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a b s t r a c t

High amplitude non-linear acoustic methods have shown potential for the identification of micro
damage in brittle materials such as concrete. Commonly, these methods evaluate a non-linearity
parameter from the relative change in frequency and attenuation with strain amplitude. Here, a novel
attenuation model is introduced to describe the free reverberation from a standard impact resonance
frequency test, together with an algorithm for estimating the unknown model coefficients. The non-
linear variation can hereby by analyzed over a wider dynamic range as compared to conventional
methods. The experimental measurement is simple and fully compatible with the standardized free-free
linear impact frequency test.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The development of non-destructive testing techniques to
detect early micro-cracks or imperfections in construction materi-
als is important for efficient maintenance and management of
existing infrastructure. During recent years, non-linear non-
destructive methods have attracted notable interest, and have
been proved to be more sensitive to the detection of damage in, for
example, concrete, as compared to traditional linear acoustic
methods [1]. When quasi-brittle materials such as concrete are
damaged (micro-cracked), enhanced non-linear effects arise in the
acoustic wave propagation characteristics [2]. Some typical non-
linear manifestations in resonance frequency testing are the
downward shift of the frequency and the increase in attenuation
with increasing amplitudes (fast dynamics) [3–5]. The logarithmic
recovery of this frequency shift with time after a stress or
temperature disturbance may also be studied (slow dynamics)
[6–8]. Furthermore, non-linear characteristics can be revealed by
studying the behavior of higher harmonics and interference
(modulation) between different frequencies [9,10]. Although many
different methods have been proposed (see, e.g., [11]), there is still
a need for practical and simple methods similar to the standar-
dized linear resonance frequency testing techniques widely used
today [12,13]. Non-linear ultrasound spectroscopy (NRUS) techni-
ques are based on the measurement of resonance frequencies at
different amplitudes and have shown promising results for the

detection of distributed damage in concrete [14,15,3,16]. These
methods can sense a large volume of a micro-cracked sample and
are not too sensitive to the position of the sensors [17]. In the
single-mode resonance spectroscopy (SIMONRAS) technique, the
output vibration amplitude is measured while sweeping over an
interval comprising a resonance frequency. The relative frequency
and attenuation shift as a function of the excitation amplitude is
studied and therefore several frequency sweeps with different
input forces are acquired in order to evaluate the relative non-
linearity parameter. Additionally, the frequency is swept very
slowly to guarantee steady state response [18], making these
methods both time consuming and practically cumbersome.

A faster variant of the NRUS method is the non-linear impact
resonance spectroscopy (NIRAS) method, which was demon-
strated on concrete by Chen et al. [19,20], Lesnicki et al. [14,21],
Bouchaala et al. [22], and Eiras et al. [23]. The NIRAS technique
relies on an impulse excitation of the specimen which is repeated
with different impact strengths. This measurement set-up is easily
performed and similar to the standardized free–free resonance
test for concrete [13]. The relative frequency shift is then studied in
the frequency domain by analyzing the peak amplitude and
resonance frequency of one mode from multiple impacts with
different strength. A practical advantage with impact resonance
methods is that a wide frequency range including multiple
resonance modes can be covered in a simple test [12,24,25] (in
conventional NRUS, based on frequency sweep measurements, the
source and experimental set-up needs to be tuned to the fre-
quency of interest). However, a current limitation with the NIRAS
method is that the extracted amplitude from each impact is not
exactly related to the true physical amplitude in the sample. In
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order to move towards quantitative non-linear measurements, it is
important to use the physical amplitude in the sample [26]. In the
NIRAS method, the extracted peak amplitude is formed as a
weighted average of the frequency- and amplitude-content in
the complete (naturally damped) signal. This analysis procedure,
based on the Fourier transform of each signal, results in a
relatively limited dynamic range over which the frequency shift
may be evaluated. The measurable dynamic range from the
smallest to the largest amplitude peak is typically only about a
factor 8 in the frequency domain, although each time domain
signal may have a dynamic range of at least a factor 100
[19,14,22,5]. Furthermore, it should be noted that in a non-linear
reverberation signal, wherein both the frequency and the attenua-
tion change as a function of time and amplitude, both these factors
will influence the width and the amplitude of the resulting
resonant spectral peak [1]. The true physical amplitude and
amplitude range in the sample is thus partially masked when
the complete length of the signal is analyzed with a Fourier
transform [27].

The non-linear reverberation spectroscopy (NRS) method intro-
duced by Van Den Abeele et al. [1,28] instead exploits the natural
reverberation of a non-linear signal in the time domain. This is
done by exciting a resonance frequency of a sample with a
loudspeaker source, and then utilizing the natural decay in the
reverberation of the response after the loudspeaker is turned off.
The non-linear parameter is evaluated by analyzing the change in
the frequency and the attenuation as the signal is naturally
decaying. The reverberation signal is divided into multiple small
time windows, of about 20 cycles, and an exponentially decaying
sine function with a constant damping and frequency parameter is
fitted to each time window [28], i.e., the kth window of the
(noiseless) signal, xt, may be modeled as

xkðtÞ ¼ Ake
�αkt sin ð2πf ktþϕkÞ ð1Þ

where Ak, αk, fk, and ϕk denote the amplitude, attenuation,
frequency, and the phase, respectively. As the sample is excited
using only a single resonance frequency, the simple signal model
in (1) may be used to represent the measured signal within each
time window. As for the NIRAS method, the extracted amplitude is
here a weighted average of the amplitude within each time
window, and thus, it does not correspond to the true physical
instantaneous amplitude at any specific time. For larger and
heavier concrete type of samples, the continuous excitation of
large vibration amplitudes with a loudspeaker or shaker can be
difficult to achieve, and, as a result, limiting the measured dynamic
range [1].

