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Popular science summary 

Breast cancer is the most commonly diagnosed cancer in women worldwide. The 
first step in the treatment of breast cancer is usually surgery. Depending on the 
characteristics of the tumor, most patients will need additional treatments like 
chemotherapy and/or anti-hormonal treatment. In some cases, the disease progress 
and new treatment options are thus warranted. In Sweden, close to 20% women 
regularly take common cholesterol-lowering medications (statins). Statin use has 
been linked to a good outcome in some breast cancer patients, but not all breast 
cancer patients benefit from statin treatment; thus, our goal here was to identify 
biological markers, i.e., biomarkers, which can be used to select patients that would 
benefit from the addition of statins to their regular cancer treatment. 

The mechanisms by which statins prevent breast cancer cell growth is an area that 
needs further investigation in the laboratory. In the first study presented here, we 
treated various breast cancer cell lines with statins. The cell lines had varying 
response to the anti-cancer effect of statins: Some cell lines were sensitive and 
others resistant. We then compared how different proteins changed between the 
sensitive and resistant cell lines. Fatty acids are a lipid component of human cells. 
We identified a protein involved in the production of fatty acid that was increased 
in statin-insensitive cell lines. Future studies will test the expression of this protein 
in clinical studies to understand if it can be used to select patients that can be treated 
with statins to prevent the return of breast cancer. 

The second study is based on the Malmö Diet and Cancer Study cohort. We selected 
360 breast cancer patients diagnosed with breast cancer from 2005-2014 and 
compared the breast cancer recurrence between the patients who used statins with 
those who were non-users. Breast cancer can either recur loco-regionally, i.e., the 
disease reappears in the breast, chest wall, armpit, skin near the original tumor, 
lymph nodes around the chest, neck, and under the breast bone. It can also recur 
distantly, i.e., in other parts of the body. Our study showed that statin users 
experienced fewer recurrences to distant sites compared to the non-statin users.  

Most breast cancer cells require estrogen for growth, and the supply of estrogen can 
be blocked by anti-hormone treatment. CYP27A1 is a protein that helps maintain 
stable cholesterol levels in the cell. When cholesterol is broken down in the cells by 
CYP27A1, it creates a molecule called 27-hydroxycholesterol that can act as 
estrogen. When cancer cells are deprived of estrogen they depend on this new 
molecule for growth. Statins reduce cholesterol levels in the cells, thereby reducing 
the supply of this estrogen substituted (27-hydroxycholesterol). In the third and 
fourth studies, we investigated the role of CYP27A1 in breast cancer prognosis, in 
postmenopausal and premenopausal breast cancer patients, respectively. The third 
study was based on two patient cohorts of postmenopausal women from southern 
Sweden: The results showed that high expression of CYP27A1 is not a good 
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prognostic marker. The fourth study is a combination of patient and laboratory 
studies. We showed that high CYP27A1 expression is a good prognostic marker in 
young breast cancer patients and that high 27-hydroxycholesterol reduced breast 
cancer proliferation.  

One of the mechanisms by which cancer cells develop resistance to regular anti-
hormonal treatments is by increasing cholesterol production in the cells. Statins 
block cholesterol synthesis in the cells. Thus, we wondered if we could use statin 
treatment to block cholesterol synthesis and thus stop resistance mechanism. To 
answer this question, the fifth study exposed breast cancer cells to anti-hormonal 
treatments together with statins. The drugs were administered alone or in 
combination for a prolonged time period. Statin treatment inhibited the upregulation 
of the proteins involved in the cholesterol-production mechanism. This study 
suggests that statins can be included as an additional treatment option—especially 
for postmenopausal women.  

The results conclusively show that statins reduce breast cancer recurrence in a 
subgroup of women. Future work will identify biomarkers to determine which 
patients will benefit the most from using statins in addition to standard adjuvant 
therapy. This thesis offers improved insight into the impact of the statin combination 
treatment in breast cancer leading us one step closer to understanding if statins can 
be an addition to existing treatment options in breast cancer therapy. 
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Background 

Cancer 

The recorded history of the disease cancer dates back to the Hippocrates period 
(460-370 BC). Hippocrates used the term carcinos and carcinoma (both terms 
meaning crab/crayfish in Greek) to describe non-ulcer-forming and ulcer-forming 
tumors. 

After almost two thousand years of clinical observations, studies, and research, 
humankind have delineated a very complex picture of this disease. In 2000, Hanahan 
and Weinberg published an article ‘The hallmarks of cancer’ describing six key 
steps necessary for a normal cell to transform to a cancer cell1. This list was later 
updated with two ‘next-generation hallmarks’ and two enabling characteristics 2. 
The hallmarks currently comprise the acquired capabilities for sustaining 
proliferative signaling, evading growth suppressors, resisting cell death, enabling 
replicative immortality, inducing/accessing vasculature, activating invasion and 
metastasis, reprogramming cellular metabolism, avoiding immune destruction, 
genome instability and tumor-promoting inflammation. The latest update in 2022 
proposed two more emerging hallmarks and enabling characteristics3 as depicted in 
Figure 1. 

 

Figure 1: Hallmarks of cancer. Left: the hallmarks of cancer proposed in 2011. Right: latest proposed hallmarks 
in 2022.  
Reprinted from Cancer discovery, 2022, 12(1), 31-46, Hanahan D, Hallmarks of Cancer: New dimensions; with 
permission from AACR. 
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Breast cancer 

Epidemiology 

Breast cancer is the most commonly diagnosed cancer in women worldwide4. In 
2020, about 2.3 million cases were diagnosed globally4 with 10,043 incident cases 
reported in Sweden5. Figure 2 shows the age-standardized breast cancer incidence 
in Sweden from 1970 to 2020 as well as the age-specific incidence in 2020. Disease 
incidence varies between countries, with the highest incidence rates (>80 per 
100,000) in Australia/New Zealand, Western Europe, Northern America, and 
Northern Europe. The lowest rates (<40 per 100,000) are in Central America, 
Eastern and Middle Africa, and South Central Asia6. This difference is attributed to 
various reproductive and lifestyle risk factors, which are described further in the 
‘Risk factors’ section below. 

 

Figure 2. Breast cancer incidence across time and age groups in Sweden. Source: the Swedish Cancer Register 
and The National Board of Health and Welfare. 

Biology of disease onset 

The evolution of a pre-neoplastic cell into a detectable tumor is a multistep process. 
Tumor formation is facilitated by changes at the molecular and cellular levels 
allowing the cells to acquire the ‘core hallmarks’ and ‘enabling characteristics’ of 



16 

cancer3. At the molecular level, two major pathways have been suggested to be 
involved in the transformation process: low-grade-like pathways and high-grade-
like pathways. Each are characterized by specific chromosomal aberrations. The 
gene expression signature of the low-grade-like pathway is associated with the 
estrogen receptor positive phenotype, diploid, or near diploid karyotypes as well as 
a low tumor grade. The luminal A subtype and to some extent the luminal B subtype 
fall into this pathway7. The high-grade-like pathway has an expression signature of 
genes involved in the cell cycle and cellular proliferation. Tumors composed of 
intermediate to high grade, including human epidermal growth factor receptor 2 
(HER2) positive tumors and triple negative breast cancers, fall into this pathway7. 

Risk factors 

Increased risk of breast cancer has been attributed to various genetic and lifestyle 
factors. Women with germline mutations in the BReast CAncer 1 or 2 genes 
(BRCA1 or BRCA2) have a 70% increased risk of being diagnosed with breast 
cancer8. Monoallelic germline mutations in PALB2 (partner and localizer of 
BRCA2) also lead to increased risk of being diagnosed with breast cancer9.  

Several other risk factors are associated with an increased life-time breast cancer—
mostly centered around increased lifetime exposure to endogenous estrogen, i.e., 
early menarche, late menopause, nulliparity, low parity, and older age at first full-
term pregnancy10. 

Apart from genetic- and menstrual/pregnancy-related factors, there are also lifestyle 
factors like obesity, smoking, alcohol consumption, and low physical activity that 
contribute to an increased lifetime risk of breast cancer11. These factors are also 
sometimes referred to as modifiable factors.  

