focused on high-rewarding regions
as training proceeds.

Baselines. To evaluate our active human pose estimation system we compare it to several
baselines, similar to [24]. For fair comparisons, the baselines use the same pose estimator,
detector and matching approach. All methods obtain the same initial random view as the
agent at the start of the active-sequence. We design the following baselines: i) Random: Se-
lects k different random views; ii) Max-Azim: Selects k different views equidistantly with
respect to the azimuth angle. At each azimuth angle it selects a random elevation angle; iii)
Oracle: Selects as next viewpoint the one that minimizes the fused 3d pose reconstruction
when combined with pose estimates from all viewpoints observed so far (averaged over all
people in the multi-target setting). This baseline cheats by extensively using ground-truth
information, and thus it shown as a lower bound with respect to reconstruction error. In
addition to cheating during viewpoint selection, the oracle is also impractically slow since it
requires computing pose estimates for all available viewpoints and exhaustively computing
errors for all cameras in each step.

)LJXUH ���� Visualizations of Pose-DRL reconstructing a given target person (red bounding box). Left: A Mafia test
scene. The target is viewed from behind and is partially visible in the first view, producing the poor first
estimate. As the agent moves to the next view, the person becomes more clearly visible, significantly
improving the estimate. The last view from the front further increases accuracy. The agent decides to
terminate after three views with error decreasing from 200.1 to 120.9 mm/joint. Right: An Ultimatum
test scene where the agent only requires two viewpoints prior to automatically continuing to the next
active-view. The target person is only partially visible in the initial viewpoint, and the right arm that is not
visible results in a non-plausible configuration in the associated estimate. As the agent moves to the next
viewpoint the person becomes fully visible, and the final fused estimate is both physically plausible and
accurate. The reconstruction error reduces from 160 to 104 mm/joint.

101



5.1 Quantitative Results

We report results both for the Pose-DRL agent that tracks and reconstructs a single target
person (possibly in crowded scenes) and for the Pose-DRL model which actively estimates
poses for all persons in the scene, cf. §4.4. Pose-DRL is trained over 5 different random
initializations of the policy network, and we report average results. In each case, training
the model 80k steps gave best results on the validation set, so we use that. Also, for the
heuristic baselines we report average results over 5 seeds (the oracle is deterministic).

Our agent is compared to the baselines on the Panoptic test set on active-sequences consist-
ing of 10 active-views. Table 2.1 presents reconstruction errors. Fig. 2.3 shows how the the
number of selected views affects accuracy and runtimes. For visualizations¹ of Pose-DRL,
see Fig. 2.5 - 2.7.

Single-target estimation. It is clear from Table 2.1 (left) and Fig. 2.3 (left) that Pose-DRL
outperforms the heuristic baselines, which is particularly pronounced for multi-people data.
In such scenes, the view selection process is more delicate, as it requires avoiding cameras
where the target is occluded. We note that the automatically stopping agent yields by far
the most accurate estimates, which shows that it is capable of continuing to the next active-
view when it is likely that the current one does not provide any more good views. Thus it
is often better to fuse a few accurate estimates than including a larger set of poorer ones.

Multi-target estimation. From Table 2.1 (right) and Fig. 2.3 (middle) we see that the agent
outperforms the heuristic baselines as in the case with a single target. Automatic view se-
lection termination does not yield as big improvements in accuracy as in the single-target
case. In the single-target setting the agent stops early to avoid occluded and bad views, but
when reconstructing all people there is more reason to keep selecting additional views to
find some views which provide reasonable estimates for each person. This also explains the
decreased gaps between the various methods – there may be many sets of cameras which
together provide a fairly similar result when averaged over all people in the scene. A future
improvement could include selective fusing a subset of estimates in each view. Running in
auto mode still yields more accurate estimates than fixed schemes which use a larger num-
ber of views.

Runtimes. The runtimes² for Pose-DRL and baselines are shown in Fig. 2.3. DMHS
and Faster R-CNN require 0.50 and 0.11 seconds per viewpoint, respectively, which con-
stitutes the bulk of the processing time. The policy network has an overhead of about 0.01
seconds per action, negligible in relation to the pose estimation system.

¹We use SMPL [18] for the 3d shape models.
²Shown for DMHS-based systems. Using MubyNet (which requires 1.01 seconds per image) gives runtime

curves which look qualitatively similar.
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7DEOH ���� Ablations on the test sets, showing the effect of removing certain components of the DMHS-based Pose-DRL
system. Results (errors, mm/joint) are for models that select a fixed number of views (shown in parentheses),
where the number of views are the same as in Table 2.1. Providing more information than the base feature
mapBt is crucial for crowded scenes withmultiple people (Maf, Ult), as is including previous pose estimates
in the current pose fusion.

Model Settings Maf Ult Pose

Pose-
DRL

full model 144.7 (5) 157.5 (4) 135.1 (4)
Bt only 153.5 (5) 166.9 (4) 134.4 (4)
reset 152.5 (5) 160.8 (4) 133.4 (4)

)LJXUH ���� Visualization of how Pose-DRL performs multi-target pose estimation for an Ultimatum test scene. In this
example the agent sees six viewpoints prior to automatically continuing to the next active-view. The mean
error decreases from 358.9 to 114.6 mm/joint. Only two people are detected in the initial viewpoint, but
the number of people detected increases as the agent inspects more views. Also, the estimates of already
detected people improve as they get fused from multiple viewpoints.

5.2 Ablation Studies

In this section we compare the full agent to versions lacking parts of the model: i) providing
only the base feature map Bt, and ii) not propagating the fused reconstruction xt

$ to the
next active-view (reset), cf. (2.2). The results are given in Table 2.2, and show that the full
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)LJXUH ���� Visualization of how Pose-DRL performs multi-target pose estimation an Ultimatum validation scene. The
agent chooses four viewpoints prior to automatically continuing to the next active-view. The mean error
decreases from 334.8 to 100.9mm/joint. Only one of the persons is visible in the initial viewpoint, and from
a poor angle. This produces the first, incorrectly tilted pose estimate, but the estimate improves as the
agent inspects more viewpoints. The two remaining people are successfully reconstructed in subsequent
viewpoints.

model outperforms the stripped-down versions for multi-people data (Mafia, Ultimatum),
while simpler single-people data in Pose is not sensitive to removing some parts of the
model. There is significantly more room for intelligent decision making for complex multi-
people data, where the model has to avoid occlusions, and thus it requires a stronger state
description and fusion approach. In contrast, selecting views in single-people scenes is less
fragile to the particular camera choices as there is no risk of choosing views where the target
is occluded.

6 Conclusions

In this paper we have presented Pose-DRL, a fully trainable deep reinforcement-learning
based active vision model for human pose estimation. The agent has the freedom to move
and explore the scene spatially and temporally, by selecting informative views that improve
its accuracy. The model learns automatic stopping conditions for each moment in time, and
transition functions to the next temporal processing step in video. We showed in extensive
experiments – designed around the dense Panoptic multi-camera setup, and for complex
scenes with multiple people – that Pose-DRL produces accurate estimates, and that our
agent is robust with respect to the underlying pose estimator used. Moreover, the results
show that our model learns to select an adaptively selected number of informative views
which result in considerably more accurate pose estimates compared to strong multi-view
baselines.

Practical developments of our methodology would include e.g. real-time intelligent pro-
cessing of multi-camera video feeds or controlling a drone observer. In the latter case the
model would further benefit from being extended to account for physical constraints, e.g.
a single camera and limited speed. Our paper is a key step since it presents fundamental
methodology required for future applied research.
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Supplementary Material

In this supplemental we provide additional insights into our Pose-DRL model. Details of
the network architecture are provided in §A. Further model insights and dataset details are
provided in §B. A description of how we handle missed detections or failed matchings are
given in §C. Finally, additional visualizations are shown in §D.

A Model Architecture

See Fig. A.8 for a description of the Pose-DRL architecture. The underlying pose estima-
tion networks, DMHS [25] and MubyNet [37], as well as our agent were implemented in
Caffe [12] and MATLAB. For the Faster R-CNN detector [26] we used a publicly available
Tensorflow [1] implementation,¹ with ResNet-101 [9] as base feature extractor.

7DEOH $��� Pose-DRL agent’s selection statistics of good / bad viewpoints on the test set splits. The agent consistently
chooses a high percentage of good cameras while avoiding bad cameras. Note that randomly choosing
cameras would result in always having 10% chosen among the 10% best cameras, and similar for the 10%
worst cameras.

10% best 10% worst Rest
Mafia 52 % 2% 46%

Ultimatum 67% 1% 32%
Pose 24% 2% 74%
All 43% 2% 55%

7DEOH $��� Breakdown of the subset of the Panoptic dataset used in this work for the training, validation and test
splits, respectively. In each cell is shown the number of images. The fourth row shows the total number
of images in the train, val and test splits (summed over Mafia, Ultimatum and Pose). The fourth column
shows the total number of images for Mafia, Ultimatum and Pose (summed over the train, val and test
splits). The bottom-right cell shows the total number of images in the entire used dataset.

Train Val Test All

Mafia 53,100 27,900 33,728 114,728

Ultimatum 27,960 4,340 55,825 88,125

Pose 51,079 29,672 59,288 140,039

All 132,139 61,912 148,841 342,892

¹https://github.com/smallcorgi/Faster-RCNN_TF
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)LJXUH $��� Pose-DRL network architecture. The pose estimator is shown to the left (we have shown results for two
different pose estimators, DMHS and MubyNet, but any other moncoular pose estimator would work).
When using the single person pose estimator DMHS, the input is a bounding box containing the target
person, and its convolutional feature map Bt forms the base state of the agent. For the multi-person
estimator MubyNet, the full image is instead fed as input and the associated feature map Bt is used
as the base state. Next, Bt is processed by two convolutional layers with ReLU-activations (first conv:
3× 3 kernel, stride 1, output dimension 21× 21× 8; max pool: 2× 2 kernel, stride 2, output dimension
11 × 11 × 8; second conv: 3 × 3 kernel, stride 1, output dimension 9 × 9 × 4). It is then concatenated
with the pose prediction information xt

i for the current active-view, a history of the last 4 fused pose
estimates from previous active-views (Hist), camera rig information (Rig), containing both a description
of the camera rig as well as the agent’s current and previously visited viewpoints within the rig, and
auxiliary information (Aux) with the number of actions taken and number of people detected. Note
that pose information is used in the single-target mode only; for the multi-person setting we omit pose
information in the state space as there may be a variable number of persons per scene. However, in
this setting the agent instead has access to image level information. See more about the state space
in §4.2 in the main paper. The concatenated state is subsequently fed to the two action branches: the
continue action branch (top) and the viewpoint selection action branch (bottom). Both branches use
tanh-activations for the hidden fully-connected (FC) layers. For the continue action branch, the output is
turned into a continue probability through a sigmoid-layer, cf. (2) in the main paper. For the viewpoint
selection action branch, the azimuth and elevation mean angles are produced by a scaled tanh-layer, cf.
equations (4) and (5) in the main paper. In the continue action branch the three FC-layers have 512, 512,
and 1 output neurons each respectively, while the viewpoint selection action branch’s three FC-layers have
1024, 512, and 2 output neurons, respectively.

B Additional Insights and Details

More about runtimes. All experiments reported in this supplementary material and in the
main paper were performed using an Ubuntu workstation using a single Titan V100. Train-
ing the Pose-DRL policy from scratch took about 70 hours after having pre-computed all
DMHS / MubyNet features, Faster R-CNN bounding boxes and instance features. When
presenting the runtimes (see Figure 2 in the main paper) we include the time needed to
compute these detections and features.

Quality of selected viewpoints. To obtain further insights into which cameras the agent is
selecting on average, we tracked how often the agent selects good vs bad viewpoints (for the
DMHS-based model). Specifically, for each selected camera in the various test set splits,
we sorted it into being in either the 10% best or worst cameras based on associated individ-
ual reconstruction error. The results are shown in Table A.3. It can be seen that the agent
typically selects among the best while avoiding the worst viewpoints. The viewpoint errors
are more uniform for the single-people Pose scenes, since there are no viewpoints where the
target is occluded, hence the camera selection statistics are also more uniform for Pose.
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Further dataset insights. In Table A.4 we show how we randomly split the Panoptic dataset
[14] into train, test, and validation sets.

C Handling Missed Detections or Matchings

For an overview of how we detect and match multiple people, refer to §3.2 in the main
paper. In this section we describe what happens in case some persons are not detected or
matched. For the detection-based DMHS-version of Pose-DRL, if in a viewpoint there are
no detections, or if no detection has a matching cost below the threshold C, the underlying
pose estimator is computed on the entire input image to obtain a base state descriptor Bt

for decision making (no associated pose is fused in this case).

It is possible that one or several persons are not detected in a single viewpoint in an active-
view. In this case the pose estimate is set to the fused estimate from the previous active-view
as a backup. In case a previous estimate also does not exist (could happen e.g. in the initial
active-view of an active-sequence), to be able to compute a reconstruction error we set a
placeholder pose estimate where each joint is equal to the center hip location of the ground-
truth. Naturally, this is an extremely poor and implausible estimate, but it is used only to be
able to compute an error (another option would be to not include such an estimate when
computing average errors, but that would not penalize the fact that a person was never
detected and reconstructed).

D Additional Visualizations of Pose-DRL

In Fig. D.9 - D.10 we show two additional visualizations of how Pose-DRL performs single-
target pose estimation in active-views from the Panoptic [14] test set we have used in this
work. We use SMPL [18] for the 3d shape models (both here and in the main paper), and
use per-joint median averaging for fusing poses. As it is referenced in the visualizations,
we show the equation for a partially fused pose (for the first j steps) within an active-view¹
below:

x̃ = f(x1, . . . ,xi) (10)
¹For active-sequence processing, the agent also fuses temporally by adding the previous fused estimate; see

eq. (1) in the main paper
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D.1 Using Pose-DRL the Wild

The dense CMU Panoptic studio provides a powerful environment for training and evalu-
ating our proposed model, however it is also interesting to test the model’s applicability in
the the real world. To this end we captured data with an off-the-shelf smartphone and used
internal sensors to estimate the camera pose matrix for each image. This simple process of
walking around subjects while they stand still emulates the time-freeze setup in Panoptic
and allows us to test our model in the real world. Please note that neither the 3d pose
estimation network nor the policy was re-trained; only the instance detector was refined
to produce accurate appearance models for the detected people. See Fig. D.11 for resulting
visualizations. Please note we obtained consent from the people shown.
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)LJXUH '��� Visualization of how Pose-DRL performs single-target reconstruction on an active-view (set of viewpoints
for a time-freeze) for aMafia test scene. In this case the agent sees three viewpoints prior to automatically
continuing to the next active-view. The reconstruction error reduces from 168 to 107 mm/joint. Left:
Viewpoints seen by the agent, where blue marks the current viewpoint (camera) and red marks previous
viewpoints. Note that the initial camera was given randomly. Middle: Input images associated to the
viewpoints, also showing the detection bounding box of the target person in red – detections for the
other people are left out to avoid visual clutter. Right: SMPL visualizations of the partially fused poses, cf.
(10). The target person is only partially visible in the initial viewpoint, and the associated pose estimate
is inaccurate with the reconstruction incorrectly tilting forward. As the agent visits more viewpoints, the
stance of the reconstruction becomes straighter and more correct. The person is fully visible in the final
viewpoint, and the associated final fused estimate is accurate and plausible.
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)LJXUH '���� Visualization of how Pose-DRL performs single-target reconstruction on an active-view (set of viewpoints
for a time-freeze) for an Ultimatum test scene, where in this case the detection and matching is incorrect
for the second viewpoint. Left: Viewpoints seen by the agent, where blue marks the current viewpoint
(camera) and red marks previous viewpoints. Note that the initial camera was given randomly. Middle:
Input images associated to the viewpoints, also showing the detection bounding box of the target person
in red – detections for the other people are left out to avoid visual clutter. In the second viewpoint with
the incorrect detection and matching, the target person is indicated with a dashed red bounding box,
and the incorrect detection used in the pose fusion is shown in yellow. Right: SMPL visualizations of
the partially fused poses, cf. (10). The target person is viewed from a suboptimal direction in the first
viewpoint, causing the associated pose estimate to be incorrectly tilted. As the agent moves to the next
viewpoint to get a better view of the person, the underlying detection and matching system suggests an
incorrect detection to feed the pose estimator, which causes the fused estimate to deteriorate severely.
However, the agent is able to remedy this by selecting two more good and diverse viewpoints where
the target is clearly visible, yielding a considerably better fused pose estimate. In this example the agent
sees four viewpoints prior to automatically continuing to the next active-view. The reconstruction error
reduces from 149 to 119 mm/joint.
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)LJXUH '���� People standing in various poses, captured with a smartphone camera from different viewpoints. Note
that this data is significantly different from that obtained from Panoptic, with more challenging outdoor
lighting conditions, human-imposed errors from holding and directing the smartphone camera, etcetera.
We show two visualization of how Pose-DRL operates in different scenarios. Pose-DRL was not re-trained
on this data; we use the same model weights as for producing the results in the main paper. In each
scenario we also show the 3d configuration of the scene, as well as which viewpoints are selected by the
agent and in which order (pink circles). Left: In this example the agent sees two views before terminating
viewpoint selection. The initial randomly given viewpoint produces a pose estimate where the arms are
not accurate, which is corrected for in the second and final viewpoint. Right: The agent receives a very
good initial viewpoint and decides to terminate viewpoint selection immediately, producing an accurate
pose estimate. See §D.1 for more details about these visualizations.
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Abstract

We study the task of embodied visual active learning, where an agent is set to
explore a 3d environment with the goal to acquire visual scene understand-
ing by actively selecting views for which to request annotation. While accu-
rate on some benchmarks, today’s deep visual recognition pipelines tend to
not generalize well in certain real-world scenarios, or for unusual viewpoints.
Robotic perception, in turn, requires the capability to refine the recognition
capabilities for the conditions where the mobile system operates, including
cluttered indoor environments or poor illumination. This motivates the pro-
posed task, where an agent is placed in a novel environment with the objective
of improving its visual recognition capability. To study embodied visual ac-
tive learning, we develop a battery of agents – both learnt and pre-specified
– and with different levels of knowledge of the environment. The agents
are equipped with a semantic segmentation network and seek to acquire in-
formative views, move and explore in order to propagate annotations in the
neighbourhood of those views, then refine the underlying segmentation net-
work by online retraining. The trainable method uses deep reinforcement
learning with a reward function that balances two competing objectives: task
performance, represented as visual recognition accuracy, which requires explor-
ing the environment, and the necessary amount of annotated data requested

*Work was partially performed during a Google internship.
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during active exploration. We extensively evaluate the proposed models us-
ing the photorealistic Matterport3D simulator and show that a fully learnt
method outperforms comparable pre-specified counterparts, even when re-
questing fewer annotations.