A simple impact hammer is usually preferred in resonance
frequency testing of concrete samples [13,25]. In contrast to the
single frequency source, an impact source generates a wide range
of frequencies, and as a result the measured response usually
contains multiple modes of vibration, making the single mode NRS
analysis more difficult to apply directly to larger concrete samples.
An impact-based version of the NRS technique was recently
introduced by Eiras et al. [5]. In this work, the reverberation from
a standard impact resonance frequency test (see, e.g. [13]) was
analyzed using a short time Fourier transform (spectrogram), and
the non-linear frequency shift as a function of amplitude was
successfully extracted over a dynamic range of a factor 6 (in the
frequency domain). The method is practical and fast, but suffers
from the same smearing of the true physical instantaneous
amplitude in the sample as the NIRAS and NRS methods.

In this study, we investigate a novel method of characterizing
the extent of damage in a concrete specimen. The proposed
technique, called “Impact Non-linear reverberation spectroscopy”
(INRS), is based on a combination of the existing NIRAS and NRS
techniques, but as for the spectrogram-based technique recently

introduced in [5], the proposed method only requires a single
impact excitation to allow for a reliable estimate of the non-
linearity, although our approach allows for an estimate over a
notably wider dynamic range. This is achieved by a combination of
the use of a detailed parametric signal model as well as a robust
iterative parameter estimation technique that estimates the para-
meters detailing each of the signal modes separately. This allows
the continuous instantaneous true amplitude, frequency, and
damping of each mode to be characterized as a function of time,
allowing for detailed information of the non-linear parameters. By
stochastic modeling of the reverberation signal after a single
impulse excitation of the specimen, we aim to find parameters
of the non-linearity, which may be associated with the degree of
damage in the material. This method has the potential of allowing
for fast and accurate operational measurements over a wide
amplitude range, as well as enabling the phase and amplitude
part of the signal to be studied separately. The proposed para-
metric model and estimation algorithm is described in detail along
with an evaluation of the model using experimental data at three
different levels of damage. Results indicate that the non-linear
effect on both the frequency and the attenuation may be extracted
over a relatively wider amplitude range as compared to the
traditional NIRAS and NRS techniques, and this from the response
of only a single impact. In this study, the results are restricted to
the strongest measured resonance mode, although multiple
modes may be studied simultaneously in a similar manner,
potentially offering further information of the non-linearities of
the material. Similar to the method by Eiras et al. [5], the non-
linear parameters may in our setup be obtained in addition to the
linear elastic constants using the same simple and standardized
free–free resonant test normally conducted on concrete, stabilized
soil, or other construction materials [13,24,25].

The remainder of the paper is organized as follows: in the
following section, we briefly review the theoretical background of
the non-linear measurements. Then, in Section 3, we discuss the
experimental setup and the resulting data sets. In Section 4, we
introduce the suggested signal model and the proposed para-
metric estimation algorithm. In Section 5, we evaluate the pro-
posed model and the estimation algorithm using measured impact
responses from concrete, showing both that the model well
describes the data and that the algorithm is able to accurately
estimate the unknown parameters. Finally, in Section 7, we
conclude on the work.

2. Theoretical background

When concrete and other heterogeneous mesoscopic elastic
materials are damaged, naturally occurring non-linear hysteretic
effects increase [2,9]. The classical theory of non-linear atomic
elasticity does not apply for mesoscopic hysteretic materials, such
as concrete. In addition to the classical non-linearity stress–strain
relation, one then also has to take account for hysteresis and
discrete memory. The phenomenological model presented in [9]
expresses the relation between the stress, σ, and the strain, ϵ, in
one dimension as

σ ¼
Z

Eðϵ; _ϵÞ dϵ ð2Þ

where E is the non-linear hysteretic modulus

E¼ E0½1þβϵþδϵ2þαðΔϵþϵ sgnð _ϵÞÞ� ð3Þ

with E0 denoting the linear modulus, β and δ the classical
quadratic and cubic non-linear parameters, respectively, ϵ the
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strain, Δϵ the strain amplitude in a cycle, _ϵ the strain rate, and

sgnð _ϵÞ ¼
1; _ϵ40
�1; _ϵo0
0; _ϵ ¼ 0

8><
>: ð4Þ

and where the parameter α is a measure of the hysteresis of the
material. Two of the main manifestations of the non-linear
hysteresis properties of a material are the downward shift of the
resonance frequency and the increasing attenuation factor (damp-
ing factor) with increasing excitation amplitude. These non-linear
effects are more evident for larger excitation amplitudes (see, e.g.,
[18]). Studies of the frequency shift as a function of the amplitude
has shown the existence of a quadratic dependence [29–31,27].
However, in many experimental studies, a linear approximation
between the frequency shift and the amplitude has been success-
fully used over a limited amplitude range [9,19,14,16,23]. Com-
monly, the linear frequency shift with strain amplitude is given as

f 0� f
f 0

¼ c1Δϵ ð5Þ

where f0 is the linear resonance frequency at the smallest
measurable strain level, and f the resonance frequency at the
increasing excitation amplitude. Furthermore, the increase of
modal damping ratio with increasing strain amplitude may be
expressed as