Obesity 

Obesity is defined as a body mass index equal to or greater than 30 kg/m2 and is 
associated with multiple comorbidities like type II diabetes, hypertension, non-
alcoholic fatty liver disease, and dyslipidaemia12. In postmenopausal women, 
obesity is associated with increased risk of breast cancer incidence as well as worse 
prognosis 13-15. However, the link between premenopausal breast cancer incidence 
and obesity is less clear. Various biological mechanisms have been proposed to 
explain the association between obesity and breast cancer risk. In post-menopausal 
women, the ovaries cease to produce estrogen and the main estrogen source is 
adipose tissue. In obese post-menopausal women, heightened aromatase activity 
leads to increased estrogen synthesis16 consequently increasing breast cancer risk17. 
Other mechanisms like altered insulin resistance 18 and signaling from adipokines 
like leptin19 also mediate the link between obesity and breast cancer.  
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Prognostic and treatment predictive factors 

Predictive and prognostic factors are of high relevance in the management of breast 
cancer. These markers guide treatment decisions and care planning. Apart from the 
classical clinico-pathological features (age, tumor size, lymph node status, 
metastatic involvement and histological grade), cardinal biomarkers routinely 
assessed in the clinical setting are estrogen receptor alpha (ER), progesterone 
receptor (PgR), and HER2.  

Age 

Breast cancer biology is dependent on age, the risk of getting diagnosed with breast 
cancer increases with age. However, breast cancers diagnosed in younger women 
<40 years, are often associated with worse prognostic features like hormone 
receptor negativity and higher histological grade20.  

TNM classification 

TNM classification is a staging system used to determine the clinical stage of the 
disease. T defines the size of the primary tumour, N describes the degree of regional 
lymph node involvement, and M describes the presence of distant metastasis21. All 
of these factors - larger size of the primary tumor, higher number of lymph nodes 
involved and extend of metastatic spread, are indicators of poorer prognosis in 
breast cancer.  

Histological grade 

The Nottingham histological grading system, widely used to assess the grade of 
solid tumors was developed by Elston and Ellis22. In this system factors like tubule 
formation, nuclear pleomorphism and mitotic count are considered to classify 
tumors in to three categories I–III. Grade I tumors are well-differentiated, grade II 
moderately differentiated and grade III tumors are poorly differentiated. Grade III 
tumors are associated with poor prognosis.  

Ki67 

Ki67 is a protein expressed in the cell nuclei of proliferating cells and is used to 
assess the proliferative status of a tumor. Ki67 status is assessed by quantifying the 
percentage of tumor cell nuclei that stain positive in a specified area of a tumor. In 
Sweden, Ki67 is routinely assessed in the clinic and patients are stratified to low, 
intermediate or high Ki67, where high Ki67 indicate aggressive tumors23.  

Estrogen receptor 

The majority (70-80%) of the diagnosed breast cancers express ER and depend on 
proliferative signaling via estrogen. The first human ER was cloned using RNA 
from the breast cancer cell line MCF-724. In the classical mechanism of estrogen 
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signaling, estrogen binds at the ligand-binding domain of ER. The ligand-bound ER 
is then translocated to the nucleus where it binds to the chromatin and regulates the 
expression of various downstream genes25. ER signaling is the main growth and 
proliferative stimuli for ER+ breast cancers, and this receptor is the main target of 
endocrine therapies.  

Progesterone receptor 

PgR is also a hormone-dependent nuclear transcription factor. Progesterone is the 
main ligand of PgR and signaling is involved in mammary gland development. Most 
tumors have a concordant expression of PgR and ER; tumors expressing PgR but 
not ER are rare26. 

HER2  

HER2 expression (amplification) was initially a poor prognostic marker, but later 
became a treatment-predictive marker. HER2 is a transmembrane tyrosine kinase 
receptor. A specific ligand for this receptor has yet to be identified, but 
overexpression of this receptor leads to constitutive signaling induced by interaction 
with other tyrosine kinase receptor partners leading to cellular proliferation27.  

Subtypes 

Breast cancer is a heterogeneous disease. Histological, immune-pathological and 
molecular criteria have been used to subtype breast cancer.  

Histological subtypes 

The most common histological subtype is invasive ductal carcinoma (also known 
as no special type) followed by invasive lobular carcinoma. The pre-invasive 
counterparts of these lesions are called ductal carcinoma in situ and lobular 
carcinoma in situ, respectively. Invasive ductal carcinomas are characterized by a 
fibrous response to produce a mass. These cancers tend to metastasize via lymphatic 
and blood systems. However, invasive lobular carcinomas have minimal fibrous 
response and are more likely to metastasize to viscera28. 

Immuno-pathological subtypes 

Breast cancers are clinically classified based on the expression of hormone receptors 
ER and PgR, as well as HER2. Based on these markers, breast cancer is broadly 
divided into three main subtypes: hormone receptor positive (ER+ or PgR+ and 
HER2-), HER2 positive (HER2+ regardless of ER or PgR status), and triple 
negative breast cancer (TNBC) (ER- and PgR- and HER2-). 

Intrinsic molecular subtypes 
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In 2000, Sørlie et al. identified gene expression patterns that distinguish breast 
cancer subtypes with clinical implications. These gene signatures largely 
recapitulated the existing immuno-pathological classification. The main intrinsic 
subtypes are Luminal A, Luminal B, HER2 enriched, and basal like. There are other 
rare, clinically relevant subtypes such as Claudin-low and a normal-breast like 
group29-31 .  

The Luminal A subtype is characterized by a high expression of ER-related genes 
with a concomitant low expression of genes linked to cell proliferation32. The 
increased dependence on ER-regulated genes makes this subtype more sensitive to 
endocrine manipulation. The Luminal A subtype is associated with a favorable 
prognosis.  

Relative to Luminal A tumors, Luminal B subtype tumors are characterized by an 
increased expression of cell proliferation markers. Even if the expression levels of 
the estrogen receptor is similar in both luminal subtypes, the expression of several 
luminal related genes/proteins (PgR, FOXA1) is lower in the luminal B group33.  

As the name suggests, the HER2-enriched subtype has an increased expression of 
the HER2 gene. The HER2 status is assessed at the protein level by 
immunofluorescence or at the gene level by fluorescence in situ hybridization 
(FISH)34. This subtype features an intermediate expression of luminal-related genes 
and a high number of mutations across the genome; 72% and 39% of HER2-
enriched tumors are TP53 and PIK3CA mutated, respectively28, 33.  

The basal subtype is characterized by the absence of hormone receptors or HER2 
amplification and a high expression of proliferation related genes. These tumors are 
usually presented with a high mutational load. The basal-like subtype is associated 
with a worse prognosis with a higher short-term recurrence rate and higher mortality 
rates35.  

Surrogate subtypes 

The application of gene expression analyses in daily clinical practice is limited by 
the high technical expertise and costs. Thus, a surrogate clinic-pathological system 
using four biomarkers (ER/PgR/HER2 and Ki67) was derived to subtype tumors in 
the clinic.  
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Table 1. Clinicopathological surrogate subtypes of breast cancer 

Instrinsic subtype Surrogate subtype Characteristics 

Luminal A Luminal A- like ER/PgR positive 
HER2 negative 
Ki67 low 

Luminal B Luminal B- like / HER2 negative 
 
 
 
 
Luminal B- like/ HER2 positive  

ER positive 
HER2 negative 
At least one of the following  
Ki67 high or low or negative PgR 
 
ER positive 
HER2 positive 
Ki67/ PgR any 

HER2 enriched HER2 positive ER/PgR negative 
HER2 positive 

Basal like Triple negative  ER/PgR/HER2 negative 

 

Treatment of early-stage breast cancer 

Neoadjuvant therapy 

According to the 2021 St. Gallen guidelines, pre-operative neoadjuvant systemic 
therapy is recommended for women presenting with grade II or III, HER2 positive 
or triple negative breast cancers. The neoadjuvant therapy aids in down-staging the 
tumor and helps with surgical intervention as well as starting systemic therapy as 
early on as possible following diagnosis, and to provide a biological treatment 
response. In certain cases, the response to neoadjuvant treatment is used as a 
treatment-predictive biomarker for adjuvant treatment36.  

Local-regional therapy 

Surgery is the primary therapeutic intervention for most women diagnosed with 
early-stage breast cancer. The tumor mass is surgically removed either by 
mastectomy or breast-conserving surgery depending on the patient and tumor 
characteristics. Axillary lymph nodes are the primary site of a metastatic spread, and 
sentinel node or axillary resection is also performed to stage the lymph nodes. 
Lymph node positivity status is used to guide further treatment decisions36. Breast-
conserving surgery is usually followed by local radiation therapy to prevent local 
metastatic spread of the disease and thereby reduce the risk of loco-regional 
recurrences.  