1 Introduction

Imagine a household robot in a home it has never been before and equipped with a visual
sensing module to perceive its environment and localize objects. If the robot fails to rec-
ognize some objects, or to adapt to changes in the environment, over time, it may not be
able to properly perform its tasks. Much of the recent success of visual perception has been
achieved by deep CNNs, e.g. in image classification [15, 23, 41], semantic segmentation
[6, 25] and object detection [34, 35]. Such systems may however be challenged by unusual
viewpoints or domains, as noted e.g. by Ammirato et al. [2] and Yang et al. [53]. More-
over, a mobile household robot should ideally operate with lightweight, re-trainable and
task-specific perception models, rather than large and comprehensive ones, which could be
demanding computationally and not tailored to the needs of a specific house.

In practice, even in closed but large environments, developing robust scene understand-
ing by exhaustive approaches may be difficult, as looking everywhere requires an excessive
amount of annotation labor. All views are however not equally informative, as a view con-
taining many diverse objects is likely more useful than one covering a single semantic class,
e.g. a wall. This suggests that in learning visual perception one does not have to label ex-
haustively. As new, potentially difficult arrangements appear in an evolving environment,
it would be useful to identify those automatically, based on the task and demand, rather
than programmatically, by periodically re-training a complete model. Moreover, the agent
could make the most out of its embodiment by propagating a given ground truth anno-
tation using motion – as measured by the perceived optical flow – in that neighborhood.
The agent can then self-train, online, for increased performance. The key questions are how
should one explore the environment, how to select the most informative views to annotate,
and how to make the most out of them. We analyze these questions in an embodied visual
active learning framework, illustrated in Fig. 3.1.

To ground the embodied visual active learning task, in this work we measure visual per-
ception ability as semantic segmentation accuracy. The agent is equipped with a semantic
segmentation system and must move around and request annotations in order to refine it.
After exploring the scene the agent should be able to accurately segment all views in the
explored area. This requires an exploration policy covering different objects from diverse
viewpoints and selecting sufficiently many annotations to train the perception model. The
agent can also propagate annotations to different nearby viewpoints using optical flow and
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)LJXUH ���� (PERGLHG YLVXDO DFWLYH OHDUQLQJ. An agent in a 3d environment must explore and occasionally request
annotation in order to efficiently refine its visual perception. The navigation component makes this task
significantly more complex than traditional active learning, where the data pool over which the agent
queries annotations, either in the form of image collections or pre-recorded video streams, is static and
given.

then self-train. We develop a battery of methods, ranging from pre-specified ones to a fully
trainable deep reinforcement learning-based agent, which we evaluate extensively in the
photorealistic Matterport3D environment [4].

In summary, our main contributions are:

• We study the task of embodied visual active learning, where an agent should explore
a 3d environment to acquire visual scene understanding by actively selecting views
for which to request annotation. The agent then propagates information by moving
in the neighborhood of those views and self-trains;

• In our setup, visual learning and exploration can inform and guide one another since
the recognition system is selectively and gradually refined during exploration, instead
of being trained at the end of a trajectory on a full set of densely annotated views;

• We develop a variety of methods, both learnt and pre-specified, to tackle our task in
the context of semantic segmentation;

• We perform extensive evaluation in a photorealistic 3d environment and show that
a fully learnt method outperforms comparable pre-specified ones.

2 Related Work

The embodied visual active learning setup leverages several computer vision and machine
learning concepts, such as embodied navigation, active learning and active vision. There is
substantial recent literature on embodied agents navigating in real or simulated 3d environ-
ments, especially given the recent emergence of large-scale simulators [9, 22, 36, 37, 49].
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)LJXUH ���� Embodied visual active learning for semantic segmentation. A first-person agent is placed in a room and a deep
network predicts the semantic segmentation of the agent’s view. Based on the view and its segmentation,
the agent can either select a movement action to change position and viewpoint, or select a perception
action (Annotate or Collect). Annotate adds the current view and its ground truth segmentation to the
pool of training data for the segmentation network, while Collect is a cheaper version (no additional
supervision required) where the current view and the last annotated view – propagated to the agent’s
current position using optical flow – is added to the training set. The propagated annotation is also a
policy input for the learnt agent in §3.3. After a perception action, the segmentation network is refined
on the current training set. The embodied visual active learning process is considered successful if, after
selecting a limited number of Annotate actions or an exploration budget is exhausted, the segmentation
network can accurately segment any other view in the environment where the agent operates. Note that
the map (left) is not provided as input to the learnt agent in §3.3.

We here briefly review variants of embodied learning. In Embodied Question Answering
[8, 47, 54], an agent is given a question, e.g. ”What color is the car?”. The agent must
typically explore the environment quite extensively in order to be able to answer. Mousavian
et al. [28], Zhu et al. [57] task the agent with reaching a target view using as few steps
as possible. The agent receives the current view and the target as inputs in each step. In
point-goal navigation [14, 27, 37, 38] the agent is given coordinates of a target to reach using
visual information and ego-motion. In visual exploration [5, 7, 10, 32, 33, 55] the task is to
explore an unknown environment as quickly as possible, by covering the whole scene area.
In Ammirato et al. [2], Yang et al. [53] an agent is tasked to navigate an environment to
increase the accuracy of a pre-trained recognition model, e.g. by moving around occluded
objects. This is in contrast to our work where the goal is to collect views for training a
perception model. Whereas in Ammirato et al. [2], Yang et al. [53] the agent is spawned
close to the target object, we cannot make such assumptions, as our task is not only to
accurately recognize a single object or view, but to do so for all views in the potentially
large area explored by the agent.

There are relations to curiosity-driven learning [30, 52], in that we also seek an agent which
visits novel views (states). In Pathak et al. [30], exploration is aided by giving rewards
based on the prediction error of a self-supervised inverse-dynamics model. This is a task-
independent exploration strategy useful to search 2d or 3d environments during training.
In our setup, exploration is task-specific in that it is aimed specifically at refining a visual
recognition system in a novel environment. Moreover, we use semi-dense rewards for both
visual learning and for exploration. Hence we are not operating using sparse rewards where
curiosity approaches often outperform other methods.
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Our work is also related to Pot et al. [31], Song et al. [42], Wang et al. [46], Zhong et al.
[56]. Differently from us, Song et al. [42] uses hand-crafted annotation and exploration
strategies, aiming to label all voxels in a 3d reconstruction by selecting a subset of frames
covering all voxels. This is a form of exhaustive annotation and a visual perception system
is not trained. Hence the system can only analyze objects in annotated voxels. In our setup
the agent is instead tasked with both exploration and the selection of views to annotate,
and we learn a perception module aiming to generalize to unseen views. In contrast to
us, Pot et al. [31], Wang et al. [46], Zhong et al. [56] do not consider an agent choosing
where to move in the environment, nor which parts to label. Instead, they use all views
seen when following a pre-specified path for training a visual recognition system. Pot et al.
[31] use an object detector obtained by self-supervised learning and clustering. Wang et al.
[46], Zhong et al. [56] use constraints from SLAM to improve a given segmentation model.
This approach could in principle complement our label propagation, and is orthogonal to
our main proposals.

Next-best-view (NBV) prediction [13, 17, 18, 20, 43, 50] is superficially similar to our task.
In Jayaraman and Grauman [18] an agent is trained to reveal parts of a panorama and a
model is built to complete all views of the panorama. Our setup allows free movement
in an environment, hence it features a navigation component which makes our task more
comprehensive. While NBV typically integrates information from all predicted views, our
task requires the adaptive selection of only a subset of the views encountered during the
agent’s navigation trajectory.

Active learning [11, 12, 26, 29, 40, 48] can be seen as the static version of our setup, as
it considers approaches for learning what parts of a larger pre-existing and static training
set should be fed into the training procedure, and in what order. We instead consider the
active learning problem in an embodied setup, where an agent can move and actively select
views for which to request annotation. Embodiment makes it possible to use motion to
propagate annotations, hence effectively generate new ones at no additional annotation
cost. In essence, our work lays groundwork towards marrying the active vision and the
active learning paradigms.

3 Embodied Visual Active Learning

Embodied visual active learning is an interplay between a first-person agent, a 3d envi-
ronment and a trainable perception module. See Fig. 3.1 for a high-level abstraction and
Fig. 3.2 for details of the particular task considered in this paper. The perception module
processes images (views) observed by the agent in the environment. The agent can request
annotations for views in order to refine the perception module. It should ideally request
very few annotations as these are costly. The agent can also generate more annotations for
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free by neighborhood exploration using label propagation, such that when trained on that
data the perception module becomes increasingly more accurate in the explored environ-
ment. To assess how successful an agent is on the task, we test how accurate the perception
module is on multiple random viewpoints selected uniformly in the area explored by the
agent.

Task overview. The agent begins each episode randomly positioned and rotated in a 3d en-
vironment, with a randomly initialized semantic segmentation network. The ground truth
segmentation mask for the first view is given for the initial training of the segmentation net-
work. The agent can choose movement actions (MoveForward, MoveLeft, MoveRight,
RotateLeft, RotateRight with 25 cm movements and 15 degree rotations), or percep-
tion actions (Annotate, Collect). If the agent moves or rotates, the ground truth mask is
propagated using optical flow. At any time, the agent may choose to insert the propagated
annotation into its training set with the Collect action, or to ask for a new ground truth
mask with the Annotate action. After an Annotate action the propagated annotation
mask is re-initialized to the ground truth annotation. After each perception action, the
segmentation network S is refined on the training set, which is expanded with the new
data point.

The agent’s performance is evaluated at the end of the episode. The goal is to maximize the
mIoU and mean accuracy of the segmentation network on the views in the area explored by
the agent. Specifically, a set of reference views are randomly sampled within a disc of radius
r centered at the starting location, and the segmentation network is evaluated on these.
Hence to perform well the agent is required to explore its surroundings, and it should
refine its perception module in regions of high uncertainty.

3.1 Methods for the Proposed Task

We develop several methods to evaluate and study the embodied visual active learning task.
All methods except the RL-agent issue the Collect action when 30% of the propagated
labels are unknown and Annotate when 85% are unknown. The intuition is that the pre-
specified methods should request annotation when most pixels are unlabeled. The specific
hyperparameters of all models were set based on a validation set.

Random. Uniformly selects random movement actions. This baseline is thus a lower bound
in terms of embodied exploration for this task.

Rotate. Continually rotates left. This method is useful in comparing with trainable agents
that move and explore, i.e. to monitor what improvements can be expected from embodi-
ment.
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)LJXUH ���� An example of a space filling curve in aMatterport3D floor plan. Methods based on the space filler assume
complete spatial knowledge of the environment.

Bounce. Explores by walking straight forward until it hits a wall, then samples a new
random direction and moves forward until it collides with a new wall, and so on. This
agent quickly explores the environment.

Frontier exploration. This method builds a map, online, by using using depth and motion
from the simulator [51]. All pixels with depth within a 4m threshold are back-projected
in 3d and then classified as either obstacles or navigable, based on height relative to the
ground plane. This agent is confined to move within the reference view radius r, which is
a choice to its advantage¹ as annotated views will more likely be similar to reference views
that reside within that same radius.

Space filler. Follows a shortest space filling curve within the reference view radius r, and as
r increases the entire environment is explored. This baseline makes strong and somewhat
less general (or depending on the application, altogether unrealistic) assumptions in order
to create a path: knowing the floor plan in advance, as well as which locations are reachable
from the start. It also only moves within the reference view radius, and knows the shortest
geodesic paths to take on the curve. Hence, this method can be considered an upper bound
for other methods. The space filling curve is computed by placing a grid of nodes onto the
floor plan (1m resolution, using a sampling and reachability heuristic), and then finding
the shortest path around it with an approximate traveling salesman solver. Fig. 3.3 shows
a space filling curve in a Matterport3D floor plan.

RL-agent. This fully trainable method we develop jointly learns exploration and perception
actions in a reinforcement learning framework. See the full description in §3.3.

¹This ensures it is evaluated under ideal conditions in contrast to the RL-agent in §3.3.
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3.2 Semantic Segmentation Network

Each method uses the same FCN-inspired deep network [25] for semantic segmentation.
The network consists of 3 blocks of convolutional layers, each containing 3 convolutional
layers with kernels of size 3×3. The first convolutional layer in each block uses a stride of 2,
which halves the resolution. For each block the number of channels doubles, using 64, 128
and 256 channels respectively. Multiple predictions are made using the final convolutional
layers of each block. The multi-scale predictions are resized to the original image resolution
using bilinear interpolation and are finally summed up, resulting in the final segmentation
estimate. Note that we have deliberately chosen to make the network small so that it can
be efficiently refined on new data.

At the beginning of each episode, the parameters are initialized randomly, and we train
the network on the very first view, for which we always supply the ground truth segmenta-
tion. Each time Annotate or Collect is selected, we refine the network. Mini-batches
of size 8, which always include the latest added labeled image, are used in training. We
use random cropping and scaling for data augmentation. The network is refined either
until it has trained for 1, 000 iterations or until the accuracy of a mini-batch exceeds 95%.
We use a standard cross-entropy loss averaged over all pixels. The segmentation network is
trained using stochastic gradient descent with learning rate 0.01, weight decay 10−5 and
momentum 0.9. To propagate semantic labels, we compute optical flow between consec-
utive viewpoints using PWC-Net [44]. The optical flow is computed bidirectionally and
only pixels where the difference between the forward and backward displacements is less
than 2 pixels are propagated [45]. We found that labels were reliably tracked over several
frames when using 2 pixels as a threshold.

3.3 Reinforcement Learning Agent

To present the reinforcement-learning agent for our task, we begin with an explanation of
the state-action representation and policy network, followed by the reward structure and
finally policy training.

Actions, states and policy. The agent is represented as a deep stochastic policy πθ(at|st)
that samples an action at in state st at time t. The actions are MoveForward, MoveLeft,
MoveRight, RotateLeft, RotateRight, Annotate and Collect. The full state is
st = {It,St,P t,F t} where It ∈ R127×127×3 is the image, St = St(It) ∈ R127×127×3

is the semantic segmentation mask predicted by the deep network St (this network is re-
fined over an episode; t indexes the network parameters at time t), P t ∈ R127×127×3 is the
propagated annotation, and F t ∈ R7×7×2048 is a deep representation of It (a ResNet-50
backbone feature map).
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The policy consists of a base processor, a recurrent module and a policy head. The base pro-
cessor consists of two learnable components: φimg and φres. The 4-layer convolutional
network φimg takes as input the depth-wise concatenated triplet {It,St,P t}, producing
φimg(It,St,P t) ∈ R512. Similarly, the 2-layer convolutional network φres yields an
embedding φres(F t) ∈ R512 of the ResNet features F t. An LSTM [16] with 256 cells
constitutes the recurrent module, which takes as input φimg(It,St,P t) and φres(F t).
The input has length 1024. The hidden LSTM state is fed to the policy head, consisting
of a fully-connected layer followed by a 7-way softmax which produces action probabilities.

Rewards. In training, the main reward is related to the mIoU improvement of the final
segmentation network ST over the initial S0 on a reference set R. The set R is constructed
at the beginning of each episode by randomly selecting views within a geodesic distance
r from the agent’s starting location, and contains views with corresponding ground truth
semantic segmentation masks. At the end of an episode of length T , the underlying per-
ception module is evaluated on R. Specifically, after an episode (with T steps), the agent
receives as final reward:

RT = mIoU(ST ,R)− mIoU(S0,R) (3.1)

To obtain a denser signal, tightly coupled with the final objective, we also give a reward
proportional to the improvement of S on the reference set R after each Annotate (ann)
and Collect (col) action:

Rann
t = mIoU(St,R)− mIoU(St−1,R)− εann (3.2)

Rcol
t = mIoU(St,R)− mIoU(St−1,R) (3.3)

To ensure the agent does not request costly annotations too frequently, each Annotate
action is penalized with a negative reward −εann (we set εann = 0.01), as seen in (3.2).
Such a penalty is not given for the free Collect action. Moreover, the dataset we use has 40
different semantic classes, but some are very rare and apply only to small objects, and some
might not even be present in certain houses. We address this imbalance by computing the
mIoU using only the 10 largest classes, ranked by the number of pixels in the set of reference
views for the current episode.

While the rewards (3.1) - (3.3) should implicitly encourage the agent to explore the en-
vironment in order to request annotations for distinct, informative views, we empirically
found useful to include an additional explicit exploration reward. Denote by {xi}t−1

i=1 =
{(xi, yi)}t−1

i=1 the positions the agent has visited up to time t − 1 in its current episode,
and let xt = (xt, yt) denote its current position. We define the exploration (exp) reward
based on a kernel density estimate of the agent’s visited locations:

Rexp
t = a− bpt(xt) := a− b

t− 1

t−1∑

i=1

k(x,xi) (3.4)
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where a and b are hyperparameters (both set to 0.003). Here pt(xt) is a Gaussian kernel
estimate of the density with bandwidth 0.3m. It is large for previously visited positions
and small for unvisited positions, thereby encouraging the agent’s expansion towards new
places in the environment. The exploration reward is only given for movement actions.
Note that the pose xi is only used to compute the reward Rexp

t and is not available to the
policy via the state space.