ξ�ξ0
ξ0

¼ c2Δϵ ð6Þ

where ξ0 is the modal damping ratio at low excitation amplitude,
and ξ is the damping at increasing drive amplitude. The coeffi-
cients c1 and c2 are both proportional to the hysteresis parameter,
α. Thus, by studying the relative change of the frequency and the
attenuation, one may obtain information about the extent of
damage in the examined concrete. This procedure forms the basis
of the NRUS technique. Recently, Payan et al. [26] emphasized the
importance of using the true physical amplitude (strain level) to
estimate absolute values of c1 and c2 towards real quantitative
measurements of damage in concrete.

3. Experimental setup

The studied experimental setup is shown in Fig. 1, illustrating
how the examined specimen is placed on a soft foam to allow for
free vibrations, and how a small hammer is used to excite the
sample. In our experiments, we examine the impact responses of a
sample disc of progressively damaged concrete, as well as a steel
rod, which is used as a reference sample. The length, L, the
diameter, D, the approximated linear modulus, E, Poisson's ratio,
and the density of the samples are given in Table 1. The vibration
response is initialized by a small impactor positioned at the center
of the specimen. This set-up will primarily excite the fundamental

radially symmetric longitudinal mode, f ð0;1Þ, where the indices
represent the number of nodal diameters and circles in the mode
shape (see e.g., [32], p. 258–69). Although we aim to only excite
one resonance frequency, responses from other modes are una-
voidable. In the following modeling, we will therefore also take
two further vibrational modes into account, namely the funda-
mental mode, f ð2;1Þ, and the first higher radially anti-symmetric
flexural mode, f ð3;1Þ.

An illustration of the mode shape of f ð0;1Þ is given in Fig. 2,
wherein the normalized acceleration in z-direction is displayed.
This plot has been obtained using the Comsol software [33], which
numerically calculates the resonance frequencies of a free sample
with specified geometry and material properties. The input values
were manually tuned to fit the experimental results obtained from
the impact method, by observing the real resonance modes. In this
Comsol model, the volumetric strain is approximately of an order
10�9 of the acceleration in the concrete sample at this frequency.
This constant can be used to estimate the volumetric strain level in
the studied sample at this particular resonance frequency, i.e.,
f ð0;1Þ, from the measured acceleration in the z-direction [26]. The
vibration response of the specimen is measured with a miniature
accelerometer (PCB model 352B10 with a weight of 0.7 g) posi-
tioned at the edge of the disc, as may also be seen in Fig. 1. The
signal was fed through a signal conditioner (PCB model 480B21)
and a data acquisition device (NI-USB-6251) before being saved.
The free vibration response is collected by inducing an impact
force in the center of the specimen with a small impactor
consisting of a screw (4 g) attached to a plastic cable tie (Fig. 1).
Multiple impacts were recorded in order to check the repeatability
of the method. The studied 20 mm thick concrete disk was sawed
out from a longer 200 mm concrete cylinder of C20/25 concrete
(characteristic cylinder and cube strength of 20 and 25 MPa,
respectively). The several years old concrete had a natural and
relatively low damage level. In subsequent measurements, the
damage level was then successively increased by inducing invi-
sible micro-cracks by hitting the center of the specimen with a

Fig. 1. Experimental setup.

Table 1
Geometry and approximate linear elastic properties of the tested samples.

Sample properties Damaged concrete Structural steel

Length 20 mm 550 mm
Diameter 100 mm 30 mm
E-modulus E33 GPa E210 GPa
Poisson's ratio 0.18 0.30
Density 2400 kg/m3 7800 kg/m3

Fig. 2. Mode shape of the fundamental radially symmetric mode (f ð0;1Þ) with
eigenfrequency¼10,128 Hz color coded with respect to normalized acceleration in
the z-direction. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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larger instrumented hammer (PCB model 086D05 with a weight of
0.32 kg), as demonstrated by Van Den Abeele et al. [3]. The
damage force pulse was also recorded and had a pulse length of
0.3 ms and a peak force of 2000 N. Ten measurements with the
small impact source were recorded for each of the three examined
damaged levels, D¼1, 2, and 3. Temperature and humidity were
kept constant during the entire test, which lasted for about 15 min.
As a reference, the longitudinal free vibration response was also
collected from the undamaged steel rod (Table 1) in a similar
fashion, using the same equipment. The steel rod was placed on
soft foam and excited in longitudinal mode with the accelerometer
attached in one end while impacting the sample in the center of
the opposite end [13].

The sampling interval, dt, of the free vibrational response was
dt ¼ 2� 10�6 s, yielding the Nyquist frequency f N ¼ 1=
ð2dtÞ ¼ 250 kHz. The total sampling time needed for capture the
entire signal decay was approximately 0.025 s for the concrete
specimen, and 1 s for the steel rod. This correspond to 10,250
samples for each concrete measurement and 500,000 samples for
each steel measurement.