Systemic treatment 

After surgery, systemic treatment is given to reduce the risk of distant metastatic 
spread of the disease. The adjuvant treatment regimen is decided based on various 
prognostic biomarkers/risk factors like the anatomic stage and subtype of the tumor 
and menopausal status of the patient.  
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Adjuvant endocrine therapy sometimes preceded by chemotherapy is recommended 
for ER-positive/HER2-negative tumors. If chemotherapy is deemed necessary after 
the risk assessments, then adjuvant chemotherapy is initiated a few weeks after the 
surgery. Most common agents are anthracyclines and taxanes28. Endocrine therapy 
(tamoxifen/aromatase inhibitors) is used to inhibit ER signaling. Tamoxifen is a 
selective estrogen receptor modulator (SERM): It binds to the ER, thus modifying 
the receptor structure and blocking the ligand binding and subsequent downstream 
signalling37. Aromatase inhibitors prevent estrogen synthesis by blocking the 
aromatase enzyme38. HER2-targeted therapy in combination with chemotherapy is 
recommended to treat patients with HER2-positive tumors. Monoclonal antibodies 
(trastuzumab/pertuzumab) bind to HER2, which is a receptor tyrosine kinase that 
disrupts downstream cell signalling39. 

Metastatic breast cancer 

Despite receiving standard local and adjuvant treatments, around 30% of breast 
cancer patients will eventually experience disease relapse. Metastatic breast cancer 
is still incurable with only palliative treatment options. To metastasize, tumor cells 
from the primary tumor must escape the physical barriers of the primary site, 
intravasate into the lymphatic and/or vascular system, infiltrate, and then proliferate 
in the distant organ40. The entire metastatic cascade is a complex process of many 
different genetic and epigenetic alterations of the tumor cells and surrounding 
stroma of the primary site as well as the distant organ. There are two main proposed 
models of tumor progression—the linear and the parallel progression model. The 
linear progression model considers metastatic dissemination to be a late event where 
various sub-clones in the primary tumor undergo a sequential selection process to 
form metastases41. The parallel progression model postulates that cancer cells 
acquire metastatic potential and is seeded at the distant sites already during the 
primary tumor formation42. The most common sites of breast cancer metastases are 
bone, lung, brain, and liver43.  

Endocrine therapy resistance 

Even if most patients do well on adjuvant endocrine treatments, 20 - 30% of patients 
experience disease relapse usually presenting with an endocrine therapy-resistant 
disease. Metastatic disease is incurable and one of the major clinical challenges. The 
main mechanisms underlying therapy resistance are discussed below. 

Loss of ER expression/ function 

Loss of receptor expression in advanced breast cancer leads to endocrine therapy 
resistance for obvious reasons. This phenotypic change has been observed in various 
clinical and in vitro studies44, 45. A more common way of tumors becoming 
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refractory to endocrine treatments is by acquiring mutations in the ESR1 gene. 
Genomic analyses of advanced/metastatic breast cancers revealed that 
approximately 20% of these tumors harbor mutations in the ligand binding domain 
of the ESR1 gene. The most common ESR1 mutations are located at two amino acids 
Y537N/C/S and D538G in the ligand-binding domain. These mutations have been 
detected in circulating tumor DNAs46 and also has been studied widely in in vitro 
cell line models28, 47, 48. These mutations confer ligand-independent constitutive 
activation of the receptor-inducing endocrine-therapy resistance. 

Cross-talk with other signaling pathways  

Growth factor signaling pathways are usually a cascade of tyrosine kinase receptors 
whose activation leads to cell proliferation. Cancer cells hijack these signaling 
pathways to induce aberrant cell proliferation and transformation. Even though ER+ 
breast cancer cells rely largely on ER signaling for proliferation and survival, other 
growth factor signaling pathways are also active. Figure 3 shows that various 
cellular kinases can phosphorylate the ER and its co-regulatory proteins. Ligand-
bound ER has been shown to bind and activate growth factor receptors like insulin-
like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor 
(EGFR). These receptor activations subsequently can lead to the activation of other 
key signaling molecules and pathways including members of the Src family, matrix 
metalloproteinase, G-proteins, and the regulatory subunit of phosphatidyl-inositol-
3 OH kinase (PI3K). The upregulation of other signaling pathways is an important 
resistance mechanism in ER+ breast cancer due to this wide cross talk between 
cellular signaling pathways49, 50. 

 

Figure 3. Cross-talk between ER signaling and signal transduction pathways. 
Reprinted from Clinical Cancer Research, 2010, 16(7), 1979-87, Stephen R.D. Johnston, New strategies in estrogen 
receptor positive breast cancer with permission from AACR. 
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Upregulation of cholesterol biosynthesis 

Laboratory and clinical studies have shown that breast cancer cells upregulate the 
genes in the lipid metabolism/cholesterol biosynthesis to acquire endocrine therapy 
resistance51-53,54, 55. Integrative analyses of aromatase inhibitor resistant cells by 
Nguygen et al. identified a stable upregulation of genes involved in cholesterol 
biosynthesis as a mechanism of endocrine therapy resistance52. Their data suggest 
that long-term estrogen-deprived cells convert increased cholesterol production to 
27-hydroxycholesterol (27HC). Twenty seven hydroxycholesterol is an endogenous 
SERM, which can act as an ER ligand in long term estrogen deprived cells56, 57. Du 
et al. later studied the impact of long-term estrogen deprivation (to mimic aromatase 
inhibitors) in invasive lobular carcinoma cell line models. This study also reported 
an up-regulation of cholesterol biosynthesis genes in these aromatase inhibitor-
resistant cell lines54. In 2018, Hultsch et al. generated tamoxifen-resistant cell lines 
and used RNA sequencing to identify differentially expressed genes/pathways. 
Long-term tamoxifen treatment led to differential expression of cholesterol genes in 
T47D breast cancer cells: These changes were phenotypically observed by a marked 
increase in the intracellular cholesterol levels51. The changes in cholesterol 
metabolism were also observed in three metastatic patient samples51. 

Cholesterol 

Cholesterol constitutes the single major sterol species of the vertebrate cell 
membranes. In addition to its functional role in cell membranes, cholesterol acts as 
the precursor for steroid hormones and bile acids58. Cholesterol found in a particular 
tissue can either be synthesized endogenously within the cells or absorbed 
exogenously from circulating lipoprotein cholesterol via the low-density lipoprotein 
receptor (LDLR). The de novo cholesterol synthesis pathway, also known as the 
mevalonate pathway, begins with the synthesis of HMGCoA from acetyl CoA 
molecules. A series of reactions (Figure 4) lead to the bulk synthesis of cholesterol. 
The mevalonate pathway is tightly regulated to maintain the intracellular cholesterol 
levels (Figure 4)59, 60.  

Cholesterol degradation to bile acids in the liver can be initiated by either cholesterol 
7α-hydroxylase (CYP7A1) of the classic (neutral) pathway or by mitochondrial 
sterol 27-hydroxylase (CYP27A1) of the alternative (or acidic) pathway. Oxysterols 
are oxygenated derivatives of cholesterol synthesized as by-products during bile 
acid pathway61. Oxysterols were once considered to be simple metabolites. But 
recent research implicate that oxysterols are involved in other functions like 
autocrine and paracrine cellular signalling62. One of the main means by which the 
oxysterols regulate other cellular functions is by binding to nuclear receptors. 
Independent studies have identified 27HC—an oxysterol synthesized during the 
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alternative bile acid pathway by the CYP27A1 enzyme—as the link between 
cholesterol and breast cancer63, 64. This link is described in detail in the section 
below.  

The nuclear receptor superfamily consists of 48 ligand-inducible transcription 
factors. Lipophilic ligands capable of crossing the plasma membrane can bind to 
these intracellular receptors. Ligand binding triggers the nuclear receptors to bind 
to their respective DNA response elements, thus releasing corepressors and 
recruiting coactivators to promote transcription of downstream target genes65. In 
terms of cholesterol homeostasis, liver X receptors (LXRs) are thought to be a major 
target of oxysterols. Specifically, LXR activation leads to the induction of target 
genes involved in cholesterol efflux (ATP binding cassette (ABC) transporters 
A1/G1/G5/G8)66. 