Policy training. The policy network is trained using PPO [39] based on the RLlib re-
inforcement learning package [24], as well as OpenAI Gym [3]. For optimization we use
Adam [21] with batch size 512, learning rate 10−4 and discount rate 0.99. During train-
ing, each episode consists of 256 actions. The agent is trained for 4k episodes, which totals
1024k steps.

Our system is implemented in TensorFlow [1], and it takes about 3 days to train an agent
using 4 Nvidia Titan X GPUs. An episode of length 256 took on average about 3 minutes
using a single GPU, and during training we used 4 workers with one GPU each, collect-
ing rollouts independently. The runtime per episode varies depending on how frequently
the agent decides to annotate, as training the segmentation network is the bottleneck and
accounts for approximately 90% of the run-time. We used optical flow from the simulator
to speed up policy training. For evaluation, the RL-agent and all other methods use PWC-
Net to compute optical flow. The ResNet-50 feature extractor is pre-trained on ImageNet
[19] with weights frozen during policy training.

4 Experiments

In this section we provide empirical evaluations of various methods. The primary metrics
are mIoU and segmentation accuracy but we emphasize that we test the exploration and an-
notation selection capability of policies – the mIoU and accuracy measure how well agents
explore in order to refine their perception. Differently from accuracy, the mIoU does not
become overly high by simply segmenting large background regions (such as walls), hence
it is more representative of overall semantic segmentation quality.

Experimental setup. We evaluate the methods on the Matterport3D dataset [4] using
the embodied agent framework Habitat [37]. This setup allows the agent to freely explore
photorealistic 3d models of large houses, that have ground truth annotations for 40 diverse
semantic classes. Hence it is a suitable environment for evaluation. To assess the general-
ization capability of the RL-agent we train and test it in different houses. We use the same
61, 11 and 18 houses for training, validation and testing as Chang et al. [4]. The RL-agent
and all pre-specified methods except the space filler are comparable in terms of assumptions,
cf. §3.1. The space filler assumes full spatial knowledge of the environment (ground truth
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)LJXUH ���� Mean segmentation accuracy and mIoU versus number of actions (steps), evaluated on the Matterport3D
test scenes. The RL-agent was trained on 256-step episodes. This agent fairly quickly outperforms all other
comparable pre-specified agents. Rotate is strong initially since it quickly gathers many annotations in a
360 degree arc, but is eventually outperformed by most other methods that move around in the houses.
Frontier exploration yields similar accuracy as the RL-agent after about 170 steps, but uses significantly
more annotations (cf. Table 3.1) and assumes perfect pose and depth information. The space filler, which
assumes full knowledge of the environment, yields the best results after about 100 steps.

map) and hence has inherent advantages over the other methods.

During RL-agent training we randomly sample starting positions and rotations from the
training houses at the start of each episode. An episode ends after 256 actions. Hyperpa-
rameters of the learnt and pre-specified agents are tuned on the validation set. For validation
and testing we use 3 and 4 starting positions per scene, respectively, so each agent is tested
for a total of 33 episodes in validation and 72 episodes in testing. The reported metrics are
the mean over all these runs. All methods are evaluated on the same starting positions in
the same houses. The reference views used to evaluate the semantic segmentation perfor-
mance are obtained by sampling 32 random views within a 5 m geodesic distance of the
agent’s starting position at the beginning of each episode. In training the reference views are
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sampled randomly. During validation and testing, for fairness, we sample the same views
for a given starting position when we test different agents. Note that there is no overlap
between reference views during policy training and testing, since training, validation and
testing houses are non-overlapping.

)LJXUH ���� Mean segmentation accuracy and mIoU for a varying number of requested annotations evaluated on the
Matterport3D test scenes. The RL-agent outperforms all comparable pre-specified methods (although
frontier exploration matches it in accuracy after about 40 annotations), indicating that it has learnt an
exploration policy which generalizes to novel scenes. The space filler, as expected, outperforms the RL-
agent, except for less than 15 annotations. Thus the RL-agent is best before and around its training regime,
where on average annotates 16.7 times per episode, cf. Table 3.1.

Recall that the RL-agent’s policy parameters are denoted by θ. Let θseg denote the pa-
rameters of the underlying semantic segmentation network, in order to clarify when we
reset, freeze and refine θ and θseg, respectively. For RL-training, we refine θ during policy
estimation in the training houses. When we evaluate the policy on the validation or test
houses we freeze θ and only use the policy for inference. The parameters of the segmen-
tation network θseg are always reset at the beginning of an episode, regardless of which
house we deploy the agent in, and regardless of whether the policy network is training or
not. During an episode, we refine θseg exactly when the agent selects the Annotate or
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7DEOH ���� Comparison of different agents for a fixed episode length of 256 actions on the Matterport3D test scenes.
The RL-agent gets higher mIoU using far fewer annotations than comparable pre-specified methods, im-
plying that the RL-agent’s policy selects more informative views to annotate.

Method mIoU Acc # Ann # Coll
Space filler 0.439 0.769 24.7 23.9
RL-agent 0.394 0.727 16.7 15.2

Frontier exploration 0.385 0.735 24.2 21.6
Bounce 0.357 0.708 29.6 26.0
Rotate 0.295 0.661 34.3 32.7

Random 0.204 0.566 29.1 19.5

Collect actions (this applies also to all the other methods described in §3.1). Thus anno-
tated views in an episode are used to refine θseg in that episode only, and are not used in
any other episodes.

4.1 Main Results

We measure the performances of the agents in two settings: (a) with unlimited annotations
but limited total actions (max 256, as during RL-training), or (b) for a limited annotation
budget (max 100) but unlimited total actions. All methods were tuned on the validation
set in a setup similar to (a) with 256 step episodes. Note however that the number of an-
notations can differ for different methods in a 256 step episode. The setup (b) is used to
assess how the different methods compare for a fix number of annotations.
Fixed episode length. Table 3.1 and Fig. 3.4 show results on the test scenes for episodes of
length 256. The RL-agent outperforms the comparable pre-specified methods in mIoU and
accuracy, although frontier exploration – which uses perfect pose and depth information,
and is idealized to always move within the reference view radius – yields similar accuracy
after about 170 steps. The RL-agent uses much fewer annotations than other methods,
hence those annotated views are more informative. The space filler, which assumes perfect
knowledge of the map, outperforms the RL-agent but uses significantly more annotations.
Note that the Rotate baseline saturates, supporting the intuition that an agent has to move
around in order to increase performance in complex environments.

Fixed annotation budget. In Table 3.2 and Fig. 3.5 we show test results when the an-
notation budget is limited to 100 images per episode. As expected, the space filler yields
the best results, although the RL-agent gets comparable performance when using up to 15
annotations. The RL-agent outperforms comparable pre-specified methods in mIoU and
accuracy. Frontier exploration obtains similar accuracy. We also see that the episodes of
the RL-agent are longer.

Qualitative examples. Fig. 3.6 shows examples of views that the RL-agent choose to an-
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7DEOH ���� Comparison of different agents for a fixed budget of 100 annotations onMatterport3D test scenes. The RL-
agent gets a higher mIoU than comparable pre-specified agents, despite not being trained in this setting.

Method mIoU Acc # Steps # Coll
Space filler 0.600 0.863 1048 91
RL-agent 0.507 0.796 1541 94

Frontier exploration 0.485 0.796 998 84
Bounce 0.464 0.776 861 87
Rotate 0.303 0.668 752 96

Random 0.242 0.595 910 64

notate. The agent explores large parts of the space and the annotated views are diverse,
both in their spatial locations and in the types of semantic classes they contain. Fig. 3.7
shows how the segmentation network’s performance on two reference views improves dur-
ing an episode. The two views are initially poorly segmented, but as the agent explores and
acquires annotations for novel views, the accuracy on the reference views increases.

1
2

3 4

5

6

1 2 3 4 5 6

)LJXUH ���� The first six requested annotations by the RL-agent in a room from the test set. Left: Map showing the
agent’s trajectory and the six first requested annotations (green arrows). The initially given annotation is
not indicatedwith a number. Blue arrows indicate Collect actions. Right: For each annotation (numbered
1 - 6) the figures show the image seen by the agent and the ground truth received when the agent
requested annotations. As can be seen, the agent quickly explores the room and requests annotations
containing diverse semantic classes.

4.2 Ablation Studies of the RL-agent

Ablation results of the RL-agent on the validation set are in Table 3.3. We compare to
the following versions: i) Policy without visual features φimg; ii) Policy without ResNet
features φres; iii) No additional exploration reward (3.4), i.e. Rexp

t = 0; iv) No Collect
action and P t is not an input to φimg; and v) Only exploration trained, using the heuristic
strategy for annotations. We trained the ablated models for 4,000 episodes as for the full
model.

Both the validation accuracy and mIoU are higher for the full RL-model compared to all
ablated variants, justifying design choices. The model not relying on propagating annota-
tions and using the Collect action performs somewhat worse than the full model despite
a comparable amount of annotations. The learnt annotation strategy yields higher mIoU
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7DEOH ���� Ablation study of different RL-based model variants for 256-step episodes on the validation set. The full
RL-agent outperforms all ablated models at a comparable or lower number of requested annotations.

Variant mIoU Acc # Ann # Coll
Full model 0.427 0.732 16.4 16.4

No collect nor P t 0.415 0.727 17.9 0.0
Only exploration 0.411 0.727 16.1 14.4

Rexp
t = 0 0.401 0.719 17.7 47.4

No φimg 0.378 0.696 14.3 3.8
No ResNet 0.375 0.705 23.3 0.3

and accuracy compared to the heuristic one, at comparable number of annotations. The
exploration reward is important in encouraging the agent to navigate to unvisited positions
– without it performance is worse, despite a comparable number of annotations. The agent
trained without the exploration reward uses an excessive number of Collect actions, so
this agent often stands still instead of moving. Finally, omitting either visual or ResNet
features from the policy significantly harms accuracy for the resulting recognition system.

4.3 Analysis of Annotation Strategies

In this section we examine how different annotation strategies affect the task performance
on the validation set for the space filler and bounce methods. Specifically, the annotation
strategies are:

• Threshold perception. This is the variant evaluated in §4.1, i.e. it issues the Collect
action when 30% of the propagated labels are unknown and Annotate when 85%
are unknown.

• Learnt perception. We train a simplified RL-agent where the movement actions are
restricted to follow the exploration trajectory of the baseline method (space filler and
bounce, respectively). This model has 3 actions: move along the baseline exploration
path, Annotate and Collect. All other training settings are identical to the full
RL-agent.

• Randomperception. In each step, this variant follows the baseline exploration trajec-
tory with 80% probability, while annotating views and collecting propagated labels
with 10% probability each.

As can be seen in Table 3.4, the best results for the space filler are obtained by using the
threshold strategy, which also annotates slightly less frequently than other variants. Us-
ing learnt perception actions yields better results compared to random perception actions,
and takes slightly fewer annotations per episode. Similar results carry over to the bounce
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7DEOH ���� Results for different model variants of the space filler method. We report the mean on the validation
scenes. The threshold perception strategy – which is the one used in the main evaluations in §4.1 – yields
the best results.

Variant mIoU Acc # Ann # Coll
Threshold perception 0.472 0.770 20.8 19.9

Learnt perception 0.454 0.755 22.8 37.4
Random perception 0.446 0.747 24.2 24.4

1

2

3

a

b
1 2 3

a

b

Requested Annotations
Reference Views 1 2 3

Predicted Segmentations

)LJXUH ���� Example of the RL-agent’s viewpoint selection and how its perception improves over time. We show results
of two reference views after the first three annotations of the RL-agent. Left: Agent’s movement path
is drawn in black on the map. The annotations (green arrows) are numbered 1 - 3, and the associated
views are shown immediately right of the map (the initially given annotation is not shown). Red arrows
labeled a - b indicate the reference views. Right: Reference views and ground truth masks, followed by
predicted segmentation after one, two and three annotations. Notice clear segmentation improvements
as the agent requests more annotations. Specifically, note how reference view a improves drastically with
annotation 2 as the bed is visible in that view, and with annotation 3 where the drawer is seen. Also note
how segmentation improves for reference view b after the door is seen in annotation 3.

method in Table 3.5, i.e. the best results are again obtained by the threshold variant. The
model with a learnt annotation strategy fails to converge to anything better than heuristic
perception strategies. In fact, it converges to selecting Collect almost 40% of the time,
which indicates a lack of movement for this variant.

In Table 3.3 we saw that a learnt exploration method with a heuristic annotation strategy
yields worse results than a fully learnt model. Conversely, the results from Table 3.4 and
Table 3.5 show that a heuristic exploration method using a learnt annotation strategy yields
worse results than an entirely heuristic model. Together these results indicate that it is
necessary to learn how to annotate and explore jointly to provide the best results, given
comparable environment knowledge.

4.4 Pre-training the Segmentation Network

Recall that our semantic segmentation network is randomly initialized at the beginning of
each episode. In this section we evaluate the effect of instead pre-training the segmentation
network¹ on the 61 training houses using about 20,000 random views. In Table 3.6 we

¹In this pre-training experiment, we use the same architecture and hyperparameters for the segmentation
network as when it is trained and deployed in the embodied visual active learning task.
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7DEOH ���� Results for different model variants of the bounce method. We report the mean on the validation scenes.
The threshold perception strategy – which is the one used in the main evaluations in §4.1 – yields the best
results, but also uses the largest amount of annotations on average.

Variant mIoU Acc # Ann # Coll
Threshold perception 0.388 0.706 27.4 24.5

Learnt perception 0.375 0.699 14.6 98.8
Random perception 0.379 0.698 25.9 24.6

compare using this pre-trained segmentation network as initialization for the RL-agent with
the case of random initialization. We also show results when not further fine-tuning the
pre-trained segmentation network, i.e. when not performing any embodied visual active
learning.

The weak result obtained when not fine-tuning (first row) indicates significant appearance
differences between the houses. This is further suggested by the fact that the RL-agent
gets a surprisingly modest boost from pre-training the segmentation network (third row vs
second row). Note the different number of annotated views used here – the agent without
pre-training uses only 16.4 views on average, while the other uses about 20, 000 + 14.4
annotated views, if we count all the images used for pre-training. Due to relatively marginal
gains for a large number of annotated images, we decided to evaluate all agents without pre-
training the segmentation network.

7DEOH ���� Results for different training regimes for the semantic segmentation network. A pre-trained segmentation
network generalizes poorly to unseen environments (first row), and there is relatively little gain for the RL-
agent by having a pre-trained segmentation network (third row). Note that pre-training uses over 1000x
more annotations compared to performing embodied active visual learning from scratch.

Variant mIoU Acc # Ann # Coll
Pre-train, no RL 0.208 0.549 20k 0.0
No pre-train, RL 0.427 0.732 16.4 16.4

Pre-train, RL 0.461 0.780 20k + 14.4 13.3

5 Conclusions

In this paper we have explored the embodied visual active learning task for semantic seg-
mentation and developed a diverse set of methods, both pre-designed and learning-based,
in order to address it. The agents can explore a 3d environment and improve the accuracy
of their semantic segmentation networks by requesting annotations for informative view-
points, propagating annotations via optical flow at no additional cost by moving in the
neighborhood of those views, and self-training. We have introduced multiple baselines as
well as a more sophisticated fully learnt model, each exposing different assumptions and
knowledge of the environment. Through extensive experiments in the photorealistic Mat-
terport3D environment we have thoroughly investigated the various methods and shown
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that the fully learning-based method outperforms comparable non-learnt approaches, both
in terms of accuracy and mIoU, while relying on fewer annotations.
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Supplementary Material

A Introduction

In this supplementary material we provide additional insights into our proposed models
for the embodied active visual learning task. Details of the semantic segmentation network
are given in §B, and of the RL-agent’s policy network in §C. In §D we provide an algo-
rithmic description of how the RL-agent operates within our task. In §E we compare with
additional variants / hyperparameter configurations of the bounce method and conclude
that the variants used in the main paper provide the best results in terms of mIoU.

B Semantic Segmentation Network

Fig. E.8 contains a schematic overview of the semantic segmentation network. We deliber-
ately made it small so that it would be very quick to refine it with new data. It consists of 3
blocks of convolutional layers, each containing 3 convolutional layers with kernels of size
3×3. The first convolutional layer in each block uses a stride of 2, which halves the resolu-
tion. For each block the number of channels doubles. Multiple predictions are made using
the final convolutional layers of each block. The multi-scale predictions are resized to the
original image resolution using bilinear interpolation and are finally summed up, resulting
in the final segmentation. The network resembles FCN [25] by predicting the semantic
segmentation at multiple scales. In training we use a standard cross-entropy loss averaged
over all pixels. The segmentation network is trained using stochastic gradient descent with
learning rate 0.01, weight decay 10−5 and momentum 0.9.

C Policy Network of the RL-Agent

See Fig. E.9 for an overview of the policy network. The policy consists of two branches,
where the first processes the image and segmentation inputs, and the second processes the
extracted deep features.

D Pseudo Code

The full procedure of our RL-model for embodied visual active learning for semantic seg-
mentation is described in Algorithm E.1. It describes among other things how the states
and segmentation network are updated during an episode.
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7DEOH '��� Results of different model variants of the bounce method. We report the mean on the validation scenes.
Threshold perception is used in the main paper.

Variant mIoU Acc # Ann # Coll
Threshold perception 0.388 0.706 27.4 24.5
Learned perception 0.375 0.699 14.6 98.8
Random perception 0.379 0.698 25.9 24.6

Version 1 0.353 0.677 11.4 0.0
Version 2 0.372 0.695 9.8 9.6
Version 3 0.381 0.701 20.0 10.4

E Variants of Bounce

We tried multiple perception strategies of the bounce baseline on the validation set and
present in Table D.7 the results of 3 different versions (in addition to those perception
strategies described in §4.3):

• Version 1. Recall that the bounce method samples a random rotation after bouncing
in a wall, and then begins moving in that direction. This version annotates prior to
walking in a new direction (it issues no Collect actions).