Fig. 3 shows the spectral content of the signal, as estimated
using the magnitude squared Fast Fourier Transform (FFT), eval-
uated over 100,000 frequency grid points. The three excited
vibrational modes f ð2;1Þ, f ð0;1Þ, and f ð3;1Þ are located at approxi-
mately 7, 10, and 14 kHz, respectively. It is worth noting that
additional higher modes of vibration and possible non-linear
harmonics of the fundamental modes can be observed at higher
frequencies. In order to reduce the influence of such disturbances,
we introduce a bandpass filter retaining only the frequency region
of interest. The (scaled) frequency response of the used filter is
also illustrated in the figure (see also [34], p. 31–4). This filter is
designed to also remove low frequencies, in order to reduce
leakage from low-frequency negative frequencies in the later used
wall filter, as discussed further below.

4. Proposed method

In order to accurately determine the characteristics of the
excited modes, we introduce a detailed parametric signal model,
consisting of the response of each of the d excited modes. As
noted, earlier works have shown that one may, for non-linear
materials, expect a frequency increase coupled with a decreasing
attenuation as the amplitude of the reverberation signal decreases
over time [30,31,27,5]. In order to allow for such dependencies, we
here model each of the vibrational modes as an exponentially
damped complex-valued signal with a polynomial phase and

attenuation, such that the kth order mode may be expressed as

zkðt;θkÞ ¼ ρke
�ψ ðt;θkÞþ iϕðt;θkÞ ð7Þ

for t ¼ 1;…; T , where T is the number of samples, and where ρk,
ψ ðt;θkÞ, and ϕðt;θkÞ denote the amplitude, attenuation, and phase
of the signal, respectively, with θk denoting the parameters
detailing the mode (as detailed below). Here, the attenuation
and the phase are modeled as polynomials of order Pk and Qk,
respectively, such that

ψ ðt;θkÞ ¼
XPk

m ¼ 1

bmtm ð8Þ

ϕðt;θkÞ ¼
XQk

m ¼ 0

amtm ð9Þ

with bm and am denoting the mth coefficient in the attenuation and
phase polynomials, respectively. Gathering the polynomial coefficients,
the unknown parameters for the kth mode may thus be expressed as

θk ¼ ½ρk b1;k … bPk ;k a0;k … aQk ;k�T ð10Þ

It is worth noting that the commonly used exponential decay is
here thus replaced by the polynomial decay in (8), thereby
allowing also for higher order decays. Note also that by using
the parametric model, we may analyze the non-linear variation
in frequency and attenuation over the entire dynamic range of
the time domain signal. The increased dynamic range is obtained
by utilizing the known gradual and smooth nature of the non-
linear shift as a function of the amplitude (see also [27]). The
proposed model thus generalizes on earlier studies where both
linear and quadratic frequency dependent strain amplitude
dependences have been proposed; the model both allows the
modes to scale linearly with acceleration for a constant fre-
quency, as well as the frequency and attenuation to vary over
time and amplitude. By combining the complex-valued modes
detailing the corresponding positive and negative frequencies,
one thus obtains the resulting real-valued mode. As a result, the
measured (real-valued) vibrational response signal may be well
modeled as the contribution from both the d positive and the d
negative frequency modes, i.e.

xRðtÞ ¼
X2d
k ¼ 1

zkðt;θkÞþuRðtÞ ð11Þ

where uR(t) denotes an additive (real-valued) corrupting noise,
here assumed to be well modeled as a zero-mean white Gaussian
noise. Clearly, the positive and negative modes contain redun-
dant information, and the complexity of the model may therefore
be reduced by retaining only either the positive or the negative
component of each mode. This may be done without loss of
information by forming the discrete-time analytical signal of
xR(t), using the discrete-time Hilbert transform (see also [35]),
which functions as a wall filter retaining only the positive
frequencies of the signal (which are scaled by a factor two to
retain the total signal power). The discrete-time analytical signal
thereby yields a complex-valued signal representation containing
only the d positive frequency modes, i.e.

xðtÞ ¼
Xd
k ¼ 1

zkðt;θkÞþuðtÞ ð12Þ

for t ¼ 1;…; T , where u(t) is the corresponding complex-valued
noise term. Hence, by modeling the complex-valued signal, we
have reduced the computational complexity to the estimation of
d frequency components compared to 2d frequency components
contained in the real-valued signal.
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Fig. 3. The spectral content of the vibration response, showing the three main
extracting modes of the signal, f ð2;1Þ , f ð0;1Þ , and f ð3;1Þ , together with the (scaled)
frequency response of the applied bandpass filter.
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Algorithm 1. The proposed INRS algorithm, Part 1.