 
Figure 4. Cholesterol homeostasis mechanism.  
Cholesterol is synthesized from acetyl-CoA in the endoplasmic reticulum or taken up from circulation via the LDLR. 
When intracellular sterol levels are low, Insig dissociates from Scap and Scap enable the translocation of SREBP to the 
Golgi for processing by the proteases. This results in the release of a SREBP transcription factor that translocate to the 
nucleus leading to the upregulation of the SREBP target genes HMGCR, LDLR, etc. (indicated by the green arrows). 
High intracellular cholesterol levels induce a negative feedback loop via HMGCR. Cholesterol binds to Scap and 
oxysterols bind to Insig causing the retention of Scap/SREBP in the endoplasmic reticulum. Oxysterols also act as 
ligands for the LXR upregulating transcription of LXR target genes (indicated by red arrows). These genes include 
ABCA1 and ABCG1, which synergize to export cholesterol from the cell. Excess cholesterol can also be esterified by 
ACAT for storage in an inactive form. Reprinted from Chemistry and Physics of Lipids, 199, Howe V et al, Cholesterol 
homeostasis: How do cells sense sterol excess? 170-178., 2016, with permission from Elsevier. 
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Cholesterol metabolism and breast cancer 

Cholesterol is an essential component of cell structures and a precursor molecule of 
estrogen; thus, one would expect to observe a direct correlation between serum 
cholesterol levels and breast cancer incidence/recurrence. However, 
epidemiological studies have been inconclusive with studies reporting null 
findings67-71, positive associations72-76, or negative associations76, 77. Laboratory 
studies investigating the link between cholesterol and breast cancer have yielded 
more conclusive findings. Llaverias and Alikhani et al. independently showed that 
the time required for tumor formation in mice that were on high cholesterol diet 
were shorter than the control group78, 79. ER-negative (ER-) breast cancer cell lines 
were more dependent on lipids for proliferation and migration80-82. Further 
mechanistic studies identified the oxysterol 27HC as the connecting link between 
ER-positive breast cancer and cholesterol.  

27-hydroxycholetserol, CYP27A1, and breast cancer  

27HC is an oxysterol synthesized during the alternative bile acid pathway. In 2007 
and 2008, two independent studies showed that 27HC is a selective ER modulator 
(SERM)56, 57. Umetani et al. conducted a mechanistic study to assess the ER-
stimulation properties of various oxysterols. This study reported that the oxysterols 
4S-hydroxycholesterol, 25-hydroxycholesterol, and 27HC were capable of 
inhibiting the actions of estradiol 57. In a follow-up study, DuSell et al. reported that 
upon binding of 27HC, the ER assumed a structural conformation unique from 
tamoxifen or estradiol binding56. The ER modulatory effects of 27HC are tissue/cell 
type specific: In models of cardiovascular diseases, it behaves as an ER antagonist 
while in models of ER+ breast cancer it is a partial agonist56, 57, 83. Further in vitro 
and in vivo studies investigated the link between cholesterol and breast cancer with 
a focus on 27HC. Two independent studies showed that 27HC treatment induced 
tumor growth in MCF7 xenograft mouse models. These studies also showed that 
this tumor-promoting effect of 27HC was mediated by the expression of the 
CYP27A1 enzyme. Ablation of CYP27A1 expression in these transgenic mouse 
models attenuated the tumor-promoting effects of 27HC63. However, a later study 
that unraveled the role of cholesterol biosynthesis in endocrine therapy resistance 
showed that breast cancer cells were insensitive to the proposed growth-promoting 
effects of 27HC55. Recently it was also shown that 27HC promote breast cancer cell 
migration and invasion in ER positive as well as negative cell lines mediated by 
ERβ signaling82. 

As mentioned before, the LXRs are a major target of oxysterol binding. 27HC is an 
LXR agonist—their activation leads to reduced cellular proliferation. This scenario 
presents a competition between 27HC signaling via these two (ER and LXR) known 
receptors. Mechanistic studies show when either of the receptors are 
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downregulated/antagonized, 27HC can signal via the other available receptor63, 83. 
This also means that the balance between proliferative or anti-proliferative effects 
of 27HC signaling can be influenced by other biochemical factors like the 
abundance of estradiol. 

 

Figure 5. Role of 27HC in breast cancer. 27HC is produced by CYP27A1 during the bile acid synthesis pathway. This 
pathway primarily active in the liver cells is also functional in other cell types like macrophages and tumor cells. 27HC 
binds to and signal via nuclear receptors ER (α, β) and LXR. 
 

CYP27A1 synthesizes 27HC and hence has been used in various studies as a 
surrogate biomarker for pathological actions of 27HC. The first study to assess 
tumoral expression of CYP27A1 in breast cancer did not find any prognostic role63. 
However further studies identified a significant prognostic role for CYP27A1 
expression in breast cancer. In 2017, Kimbung et al. showed that high CYP27A1 
expression was associated with increased recurrence-free and overall survival times 
in ER+ breast cancer patients who were younger than 50 years of age84. These 
findings were further validated by Nelson et al. using an online Kaplan-Meier 
Plotter tool, which also indicated that high CYP27A1 expression was a good 
prognostic marker85. These findings were counterintuitive to the theory that 27HC 
promotes BC cell proliferation because one would expect that high CYP27A1 
expression would mean poor prognosis. The speculation was that high 27HC 
binding abrogated the effects of estrogen signaling in pre-menopausal women 
because the amount of circulating estrogen is higher.  
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Cholesterol lowering medication – Statins 

Identification of statins as the first class of cholesterol-lowering medications is 
considered to be a therapeutic milestone in the field of cardiovascular diseases86. 
Statins inhibit HMG-CoA reductase activity, thus preventing de novo cholesterol 
synthesis. To maintain intracellular cholesterol homeostasis, cells upregulate 
LDLR-mediated endocytosis of plasma LDL, thus reducing plasma cholesterol87. 
Cholesterol is linked to tumor proliferation and treatment resistance, and thus statins 
are generally well-tolerated drugs; nevertheless, there is great interest in repurposing 
statins as anti-cancer agents.  

Statins and breast cancer 

In vitro studies 

The impact of statin treatment on breast cancer cells has been investigated since the 
early 90s. The anti-proliferative impact of statin on breast cancer cells could be 
attributed to the reduction of the mevalonate derivative proteins farnesyl 
pyrophosphate and geranylgeranyl pyrophosphate—these are isoprenoids involved 
in prenylation of RAS and Rho proteins necessary for cell signaling88. In a 
pioneering study, Keyomarsi et al. treated MCF7 breast cancer cell line with 
lovastatin and reported that lovastatin treatment arrested the cell cycle in the G1 
phase89. Further studies from the same group showed that lovastatin treatment 
induced expression of p21 and p27 in different BC cell lines90. Later in 2001, 
Denoyelle et al. showed that statin treatment reduced the tumorigenic and migratory 
properties of triple negative breast cancer cells by inhibiting its Rho-dependent 
pathway88. Later studies identified that not all breast cancer cell lines were equally 
sensitive to the anti-proliferative effects of statins. Cell lines with activated Ras or 
ErbB2 (HER2) pathways as well as cells that lacked ER expression were more 
sensitive to the anti-proliferative effects of statins91, 92. Due to this heterogeneous 
response to statin treatment, studies were designed to identify predictive biomarkers 
for clinical utility. Goard et al. and Kimbung et al. identified gene expression 
signatures that could predict statin sensitivity92, 93. High expression of cholesterol 
biosynthesis genes was found to be a marker of statin insensitivity93. In vivo mouse 
models were used to show that atorvastatin treatment selectively suppressed the 
epithelial mesenchymal process and prevented liver and lung metastases94, 95. 