• Version 2. Issues Annotate after rotating towards a new direction, and issues
Collect four steps (1 m) after that.

• Version 3. Issues Annotate after rotating towards a new direction, and issues
Annotate and Collect with 10% probability each when walking forward.

We see that the third version – with more frequent annotations and collects compared
to versions 1 and 2 – obtains the best performance in terms of accuracy and mIoU on
the validation set for 256-step episodes. However, it does not outperform the threshold
strategy.
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Algorithm E.1 Procedural code for the RL-agent in the embodied visual active learning for
semantic segmentation task.

1: Initialize parameters of the segmentation network S
2: Initialize location (x1, y1) and rotation φ1 randomly and let x1 = (x1, y1,φ1)
3: Extract image I1 and receive associated annotation mask A1 at x1; initialize training

set D = {(I1,A1)}
4: Perform initial training of S on D
5: Initialize propagated annotation P 1 = A1

6: Compute segmentation S1 = S(I1) and deep features F 1

7: Initialize agent state s1 = (I1,S1,P 1,F 1)
8: for t = 1, . . . , T do
9: Sample action at ∼ πθ(·|st)

10: if at ∈ {MoveForward, MoveLeft, MoveRight, RotateLeft, RotateRight}
then

11: Set xt+1 according to movement
12: Propagate annotation P t+1 = flow(P t)
13: else
14: Set xt+1 = xt

15: Set P t+1 = P t

16: end if
17: Obtain view It+1 associated to xt+1

18: if at = Annotate then
19: Obtain annotation mask At+1 at xt+1

20: Update training set D = D ∪ {(It+1,At+1)}
21: Refine S on D
22: Reset propagated annotation P t+1 = At+1

23: else if at = Collect then
24: Update training set D = D ∪ {(It+1,P t+1)}
25: Refine S on D
26: end if
27: Compute segmentation St+1 = S(It+1) and deep features F t+1

28: Update agent state st+1 = (It+1,St+1,P t+1,F t+1)
29: end for
30: return S$ (trained segmentation network)
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Block 1
64 channels

1/2 resolution
Block 2

128 channels
1/4 resolution

Block 3
256 channels
1/8 resolution

)LJXUH (��� Architecture of the deep network we use for semantic segmentation. The input image is processed se-
quentially through 3 blocks, each containing 3 convolutional layers. The first convolutional layer in each
block uses a stride of 2, which halves the resolution for each block, and at the same time we double the
number of channels. The semantic segmentation is predicted for multiple resolutions and are summed
together to predict the semantic segmentation.

CNN CNN CNN

ResNet50

FC

FC

LSTM 𝜋(𝑎|𝑠)

CNN

)LJXUH (��� The policy network architecture for the RL-agent. The network has three inputs: the current RGB image
I ∈ R127×127×3 (bottom), the current segmentation prediction S ∈ R127×127×3 (top), and the current
optical flow propagated ground truth segmentation P ∈ R127×127×3 (middle). All three inputs are
stacked depthwise and then processed by three convolutional layers and a fully connected layer (this
processing subnetwork is called φimg in §3.3 of the main paper). The first layer has 32 filters, kernel size
8 × 8, and stride 4. The second layer has 64 filters, kernel size 4 × 4, and stride 2. The third layer has 64
filters, kernel size 3 × 3, and stride 1. Finally, the fully connected layer has 512 outputs. In addition, the
RGB image is passed through an image feature extractor (ResNet-50), called φres with output F t in the
main paper. The deep features F t are subsequently passed through a convolutional layer with 128 filters,
kernel size 2 × 2 and stride 2. Finally, these features are processed by a fully connected layer with 512
outputs. These two input branches are then concatenated and fed to an LSTM with 256 cells. The hidden
state of the LSTM is finally passed to a softmax layer to produce the action distribution.
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Abstract

We focus on the task of estimating a physically plausible articulated human
motion from monocular video. Existing approaches that do not consider
physics often produce temporally inconsistent output with motion artifacts,
while state-of-the-art physics-based approaches have either been shown to
work only in controlled laboratory conditions or consider simplified body-
ground contact limited to feet. This paper explores how these shortcomings
can be addressed by directly incorporating a fully-featured physics engine into
the pose estimation process. Given an uncontrolled, real-world scene as in-
put, our approach estimates the ground-plane location and the dimensions of
the physical body model. It then recovers the physical motion by performing
trajectory optimization. The advantage of our formulation is that it readily
generalizes to a variety of scenes that might have diverse ground properties
and supports any form of self-contact and contact between the articulated
body and scene geometry. We show that our approach achieves competitive
results with respect to existing physics-based methods on the Human3.6M
benchmark [13], while being directly applicable without re-training to more
complex dynamic motions from the AIST benchmark [36] and to uncon-
trolled internet videos.
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1 Introduction

In this paper, we address the challenge of reconstructing physically plausible articulated 3d
human motion from monocular video aiming to complement the recent methods [15, 16,
23, 42, 42, 49] that achieve increasingly more accurate 3d pose estimation results in terms
of standard joint accuracy metrics, but still often produce reconstructions that are visually
unnatural.

Our primary mechanism to achieve physical plausibility is to incorporate laws of physics
into the pose estimation process. This naturally allows us to impose a variety of desirable
properties on the estimated articulated motion, such as temporal consistency and balance in
the presence of gravity. Perhaps one of the key challenges in using physics for pose estima-
tion is the inherent complexity of adequately modeling the diverse physical phenomena that
arise due to interactions of people with the scene. In the recent literature [29, 30, 31, 43]
it is common to keep the physics model simple to enable efficient inference. For exam-
ple, most of the recent approaches opt for using simplified contact models (considering
foot contact only), ignore potential effects due to interaction with objects other than the
ground-plane, and do not model more subtle physical effects such as sliding and rolling
friction, or surfaces with varying degrees of softness. Clearly there are many real-world sce-
narios where leveraging a more feature-complete physical model is necessary. We explore
physics-based articulated pose estimation using feature-complete physical simulation as a
building block to address this shortcoming. The advantage of such an approach is that it
allows our method to be readily applicable to a variety of motions and scenarios that have
not previously been tackled in the literature (see fig. 4.1 and 4.2). Specifically, in contrast
to [29, 30, 31, 43] our approach can reconstruct motions with any type of contact between
the body and the ground plane (see fig. 4.1). Our approach can also model interaction
with obstacles and supporting surfaces such as furniture and allows for varying the stiffness
and damping of the ground-plane to represent special cases such as trampoline floor (see
fig. 4.2). We rely on the Bullet [7] engine, which was previously used for simulating human
motion in [25]. However, none of our implementation details are engine-specific, so we
envision that the quality of our results might continue to improve with further development
in physical simulation.

The main contribution of this paper is to experimentally evaluate the use of trajectory
optimization for physics-based articulated motion estimation on laboratory and real-world
data using a generic physics engine as a building block. We demonstrate that combining a
feature-complete physics engine and trajectory optimization can reach competitive or better
accuracy than state-of-the-art methods while being applicable to a large variety of scenes and
motion types. Furthermore, to the best of our knowledge, we are the first to apply physics-
based reconstruction to complex real-world motions such as the ones shown in fig. 4.1
and 4.2. As a second contribution, we generate technical insights such as demonstrating
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that we can reach excellent alignment of estimated physical motion with 2d input images by
automatically adapting the 3d model to the person in the image, and employing appropriate
2d alignment losses. This is in contrast to related work [29, 30, 31, 43] that typically does
not report 2d alignment error and qualitatively may not achieve good 2d alignment of the
physical model with the image. We also contribute to the understanding of the use of the

)LJXUH ���� Example results of our approach on internet videos of dynamic motions. Note that our model can recon-
struct physically plausible articulated 3d motion even in the presence of complex contact with the ground:
full body contact (top row), feet and hands (middle), and feet and knee contacts (bottom).
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)LJXUH ���� Examples results of our approach for scene with soft ground (top) and interaction with a chair (bottom).

residual root force control [45]. Such residual root force has been hypothesized as essential
to bridge the simulation-to-reality gap and compensate for inaccuracies in the physical
model. We experimentally demonstrate that the use of physically unrealistic residual force
control might not be necessary, even in cases of complex and dynamic motions.

2 Related work

In the following, we first discuss recent literature on 3d human pose estimation that does
not incorporate physical reasoning. We then review the related work on physics-based
human modeling and compare our approach to other physics-based 3d pose estimation
approaches.

3d pose estimation without physics. State-of-the-art methods are highly effective in es-
timating 2d and 3d people poses in images [5, 15, 47], and recent work has been able to
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)LJXUH ���� 2YHUYLHZ� Given a monocular video of a human motion, we estimate the parameters of a physical human
model andmotor control trajectories τ (t) such that the physically simulated humanmotion aligns with the
video. We first use an inference network that predicts 2d landmarks li and body semantic segmentation
masks from the video frames. From n seed frames we estimate a time-consistent human shape β and
the ground-plane location Tg . These are then kept fixed during a per-frame pose refinement step which
provides the 3d kinematic initialization {θi} to the physics optimization. The dynamics stage creates a
physical model that mirrors the statistical shape model with appropriate shape and mass. Our dynamics
optimization improves 3dmotion estimation taking into account 3d kinematics, 2d landmarks and physical
constraints. We refer to §3 for details.

extend this progress to 3d pose estimation in video [16, 23, 42]. The key elements driving
the performance of these methods is the ability to estimate data-driven priors on articulated
3d poses [16, 48] and learn sophisticated CNN-based representations from large corpora
of annotated training images [13, 14, 21, 37]. As such, these methods perform very well on
common poses but are still challenged by rare poses. Occlusions, difficult imaging condi-
tions, and dynamic motions (e.g. athletics) remain a challenge as these are highly diverse
and hard to represent in the training set. As pointed out in [29], even for common poses
state-of-the-art methods still often generate reconstructions prone to artifacts such as float-
ing, footskating, and non-physical leaning. We aim to complement the statistical models
used in the state-of-the-art approaches by incorporating laws of physics into the inference
process and thus adding a component that is universally applicable to any human motion
regardless of the statistics of the training or test set.

In parallel with recent progress in pose estimation, we now have accurate statistical shape
and pose models [3, 20, 44]. These body models are typically estimated from thousands
of scans of people and can generate shape deformations for a given pose. In this paper, we
take advantage of these improvements and use a statistical body shape model [44] to define
the dimensions of our physical model and derive the mass from the volume of the body
parts.

Physics-based human motion modeling. Human motion modeling has been a subject
of active research in computer graphics [2, 17], robotics [8] and reinforcement learning
[11, 25, 41] literature. With a few exceptions, most of the models in these domains have
been constructed and evaluated using the motion capture data [2]. Some work such as [26]
use images as input, aiming to train motion controllers for a simulated character capable
of performing the observed motion under various perturbations. That work focuses on
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7DEOH ���� Comparison of recent physics-based articulated pose estimation approaches. “Contact model” indicates
what contact points between body and ground are considered, “Residual force” indicates if the physical
model allows application of additional external force to move the person (see [45]), “Body model” specifies
if approach adapts the physical model to person in the video, and “Real-world videos” specifies if approach
has also been evaluated on real-world videos or only on videos captured in laboratory conditions.

Contact model Real-time Physics implementation Residual force Body model Real-world videos
Li et al. [19] body joints no custom no fixed yes
Rempe et al. [29] feet no custom no fixed yes
PhysCap [30] feet yes custom yes fixed yes
Shimada et al. [31] feet yes custom yes fixed yes
SimPoE [46] full body yes MuJoCo [35] yes adapt. no
Xie et al. [43] feet no custom no adapt. no
DiffPhy [9] full body no TDS [12] no adapt. yes
Ours full body no Bullet [7] no adapt. yes

training motion controllers for a fixed character, whereas our focus is on estimating the
motion of the subject observed in the image. Furthermore, the character’s size, shape, and
mass are independent of the observed subject. [17] propose a realistic human model that
directly represents muscle activations and a method to learn control policies for it. [40]
generate motions for a variety of character sizes and learn control policies that adapt to
each size. [17, 40] and similar results in the graphics literature do not demonstrate this
for characters observed in real images and do not deal with challenges of jointly estimating
physical motion and coping with ambiguity in image measurements or the 2d to 3d lifting
process [33].

Physics-based 3d pose estimation. Physics-based human pose estimation has a long tradi-
tion in computer vision [4, 22, 38]. Early works such as [38] already incorporated physical
simulation as prior for 3d pose tracking but only considered simple motions such as walking
and mostly evaluated in the multi-view setting in the controlled laboratory conditions. We
list some of the properties of the recent works in tab. 4.1. [19] demonstrate joint physics-
based estimation of human motion and interaction with various tool-like objects. [29]
proposes a formulation that simplifies physics-based reasoning to feet and torso only, and
infers positions of other body parts through inverse kinematics, whereas [19] jointly model
all body parts and also include forces due to interaction with an object. [30, 31] use a spe-
cialized physics-based formulation that solves for ground-reaction forces given pre-detected
foot contacts and kinematic estimates. In contrast, we do not assume that contacts can be
detected a-priori, and in our approach, we estimate these as part of the physical infer-
ence. Hence we are not limited to predefined types of contact as [19, 29, 30, 31] or their
accurate a-priori estimates. We show that we quantitatively improve over [29, 30], and
qualitatively show how we can address more difficult in-the-wild internet videos of activi-
ties such as somersaults and sports, which would be difficult to reconstruct using previous
methods. Our work is conceptually similar to SimPoE [46] in that both works use physics
simulation. In contrast to SimPoE, we introduce a complete pipeline that is applicable to
real-world videos, whereas SimPoE has been tested only in laboratory conditions and re-
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quires a calibrated camera. Furthermore, since SimPoE relies on reinforcement learning to
train dataset-specific neural network models to control the simulated body, it is not clear
how well SimPoE would generalize to variable motions present in real-world videos. One
clear advantage of the SimPoE approach is its fast execution at test time, which comes at
the cost of lengthy pre-training. Our approach is related to the approach of [43] which
also estimates 3d human motion by minimizing an objective function that incorporates
physics constraints. Perhaps the most significant differences to [43] are that (1) we use
the full-featured physics model whereas they consider simplified physical model, (2) their
model considers physics-based loss, but the output is not required to correspond to actual
physical motion, and (3) they do not discuss performance of the approach on real-world
data. The advantage of [43] is that they define a differentiable model that can be readily
optimized with gradient descent. Finally, the concurrent work [9] tackles physics-based
human pose reconstruction by minimizing a loss using a differentiable physics simulator
given estimated kinematics.

3 Our approach

We present an overview of our approach in Fig. 4.3. Given monocular video as input,
we first reconstruct the initial kinematic 3d pose trajectory using a kinematic approach of
[49] and use it to estimate body shape and the position of the ground plane relative to the
camera. Subsequently, we instantiate a physical person model with body dimensions and
weight that match the estimated body shape. Next, we formulate an objective function that
measures the similarity between the motion of the physical model and image measurements
and includes regularization terms that encourage plausible human poses and penalize jittery
motions. Finally, we reconstruct the physical motion by minimizing this objective function
with respect to the joint torque trajectories. To realize the physical motion, we rely on the
implementation of rigid body dynamics available in Bullet [7].

3.1 Body model and control

We model the human body as rigid geometric primitives connected by joints. Our model
consists of 26 capsules and has 16 3d body joints for a total of 48 degrees of freedom.
We rely on a statistical model of human shape [44] to instantiate our model for a variety
of human body types. To that end, given the 3d mesh representing the body shape, we
estimate dimensions of the geometric primitives to approximate the mesh following the
approach of [2]. We then compute the mass and inertia of each primitive based on its
volume and estimate the mass based on an anatomical weight distribution [28] from the
statistical human shape dataset CAESAR [27].
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We do not model body muscle explicitly and instead actuate the model by directly applying
the torque at the body joints. We denote the vector of torques applied at time t as τ t, the
angular position, and velocity of each joint at time t asqt and q̇t, and the set of 3d Cartesian
coordinates of each joint at time t as xt. Similarly to [24], we control the motion of the
physical model by introducing a sequence of control targets q̂1:T = {q̂1, q̂2, . . . , q̂t}
which are used to derive the torques via a control loop. The body motion in our model is
then specified by the initial body state s0 = (q0, q̇0), the world geometryG specifying the
position and orientation of the ground plane, the control trajectory for each joint q̂1:T and
the corresponding control rule. We assume the initial acceleration to be 0. To implement
the control loop we rely on the articulated islands algorithm¹ (AIA) [34] that incorporates
motor control targets as constraints in the linear complementarity problem (LCP) (cf. (6.3)
a, b in [34]) alongside contact constraints. AIA enables stable simulation already at 100
Hz compared to 1000-2000 Hz for PD control used in [2, 9, 24].

3.2 Physics-based articulated motion estimation

Our approach to the task of physical motion estimation is generally similar to other tra-
jectory and spacetime optimization approaches in the literature [1, 2, 39]. We perform
optimization over a sequence of overlapping temporal windows, initializing the start of
each subsequent window with the preceding state in the previous window. To reduce the
dimensionality of the search space, we use cubic B-spline interpolation to represent the
control target q̂1:T and perform optimization over the spline coefficients [6]. Given the
objective function L introduced in §3.3 we aim to find the optimal motion by minimizing
L with respect to the spline coefficients of the control trajectory q̂1:T . We initialize the
control trajectory with the kinematic estimates of the body joints (see §3.4). The initial
state is initialized from the corresponding kinematic estimate. We use the finite difference
computed on the kinematic motion to estimate the initial velocity. As in [1, 2] we min-
imize the objective function with the evolutionary optimization approach CMA-ES [10]
since our simulation environment does not support differentiation with respect to the dy-
namics variables. We generally observe convergence with CMA-ES after 2000 iterations
per window with 100 samples per iteration. The inference takes 20 − 30 minutes when
evaluating 100 samples in parallel.

3.3 Objective functions

We use a composite objective function given by a weighted combination of several compo-
nents.