1: for ℓ¼ 1 to d do
2: iter¼1
3: while itero IterMax 4 r4ϵ1 do
4:

Form xlðt; lÞ and use it to estimate θ̂
iter

y;l .
1

5: for j¼1 to ℓ�1 do
6:

Form xlðt; jÞ and use it to estimate θ̂
iter

y;j .
7: end for
8:

Calculate the residual: riter ¼ xðtÞ� Pℓ
k ¼ 1 y0ðt; θ̂

iter

y;k Þ
9: Form the residual norm: r¼ j J riter� 1 J � J riter J j

J riter� 1 J

10: iter¼ iterþ1
11: end while
12: if jak1 ;1�ak2 ;1 joϵ2; fðk1; k2Þ : k1; k2Af1 : ℓg; k1ak2g or

ak1 ;1oϵ3; 8k1Af1 : ℓg then
13: d¼ l�1
14: return
15: end if
16: end for
17: Global optimization

fθ̂y;k ¼ 1:dg ¼ arg min
fθy;k ¼ 1:dg

XT
t ¼ 1

xðtÞ�
Xd
k ¼ 1

y0ðt; θ̂y;kÞ
�����

�����
2

Using the proposed signal model, one may form a least-squares
(LS) estimate of all the unknown parameters by minimizing

θ¼ arg min
θ

XT
t ¼ 1

xðtÞ�
Xd
k ¼ 1

zkðt;θkÞ
�����

�����
2

ð13Þ

Algorithm 2. The proposed INRS algorithm, Part 2.

Require: θ̂ ¼ fθ̂y;k ¼ 1:dg from Algorithm 1.
1: for ℓ¼ 1 to d do
2: j¼2
3: while PℓZ j do
4: Initialize the LS optimization with θ0 ¼ ½θ̂ bj;ℓ�, with

bj;ℓ ¼ 0
5: Estimate

b̂1:j;ℓ ¼ arg min
b1:j;ℓ

XT
t ¼ 1

xðtÞ�
Xd
k ¼ 1

zkðt; 2θ̂k;ℓÞ
�����

�����
2

6: Update the estimated parameter set

θ̂ ¼ ½θ̂�b1:j;ℓ b̂1:j;ℓ�

7: j¼ jþ1
8: end while
9: end for
10: Global optimization

θ̂ ¼ arg min
θ

XT
t ¼ 1

xðtÞ�
Xd
k ¼ 1

zðt; θ̂kÞ
�����

�����
2

where θ denotes the set containing all the unknown parameters,
i.e.

θ¼ ½θT
1 … θT

d �T ð14Þ
Regrettably, the resulting minimization will be both high-
dimensional and multimodal, necessitating an accurate initial
estimate of θ to allow for a feasible estimator. In order to form
such an initial estimate, we propose a relaxation-based (greedy)
estimation scheme which recursively forms an approximative
estimate of one mode at a time.

This is done by initially assuming that the signal only contains a
single mode, i.e., that d¼1. Under this assumption, the parameters
detailing this single mode are estimated as detailed below. Then,
after this has been done, the found mode is removed from the
measured signal, and a second mode is estimated from the resulting
residual, which is then in turn removed from the measured signal to
allow for a re-estimation of the first mode. This procedure is
repeated until no significant improvement or until the number of
maximal iterations are reached. Thereafter a third mode is esti-
mated, and the procedure is repeated, and so on. The resulting
procedure is summarized in the INRS Algorithm, Part 1, where
xdðt;ℓÞ is defined as the time-domain residual obtained when, if
assuming that the signal contains dmodes, all but the ℓth estimated
mode have been removed from the down-sampled and discrete-
time analytical version of the measured signal, i.e.

xdðt;ℓÞ9xðtÞ�
Xd

k ¼ 1;kaℓ

zkðt; θ̂kÞ ð15Þ

Thus, in each of the steps, the lth mode is estimated as if it is the
only mode present in the measurement. To allow for an efficient
estimate, the polynomial attenuation of the mode is initially
neglected, treating the examined residual signal, xdðt;ℓÞ, for sim-
plicity here termed y(t), as formed by only a single mode with
constant attenuation, such that

yðtÞ ¼ y0ðt;θyÞþvðtÞ ð16Þ

yðtÞ ¼ ρe�b1t exp i
XM
m ¼ 0

amtm
( )

þvðtÞ ð17Þ

where ρ, b1 and am, m¼ 0;…M denote the amplitude, constant
damping and phase coefficients, respectively, for mode ℓ assuming
totally d modes in the signal. θy contain the unknown parameters
detailing y0ðt;θyÞ, i.e.
θy ¼ ½ρ a0 b1 a1 … aM�T ð18Þ

θy ¼ ½ρ a0 θT
b1 ;a�T ð19Þ

and where v(t) denotes a corrupting term containing the additive
noise and the parts of the examined signal that are not captured by
the first term in (17). We may thus estimate the parameters
detailing the examined mode using LS as

θ̂y ¼ arg min
θy

XN
t ¼ 1

jyðtÞ�y0ðt;θyÞj2 ð20Þ

θ̂y ¼ arg min
θy

‖yT �ηbb1 ;a‖
2
2 ð21Þ

where η¼ ρeia0 , and

yT ¼ ½yð1Þ … yðTÞ�T ð22Þ

bb1 ;a ¼
eb1 þ iða1 þ…þamÞ

…
eb1Tþ iða1Tþ…þamT

mÞ

2
64

3
75 ð23Þ

1 θ̂
iter

y;l is the estimate of the parameter set θy , see Eq. (18), for mode ℓ, at
iteration step iter.

2 Here, the parameter set θ̂k;ℓ is fixed for kaℓ, with θ̂k;ℓ ¼ fθ̂y;k; b2:Pk ;kg for
koℓ, and θ̂k;ℓ ¼ θ̂y;k for k4ℓ. For k¼ ℓ, we have that θ̂k;ℓ ¼ fθ̂y;ℓ ;b2:j;ℓg with b1:j;ℓ
being the optimization variables.