Epidemiology and Clinical studies  

Even if there is limited evidence for an association between statin use and breast 
cancer risk, epidemiological studies have been more consistent in showing an 
inverse association between statin use and reduced disease recurrence. In 2011, a 
prospective study conducted in Denmark with 18,769 participants reported a 
significant reduction in breast cancer recurrence after 10 years of follow-up 
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(adjusted HR=0.70 (0.57–0.86))96. Both pre- and post-diagnosis statin use was 
associated with a lower breast cancer death HR=0.54 (0.44–0.67) and HR=0.46 
(0.38–0.55), respectively 97. When the association between cholesterol-lowering 
medication and disease recurrence during endocrine therapy was investigated in the 
BIG 1-98 trial98, the use of cholesterol lowering medication was found to improve 
disease-free survival (HR=0.79 (0.66–0.95)), breast cancer-free interval (HR=0.76 
(0.60–0.97)), and distant recurrence-free interval (HR=0.74 (0.56–0.97))99. A 
Swedish nationwide study also showed a lower risk of breast cancer-related deaths 
among statin users including both pre-diagnostic and post-diagnostic statin use 
(HR=0.77 (0.63-0.95)) and (HR=0.83(0.75–0.93)), respectively100. Other studies 
found no association between statin use and disease recurrence101, 102.  

To the best of my knowledge, only three window-of-opportunity trials have been 
conducted in clinical settings to assess the impact of statin use in breast cancer. All 
of these studies consistently showed a decrease in tumor proliferation (assessed by 
Ki67 status) in post statin treatment samples versus pre-treatment samples103-105. 
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Background to this thesis 

The link between cholesterol and breast cancer prognosis is not completely 
understood. Evidence from pre-clinical, clinical, and epidemiological studies 
consistently show that the cholesterol-lowering medication (statins) might have a 
protective role against breast cancer recurrence. A biomarker to select for patients 
that would benefit from adding statins to their adjuvant treatment regime is lacking. 
Laboratory studies have identified biomarkers that are differentially expressed in 
breast cancer cells with varying sensitivity to growth inhibition by statins. However, 
the treatment-predictive clinical utility of these biomarkers is still unclear.  

Upregulation of cholesterol biosynthesis is a mechanism of endocrine therapy 
resistance in breast cancer cells. 27HC is an oxysterol abundant in the circulation 
that has been identified as one of the links that connects cholesterol to breast cancer 
pathology. 27HC is an endogenous SERM with differential ER regulatory properties 
depending on the available estrogen levels. CYP27A1 is an enzyme that synthesizes 
27HC and has been used as a proxy biomarker to study the impact of 27HC in breast 
cancer. Statins inhibit cholesterol biosynthesis and thus reducing 27HC levels and 
in turn could abrogate ER activation in breast cancer cells.  
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Hypotheses 

 In vitro statin treatment might induce differential response in 
cholesterol/fatty acid metabolism in statin insensitive versus sensitive cell 
lines. 

 Post-diagnosis statin use is protective against disease recurrence in 
postmenopausal breast cancer patients. 

 Tumor-specific expression of CYP27A1 has differential prognostic impact 
based on the menopausal status of the patients.  

 Long-term statin combination with estrogen deprivation downregulates the 
CYP27A1 expression and epithelial to mesenchymal markers in breast 
cancer cell lines. 
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Aims 

Overall aim 

 The overall objective was to investigate breast cancer progression while 
emphasizing the cholesterol-breast cancer linkage in estrogen-receptor-
positive breast cancer patients. 

Specific aims  

 Investigate and compare the response in cholesterol and fatty acid metabolic 
pathways in breast cancer cell lines displaying varying sensitivity to statin 
treatment. 

 Study the prognostic impact of statin use regarding breast cancer prognosis. 

 Characterize CYP27A1 expression in primary invasive breast cancers in 
relation to tumor pathological features and study its prognostic impact in 
pre- and post-menopausal breast cancer patients. 

 Study the molecular impact of long-term concomitant statin and endocrine 
therapy on breast cancer cell lines. 
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Patient cohorts 

Papers II, III, and IV in this thesis are based on the following patient cohorts. 

The Malmö Diet and Cancer Study (Papers II and III)  

The Malmö Diet and Cancer Study (MDCS) is a population-based prospective 
cohort study initiated to study the associations between diet and cancer106. The 
inclusion criteria were Swedish language proficiency and mental ability to 
understand the extensive questionnaires. A total of 68,905 eligible individuals 
comprising both men and women were invited and 28,098 enrolled individuals 
completed all study parts. Among the individuals who completed all the study parts, 
17,035 were women born between 1923 and 1950. During 1991-1996, all of these 
women visited the study center for baseline examinations where body 
measurements and blood samples were collected. On a yearly basis, linkage to the 
South Swedish Regional Tumor Registry, the Swedish Cancer Registry, and the 
Swedish Cause of Death Registry was performed to identify incident breast cancer 
cases, vital status, and cause of death106. 

In the MDCS cohort there were 1,240 incident breast cancer cases diagnosed during 
the years 1991-2014. The Swedish prescription registry was initiated in 2005, and 
hence the medication history of the patients diagnosed before 2005 is not available; 
thus, these patients were excluded from subsequent analyses. Patients who had in 
situ carcinoma, bilateral cancers, were premenopausal at the time of diagnosis, or 
those who had pre-diagnostic statin use were also excluded (Figure 6).  
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Figure 6. CONSORT diagram of study II. Flowchart showing numbers of patients included in and excluded from the 
analyses 

Paper III included invasive breast cancer cases diagnosed during 1991-2010. The 
exclusion criteria detailed in the paper led to 645 cases evaluable for CYP27A1 
expression (Figure 7).  
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Figure 7. Consort diagram of MDCS included in study III. Flowchart showing numbers of patients included in and 
excluded from the analyses 

The Breast Cancer and Blood cohort 

The Breast Cancer and Blood (BC-blood) cohort is a prospective cohort study 
initiated in October 2002 in Lund, Sweden107, 108. The main aim was to understand 
the impact of genetic and lifestyle factors on breast cancer prognosis. Women with 
primary breast cancer were invited to participate. Patients who had a previous cancer 
(within the past ten years) were excluded. Patients filled in a questionnaire 
pertaining to lifestyle factors, reproductive history, as well as medication and 
exogenous hormone use at study inclusion during the perioperative hospital visit. 
Anthropometric body measurements were collected by a certified research nurse at 
study inclusion. Follow-up questionnaires were filled at subsequent review visits at 
three to six months, seven to nine months, and annually for the subsequent three 
years and biannually (by mail) thereafter. Clinicopathological information, 
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treatment history, and breast cancer events were collected from hospital records. 
Information regarding new cancers and deaths were retrieved from the South 
Swedish Regional Tumor registry and the population registry respectively. To 
analyze the CYP27A1 expression in BC-blood cohort, we included breast cancer 
patients with invasive disease included during the October 2002- June 2012. After 
excluding patients who received preoperative treatment, patients included in the 
MAST trial and those who relapsed within four months of primary diagnosis 987 
patients were eligible to be included for the current study. Of these, CYP27A1 
expression was evaluable in 813 patients. 

 

Figure 8. CONSORT diagram of BC-blood cohort included in the study III. Flowchart showing numbers of patients 
included in and excluded from the analyses. 
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SB91B cohort 

The SB91B study is a prospective study that investigates the prognostic value of an 
index based on tumor proliferation (S-phase fraction) PgR status and tumor size in 
breast cancer. The original study included 237 premenopausal breast cancer patients 
with node-negative disease diagnosed between 1991 and 1994. After excluding 
cases that were not evaluable for CYP27A1 expression (mRNA and protein) due to 
the non-availability or poor quality of tumor cores, 193 patients were included in 
the current study (Figure 9).  

 

 

Figure 9. CONSORT diagram of study IV. Flowchart showing numbers of patients included in and excluded from the 
analyses. 
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Methodological considerations 

In vitro studies. 

Cell lines 

Six human breast cancer cell lines were used: T47D, MCF7, BT474, SKBR3, MDA-
MB-231 and CAMA1. These cell lines have different hormone receptor status and 
molecular features that encompass the heterogeneity of breast cancer109. Table 2 
summarizes the main molecular features of each of these cell lines. All cell lines 
were originally isolated from pleural effusions. One of the major advantages of 
using cultured cell lines in cancer research is the unlimited supply of nearly 
homogenous experimental systems. 

Selection of the right cell lines to address a specific research question is a critical 
aspect in the design of an experimental study. In paper I, the primary aim was to 
study the heterogeneous response to statin treatment. Here, we selected a panel of 
cell lines with varying statin-sensitivity. The lipid-droplet staining experiments 
were limited to two representative cell lines due to time constraints. 