¹“POSITION_CONTROL” mode in Bullet.
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3d pose. To encourage reconstructed physical motion to be close to the estimated kinematic
3d poses qk

1:T we use the following objective functions

LCOM (q̂1:T ) =
∑

t

(‖ct − ck
t‖22 + ‖ċt − ċk

t‖22) (4.1)

Lpose =
∑

t

∑

j∈J
arccos(|〈qtj ,q

k
tj〉|) (4.2)

where ct and ck
t denote the position of the center of mass at time t in the reconstructed

motion and kinematic estimate. Lpose measures the angle between observed joint angles
and their kinematic estimates and the summation (4.2) is over the set J of all body joints
including the base joint which defines the global orientation of the body.

2d re-projection. To encourage alignment of 3d motion with image observations, we use a
set of N = 28 landmark points that include the main body joints, eyes, ears, nose, fingers,
and endpoints of the feet. Let lt denote the positions of 3d landmarks on the human body
at time t, C be the camera projection matrix that maps world points into the image via
perspective projection, ldt be the vector of landmark detections by the CNN-detector, and
st the corresponding detection score vector. The 2d landmark re-projection loss is then
defined as

L2d =
∑

t

∑

n

stn‖Cltn − ldtn‖2. (4.3)

See §3.4 for details on estimating the 2d landmarks.

Regularization. We include several regularizers into our objective function. Firstly, we use
the normalizing flow prior on human poses introduced in [48] which penalize unnatural
poses. The loss is given by

Lnf =
∑

t

‖z(qt)‖2, (4.4)

where z(qt) is the latent code corresponding to the body pose qt. To discourage jittery
motions we a add total variation loss on the acceleration of joints

LTV =
1

J

∑

t

∑

j

‖ẍtj − ẍt−1,j‖1 (4.5)

Finally, we include a Llim term that adds exponential penalty on deviations from anthro-
pomorphic joint limits. The overall objective L used in physics-based motion estimation
is given by the weighted sum of (4.1- 4.5) and of the term Llim. See the supplemental
material for details.
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7DEOH ���� Ablation of kinematics improvements on HUND on a validation subset of Human3.6M. +S indicates time-
consistent body shape, +O indicates additional non-linear optimization, +G using ground-plane constraints,
and +T temporal smoothness constraints.

Model MPJPE-G MPJPE MPJPE-PA
HUND [49] 239 116 72

+ S 233 110 71
+ SO 178 85 62
+ SO + G 148 84 63
+ SO + T 186 85 61
+ SO + GT 135 80 58

3.4 Kinematic 3d pose and shape estimation

In this section, we describe our approach to extracting 2d and 3d evidence from the input
video sequence.

Body shape. Given the input sequence, we proceed first to extract initial per-frame kine-
matic estimates of the 3d pose and shape using HUND [49]. As part of its optimization
pipeline HUND also recovers the camera intrinsics c and estimates the positions of 2d
landmarks, which we use in the 2d re-projection objective in (4.3). HUND is designed
to work on single images, so our initial shape and pose estimates are not temporally con-
sistent. Therefore, to improve the quality of kinematic 3d pose initialization, we extend
HUND to pose estimation in video. We evaluate the additional steps introduced in this
section in the experiments shown in tab. 4.2 using a validation set of 20 sequences from
Human3.6M dataset. In our adaptation, we do not re-train the HUND neural network
predictor and instead, directly minimize the HUND loss functions with BFGS. As a first
step, we re-estimate the shape jointly over multiple video frames. To keep optimization
tractable, we first jointly estimate shape and pose over a subset of n = 5 seed frames and
then re-estimate the pose in all video frames keeping the updated shape fixed. The seed
frames are selected by the highest average 2d keypoint confidence score. We refer to the
HUND approach with re-estimated shape as HUND+S and to our approach where we
subsequently also re-estimate the pose as HUND+SO. In tab. 4.2 we show results for both
variants. Note that HUND+SO improves considerably compared to the original HUND
results.

Ground plane. We define the location of the ground plane by the homogeneous transfor-
mation Tg that maps from the HUND coordinates to the canonical coordinate system in
which the ground plane is passing through the origin, and its normal is given by the “y” axis.
Let Mt be a subset of points on the body mesh at frame t. The signed distance from the
mesh points to the ground plane is given by D(Mt) = TgMtey, where ey = [0, 1, 0, 0]T

is the unit vector of the “y” axis in homogeneous coordinates. To estimate the transforma-
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tion Tg we introduce an objective function

Lgp(Tg,M) =
∑

t

‖min(δ, Lk(D(Mt)))‖2, (4.6)

where Lk(Dt) corresponds to the smallest k = 20 signed distances in Dt. This objective
favors Tg that places body mesh in contact with the ground without making preference
for a specific contact points. This objective is also robust to cases when person is in the air
by clipping the distance at δ, which we set to 0.2m in the experiments in this paper. We
recover Tg by minimizing

Lgp(Tg) =Lgp(Tg,Ml) + Lgp(Tg,Mr)

+ 2Lgp(Tg,Mb),
(4.7)

where Ml, Mr and Mb are the meshes of the left foot, right foot and whole body respec-
tively. This biases the ground plane to have contact with the feet, but is still robust to cases
when person is jumping or touching the ground with other body parts (e.g. as in the case
of a somersault).

3d pose. In the final step, we re-estimate the poses in all frames using the estimated shape
and ground plane while adding the temporal consistency objective

Ltemp =
∑

t

‖Mt −Mt−1‖2 + ‖θt − θt−1‖2, (4.8)

where Mt is a body mesh and θt is a HUND body pose vector in frame t. To enforce
ground plane constraints we use (4.6), but now keep Tg fixed and optimize with respect
to body pose. In the experiments in tab. 4.2 we refer to the variant of our approach that
uses temporal constraints in (4.8) asHUND+SO+T and to the full kinematic optimization
that uses both temporal and ground plane constraints asHUND+SO+GT. Tab. 4.2 demon-
strates that both temporal and ground-truth constraints considerably improve the accuracy
of kinematic 3d pose estimation. Even so, the results of our best variant HUND+SO+GT
still contain artifacts such as motion jitter and footskating, which are substantially reduced
by the dynamical model (see tab. 4.3).

4 Experimental results

Datasets. We evaluate our method on three human motion datasets: Human3.6M [13],
HumanEva-I [32] and AIST [36]. In addition, we qualitatively evaluate on our own “in-
the-wild” internet videos. To compare different variants of our approach in tab. 4.2 and
tab. 4.3 we use a validation set composed of 20 short 100-frame sequences from the Hu-
man3.6M dataset. We use the same subset of full-length sequences as proposed in [43] for
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the main evaluation in tab. 4.4. We use a preprocessed version of the AIST dataset [36]
from [18] which contains pseudo 3d body pose ground-truth obtained through multi-view
reconstruction. For our experiments, we select a subset of fifteen videos featuring diverse
dances of single subjects. For the evaluation on HumanEva-I, we follow the protocol de-
fined in [29] and evaluate on the walking motions from the validation split of the dataset
using images from the first camera. We assume known camera extrinsic parameters in the
Human3.6M experiments and estimate them for other datasets. In order to speed up the
computation of the long sequences of Human3.6M in Table 4.4 we compute all temporal
windows in parallel and join them together in post-processing.

We report results using mean global per-joint position error (mm) overall joints (MPJPE-
G), as well as translation aligned (MPJPE) and Procrustes aligned (MPJPE-PA) error met-
rics. Note that to score on the MPJPE-G metric an approach should be able to both es-
timate the articulated pose and correctly track the global position of the person in world
coordinates. In addition to standard evaluation metrics, we implement the foot skate and
floating metrics similar to those introduced in [29] but detect contacts using a threshold
rather than through contact annotation. Finally, we report image alignment (MPJPE-2d)
and 3d joint velocity error in m/s. See supplementary for further details.

7DEOH ���� Ablation experiments of the dynamics model on a validation set of 20 sequences from the Human3.6M
dataset.

Model MPJPE-G MPJPE MPJPE-PA MPJPE-2d Velocity Footskate (%) Float (%)
HUND+SO 178 85 62 12 1.3 25 40
HUND+SO + Dynamics 167 87 62 12 0.45 7 1
HUND+SO+GT 135 80 58 12 0.58 64 0
HUND+SO+GT + Dynamics 132 80 57 11 0.27 8 0
HUND+SO+GT + Dynamics

w/o 2d re-projection, (4.3) 154 104 68 17 0.32 - -
w/o 3d joints, (4.2) 134 84 60 11 0.27 - -
w/o COM, (4.1) 149 81 57 11 0.31 - -
w/o COM and 3d joints, (4.1, 4.2) 151 85 59 11 0.33 - -
w/o pose prior, (4.4) 138 80 57 11 0.24 - -

Analysis of model components. In tab. 4.3 we present ablation results of our approach.
Our full dynamical model uses kinematic inputs obtained with HUND+SO+GT intro-
duced in §3.4 and is denoted as HUND+SO+GT + Dynamics. Our dynamical model
performs comparably or slightly better compared to HUND+SO+GT on joint localization
metrics (e.g. MPJPE-G improves slightly from 135 to 132 mm) but greatly reduces mo-
tion artifacts. The percentage of frames with footskate is reduced from 64 to 8 and error in
velocity from 0.58 to 0.27m/s. We also evaluate a dynamic model based on a simpler kine-
matic variantHUND+SO that does not incorporate ground-plane and temporal constraints
when re-estimating poses from video. For HUND+SO, the inference with dynamics sim-
ilarly improves perceptual metrics considerably. Note that HUND+SO produces output
that suffers from both footskating (25% of frames) and floating (40% of frames). Adding
ground-plane constraints in (cf. (4.6)) removes floating artifacts in HUND+SO+GT, but
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)LJXUH ���� Qualitative results on the Human3.6M dataset. Note how the dynamical model (right) recovers plausible
locomotion.

the output still suffers from footskating (64% of the frames). Dynamical inference helps
to substantially reduce both types of artifacts both for HUND+SO and HUND+SO+GT.
In fig. 4.4 we show example output of HUND+SO+GT + Dynamics and compare it to
HUND+SO+GT which it uses for initialization. Note that for HUND+SO+GT the per-
son in the output appears to move forward by floating in the air, whereas our dynamics
approach infers plausible 3d poses consistent with the subject’s global motion. In the bot-
tom part of tab. 4.3 we report results for our full modelHUND+SO+GT +Dynamics while
ablating components of the objective function (cf. §3.3). We observe that all components
of the objective function contribute to the overall accuracy. The most important com-
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7DEOH ���� Quantitative results of our models compared to prior work on Human3.6M [13], HumanEva-I [32] and a
subset of AIST [18, 36].

Dataset Model MPJPE-G MPJPE MPJPE-PA MPJPE-2d Velocity Footskate (%)

Human3.6M

VIBE [16] 208 69 44 16 0.32 27
PhysCap [30] - 97 65 - - -
SimPoE [46] - 57 42 - -
Shimada et al. [31] - 77 58 - - -
Xie et al. [43] (Kinematics) - 74 - - - -
Xie et al. [43] (Dynamics) - 68 - - - -
Ours: HUND+SO+GT 145 83 56 14 0.46 48
Ours: HUND+SO+GT + Dynamics 143 84 56 13 0.24 4

HumanEva-I

Rempe et al. [29] (Kinematics) 408 - - - - -
Rempe et al. [29] (Dynamics) 422 - - - - -
Ours: HUND+SO+GT 208 90 76 14 0.51 40
Ours: HUND+SO+GT + Dynamics 196 91 74 14 0.27 4

AIST Ours: HUND+SO+GT 156 107 67 10 0.59 51
Ours: HUND+SO+GT + Dynamics 154 113 69 13 0.41 4

ponents are the 2d re-projection (cf. (4.3)) and difference in COM position (cf. (4.1)).
Without these, the MPJPE-G increases from 132 to 154 and 151 mm, respectively. Ex-
cluding the 3d joints component leads to only a small loss of accuracy from 132 to 134
mm.

Comparison to state-of-the-art. In tab. 4.4 we present the results of our full model on
the Human3.6M, HumanEva-I, and AIST datasets. We compare to VIBE [16] using the
publicly available implementation by the authors and use the evaluation results of other ap-
proaches as reported in the original publications. Since VIBE generates only root-relative
pose estimates, we use a similar technique as proposed in PhysCap [30] and estimate the
global position and orientation by minimizing the 2d joint reprojection error. On the Hu-
man3.6M benchmark, our approach improves over VIBE and our own HUND+SO+GT
in terms of joint accuracy and perceptual metrics. Compared to VIBE, the MPJPE-G im-
proves from 208 to 143 mm, MPJPE-2d improves from 16 to 13 px, and the percentage
of footskating frames are reduced from 27% to 4%. Interestingly our approach achieves
the best MPJPE-PA overall physics-based approaches except the pretrained SimPoE, but
reaches somewhat higher MPJPE compared to [31] and fairly recent work of [43] (82 mm
vs 68 mm for [43] and 77 mm for [31]). Note that [43] start with a stronger kinematic
baseline (74 mm MPJPE) and that the performance of other approaches might improve as
well given such better kinematic initialization. Furthermore, our dynamics approach im-
proves over the results of [29] on HumanEva-I and achieves significantly better MPJPE-G
compared toHUND+SO+GT. On the AIST dataset, dynamics similarly improves in terms
of MPJPE-G, footskating, and velocity compared to our kinematic initialization.

Results on real-world internet video. We show example results of our approach on the
AIST dataset [36] in fig. 4.5 and on the real-world internet videos in fig. 4.1, 4.2 and 4.6.
To obtain the results with a soft floor shown in fig. 4.2 we manually modify the stiffness
and damping floor parameters to mimic the trampoline behavior. The sequence with the
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)LJXUH ���� Example result on AIST [36]. The kinematic initialization produces poses that are unstable in the presence
of gravity (red circle) or poses that are temporally inconsistent (yellow circles). Our physics-based approach
corrects both errors.

chair from the Human3.6M dataset shown in Fig. 4.2 (bottom) is generated by manually
adding a chair to the scene since our approach does not perform reasoning about scene
objects.

In Fig. 4.5 we qualitatively compare the output of our full system with physics to our best
kinematic approachHUND+SO+GT. We strongly encourage the reader to watch the video
in supplemental material¹ to appreciate the differences between the two approaches and to
see the qualitative comparison to VIBE [16]. We observe that our physics approach is often
able to correct out-of-balance poses produced by HUND+SO+GT (e.g. second frame
in fig. 4.5) and substantially improves temporal coherence of the reconstruction. Note
that typically bothHUND+SO+GT and our physics-based approach produce outputs that
match 2d observations, but the physics-based approach estimates 3d pose more accurately.
For example, in the first sequence in fig. 4.6 the physics-based model infers the pose that
enables the person to jump in subsequent frames, whereas HUND+SO+GT places the
left leg at an angle that would make the jump impossible. Note that the output of the
physics-based approach can deviate significantly from the kinematic initialization (fig. 4.7
and second example in fig. 4.6. This is particularly prominent in the fig. 4.7 where we show
example result on a difficult sequence where 2d keypoint estimation fails to localize the legs
in several frames due to occlusion by the clothing. Note that in this example our full model

¹See tiny.cc/traj-opt.
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with dynamics is able to generate reasonable sequence of 3d poses despite multiple failures
in the kinematic initialization.

Failure cases of our approach. We show a few characteristic examples of the failure cases
of our approach in fig. 4.8. Note that our physics-based reconstruction depends on the
kinematic 3d pose estimation for initialization and also uses it in one of the components of
the loss (cf. eq. 4.2). Therefore our physics-based approach is likely to fail when kinematic
reconstruction is grossly incorrect (see fig. 4.8 (b)) or when it fails to estimate position
of the limb important to maintain the overall pose (see fig. 4.8 (a)). Our physics-based
model might also fail when the estimate of the ground-plane with respect to the camera is
inaccurate. Note how in fig. 4.8 (c) the kinematic estimate positions the standing person
at an angle to the true ground-plane normal vector (red arrow). As a result in this example
the physics-based reconstruction tilts the person at the torso to maintain stable pose given
the incorrect gravity vector (see the two bottom rows in fig. 4.8 (c)).

5 Conclusion

In this paper, we have proposed a physics-based approach to 3d articulated video recon-
struction of humans. By closely combining kinematic and dynamic constraints within an
optimization process that is contact, mass, and inertia aware, with values informed by body
shape estimates, we are able to improve the physical plausibility and reduce reconstruction
artifacts compared to purely kinematic approaches. One of the primary goals of our work
has been to demonstrate the advantages of incorporating an expressive physics model into
the 3d pose estimation pipeline. Clearly, such a model makes inference more involved
compared to specialized physics-based approaches such as [30, 43], but with the added
benefit of being more capable and general.
Ethical considerations. This work aims to improve the quality of human pose reconstruc-
tion through the inclusion of physical constraints. We believe that the level of detail in our
physical model limits its applications in tasks such as person identification or surveillance.
The same limitation also prevents its use in the generation of e.g. deepfakes, particularly
as the model lacks a photorealistic appearance. We believe our model is inclusive towards
and supports a variety of different body shapes and sizes. While we do not study this in the
paper, we consider it important future work.
Acknowledgements. We would like to thank Erwin Coumans for his help with the project,
as well as the supportive anonymous reviewers for their insightful comments.
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)LJXUH ���� Example results on real-world videos. In the top row sequence, the kinematic initialization incorrectly
places the left foot before the jump. We highlight the mistake by showing the scene from another view-
point (red circle). The kinematic initialization also fails to produce temporally consistent poses in the
example in the bottom row (yellow circles). Our physics-based inference corrects both errors and gener-
ates a more plausible motion. See tiny.cc/traj-opt for more results.
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)LJXUH ���� Example results on a difficult real-world video in which the legs of the person are occluded by the clothing.
Note that 2d keypoints on the legs are incorrectly localized in multiple consecutive frames due to severe
occlusion (second row) which results in poor 3d pose estimation by the kinematic model (third row). In-
terestingly our full model with dynamic is able to recover from errors in the kinematic initialization and
generates reasonable sequence of 3d body poses (fourth row).
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(a) (b) (c)

)LJXUH ���� Examples of the characteristic failure cases of our approach on the real-world videos. Note that physics-
basedmodeling introduces additional coupling between positions of the body limbs. While this is typically
seen as an advantage, it alsomeans that failure to estimate one limb correctly can propagate to other body
limbs. For example in (a) our approach failed to correctly estimate position of the left arm which is used
to support the body. As a result the overall 3d pose is worse for the dynamics (forth row) compared
to the kinematic initialization (third row). Our physics-based reconstruction might also fail due to poor
kinematics initialization (b) or due to failure to correctly estimate the orientation of the ground plane
relative to the camera (c).
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Supplementary Material

This supplementary material provides further details on our methodology and the data we
used. §A presents details on our physical human body model, §B provides details regarding
our simulation parameters, §C presents our physics metrics, in §D we present the datasets
used in our experiments, §E provides details about our method’s hyperparameters, and
lastly §F summarizes our computational setup. When referring to equations or material in
the main paper we will denote this by (mp). Finally, please see our supplemental video for
qualitative results of our method at tiny.cc/traj-opt.