U. Dahlen et al. / NDT&E International 75 (2015) 15–25 19



implying that (see, e.g., [36], p. 157–9)

θ̂b1 ;a ¼ arg max
θb1 ;a

γ�1
b1

ðyn

Tbb1 ;aÞðb
n

b1 ;ayT Þ ð24Þ

where

γb1 ¼
XT
t ¼ 1

e2b1t ¼ e2b1
1�e2b1T

1�e2b1
ð25Þ

which, using θ̂b1 ;a, yields

η̂ ¼ γ�1
b1

bn

b1 ;ayT ð26Þ

and where the maximization in (24) may be formed, for instance,
by a gradient search, e.g., using a method such as the one proposed
in [37], with initial value a1 set to the peak resonance frequency in
the FFT, and the remaining parameters in θb1 ;a set to initial
value zero.

Finally, the parameters that are found are re-estimated using an
LS fitting of y(t) with the model y0ðt;θyÞ, wherein θy is initialized to
the found initial estimates, thereby allowing for an accurate
initialization of the resulting gradient search. The overall INRS
algorithm then proceeds to remove the found mode and re-
estimate each of the assumed modes in the recursive fashion
detailed in Algorithm 1. A practical convergence criteria for the
iteration step is given by the normalized residual norm, defined as r,
see Algorithm 1, line 9. After the iteration step, the algorithm add
one extra mode if ℓod, however, if the estimated peaks are to
close, i.e., if jak1 ;1�ak2 ;1 joϵ2, k1ak2, or if any of the estimated
peaks are too close to zero ak1 ;1oϵ3, k1 ¼ 1;…d, the algorithm
returns the estimated parameters assuming ℓ�1 modes in the
signal. The first criterion assures that we do not model the same
mode twice (which might happen if at least one of the assumed
modes are very weak compared to the strongest peak), whereas the
second criterion is needed to assure that we do not model the very
weak frequency peak close to zero, which is an artefact from the
applied wall filter. Before adding the polynomial attenuation, the
resulting estimates of modes with constant attenuation are opti-
mized simultaneously given the complex valued signal x(t), see line
17 in Algorithm 1. The remaining polynomial attenuation coeffi-
cients of the modes are then estimated iteratively in an LS fitting of
the signal x(t) with the full model of all d modes,

Pd
k ¼ 1 zkðt;θkÞ,

where θ is initialized to the parameter estimates found from the
relaxation-based algorithm and with the initial value for the
damping coefficients being set to zero, as described in Algorithm
2. A gradient search over all damping parameters detailing mode ℓ
is then performed, see line 5. The new estimates are then re-used as
initial values in the next LS fitting, sequentially adding additional
damping coefficients for the considered mode in each step. Here,
we perform these steps only for the strongest mode, although, if of
interest, one could of course apply this kind of estimation procedure

on all modes. Finally, when all damping coefficients have been
added, a gradient search over all parameters in the model is
performed with initial values obtained from the process described
above, as described by the last line in Algorithm 2.

5. Model evaluation

In order to determine appropriate polynomial orders for the
examined modes, we proceed to examine the achievable accuracy
of the model for varying polynomial orders, concluding that for
f ð2;1Þ and f ð3;1Þ, it is sufficient to use only low order polynomials,
whereas the modeling of the dominating mode, f ð0;1Þ, is improved
by allowing for a more detailed structure. These conclusions are
found by examining the variance of the resulting residuals,
estimated as

σ̂2
u ¼

1
T�1

XT
t ¼ 1

xðtÞ�
Xd
k ¼ 1

zkðt; θ̂kÞ
" #2

ð27Þ

where the model orders have been selected according to the
examined model. Note that an improved model will result in a
reduced residual variance, due to the larger extent of data that can
be explained by the model. However, adding new parameters that
does not significantly reduce the residual may result in over-
fitting. For this reason, the analysis of the variance reduction is
crucial for deciding on proper model orders. Table 2 details the
examined models; here, the first model describes the modes as
simple exponentially decaying sinusoids (linear response). Model
2 includes also a second order phase polynomial, enabling the
modeling of the linear frequency change of the resonance fre-
quencies with time. Model 3 further includes an additional phase
coefficient to the dominant vibrational mode, f ð0;1Þ, permitting for
the modeling of a quadratic time dependence on the resonance

Table 2
The examined models of the phase and attenuation polynomials of the studied
modes f ð2;1Þ , f ð0;1Þ and f ð3;1Þ (k¼1, 2 and 3, respectively). Here, Pk and Qk are the
polynomial order of the phase and attenuation in the model, respectively.

Model f ð2;1Þ f ð0;1Þ f ð3;1Þ

Q1 P1 Q2 P2 Q3 P3

1 1 1 1 1 1 1
2 2 1 2 1 2 1
3 2 1 3 1 2 1
4 2 1 4 1 2 1
5 2 1 3 2 2 1
6 2 1 3 3 2 1
7 2 1 3 4 2 1
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Fig. 4. Estimated residual standard deviations for the 10 measurements of the
damage levels (a) D¼1, and (b) D¼2 for the initial four models.
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frequency of the mode. Similarly, model 4 includes a further phase
coefficient to allow also for cubic frequency dependencies. In all
these models, the attenuation is modeled using only a first order
polynomial. Fig. 4 shows the estimated residual standard deviation
for the ten measurements of damage levels D¼1 and D¼2. The

residual standard deviations for damage level D¼3 behave similar
to the ones of D¼2.