For the in vitro parts of paper IV, the main criterion for cell line selection was the 
expression of the ER because that study investigated the impact of 27HC, which is 
a SERM. The T47D cells were more sensitive to alterations in the cholesterol/lipid 
metabolism than MCF7 cells, which were more sensitive to the presence or absence 
of estrogen. This heightened sensitivity to the presence or absence of estrogen may 
mask the impact on other pathways like the cholesterol biosynthesis pathway. We 
also included triple negative MDA-MB-231 cells as a negative control for the 
proliferation studies (data not shown in manuscript). Interestingly, MDA-MB-231 
cells did not proliferate when cultured in lipid-depleted medium, thus indicating that 
this cell line depends on the availability of exogenous lipids for proliferation.  

In study V, one of the secondary aims was to study the impact of 27HC in endocrine 
therapy resistant cells. 27HC acts as a SERM, and the ability of resistant cell lines 
to retain the expression of ER was considered to be the main selection criteria. 
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Lipid droplet staining 

Oil Red O staining was used to stain and quantify lipid droplets after statin 
treatment. Oil Red O selectively stains neutral lipids and cholesteryl esters but not 
the polar lipids found in the cellular membranes110. The statin-treated cells were 
fixed with 3% paraformaldehyde and followed by incubation in 60% isopropanol. 
Finally, the cells were stained with Oil Red O-working solution. Excess dye was 
removed by multiple washing steps in 60% and 10% isopropanol. Next, 100% 
isopropanol was used to extract the bound dye for a semi-quantitative measurement 
of the lipid droplet abundance via absorbance at 518 nm. The limitations of using 
Oil Red O staining are that it cannot be used to stain formalin-fixed paraffin-
embedded (FFPE) tissue because the deparaffinization process extracts most lipids 
from the tissue sections. It is also a quantitative method, more advanced 
chromatography techniques are required to characterize or perform qualitative 
analysis of lipid droplets110. 

Sulforhodamine B (SRB) cell proliferation assay 

Cell proliferation assays are generally used to assess the impact of drugs or cytotoxic 
compounds on the viability of cells. There are a variety of assays developed and 
based on various cell function principles like enzyme activity, cell membrane 
permeability, cell adherence, ATP production, co-enzyme production, and 
nucleotide uptake activity. These assays also vary based on the time point at which 
the cell viability is measured: continuous real-time monitoring or end-point 
monitoring111.  

The SRB assay is based on the ability of the protein dye Sulforhodamine B to bind 
to basic amino acid residues in an electrostatic and pH-dependent manner via 
trichloroacetic acid in fixed cells112. The dye can bind to proteins in the cell under 
mildly acidic conditions; bound dye can be extracted from the cell particles by 
increasing the pH to mildly basic conditions. The extracted dye is then further 
quantified using a spectrophotometer. There are several advantages to using the 
SRB assay: i) relatively easy to perform, ii) can be scaled up or down to various 
plate formats, iii) does not require advanced equipment and iv) robust 
reproducibility. The main limitation of using SRB assay is that it is an endpoint 
assay thus only give information about the cell proliferation at a single time point.  

Gene expression microarrays 

Gene expression microarrays are a high throughput sequencing technique used to 
assess the transcriptional activity in cells at a given time point. One of the main 
applications of gene expression microarrays is to identify the underlying mechanism 
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of drug response113. Briefly, a microarray glass slide contains thousands of spots 
with copies of identical DNA molecules corresponding to a single gene. A key step 
in the process of gene expression arrays is the isolation of quality RNA from the 
source. The RNA molecule is reversely transcribed to synthesize complementary 
DNA (cDNA), and the nucleotides are labelled with fluorescent dyes. The labelled 
cDNA is then hybridized onto the microarray glass slide with immobilized 
oligonucleotides. The fluorescent intensity corresponds to the abundance of a 
particular gene facilitating quantification. This gene quantification technique 
generates large amounts of data requiring bioinformatics expertise for data analysis 
and interpretation. Unlike the newer whole genome sequencing technique, the 
quality of the data obtained from gene expression microarrays largely rely on 
oligonucleotide probes.  

Immunoblotting 

Immunoblotting or western blotting is a technique widely used in experimental 
studies to assess protein expression in cells114. The total cell lysate is obtained by 
lysing the cells using lysis buffer. The total amount of protein in the samples is then 
quantified, and equal amounts of protein (per sample) is resolved by electrophoresis. 
The protein separated by the molecular mass is then transferred to nitrocellulose 
membranes. These membranes are then blotted with specific primary antibodies. 
They are subsequently stained with secondary antibodies to visualize the protein 
bands. The bands can be quantified using densitometry via imaging software. The 
results of immunoblot experiments largely depend on the availability of good 
quality antibodies. 

qRT-PCR 

The real time polymerase chain reaction (qRT-PCR) is a technique commonly used 
to assess gene expression in cells. This technique can be used either to test the 
presence/absence or to quantify the target gene expression115. The first step in this 
method is to isolate total RNA and then quantify and translate it to its complimentary 
DNA (cDNA). TaqMan probes were used to amplify the cDNA molecules in studies 
I, IV, and V. TaqMan probes consist of a fluorophore and a quencher. The quencher 
molecule quenches the fluorescence emitted by the fluorophore. Taq DNA 
polymerase was used to synthesize new strands using unlabeled primers and the 
template. When the polymerase reached a TaqMan probe, its endogenous 5' 
nuclease activity cleaves the probe, thus separating the fluorophore from the 
quencher resulting in the emission of fluorescent signal116. The use of TaqMan 
probes increases the specificity and yield of PCR reactions117.  
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Biomarker studies 

Tissue microarray 

Tissue microarrays (TMA) are a high throughput technique to evaluate the 
expression of biomarkers (RNA, protein) conveniently in large materials. TMAs are 
constructed by multiple extracted cylindrical tissue core biopsies obtained from 
representative parts of FFPE tumor blocks. These cores are further embedded into a 
common recipient block—the TMA. The recipient block is then sliced into thin 
sections and mounted on glass slides118. The sections on the glass slides are then 
stained with antibodies or oligonucleotide probes for evaluation of protein or RNA 
expression, respectively. The TMA blocks can be stored for many years and stained 
with many different antibodies to assess the expression of various targets. One of 
the main advantages of using TMAs versus whole tissue sections is the reduced 
handling time and resources (tissue, reagents and antibodies). A major disadvantage 
of using the small cores is the difficulty in capturing tumor heterogeneity. This 
disadvantage is often circumvented by obtaining multiple cores from the same 
patient. 

 

Figure 10. Workflow of tissue microarray construction.  
Reprinted with permission from J Oral Pathology Medicine, Volume: 37, Issue: 3, Pages: 166-176, first published: 03 
February 2008, DOI: (10.1111/j.1600-0714.2007.00606.x). 
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Immunohistochemistry 

Immunohistochemistry (IHC) visualizes protein in the cells/ tissue. IHC is routinely 
used for diagnosis in pathology division as well as in biomarker research. The basic 
principle of IHC relies on the specific binding of antibodies and antigens (protein 
of interest). In the general IHC protocol, the FFPE tissue is stained with the primary 
antibody. A secondary antibody raised against the primary antibody with high 
specificity is added next. The secondary antibody is labelled with an enzyme, and 
finally a chemical substrate is added to react with the enzyme to create a colored 
precipitate. 
The major methodological consideration in IHC is the specificity, selectivity, and 
sensitivity of the antibody. This work used a monoclonal CYP27A1 antibody 
(Abcam, [EPR7529], ab126785) that had been thoroughly validated in a previous 
study using HEPG2 (human liver cancer cell line) cells and normal human liver 
tissue as external positive controls. The blocking peptide technique was used to 
ablate the signal and served as a negative control63. The staining protocol has been 
described in detail in previous work and the publications included in this thesis84. 

 

Figure 11. Immunohistochemistry workflow. 

RNA in situ hybridization 

The fourth study used a commercially available RNA in situ hybridization technique 
called RNAscope. This technique visualizes single RNA molecules in cells or 
tissues119. The workflow is similar to IHC. The cells are initially fixed and 
permeabilized to allow the target probe access after which oligonucleotide probes 
are hybridized. The signal from the probe is then amplified by addition of multiple 
amplification molecules. Finally, detection reagents are used to visualize the 
amplified signal from target RNA (Figure 12). The slides can be visualized under a 
standard bright field microscope. This RNA quantification technique has a major 
advantage over other gene expression techniques because the workflow and 
conditions are similar to IHC; it also allows for a direct comparison between target 



43 

expression assessed at different levels (protein and RNA). Compared to the standard 
RNA in situ hybridization technique, RNAscope uses target specific probes, thus 
minimizing non-specific signal amplification. 