A Physical Body Model

Given a GHUM [44] body mesh M(β,θ0) associated with the shape parameters β and
the rest pose θ0, we build a simulation-ready rigid multibody human model that best ap-
proximates the mesh with a set of parameterized geometric primitives (cf. Fig. A.9). The
hands and feet are approximated with boxes whereas the rest of the body links are approxi-
mated with capsules. The primitives are connected and articulated with the GHUM body
joints.

Inspired by [2], we optimize the primitive parameters by minimizing

L(ψ) =
∑

b∈B

∑

vg∈Mb

min
vp∈M̂b

||vg − vp||+

+
∑

b∈B

∑

vp∈M̂b

min
vg∈Mb

||vp − vg||, (9)

where ψ are the size parameters for the primitives, i.e. length and radius for the capsules,
and depth, height and width for the boxes. The loss penalizes the bi-directional distances
between pairs of nearest points on the GHUM mesh Mb and surface of the primitive
geometry M̂b associated with the body link b.

Furthermore, we learn a nonlinear regressor ψ(β) with an MLP that performs fast shape
approximation at run time. The regressor consists of two 256-dimensional fully connected
layers, and is trained with 50K shapes generated with Gaussian sampling of the latent shape
space β together with the paired optimal primitive parameters using (9).

Our physical model share an identical skeleton topology with GHUM but does not model
the face and finger joints, due to the focused interest on the body dynamics in this work.
Extending with finger joints, however, would enable simulation of hand-object interactions
which would be interesting, but we leave this for future work. We note that there is a
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)LJXUH $��� The physical body model’s shape and mass parameters are based on an associated GHUM [44] mesh.

bijective mapping for the shared 16 body joints between our model and GHUM, which
allows for fast conversion between the physical and stastical representation.

B Simulation Details

We run the Bullet simulation at 200Hz, with friction coefficient µ = 0.9 and gravitational
acceleration constant 9.8 m/s2. The PD-controllers controlling each torque motor is tuned
with position gain kp = 4.0, velocity gain kd = 0.3, and torque limits similar to those
presented in [24].

C Additional Metrics

In addition to the standard 2d and 3d joint position error metrics, we evaluate our re-
constructions using physical plausibility metrics similar to those proposed in [29]. Since
the authors were unable to share their code we implement our own versions the metrics
which doesn’t require foot-ground contact annotations. A foot contact is defined as at least
N = 10 vertices of a foot mesh being in contact with the ground plane. We set the con-
tact threshold to d = 0.005 m for kinematics. To account for the modeling error when
approximating the foot with a box primitive we set the contact threshold for dynamics to
d = −0.015 m.
Footskate. The percentage of frames in a sequence where either foot joint moves more than
2 cm between two adjacent frames while the corresponding foot was in contact with the
ground-plane.
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7DEOH $��� Weights of the objective function described in §3.3 (mp)and (11) for our three main datasets: Hu-
man3.6M [13], AIST [36], and HumanEva-I [32]. “Grid” specifies the values evaluated while selecting hy-
perparameter values. Note that we did not exhaustively explore all combination.

Weight H36M AIST HumanEva-I Grid
wCOM 15.0 15.0 15.0 {1, 2, 5, 10, 15, 25 }
wpose 0.5 0.5 0.5 {0.1, 0.5, 1, 2 }
w2d 4.0 4.0 4.0 {1, 2, 4, 8, 10 }
wnf 1.0 1.0 1.0 {0.001, 0.1, 1, 10}
wTV 1.0 1.0 1.0 {0.1, 1, 10}
wlim 1.0 1.0 1.0 {0.1, 1, 10}

Float. The percentage of frames in a sequence where at least one of the feet was not in
contact but was within 2 cm of the ground-plane. This metric captures the common issue
of reconstructions floating above the ground while not penalizing correctly reconstructed
motion of e.g. jumps.
Velocity. The mean error between the 3d joint velocities in the ground-truth data and the
joint velocity in the reconstruction. High error velocity indicates that the estimated motion
doesn’t smoothly follow the trajectory of the true motion. We define the velocity error as

ev =
1

N

N∑

i=1

∑

k∈K
| ˙̄xi

k − ẋi
k|, (10)

where ˙̄xi
k is the magnitude of the ground-truth 3d joint velocity vector (in m/s) for joint k at

frame i and where ẋi
k denotes the reconstructed joint. We estimate the velocity using finite

differences from 3d joint positions and use first frame translation aligned joint estimates
(as in MPJPE-G).

D Datasets

Human3.6M. We use two subsets for our experiments on Human3.6M [13]. When we
compare our method to state-of-the-art methods we use a dataset split similar to the one
used in [43]. See Table B.8 for the complete lists of sequences we use. Similarly to [30, 43],
we down sample the sequences from 50 FPS to 25 FPS.

When perform ablations of our model we a smaller subset where we select 20 4-sec se-
quences from the test split of Human3.6M dataset (subjects 9 and 11). We selected se-
quences that show various dynamic motions such as walking dog, running and phoning
(with large motion range), to sitting and purchasing (with occluded body parts). For each
sequence, we randomly selected one of the four cameras. We list the sequences in Table B.6.

HumanEva-I.We evaluate our method on the subset of HumanEva-I walking sequences [32]
as selected by [29], see Table D.9.
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7DEOH %��� The subset of Human3.6M used in the ablation experiments. Note that the data was downsampled from
50 to 25 FPS.

Sequence Subject Camera Id Frames
Phoning S11 55011271 400-599
Posing_1 S11 58860488 400-599
Purchases S11 60457274 400-599

SittingDown_1 S11 54138969 400-599
Smoking_1 S11 54138969 400-599

TakingPhoto_1 S11 54138969 400-599
Waiting_1 S11 58860488 400-599
WalkDog S11 58860488 400-599

WalkTogether S11 55011271 400-599
Walking_1 S11 55011271 400-599
Greeting_1 S9 54138969 400-599
Phoning_1 S9 54138969 400-599
Purchases S9 60457274 400-599

SittingDown S9 55011271 400-599
Smoking S9 60457274 400-599

TakingPhoto S9 60457274 400-599
Waiting S9 60457274 400-599

WalkDog_1 S9 54138969 400-599
WalkTogether_1 S9 55011271 400-599

Walking S9 58860488 400-599

AIST. We select four second video sequences from the public dataset [18, 36], showing fast
and complex dancing motions, picked randomly from one of the 10 cameras. We list our
selected sequences in Table B.7.

”In-the-wild” internet videos. We perform qualitative evaluation of our model on videos
of dynamic motions rarely found in laboratory captured datasets. These videos were made
available on the internet under a CC-BY license which grants the express permission to be
used for any purpose. Note that we only used the videos to perform qualitative analysis of
our approach – the videos will not be redistributed as a dataset.

D.1 Human Data Usage

This work relies on recorded videos of humans. Our main evaluation is performed on two
standard human pose benchmarks: Human3.6M¹ [13] and AIST² [36]. These datasets have
been approved for research purposes according to their respective websites. Both datasets
contain recordings of actors in laboratory settings. To complement this, we perform qual-
itative evaluation on videos released on the internet under creative commons licenses.

¹http://vision.imar.ro/human3.6m/
²https://aistdancedb.ongaaccel.jp/
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7DEOH %��� Sequences used for evaluation on AIST.

Sequence Frames
gBR_sBM_c06_d06_mBR4_ch06 1-120
gBR_sBM_c07_d06_mBR4_ch02 1-120
gBR_sBM_c08_d05_mBR1_ch01 1-120
gBR_sFM_c03_d04_mBR0_ch01 1-120
gJB_sBM_c02_d09_mJB3_ch10 1-120

gKR_sBM_c09_d30_mKR5_ch05 1-120
gLH_sBM_c04_d18_mLH5_ch07 1-120
gLH_sBM_c07_d18_mLH4_ch03 1-120
gLH_sBM_c09_d17_mLH1_ch02 1-120
gLH_sFM_c03_d18_mLH0_ch15 1-120
gLO_sBM_c05_d14_mLO4_ch07 1-120
gLO_sBM_c07_d15_mLO4_ch09 1-120
gLO_sFM_c02_d15_mLO4_ch21 1-120

gMH_sBM_c01_d24_mMH3_ch02 1-120
gMH_sBM_c05_d24_mMH4_ch07 1-120

E Hyperparameters

The most important hyperparameters are the weights of the weighted objected function
described in §3.3 (mp). Where combined loss function is given by

L = wCOMLCOM + wposeLpose

+ w2dL2d + wnfLnf + wTV LTV

+ wlimLlim.

(11)

We tuned the weights on sequences from the training splits. The goal was to scale the dif-
ferent components such that they have roughly equal magnitudes while minimizing the
MPJPE-G error. See Table A.5 for details regarding the search grid and the chosen param-
eter values.

F Computational Resources

For running small experiments we used a desktop workstation equipped with an “Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz” CPU, 128 GB system memory and two NVIDIA
Titan Xp GPUs. We ran kinematics in the cloud using instances with a V100 GPU, 48
GB of memory and 8 vCPUs. In the dynamics experiments, we used instances with 100
vCPUs and 256 GB of memory for the CMA-ES [10] optimization. Optimizing a window
of 1 second of video takes roughly 20 min using a 100 vCPUs instance.
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7DEOH %��� The evaluation subset of Human3.6M used in the main evaluation. The subset is similar to the one used in
[30]. We downsampled the data from 50 FPS to 25 FPS.

Sequence Subject Camera Id
S11 Directions_1 60457274
S11 Discussion_1 60457274
S11 Greeting_1 60457274
S11 Posing_1 60457274
S11 Purchases_1 60457274
S11 TakingPhoto_1 60457274
S11 Waiting_1 60457274
S11 WalkDog_1 60457274
S11 WalkTogether_1 60457274
S11 Walking_1 60457274
S9 Directions_1 60457274
S9 Discussion_1 60457274
S9 Greeting_1 60457274
S9 Posing_1 60457274
S9 Purchases_1 60457274
S9 TakingPhoto_1 60457274
S9 Waiting_1 60457274
S9 WalkDog_1 60457274
S9 WalkTogether_1 60457274
S9 Walking_1 60457274

7DEOH '��� Sequences used for evaluation on HumanEva-I.

Sequence Subject Camera Id Frames
Walking S1 C1 1-561
Walking S2 C1 1-438
Walking S3 C1 1-490
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Abstract

We introduce DiffPhy, a differentiable physics-based model for articulated
3d human motion reconstruction from video. Applications of physics-based
reasoning in human motion analysis have so far been limited, both by the
complexity of constructing adequate physical models of articulated human
motion, and by the formidable challenges of performing stable and efficient
inference with physics in the loop. We jointly address such modeling and in-
ference challenges by proposing an approach that combines a physically plau-
sible body representation with anatomical joint limits, a differentiable physics
simulator, and optimization techniques that ensure good performance and
robustness to suboptimal local optima. In contrast to several recent meth-
ods [39, 41, 56], our approach readily supports full-body contact including
interactions with objects in the scene. Most importantly, our model connects
end-to-end with images, thus supporting direct gradient-based physics opti-
mization by means of image-based loss functions. We validate the model by
demonstrating that it can accurately reconstruct physically plausible 3d hu-
man motion from monocular video, both on public benchmarks with avail-
able 3d ground-truth, and on videos from the internet.
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)LJXUH ���� Overview of DiffPhy. Given kinematic estimates (described in §3.1) of a subject’s body shape β, the body’s
initial pose and velocity s0, and time-varying 3d poses q̄0:T with detected 2d keypoints, our model re-
constructs the motion in physical simulation, by minimizing a differentiable loss L (see §3.5). DiffPhy
optimizes the control trajectory q̂0:T containing joint angle targets to PD controllers (cf. (5.4)). In turn,
the PD controllers compute a torque vector τ , which actuates motors in the joints of the simulated body.
DiffPhy integrates a full-featured differentiable simulator, TDS [17] (described in §3.2), that supports com-
plex contacts. Each subject is represented bymeans of a personalised physical model (see §3.3). In addition,
we optimize the initial state (see §3.6), which makes DiffPhy robust to low quality initial estimates. The
outputs are 3d pose estimates that align with visual evidence and respect physical constraints.

1 Introduction

We seek to contribute to the development of physics-based methodology as one of the
building blocks in constructing accurate and robust 3d visual human sensing systems. In-
corporating the laws of physics into the visual reasoning process is appealing as it promotes
the plausibility of estimated motion and facilitates more efficient use of training exam-
ples [9]. We focus on articulated human motion as an epitome of a real-world prediction
task that is both well studied and challenging. Existing state-of-the-art approaches demon-
strate relatively high accuracy in terms of joint position estimation metrics [23, 24, 55, 63].
However, predictions can sometimes be physically implausible, even for simple motions
such as walking and running. For instance, estimates can include unreasonably abrupt tran-
sitions in world space, or artifacts such as foot skating or non-equilibrium states [39, 41].
Many methods are typically trained on large motion capture datasets and encounter dif-
ficulties when tested on motions not well represented in those training sets. Arguably,
imposing some form of physics-based generally valid prior on the articulated motion esti-
mates should greatly improve the plausibility of results.

However, physics-based reasoning comes at the cost of substantial modeling and inference
complexity. Typically, physics-based articulated estimation methods rely on rigid body
dynamics (RBD) [10, 45], a formulation that introduces many auxiliary variables corre-
sponding to forces acting at the body joints at each time step. Moreover, physical contact
results in non-smooth effects where small changes to model parameters might result in
substantially different motions. Therefore inferring physics variables given the inherent
uncertainty in monocular video, and under contact discontinuities, becomes significantly
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difficult, algorithmically and computationally. Despite such challenges, a number of re-
cent methods successfully apply physics-based constraints for articulated human motion
estimation [2, 39, 41, 60]. One possibility to cope with modeling complexity, explored in
recent work, is to simplify the physics and model contacts only between the body and the
feet [39, 41, 56]. Others use auxiliary external forces applied at the body to compensate for
modeling error [41, 60].

In this paper, we aim to broaden the methodology for physics-based articulated human
motion estimation. Specifically, we demonstrate that we can successfully leverage recent
progress in differentiable simulation [17, 19, 53] in order to incorporate physics-based con-
straints into the articulated 3d human motion reconstruction. Our approach, DiffPhy,
relies on gradient-based optimization, connects end-to-end with images, and does not re-
quire simplifying assumptions on contacts or the introduction of external non-physical
residual forces.

2 Related work

Kinematics-based 3d Human Pose Estimation. The problem of monocular 3d pose esti-
mation is usually addressed through end-to-end [30, 31, 61], or two-stage [8, 18] models
where neural networks are used to predict 3d joint positions. This is an ill-posed problem
due to depth ambiguities and occlusion. The networks are usually trained on vast pose
datasets [21, 22, 29, 51] which usually supports good performance on poses previously ob-
served during training. Several methods [24, 62, 63] directly regress the parameters of
statistical body models [27, 57] (rather than 3d joint positions), including the subject’s
body shape as well as kinematic pose. The methods mentioned above take a purely visual
inference approach to the problem and do not consider physics-based constraints. As ob-
served by [39], this may cause artifacts such as jitter, ground-penetration, foot sliding, or
unnatural leaning [41].

Physics-based 3d Human Pose Estimation. Recent work [15, 28, 39, 41, 42, 43, 56, 60]
aims to increase realism, by using physics to regularize reconstruction. This aims to enforce
physical constraints such as proper contact and dynamic coherence. In [39] motion is re-
constructed through optimization, but the method only accounts for collisions between the
feet and the ground. Such simplifications are recurring in current approaches and limit the
types of motions that can be reconstructed. In contrast, in this work, we use a full-featured
physical simulator which supports contacts between all objects in the scene. PhysCap [41]
is a real-time optimization-based approach, where feet contact is pre-detected based on
a neural network. During the physics-based inference, contacts are considered fixed and
therefore cannot be corrected or improved. Moreover, following [59] the method uses
non-physical “residual forces” which improve 3d joint reconstruction metrics at the cost
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of altered physical plausibility. Since we aim to increase the physicality of reconstructed
motions, we avoid using any residual forces. [60] follows on [34, 54] to learn a neural
network that estimates torques to drive a model in the full-featured physical simulator
MuJoCo [48]. However, MuJoCo is non-differentiable, hence the need to resort to expen-
sive training using numerical gradients in a reinforcement learning setting. The method is
trained for millions of steps using 3d ground-truth labels from a motion capture dataset,
but the method’s ability to generalize to in-the-wild is not demonstrated. Similarly to [39],
the method assumes a known ground plane, whereas DiffPhy estimates it. [43] integrates
a simplified physics approach, dubbed “physionical”, into a neural network that estimates
joint torques and ground-reaction forces. Similarly to [41] they detect foot contact using a
neural network predictor rather than by means of physical simulation. Most recently, [56]
introduced a method relying on a simplified physical formulation that makes it possible
to refine 3d pose estimates well enough to train motion synthesis models based on that
output. However, the method assumes a known ground plane, models only foot contact,
and implements a simplified physical body scaled solely based on the estimated bone length
rather than shape estimates. Finally, in our concurrent work [15], we perform physics-based
human pose reconstruction of complex motions through trajectory optimization based on
CMA-ES [16] in the non-differentiable simulator Bullet [7]. This general approach uses
a mature and full-featured simulator which, while capable, is slow due to costly black-
box optimization. The method does not optimize the initial state of the body (see §3.6)
together with the joint control variables, being more vulnerable to unfavorable initialisa-
tion. In summary, this work takes the novel approach of tightly integrating physics into
the reconstruction process through a full-featured differentiable physics model. As a result,
DiffPhy supports complex full-body contacts, connects pixels-to-physics using end-to-end
differentiable losses, supports personalised body models, does not resort to residual forces,
and is robust to poor initialization. See Tab. 5.1 for an overview of physics-based methods.