We see that the modeling is clearly improved when the
frequency is allowed to vary linear with time (model 2), notably
improving with the successively refining of the model from model
1 to model 3. It may further be noted that including the cubic
dependency allowed for in model 4 does not notably improve the
modeling. We therefore conclude that a reasonable model allows
for the quadratic time dependency on the dominant vibrational
mode, f ð0;1Þ, whereas it is sufficient to allow for a linear time
dependency for the weaker modes, f ð2;1Þ and f ð3;1Þ.

Proceeding to examine the attenuation model, we fix the
polynomial phase orders as found above, i.e., using model 3, while
instead extending models 5–7 to allow for a successively growing
attenuation polynomial of the dominant mode. The resulting
residual standard deviations for the examined measurements
may be seen in Fig. 5, from which it may be noted that a first
order attenuation is sufficient for sample of damage level D¼1,
whereas for damage level D¼2, a second order attenuation is
needed. However, allowing for a third or fourth order attenuation
does not notably reduce the residual standard deviation. There-
fore, we conclude that model 5 seems to be preferable for the
examined measurements, and proceed to use it in the following
evaluation. We note that if including other forms of substances in
the experiment, or if notably changing the model setup, it may be
beneficial to again perform a model order analysis such as the one
above. However, for similar experiments and substances, no
further model order analysis is needed, and the found model
orders may be used directly.

Figs. 6 and 7 illustrate typical modeling results, here shown for
a sample with damage level D¼2. Fig. 6(a) shows the measured
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Fig. 5. Estimated residual standard deviations for the ten measurements of the
damage levels (a) D¼1, and (b) D¼2 for models 3, 5, 6, and 7.
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and pre-filtered (real-valued) signal as compared to the resulting
model signal using the estimated parameters, and Fig. 6(b) shows
a zoomed part of the time domain signal, marked with a rectangle
in Fig. 6(a). As is clear from the figures, the model fits the signal so
closely so that it is difficult to distinguish between the two signals.
This can also be seen in Fig. 7(a), showing the measured and
modeled spectra. The subplot in Fig. 7(a) shows the dominant peak
in more detail. If examined closely, it may be noted that the
modeled signal has a slightly higher magnitude as compared with
the measured signal. The normalized difference between the
measured and modeled signal, in the time domain, is shown in
Fig. 7(b), clearly illustrating the small deviation between the two
signals. Here, to better illustrate the relative error, the difference
between the signals is normalized with the amplitude of the
envelope of the modeled signal; we term this the normalized
deviation. The successively increase of the normalized deviation
with decreasing acceleration of the signal is a consequence from
the LS fitting, which penalizes model deviations in accordance
with the signal amplitude, therefore emphasizing a better fit for
the larger amplitudes at the cost of a worse fit for smaller
amplitudes; the algorithm has been design to behave in this way
as the non-linearity properties will be more pronounced for larger
strain amplitudes. The model deviation observed for accelerations
larger than 2700 m/s2 is probably a consequence from the applied
bandpass filter, which influences mainly the L first time elements
in the model, where L¼228 is the length of the filter.

6. Results and discussion

The measured data is first analyzed using the NIRAS method,
where multiple signals obtained from different impacts with
different strengths are compared for each damage state. The

Fourier transformed data set, including 10 measurements with
different impact strength from each damage state, is illustrated in
Fig. 8(a). Here, the linear effect is clearly seen in terms of a
downshift of frequency with increased damage level. In Fig. 8(b),
the peak frequency, ~f , and attenuation, ~ξ, are shown for three
signals from different damage states, but with similar amplitude in
time domain. These signals are the ones more closely analyzed
with the INRS method further on. The peak attenuation has been
computed as the inverse of the Q-factor; the peak frequency
divided by the full width half maximum (FWHM) for the strongest
mode, f ð0;1Þ. As expected from the conventional linear method
[12,13], a decrease of peak frequency as well as an increase in peak
attenuation with increased damage level of the material can be
observed. Fig. 9 illustrates an analysis obtained with the nonlinear
method NIRAS. Here, the peak frequency shift is studied versus the
peak amplitude for the 10 impacts from each damage level. The
hysteresis parameter c1 is obtained from a linear fit of the data
from the same damage level (see Eq. (5)). As expected, one can
observe an increase in the hysteresis parameter with increased
damage of the specimen. The hysteresis parameter c2 is in a similar
way obtained from a linear fit of the normalized attenuation shift
(see Eq. (6)). Also the hysteresis parameter c2 increases with
enhanced damage, taking the values 1:2� 10�3, 2:2� 10�3 and
2:6� 10�3, when the damage of the sample is successively
increased. Similar to other NIRAS studies, the observed shift in
frequency and attenuation appears to be linear over a dynamic
range of about a factor 8 [19,14,20–23].