 

Figure 12. Workflow of RNAscope and RNA in situ hybridization. 

Data analysis and statistics 

This part is focused on the data analysis and statistics for the epidemiology studies 
(II-IV). 

Survival analyses 

In study II, the incidence rates for an event (respective endpoints) depending on 
statin use was computed using Cox regression models. In these models, statin use 
was used as a dichotomous time-varying variable to avoid the immortal time bias. 
In studies IV and V, Kaplan-Meier plots were used to visualize the difference in 
event free survival probabilities between patient sub groups with different levels of 
intra-tumoral CYP27A1 expression. Log-rank tests were used to estimate and 
compare the events (for respective endpoints analyzed) between different 
categories. Log-rank tests can only be used to test if there is a significant difference 
between different categories—it does not provide information regarding the effect 
size. A major disadvantage of the log-rank estimates is that it is a univariable 
analysis method; hence, it is not possible to adjust for possible confounders.  

In studies III and IV, Cox regression models were used to calculate the adjusted 
hazard ratios. Cox proportional hazards models are used to estimate the hazard ratio, 
which is the magnitude of risk of an event happening. Cox proportional models are 
multivariable models and can be adjusted for multiple confounders. This gives the 
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test a particular advantage of testing the independent prognostic value of different 
factors, e.g., the independent prognostic value of the CYP27A1 biomarker assessed 
in our studies. The main assumption of the Cox proportional hazards models is the 
proportionality of hazards meaning that the ratio of event rates should be constant 
during follow-up time. The assumption of proportional hazards can be formally 
tested by Schoenfeld’s test. Schoenfeld’s test for proportional hazards was done for 
the MDCS cohort in paper III, and the assumption was not violated. It was somewhat 
surprising to see that the assumption was not violated because the Kaplan Meier 
plots for the MDCS cohort began to separate at five-year mark. One would expect 
to see a non-proportional hazard ratio over the complete follow up time. This helps 
explain why KM plots should not be relied on for assessment of proportional 
hazards.  

An important factor to consider when fitting a multivariable model is the number of 
adjusted covariates. A general rule suggests that there be at least five to ten events 
per covariate that is adjusted in the model. 

Endpoints 

Different endpoints were used in the different studies included in the thesis. The 
primary endpoint in paper II was breast cancer recurrence. Secondary analyses also 
analyzed loco-regional recurrences, distant recurrence, and overall survival. When 
studying the prognostic impact of statin use in breast cancer, disease recurrence is 
considered to be a more robust endpoint than endpoints that include deaths (due to 
any cause). One major disadvantage of observational studies is that clinico-
pathological factors may not be equally distributed between exposed and unexposed 
groups and may lead to confounding by indication. This is especially important 
when we assess the prognostic impact of drugs like statins in the breast cancer 
setting. Statin is prescribed as a secondary preventive to lower serum cholesterol 
levels in patients with higher cardiovascular risk. Thus, using a more cancer-specific 
endpoint minimizes the impact of other confounding issues with comorbidities like 
cardiovascular diseases and obesity directly related to statin use and mortality. 

In the third study, the primary endpoint was overall survival. Other endpoints were 
breast cancer-specific survival (MDCS) and recurrence-free survival (BC-blood 
study). Recurrence free survival included deaths due to any cause as events. 
However, the results might have been more comparable between the cohorts if we 
had included deaths only with preceding breast cancer events. The fourth study 
evaluated three distinct clinical endpoints: recurrence-free survival, distant 
recurrence-free survival, and overall survival. The women in this cohort were pre-
menopausal at inclusion, and it is expected that almost all deaths are breast cancer 
related. 
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Systemic errors or biases 

In observational studies, systemic errors/biases can be classified into three main 
categories: selection bias, information bias, and confounding120. A confounding 
variable is defined as a factor that influences exposure and outcomes. Confounding 
is an important issue in the epidemiological studies (II, III and IV) included in this 
thesis, as in observational studies potential confounders might not be equally 
distributed among different patient subgroups. To minimize the impact by 
confounding variables, we included established prognostic factors in multivariable 
analyses. The multivariable models were adjusted for known prognostic factors like 
age, body mass index, tumor histological grade, lymph node status, etc. to assess 
the independent prognostic value of CYP27A1. Of course, there could be other 
residual confounders such as high cholesterol levels for which there was no data 
available. The impact of unknown confounders should also be considered when 
interpreting the results. 

Validity 

Validity generally refers to the accuracy of the measurements/findings obtained 
from a study. Validity can be broadly classified in to two parts: internal and external 
validity.  

Internal validity refers to the accuracy of findings within the study population. To 
ensure internal validity in the CYP27A1 biomarker studies, we used a well-
validated antibody as described in detail above. In papers II and III, anthropometry 
measures were obtained via a trained research nurse. However, the anthropometric 
measure (BMI) used in the MDCS cohort was obtained during the study inclusion, 
and this data during breast cancer diagnosis might have been more accurate.  

External validity is also known as generalizability and is the degree to which the 
findings from a study can be extrapolated to a broader context. The two cohorts 
(MDCS and BC-blood) included in this thesis are population-based cohorts, and our 
findings are generalizable to breast cancer patients in the underlying population 
from which these cohorts were selected. Most premenopausal patients included in 
the SB91B cohort did not receive any adjuvant endocrine treatment, but most of 
these patients will be subjected to endocrine treatments in the current clinical 
scenario. These differences between cohorts could impair the generalizability of 
cohort studies. 
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Ethical considerations 

Patient data from three different cohorts is used in this thesis. In these projects, we 
used pseudonymous (coded) patient data. All studies have been approved by the 
ethics committee. For the original study inclusions, all patients signed a written 
informed consent before entering the study.  

The advantages must outweigh the disadvantages to get ethical approval. All 
patients were included in observational studies, and hence the risks posed by an 
intervention were minimal. Performing biomarker studies is an important research 
step to identify prognostic- and treatment-predictive biomarkers to tailor the best 
treatment plan for each patient. When the TMAs are constructed care is taken not to 
exhaust the tumor material, in case it is needed for future clinical prognostication 
purposes. Our studies aim to assess the prognostic potential of these biomarkers 
with the hope that the findings will help to optimize the best treatment, and thus the 
benefits outweigh risks for the subjects included in the study121. 

For the long-term endocrine therapy treated cells, we intend to perform the short 
tandem repeat (STR) profiling to ensure the identity of the cells. Performing STR 
sequencing on cell lines recently developed from primary cells could be an ethical 
concern because the profile could be used to re-identify the donor or related family 
members. However, we are using cell lines that have been long-established and have 
been used in research for decades; thus, identification of the donor source should 
not be a problem here. 
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Results and Discussion 

Paper I 

Results 

In this study, a panel of breast cancer cells were treated with increasing 
concentrations of atorvastatin and were classified as sensitive or insensitive to statin 
treatment in terms of cell proliferation. Cell lines T47D, MCF7, and BT474 were 
considered insensitive; SKBR3 was moderately sensitive; and triple negative MDA-
MB-231 was extremely sensitive to growth inhibition by atorvastatin treatment. To 
understand the statin-resistant mechanisms in the insensitive cell lines, we 
investigated the lipid-accumulating phenotype in two representative cell lines with   
varying statin sensitivity: statin-insensitive T47D and statin-sensitive MDA-MB-
231. Atorvastatin treatment induced a dose- and time-dependent accumulation of 
lipid droplets in T47D cells and not in MDA-MBA-231 cells. To further explore the 
phenotypic difference of lipid accumulation, we investigated differences in the 
expression of genes involved in cholesterol and fatty acid metabolism. Stearoyl-
CoA desaturase (SCD) genes involved in the unsaturated fatty acid metabolism and 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) gene in the cholesterol 
synthesis pathway were significantly upregulated upon statin treatment in the 
insensitive cell lines. 

Discussion 

The strong preclinical and clinical evidence 88, 91, 96, 122-124 regarding the anticancer 
potential of statins has shown a great interest in repurposing cholesterol-lowering 
statin drugs as anti-cancer agents. Cancer cells are known to show varying 
sensitivity to growth inhibition by statin treatment, and certain molecular features 
can be used for patient stratification. It has been shown that breast cancer cells show 
differential cholesterol/lipid metabolic features at baseline81, 125. Thus, we 
hypothesized that the differences observed at baseline might also reflect a 
differential response to statin treatment. We thus focused our study on the lipid-
accumulating phenotype in breast cancer cells. 