It is worth mentioning that, aside from physical simulation, there exist many other ap-
proaches to grounding the human pose estimates using e.g., inertial estimates from IMUs [58],
scene constraints [5, 64], and motion priors [40].

Differentiable Physics for Human Modeling. Physical simulation is a mature area with
several established simulation engines available [7, 25, 48]. These engines implement for-
ward simulation but do not facilitate the computation of derivatives necessary for efficient
gradient-based optimization. These simulators are well-suited for training with gradient-
free methods such as reinforcement-learning or evolutionary algorithms and have been used
for gradient-free optimization of human motion models [2, 35, 60]. More recently differ-
entiable physics simulators have emerged [6, 14, 17, 38, 53]. Applying these to human
motion reconstruction is difficult due to noisy gradients [19, 33], and a non-convex objec-
tive function. We present a methodology using gradient-based local search with stochastic
global optimization enabling the first use of a full-featured differentiable physics model [17]
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7DEOH ���� Feature comparison against other physics-based methods. Body compares the type of physical body repre-
sentation where “adapt” means individually constructed based on shape estimate, Cont. column compares
what type of contacts are supported, DP whether the method uses a differentiable physical formulation,
Training if the physical inference requires training, Tg compares if the ground plane is estimated (as op-
posed to assumed known), and No RF if the method avoid non-physical residual forces. Only our method
does not require any additional training and uses a full-featured differentiable physics formulation.

Method Body Cont. DP Trained Tg No RF
Rempe et al. [39] Fixed Feet ! Contacts ! "
PhysCap [41] Fixed Feet " Contacts " !
SimPoE [60] Adapt Full ! Yes ! !
Shimada et al. [43] Fixed Feet " Yes " !
Xie et al. [56] Fixed Feet " No ! "
Dynamics [15] Adapt Full ! Prior " "
DiffPhy Adapt Full " No " "

for human pose reconstruction from video. Furthermore, we show that our approach is
magnitudes faster than a purely sampling-based approach.

3 Methodology

This section presents our approach to reconstructing 3d human shape and motion from
video with differentiable physics in the loop. Given a monocular video of a human sub-
ject, we use a kinematic neural network to estimate 2d body keypoints, the body shape,
and 3d body poses. Since estimating 3d pose from monocular video is ill-posed, due to
e.g. depth-ambiguities and occlusion [44], the kinematic 3d reconstructions may suffer
from self-penetration, inconsistent translation, jitters, floating above the ground, and non-
physical leaning [39, 41]. We, therefore, reconstruct the motion in physical simulation,
by jointly accounting for both visual evidence and the constraints of physical simulation
(e.g. collisions, gravity, and Newton’s laws of motion). See Fig. 5.1 for an overview of our
approach.

3.1 Kinematic Initialization

Given a sequence of monocular images {Ii}, we assume a pinhole camera with intrinsics
i = [fx, fy, cx, cy] and constant camera extrinsics. We obtain the visual evidence used
in our optimization objectives following the procedure introduced in [15]. This relies on
HUND [62], a 3d pose estimator that produces per-frame 2d keypoints x̄i with confidence
scores ci, 3d body poses θi, and 3d body shape βi, where θ and β are the GHUM [57]
posing and shape parameters, respectively.

Since HUND is a per-frame estimator, a temporally consistent shape is recovered by select-
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)LJXUH ���� Qualitative results on two in-the-wild sequences. Sports and dynamic activities are rarely found in motion
capture datasets.

ing theN = 5 highest-scoring frames according to keypoint confidences. For these frames,
HUND image losses [62] are minimized using BFGS under the additional constraint of
a constant shape, β, across all frames. In addition, [15] introduces a final round of opti-
mization where poses are updated under the time-consistent body shape and a temporal
smoothness loss to reduce jittering.

Finally, as the ground plane location is not assumed to be known and HUND produces
estimates in camera space k, we estimate the global transform Tg ∈ R3×4 for the physical
scene, with gravity along the y axis, as well as the ground plane at y = 0. This is achieved
by minimizing

Lg(Tg) =
N∑

i

‖min
(
δ,Ly

(
Tg[M(β,θi), 1]

))
‖2, (5.1)

where Ly is an operator that extracts the k = 20 smallest signed distances from the mesh
vertices M(β,θi) after the global transformation. This assumes the body is in ground
plane contact for most of the sequence. To allow for frames where the subject is not in
contact with the ground, we clip the maximum shortest distance to the ground to δ = 20
cm.

3.2 Differentiable Physics Simulation Model

We implement our models in the framework of the “Tiny Differentiable Simulator” (TDS) [17].
This formulates rigid-body dynamics for articulated bodies in terms of reduced coordinates.
Elements in the vector q represent the position of each joint, and elements in the vector q̇
represent joint space velocities, based on revolute and spherical joints. Given the state of
the body-st = (qt, q̇t) at time t, as well as the vector of joint torques τ t, and external forces
ft, the computation shown in Fig. 5.3 produces a new body state -st+δt corresponding to
the rigid multi-body dynamics with contacts. To that end, we first run forward kinematics
to compute world space positions and velocities, as well as forward dynamics to compute
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unconstrained acceleration obtained without taking contacts into account. The forward
dynamics computes the acceleration by solving the equation of motion for the kinematic
tree given by

τ t = H(qt)q̈t +C(qt, q̇t, f
x
t ) (5.2)

where H(q) is the joint-space inertia matrix, C the a joint space bias force and fx is
the vector of external forces. The forward dynamics is computed by propagation-based
Articulated-Body Algorithm (ABA) [11] that traverses the kinematic chain of the body three
times in order to compute quantities necessary to finally obtain the acceleration of each rigid
component of the body¹. The joint-space inertia matrix is computed using the Composite
Rigid Body Algorithm (CRBA) [11].

Unconstrained accelerations q̈u
t+δt are then used to compute unconstrained velocities, which

in conjunction with the output of the forward kinematics xt+δt are used to update the
contact points between the articulated body and the environment. Contact points with
positive (separating) distance are classified as inactive, while contact points with zero or
negative distance are active. Active contacts generate a repulsive impulse that needs to be
taken into account when computing the new body state. To that end, the forward dynam-
ics computation is phrased as a linear complementarity problem (LCP) at the velocity level
[46, 47]

JcH
−1J$

c p+ Jcẋ = v (5.3)
v = [vu,vb]

s.t. v$
u pu = 0 vu ≥ 0 pu ≥ 0 vb = 0

where Jc is a contact Jacobian for the positions of contact points computed in the previous
step, p is the vector of reaction impulses, and v is the vector of relative velocities. The
indices u and b indicate the unilateral and bilateral portion of constraints, respectively.
The LCP problem in (5.3) is then iteratively solved with a projected Gauss-Seidel method
following the formulation in [47], by relying on a per-contact LCP [20]. The final step of
the computation is to obtain joint positions qt+δt from joint velocities using semi-implicit
Euler integration.

3.3 Physical Human Body Modeling

In the physical simulation, we model the human body as rigid geometric primitives con-
nected by joints. The model is comprised of 16 joints with a total of 48 degrees of freedom,
joining together 26 capsules that represent the various body parts (cf. Fig. 5.1). The shape

¹See tab. 7.1 in Featherstone [11] for the Articulated-Body Algorithm.
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)LJXUH ���� Overview of the simulation step of the physics model that updates the current state St to a new state
after time step δt. For each computational block we include the output quantities used in the subsequent
block.

and mass of the model is automatically adapted for various body shapes by relying on a sta-
tistical body model [57]. Given the 3d mesh M(β, ∅) corresponding to a shape estimate
β in rest pose, we infer the dimensions of the geometric primitives following the approach
of [2]. The process is entirely automatic and yields individualized physical models for each
subject. As a physical model requires mass, we first estimate the total mass of the body
based on a human shape dataset [36] then distribute the weight according to an anatom-
ical distribution [37]. Finally, the inertia of each primitive is computed based on its mass
and dimensions.

DiffPhy reconstructs a motion in simulation by actuating torque motors in the joints of the
body. Following prior work [1] we optimize over control targets to proportional-derivative
(PD) controllers rather than over the torques directly. We define the body’s angular joint
positions as qt, and joint velocities as q̇t, the associated 3d Cartesian coordinates of the
joints as xt for the time step t. Given a set of joint targets q̂1:T = {q̂1, q̂2, . . . , q̂t} the
PD controllers infer the joint torques as

τ t = kp(q̂t − qt)− kdq̇t, (5.4)

where kp and kd are gain parameters of PD controllers. We may then specify a motion of
length T as the initial state s0 = (q0, q̇0), the world geometry G defining the position
and orientation of the ground plane, and a target trajectory for the joints q̂1:T . Given the
loss presented in (5.5) we reconstruct the motion by minimizing L = L(s0,G, q̂1:T ) with
respect to q̂1:T .

3.4 Gradient-Based Optimization

Given our loss function L = L(S0,G, q̂1:T ) we can use any gradient-based optimiza-
tion method to minimize the loss with respect to q̂1:T . Since the loss function is non-
convex, convergence to suboptimal local minima is possible. Therefore, a global optimiza-
tion combined with a local gradient-based search is expected to outperform a purely local
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7DEOH ���� Comparison of optimization strategies on our Human3.6M validation set. BFGS and Basin-BFGS both use
gradients, while CMA-ES is a gradient-free approach. Note that Basin-Hopping together with BFGS (Basin-
BFGS) improves the performance of BFGS by combining it with stochastic global optimization. Using only
a purely sampling-based approach (CMA-ES) requires magnitudes more function evaluations while still not
finding better optima for our loss. BFGS was given a sufficiently large evaluation budget to converge.

Method # eval MPJPE-G MPJPE MPJPE-PA MPJPE-2d
CMA-ES 80k 206.7 125.7 77.4 16.9
BFGS 122 160.1 100.1 68.9 15.5
Basin-BFGS 509 144.9 84.6 61.1 12.6

method. One such method is the global stochastic optimization Basin-Hopping [52]. It uses
a two-stage approach, which alternates between performing gradient-based local search and
stochastic global search. Based on an initial candidate, it first performs a local search. It then
randomly perturbs the local minimum, performs a local search again on the new candidate,
and then either accepts or rejects the new solution based on the Metropolis criterion [32].
In our model, we use BFGS [13] for local optimization.

3.5 Optimization Objectives

Reconstructing a motion sequence amounts to finding the control trajectory q̂1:T that
minimizes the reconstruction loss L under the constraints of the simulation dynamics. In
this work, we formulate L as a weighted combination of loss functions

L = wrLr + wjLj + wiLi + wlLl, (5.5)

with the weights wr = 10.0, wj = 0.1, wi = 0.01, and wl = 0.01. The root position
loss Lr measures errors between the 3d position of the simulated pelvis root joint xroot

t and
the kinematically estimated position x̄root

t

Lr(q̂1:T ) =
1

T

T∑

t

‖x̄root
t − xroot

t ‖2 (5.6)

at time t where T is the total length of the sequence. Lj computes the rotational distance
between the kinematic pose estimate and the simulated body’s pose

Lj(q̂1:T ) =
1

TK

T∑

t

K∑

k

arccos(|qk
t · q̄k

t |), (5.7)

where q̄k
t and qk

t are rotations expressed as quaternions for joint k at time t for kinematics
and the simulated character respectively. Note the difference between q̂ and q, where the
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former are the PD control targets and the latter are the joint angles of the simulated model
(cf. (5.4)). Li computes the 2d projection loss

Li(q̂1:T ) =
1

TK

T∑

t

K∑

k

ckt ‖x̄k
t −Π(xk

t , i)‖2, (5.8)

where Π(xk
t , i) is the perspective operator projecting the simulated model’s joint xk

t onto
the image with camera intrinsics i weighted by the keypoint detection confidence score
ckt . Finally, Ll is a regularizer that penalizes joints outside of human anatomical limits as
present in the statistical body model [57]

Ll(q̂1:T ) =
1

TK

T∑

t

K∑

k

‖max(zklower − qk
t , 0)

+ max(qk
t − zkupper, 0)‖2,

(5.9)

where zkupper and zklower are upper and lower bounds for joint k respectively.

Note that in the above definitions, the positions of body joints angles qk
t and 3d joint

positions xk
t are dependent on the control trajectory up until time t, as part of the physics

formulation introduced in §3.2.

3.6 Optimized Initialization

We initialize the pose q0 in the first time step of the simulation to the kinematically esti-
mated pose q̄0 and estimate the velocity q̇0 using finite differences between the first two
kinematic poses {q̄0, q̄1}. However, if the initial kinematic pose estimate is poor, this might
lead to a low quality starting pose from which the simulation cannot recover. Similarly,
jitters in the kinematic poses may cause a significant error in the estimated initial velocity.
We address these issues by including the initial pose and velocity as variables to optimize.
We experimentally validate how such a relatively straightforward approach significantly
impacts the results.

4 Experiments

Datasets. We quantitatively evaluate DiffPhy on the Human3.6M [21], and a subset of
the AIST [49] pose datasets. The former contains a diverse set of motions from a motion
capture laboratory, whereas the latter contains dance videos with triangulated 3d joints
as pseudo-ground-truth. As only DiffPhy and SimPoe [60] supports full-body contacts
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)LJXUH ���� Qualitative examples on the AIST dataset (left) and of complex contacts (right). The AIST example shows
that both kinematics and DiffPhy projects well into the image. However, when rendered from another
viewpoint (cam #2) it becomes clear that kinematics exhibits unrealistic leaning while the physical con-
straints corrects the pose to keep the body in balance. See tiny.cc/diffphy for more.

(cf. Tab. 5.1), PhysCap [41] proposed evaluating on a subset of the Human3.6M. This
protocol eliminated all sequences requiring more than foot-floor contacts. Hence to allow
for comparison, we use this subset in Tab. 5.3, but note that our method is more general and
supports contacts for all body parts. For ablations, we use 100 frames from 20 sequences
from a validation subset of Human3.6M. Finally, we quantitatively evaluate our method on
real-world internet videos released under creative commons licenses. For additional details,
refer to our supplementary material.

Metrics. We report the standard pose metrics such as mean per-joint position error in
millimeter (MPJPE-G), mean Procrustes aligned joint error (MPJPE-PA), per-frame trans-
lation aligned error (MPJPE), and 2d mean per-joint error in pixels (MPJPE-2d). Note
that many papers do not report global position errors since they consider only root-relative
poses. We, however, are interested in measuring the pose error, including translational
errors, since unnatural translation is a common (non-physical) reconstruction artifact. In
addition, we also measure foot skating and the total variation in the joint acceleration per
frame (TV). We measure foot skating as percentage of frames where a foot moves more
than 2cm while in contact with the ground in two adjacent frames. Unlike [39], we do not
assume foot contact annotations but instead heuristically detect foot contacts based on the
distance between the foot mesh and the ground-plane. The total variation in acceleration
is computed as 1

T

∑
t∈T
∑

k∈K |ẍkt+1 − ẍkt |, for the 3d acceleration ẍkt of joint k at time
t estimated using finite differences. Thus, high TV indicates motion jitter, and high foot
skate implies motion that slides along the ground.

Implementation Details. We use the Tiny Differentiable Simulator [17] running at 1, 000
Hz with the gradients computed using the auto differentiation framework CppAD [3]. In
addition, we use a Python implementation of Basin-Hopping and BFGS [50]. Since the
length of the optimized trajectory may be great, we follow [1] and perform optimization in
overlapping windows of length N = 960. The simulation steps take ≈ 5s. For the large
datasets in Tab. 5.3, we compute the windows in parallel and stitch them together in order
to speed up computation. We initialize the control targets q̂1:T to 3d poses estimated by
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7DEOH ���� Quantitative evaluation on the Human3.6M and AIST datasets. Our full dynamic model improves over the
kinematic estimates used as initialization with respect to standard joint position error metrics as well as
reducing motion jitter and unnatural foot skating.

Dataset Model MPJPE-G MPJPE MPJPE-PA MPJPE-2d TV Foot skate (%)

Human3.6M

VIBE [24] 207.7 68.6 43.6 16.4 0.32 27.4
PhysCap [41] - 97.4 65.1 - - -
SimPoE [60] - 56.7 41.6 - - -
Shimada et al. [43] - 76.5 58.2 - - -
Xie et al. [56] - 68.1 - - - -
Kinematics 145.3 83.0 55.4 13.4 0.34 47.5
DiffPhy 139.1 81.7 55.6 13.1 0.20 7.4

AIST Kinematics 155.7 107.4 66.9 10.4 0.52 50.9
DiffPhy 150.2 105.5 66.0 12.1 0.44 19.6

our kinematics. See our supplementary material for details.