Next, we study the results obtained with the proposed INRS
method. Recall that this method requires only one measurement
from each damage state in order to quantify the nonlinearity.
Signals from different damage states, but with similar acceleration
range, have been chosen to avoid effects that may arise from
different initial strain amplitudes. The modeled frequency, f, for
resonance peak f ð0;1Þ, is shown in Fig. 10(a) as a function of the
modeled instantaneous acceleration, for one measurement from
each damage levels D¼1, D¼2, and D¼3, respectively. The shown
model values have been obtained using model 5 and the L initial
elements of the signal, with L being the length of the band pass
filter, have been removed, due to the higher normalized deviation
at these elements arising from the filter process.

Fig. 10(b) shows the modeled normalized frequency for resonance
peak f ð0;1Þ, where we have set the linear resonance parameters, f0, as
the frequency values at an instantaneous acceleration of 70 m/s2,
approximately corresponding to the maximum frequency value
obtained for each signal, as illustrated with the dashed line in
Fig. 10(a). For comparison we have added the NIRAS result shown
in Fig. 9 to the INRS result in Fig. 10(b). The modeled attenuation and
the normalized attenuation for the three signals are shown in Fig. 11,
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where the linear attenuation parameters are the attenuation values at
an instantaneous acceleration of 70 m/s2, as shown in Fig. 11(a). We
note that both the normalized frequency and normalized attenuation
shifts increase with the degree of damage in the sample, which also
agrees with previous studies, and with the NIRAS analysis. However,
the non-linearity is now characterized over a noticeable wider
dynamic range (70–2500 m/s2) and a quadratic shift can be observed,
which is expected over such a wide amplitude (or strain) range
[30,31,27]. It is worth recalling that the amplitude here represents the
true physical amplitude within the center of the sample and that the
acceleration (normal component) is related to volumetric strain
by a factor 10�9. The results from INRS and NIRAS presented in
Fig. 10(b) are thus not directly comparable, since NIRAS are based on
the weighted average of the frequency and the amplitude content in
the complete signal (peak amplitude from the FFT).

Fig. 12(a) shows the modeled frequency versus the modeled
instantaneous acceleration for the 10 measurements made on the
reference sample of steel. For the steel measurements, it was possible
to extract and model the strongest mode alone. It is worth observing
that the frequency resolution is very good (10�6) and the measured
acceleration is much smaller for the heavier steel sample, i.e., the
highest acceleration in steel is 200 m/s2, whereas the concrete
measurements have accelerations approaching 2500m/s2. Note also
that, in agreement with the modeling of the concrete, our modeling of
steel indicates a decrease of frequency with decreasing acceleration for
very low strain amplitudes (o70 m=s2 for concrete and o10 m=s2

for steel, i.e., below our chosen f0 frequency). However, due to the way
the model is designed (weight scaled with signal amplitude) and due
to the low signal-to-noise in this acceleration ranges, it should be
stressed that the normalized deviation is large here and the decreasing
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frequencies are probably a best adjustment to the overall data. Given
the unreliability of the estimation performance in this region, one
should be careful to draw conclusions from the observed behavior at
amplitudes below our chosen f0. Fig. 12(b) shows the normalized
frequency shift for steel, where the linear frequency parameter is again
obtain as the values at the dashed line marked in Fig. 12(a), where the
dashed line has been obtain from an analysis of the normalized
deviation. We note that the normalized frequency shift for steel is of
the order 10�6 in the acceleration range 100–150m/s2, whereas the
normalized frequency shift for concrete in the same acceleration range
is of the order 10�3, emphasizing a notable weaker amplitude
dependence on the reference sample steel, and that no major non-
linear effects are present from the measurement system itself. In
addition, the slow dynamic effect can be seen, i.e., the specimen has
not returned to equilibrium, which results in a successively down-shift
of the resonance frequency for each performed measurement [38].
This effect was not visible in the concrete results, due to the larger
resonance shift with acceleration. It should be noted that the
sensitivity of the measured resonance frequency at 10�6 is better
than the 10�4 limit, which is often considered as the limit in NRUS
measurements under normal experimental conditions [38].

Furthermore, we notice that measurements with larger initial
strain amplitude show a stronger amplitude dependency on
frequency. This effect was also observed in the concrete measure-
ments where stronger amplitude dependency was observed for
both frequency and attenuation. This is likely an effect of exceed-
ing the threshold strain for non-linear and non-equilibrium effects
(slow dynamics), as demonstrated by Pasqualini et al. [31]. The
strain amplitude in this experiment is of the order 10�6–10�8.

7. Conclusions

In this work, we introduce a novel polynomial phase and
attenuation model to describe the free reverberation from a standard
impact resonance frequency test. Using the model, we introduce a
relaxation-based least-squares fitting algorithm allowing for the
reliable estimation of the model parameters, showing how the
algorithm may be used to determine both the number of excited
modes in the measured signal and the appropriate polynomial phase
and attenuation orders for these modes. The proposed model allows
continuous instantaneous true amplitude, frequency, and damping of
each mode to be characterized as a function of time, allowing for
detailed information of the non-linear parameters. The hysteretic
material non-linearity can be characterized over a notably wider
dynamic range compared to conventional NIRAS and NRS measure-
ments. The INRS method only requires one single impact excitation
and is fully compatible with the standard linear resonance test
commonly used for concrete.
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