4.1 Results

We compare DiffPhy against both state-of-the-art kinematic video models (VIBE [24]) and
against physics-based methods. The results are summarized in Tab. 5.3. Since VIBE pre-
dicts root-relative poses, we estimate the global translation (required to compute MPJPE-G)
by minimizing 2d projection errors using a method similar to the one in [41]. For VIBE,
we use the publicly available implementation. For the other methods, we give numbers
presented by the authors. On both Human3.6M and AIST, our model improves with re-
spect to the physical metrics (TV and foot skate) compared to the kinematic initialization.
On Human3.6M, foot skating is only 7.4% compared to 47.5% for the kinematic initial-
ization and 27.4% for VIBE. On AIST, foot skating is reduced from 50.9% to 19.6%. We
believe that increased skating on AIST is due to actual skating motions performed as part
of the hip-hop dances. On total variation, our model similarly improves over kinematics
with 0.20 and 0.44 on Human3.6M and AIST, respectively. Furthermore, we note that
our full model improves the global joint position error (MPJPE-G), a metric that measures
pose and translation errors. On Human3.6M, DiffPhy has an error of 139.1 compared to
145.3 and 207.7 mm/joint for kinematics and VIBE, respectively. If we look at the error
for foot joints only, we see an even larger improvement by including physics compared
to kinematics alone (166.8 vs. 174.1 mm/joint). This result aligns with prior work [39],
showing that physics improves foot position estimation. Furthermore, our method aligns
well with image evidence when comparing 2d error, i.e., 13.1 px/joint vs. VIBE’s 16.4
px/joint on Human3.6M. In terms of joint error including translation error (MPJPE), Sim-
PoE [60], Xie et al. [56], Shimada et al. [43] outperform DiffPhy (56.7 vs. 68.1 vs. 76.5 vs.
81.7 mm/joint respectively), though in the case of SimPoE and Xie et al. this might stem
from initializing from the already strong VIBE predictor (68.6 mm/joint). Furthermore,
SimPoE is a neural network requiring extensive training using the 3d ground-truth from
Human3.6M, whereas DiffPhy is a general method that requires no additional training (cf.
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)LJXUH ���� Qualitative examples on Human3.6M. DiffPhy infers plausible leg motion while kinematics skates unreal-
istically forward.

Tab. 5.1). Xie et al., PhysCap [41], Shimada et al. [43] on the other hand, focus only on feet-
ground contacts while DiffPhy supports complex contacts. Unfortunately, this advantage
cannot be demonstrated on subsets that exclude sequences with complex contacts.

Fig. 5.5 presents qualitative results where kinematics fails to estimate the positions of legs
due to depth ambiguities. The reconstructed poses align well when projected into the image
but are unrealistic since the model skates rather than walks forward. Since DiffPhy recon-
structs the motion with physics in the loop, it must propel the model forward through
bipedal locomotion, thus inferring feasible leg poses. Similarly, in Fig. 5.4 kinematics es-
timates a pose that projects well into the image. However, when viewed from a side, it
becomes clear that kinematics estimates a pose that leans unnaturally. Since DiffPhy is
constrained by gravity, it must find a pose that is both physically plausible and aligns with
2d evidence. Fig. 5.4 also includes examples of object interactions and rolling motions re-
quiring complex contacts. We manually modeled the chair as a box since DiffPhy does not
estimate scene geometry. For the rolling motion, the kinematics were too noisy for DiffPhy
to converge; hence, we manually corrected the worst kinematic frames before running Diff-
Phy. Finally, Fig. 5.2 shows two reconstruction examples for sequences in-the-wild. These
videos exhibit poses and activities missing from standard laboratory-captured datasets.

Ablation studies. In Tab. 5.6 we validate our choice of loss components in (5.5). We
note that the 2d projection loss, as expected, plays an important role in aligning the re-
construction with the image evidence (17.1 vs. 12.6 px/joint). Furthermore, since 2d
keypoints do not suffer from depth ambiguities, they are generally more reliable than 3d
keypoints and thus serve as a strong signal. Therefore removing 2d evidence significantly
increases MPJPE-G from 144.9 to 158.5 mm/joint. Removing the root position loss (5.6)
has the largest impact on global position error (165.7 mm/joint) since without it, we do
not provide DiffPhy with any supervision with respect to world positioning. This allows
for suboptimal reconstructions that align well with the projected image (12.8 px/joint) but
do not transition correctly in world space. Without the joint angle loss (5.7), DiffPhy is
deprived of the per-frame 3d pose estimates, which, when predicted by neural networks
such as HUND or VIBE that are trained on large pose datasets, provide useful guidance
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as long as their predictions do not contradict any physical constraints. Removing the joint
angle limit regularizer (cf. (5.9)) demonstrates the usefulness of constraining the recon-
structed motion to the space of anatomically valid poses even for everyday motions like
those in Human3.6M. Finally, we validate the usefulness of optimizing the initial starting
pose and velocity (see §3.6). Without it, the kinematic estimates for the initial frames must
be accurate. If not, the simulation may start from an initial state from which DiffPhy may
fail to recover, as seen by the largest MPJPE-PA in the ablation of 65.1 mm/joint.

Next, results in Tab. 5.2 show that gradient-based methods are vastly more efficient for
our physics loss compared to the commonly used gradient-free approach CMA-ES [16].
BFGS obtains a lower MPJPE-G error (160.1 vs 206.7 mm/joint), and requires a fraction
of the computations (122 vs. 80k loss evaluations per windows). Next, We note that BFGS
converges to suboptimal minima, but by combining BFGS with Basin-Hopping, we can
reduce the errors further to 144.9mm/joint. As Basin-Hopping can explore infinitely many
basins, we set the limit to 5 basin steps, each with 50 BFGS iterations as a trade-off between
accuracy and speed.

In Tab. 5.5 we study the effect of the optimization window size. We find that a window
of 960 simulation steps (containing 0.96s of video) is optimal for our setup. A larger
window size increases the errors, most likely due to a larger search space combined with
a larger gradient variance, as noted in [33]. On the other hand, smaller windows provide
scarcer visual evidence and are sensitive to a few occluded frames, or to noisy estimates.
Interestingly, a smaller window size performed better for experiments on ground-truth data
(see supplementary material). This indicates that smaller apertures are better for noise-free
inputs.

Several methods (cf. Tab. 5.1) introduce “residual forces” acting on the root link of the
physical body. This non-physical force allows the method to translate and rotate the body
to align with visual evidence at the expense of physical realism. Tab. 5.4 confirms that
this indeed can be used to lower DiffPhy’s joint errors (MPJPE-G from 144.9 to 140.2
mm/joint and 2d error from 12.6 to 11.6 px/joint when applying 50N for each of the six
degrees of freedom). Interestingly, applying a too great residual force (100N) increased
error, perhaps since it allows the model to circumvent some of the constraints of physical
simulation. In this work, we avoid using residual forces, in order to keep all forces realistic,
and avoid non-physical artifacts.

5 Discussion

In order to improve the realism of 3d human sensing, we have introducedDiffPhy – the first
differentiable physics-based model for full-body articulated human motion estimation, that
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7DEOH ���� Results on experiments on the effects of residual force. We note using a residual force decreases the error
metrics, but we refrain from using it to avoid unexplained non-physical forces.

RF MPJPE-G MPJPE MPJPE-PA MPJPE-2d
0 144.9 84.6 61.1 12.6
5 141.4 82.2 60.7 11.8
10 140.1 79.9 60.2 11.7
25 146.3 81.9 60.0 12.7
50 140.2 79.4 60.3 11.6
100 154.0 87.7 61.5 14.4

7DEOH ���� Results on the effects of optimization window size. A balance needs to be found between a larger window
size which allow for more visual evidence to be taken into account while a smaller reduces the dimension-
ality of the search space.

Window MPJPE-G MPJPE MPJPE-PA MPJPE-2d
240 390.1 224.1 96.6 40.3
480 165.6 97.2 63.8 13.2
720 148.9 87.2 61.8 12.6
960 144.9 84.6 61.1 12.6
1440 155.6 92.5 65.7 15.9

7DEOH ���� Ablation of the model components introduced in §3. No root means without root position loss (5.6), No
2d without 2d keypoint loss (5.8), No pose without joint angle loss (5.7), No 3d loss without both root link
position loss and joint angles losses, No limit without anatomical joint limits (5.9), and No init. opt. is
without optimizing the initial state, cf. §3.6.

Variant MPJPE-G MPJPE MPJPE-PA MPJPE-2d
Full model 144.9 84.6 61.1 12.6
No root 165.7 84.8 60.7 12.8
No 2d 158.5 98.3 65.7 17.1
No pose 156.8 91.8 64.4 13.0
No 3d loss 216.6 122.4 76.3 12.6
No limits 146.8 86.5 62.2 13.0
No opt. init. 151.5 92.1 65.1 14.1

supports complex contacts, does not assume a known ground plane, and avoids reliance on
non-physical forces. This has the benefit of a human model with realistic physics inter-
actions, that are constrained end-to-end by visual losses. Furthermore, such a model can
provide a valuable non-learning-based component, which is always valid, complementing
the statistical kinematic prediction and optimization techniques prevalent in the current
state of the art. Visual 3d human motion reconstruction experiments on multiple datasets
demonstrate that our methodology is competitive with other state of the art physics-based
approaches.

Limitations and Future Work. An inherent limitation to physics-based approaches is the
need to model objects in the scene. We hope to address this challenge in future work
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by integrating with 3d scene reconstruction techniques [4]. Ideally, we would be able to
jointly optimize the control of the body and the world to match visual evidence. An-
other limitation is our current assumption of constant camera extrinsics. This limits our
technique to videos captured using a static camera but can be easily relaxed. Finally, our
reconstructions are limited to a single subject. Reconstructing multiple people interacting
is interesting since these scenes are complex, and learning statistical models of interaction
between humans is challenging [12]. A physics-based approach could help infer constraints
and affordances.

Ethical Considerations. Our construction of physics-based models is motivated by the
breadth of transformative 3d applications that would become possible, including fitness,
personal well-being or special effects, or human-computer interaction, among others. In
contrast, applications like visual surveillance and person identification would not be effec-
tively supported, given that the model’s output does not provide sufficient detail for these
purposes. The same is true for the creation of potentially adversely-impacting deepfakes,
as an appearance model or a joint audio-visual model are not included for photorealistic
visual and voice synthesis. While our method is fundamentally applicable to a variety of
human body types, we have not evaluated this aspect extensively and consider such a study
an important objective for future work.
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Supplementary Material

This supplement presents addition results (§A), a description of the datasets used (§B)
together with a description of the usage of data with human subjects (§B.2), and addi-
tional details of the simulation setup (§C). Please refer to our video for qualitative results
at tiny.cc/diffphy.

A Additional Results

Tab. A.7 presents an ablation on window size performed using mocap data as initialization
and reference trajectory rather than using the kinematic initialization. In this case, we note
that a smaller window size of 480 outperforms the larger window size of 960 used in the
main paper. We hypothesize that when the reference signal lacks noise, a smaller window
is easier to optimize since the dimension of the problem is reduced. However, with noisy
observations, a larger window is required for the method to be robust to missing or poor
kinematic reconstructions.
7DEOH $��� Ablation study of the optimization window size. Experiments were carried out on motion capture rather

than the kinematic initialization as input. The experiment was performed on the same Human3.6M se-
quences as in the ablation in the main paper. Note that when using mocap rather than noisy observations,
a smaller window size is better (480 vs. 960 in main paper).

Window MPJPE-G MPJPE MPJPE-PA
240 112.8 75.9 40.1
480 39.4 33.4 21.9
720 46.1 42.1 29.4
960 77.8 68.4 44.9

B Datasets

We evaluate our method on the two established datasets Human3.6M [21] and AIST [49].
In addition, we evaluate our method on “real-world” internet videos.

Human3.6M. When comparing to the state-of-the-art methods, we evaluate on the Hu-
man3.6M Protocol P2 sequences while excluding the same sequences as by Xie et al. [56].
That leaves the sequences: Directions, Discussions, Greeting, Posing, Purchases, Taking Photos,
Waiting, Walking, Walking Dog and Walking Together. We evaluate the motions using only
camera 60457274. Similar to [56], we down sample the Human3.6M data from 50 FPS
to 25 FPS.
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7DEOH %��� Human3.6M [21] sequences used for ablation studies. Note that we downsampled the sequences from 50
FPS to 25 FPS.

Sequence Subject Camera Id Frames
Phoning S11 55011271 400-599
Posing_1 S11 58860488 400-599
Purchases S11 60457274 400-599

SittingDown_1 S11 54138969 400-599
Smoking_1 S11 54138969 400-599

TakingPhoto_1 S11 54138969 400-599
Waiting_1 S11 58860488 400-599
WalkDog S11 58860488 400-599

WalkTogether S11 55011271 400-599
Walking_1 S11 55011271 400-599
Greeting_1 S9 54138969 400-599
Phoning_1 S9 54138969 400-599
Purchases S9 60457274 400-599

SittingDown S9 55011271 400-599
Smoking S9 60457274 400-599

TakingPhoto S9 60457274 400-599
Waiting S9 60457274 400-599

WalkDog_1 S9 54138969 400-599
WalkTogether_1 S9 55011271 400-599

Walking S9 58860488 400-599

The ablation studies were performed on a smaller subset of four-second clips (frames 400-
599) from a random camera, see Tab. B.8.

AIST.AIST provides dynamic dance motions not present in Human3.6M. We evaluate our
method using the pseudo-ground-truth provided by [26]. We use the first four seconds (120
frames) using a randomly selected camera from the sequences in Tab. B.9.

Internet Videos. Finally, we perform qualitative evaluation of our method on internet
videos made public under creative common licences.

B.1 Metrics

Total variation. We compute the total variation of the 3d joint acceleration as a measure-
ment of the jitter in motion. This is given as

1

T

∑

t∈T

∑

k∈K
|ẍkt+1 − ẍkt |, (10)

where ẍkt is the 3d joint acceleration of joint k at time t. We estimate the acceleration
through finite differences.
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Foot skating. We track unnatural foot skating artifacts by measuring the percentage of
frames where either foot is “skating” along the ground. Our formulation doesn’t rely on foot
contact annotations but instead heuristically detect when foot contacts occur by measuring
the distance between the foot mesh and the ground-plane. A contact is defined as N = 10
foot mesh vertices being within d mm of the ground-plane. For kinematics we use d = 5
mm and for dynamics d = 1 mm to account for the capsule approximation being smaller
than the foot mesh. We define skating as a foot moving ≥ 2 cm between two frames while
being in contact with the ground.

B.2 Usage of data with human subjects

In this work, we employ two established pose benchmarks that are commonly used in the
field of human pose estimation. Human3.6M [21] was recorded in a laboratory setting with
the permission of the actors, and AIST [49] contains “a shared database containing origi-
nal street dance videos with copyright-cleared dance music. This is the first large-scale shared
database focusing on street dances to promote academic research regarding Dance Information
Processing”¹. As for the “in-the-wild“ videos, these were released under creative common
licenses granting express permission to “copy and redistribute the material in any medium or
format” and “remix, transform, and build upon the material for any purpose, even commer-
cially”. Finally, we do not intend to release these videos as part of a dataset. Instead we
only use them to demonstrate our method on videos with poses and motion uncommon
in laboratory captured datasets.

7DEOH %��� AIST [49] sequences used for evaluation.

Sequence Frames
gBR_sBM_c06_d06_mBR4_ch06 1-120
gBR_sBM_c07_d06_mBR4_ch02 1-120
gBR_sBM_c08_d05_mBR1_ch01 1-120
gBR_sFM_c03_d04_mBR0_ch01 1-120
gJB_sBM_c02_d09_mJB3_ch10 1-120

gKR_sBM_c09_d30_mKR5_ch05 1-120
gLH_sBM_c04_d18_mLH5_ch07 1-120
gLH_sBM_c07_d18_mLH4_ch03 1-120
gLH_sBM_c09_d17_mLH1_ch02 1-120
gLH_sFM_c03_d18_mLH0_ch15 1-120
gLO_sBM_c05_d14_mLO4_ch07 1-120
gLO_sBM_c07_d15_mLO4_ch09 1-120
gLO_sFM_c02_d15_mLO4_ch21 1-120

gMH_sBM_c01_d24_mMH3_ch02 1-120
gMH_sBM_c05_d24_mMH4_ch07 1-120

¹https://aistdancedb.ongaaccel.jp/
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C Differentiable Physics for Human Motion

Tiny Differentiable Simulator (TDS) [17] is a C++ simulator where the data type is tem-
pletized. In our experiments, we use the scalar from the automatic differentiation (AD)
framework CppAD [3] to compute the simulation gradients. That is, we compute the
gradients of the loss with respect to the input control variables at each time step:

∂L

∂q̂1:T
=

∂L

∂q1:T

∂q1:T

∂τ 1:T

∂τ 1:T

∂q̂1:T
, (11)

where L is objective function of the trajectory optimization, q1:T are the simulated body’s
joint positions, and q̂1:T are the per-timestep control signal to the PD controllers in the
body joints.

To speed up the optimization we implement our simulation as a fixed computational graph
of the simulation rollout for a fixed number of steps and then repeatedly use it to compute
the values of the gradients in (11). This greatly speeds up the optimization since the auto-
matic differentiation framework doesn’t need to setup the computational graph for each
backward pass. To that end, we make the following adaptations to TDS to make it support
a fixed graph.

Differentiation and contact points. Since at the time of graph construction it is not known
in advance which contact points will be active for particular inputs we always include all
contact points into the LCP formulation. This increases the graph size based on the number
of contacts considered. The issue of large graph can be address by e.g. “checkpointing” the
computation as described in [38].

Dealing with exploding gradients. As noted in [33], gradients from differentiable simula-
tors may explode or vanishing when the window size is large. In this work, we experimen-
tally found it possible to mitigate the issue by setting the LCP solver iterations to K = 1
without noticeable degradation of reconstruction quality.

Implementation Details In our experiments we run TDS with a step size of 1ms. This is
partly due to the simpler PD controller, which requires smaller simulation steps to allow for
stable control. We set the ground-plane friction to 0.8 and the controller gains to kp = 200
and kd = 5. Evaluating our loss function and computing the gradients for a window of
960 simulation steps takes approximately ≈ 5 seconds on a standard desktop computer
with only feet contacts enabled. Enabling more contacts or simulating multiple objects
increases memory and computation time.
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