Expression of various targets in the cholesterol biosynthesis pathway has been 
widely studied in the aspect of statin sensitivity in breast cancer cells 93, 105, 126. In 
line with previous findings, our study also showed that ER+ breast cancer cells 
MCF7 and T47D had a high baseline expression of HMGCR and also responded 
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with the strongest negative feedback loop induction of HMGCR. These cell lines 
were also insensitive to statin treatment in terms of proliferation. The prognostic 
impact of HMGCR expression in tumors has yielded mixed results and has been 
attributed to the varying specificity of antibodies used in different studies. Earlier 
studies reported that moderate/strong HMGCR expression was associated with 
better tumor characteristics and prognosis127-129, but a recent study reported that 
HMGCR was associated with aggressive tumor characteristics130. This later study 
also looked at the prognostic impact of statin use on breast cancer mortality, thus 
stratifying patients based on differential HMGCR expression and reporting a null 
finding.  

SCD is the key enzyme in the synthesis of mono-unsaturated fatty acids. The more 
pronounced upregulation of SCD in response to statin treatment in the insensitive 
cell lines was a novel observation. We also tried to perform immunoblotting to 
further explore the impact of this protein expression. However, a lack of a reliable 
antibody prevented us from validating the mRNA data at the protein level.  

Of note, atorvastatin is a lipophilic statin, and the lipid droplet accumulation 
observed in the T47D cells lines might act to sequester the compound and thus 
prevent it from disrupting proliferative processes. Further lipidomic analyses is 
warranted to address this speculation. 

SCD is strongly induced in relatively insensitive cells by statin treatment. SCD may 
be a potential biomarker of statin resistance. Future biomarker studies are warranted 
to assess the treatment predictive potential of SCD.  

Paper II 

Results 

The purpose of this study was to evaluate the prognostic impact of post-diagnosis 
statin use on breast cancer recurrence in a prospective population-based MDCS 
cohort. There were 363 women diagnosed with invasive breast cancer from 2005-
2014 of which 91 patients initiated statin use post-diagnosis. Statin users were older 
than non-users and had higher waist-to-hip ratios and fewer lymph nodes. They were 
more likely to undergo lumpectomy and receive adjuvant radiation therapy. 
Regarding prognosis, statin users had low incidence rates for disease recurrence 
both in crude and adjusted Cox regression models (HRcrude = 0.53; 95% CI (0.29-
0.95); HRadj = 0.36; 95%CI (0.16-0.84)). Interestingly, when the analyses were 
stratified based on the pattern of recurrence (loco-regional vs distant), we found that 
statin users were particularly protected against distant recurrences.  
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Discussion 

The impact of statin use on breast cancer prognosis has been studied in various 
epidemiological settings and outcomes assessed for different endpoints. The most 
common endpoints were overall survival, breast cancer-specific survival97, 100, 130, 
and breast cancer recurrence96, 101, 124, 131. Interestingly, studies that assessed breast 
cancer recurrence as an endpoint consistently showed a protective impact of statin 
use versus the mixed findings observed for the other end-points studied. The impact 
of statins on reduced recurrences can be attributed to different biological 
mechanisms. The most abundant oxysterol in serum, 27HC, has been shown to be 
associated with tumor growth and metastasis in ovariectomized mice,63, 64, 132 and 
we have shown that statin treatment potently reduces the serum 27HC in breast 
cancer patients84. Maybe this is one of the mechanisms by which statins reduce 
recurrence in these patients. Another mechanism could be the impact of stains on 
epithelial to mesenchymal transition of the cancer cells. As depicted by the 
experimental studies92, 94, 103, 133 statins can potently inhibit the epithelial to 
mesenchymal transition of the cancer cells. By inhibiting the epithelial to 
mesenchymal transition of tumor cells, statins play role in preventing the outgrowth 
of breast cancer metastasis134. Statins could be an addition in the adjuvant cancer 
treatment in the clinic if validated in larger clinical trials. 

Papers III and IV  

Results 

Paper III assessed the prognostic impact of CYP27A1 in two population-based 
cohorts—the MDCS and the BC-blood study while focusing on the postmenopausal 
patient group. The same biomarker was evaluated in paper IV in the SB91B cohort 
at both the protein and mRNA levels—this cohort is a premenopausal primary breast 
cancer cohort. Paper IV also features in vitro experimental data to extend the 
findings of the cohort epidemiology data. 

Twenty one percent (n=135) of tumors in the MDCS had high CYP27A1 protein 
expression. In this cohort, tumors with high CYP27A1 expression were more likely 
to be hormone receptor (ER, PgR) negative and of high histological grade (NHG 
III). The prognostic impact was evaluated in all patients as well as pre-specified 
subgroups of patients who were older than 55 years and presented with ER-positive 
tumors. Multivariable Cox regression analyses showed that high CYP27A1 
expression indicated poor prognosis for overall as well as breast cancer-specific 
survival specifically after five years of follow up. 

In the BC-blood study, 28% (n=225) of the evaluable tumors had high CYP27A1 
protein expression. Elevated expression of CYP27A1 was positively associated with 
hormone receptor negativity, NHG III, and larger tumor size. These patients were 
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also more likely to receive chemotherapy and less likely to receive endocrine 
therapy. After adjusting for potential confounding factors, CYP27A1 expression 
was not an indicator of prognosis for patients older the 55 years with ER positive 
tumors in this cohort. Surprisingly, however, high CYP27A1 expression was 
associated with increased risk of recurrence during the first five years of follow up 
in patients younger than 55 years of age.  

In the SB91B cohort, 29% (n=56) and 23% (n=45) of the evaluable tumors had a 
high CYP27A1 protein and mRNA expression, respectively. CYP27A1 expression, 
evaluated at both levels, was associated with Ki67 expression and NHG III. In 
multivariable Cox regression analyses, high CYP27A1 expression was an 
independent prognostic factor for better distant recurrence-free survival. 
Interestingly, even in high histological grade (NHG III) and Ki67 high tumors, the 
high-CYP27A1-expression subgroup showed better prognosis than the low-
CYP27A1 subgroup. In vitro studies showed that 27HC treatment reduced breast 
cancer cell proliferation by downregulating ER signaling in the absence of other 
serum lipids and presence of estradiol. 

Discussion 

We used three different cohorts to evaluate the associations between CYP27A1 
expression and tumor pathological features and prognosis. Generally, high 
CYP27A1 was associated with aggressive tumor pathological features in all 
cohorts—positive association to NHG III was consistent across all cohorts included 
in this thesis as well as in previously published studies84, 135. As mentioned 
previously, in vitro mechanistic studies showed that 27HC acts as a SERM 
promoting breast cancer cell proliferation in estrogen-low experimental 
conditions63, 64, 135. From these findings, we hypothesized that high CYP27A1 
expression in postmenopausal women (low circulating estrogen) would be a poor 
prognostic marker. As expected, high CYP27A1 expression predicted poor 
prognosis for breast cancer specific and overall survival in the MDCS cohort 
particularly after five years of follow up. However, these findings could not be 
replicated in the BC-blood study. This is most likely due to the shorter follow up in 
this cohort. The median follow-up of the MDCS cohort is 10.8 years vs seven years 
in the BC blood study. CYP27A1 is a marker of late lethality in postmenopausal 
women, and thus the shorter follow up in the BC blood study might explain the null 
findings.  

Another striking finding from paper III was the poor prognosis observed in 
premenopausal patients during the early follow-up period. This was indeed 
intriguing because it was previously shown that high CYP27A1expression—
analyzed by gene expression in women younger than 50 years of age—predicted 
better overall and recurrence free survival84. One of the reasons for this 
contradictory finding could be the methodological differences in assessing the 
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biomarker (IHC vs gene expression), which motivated the research questions in 
paper IV. 

In paper IV, we assessed the CYP27A1 gene and protein expression using 
comparable in situ techniques. The results predicted good prognosis consistent with 
an earlier published study84. Then again, the findings from the BC-blood study 
regarding premenopausal patients contradicted those in the SB91B cohort. This 
contradiction could be due to significant differences in treatment regimens. The 
patients included in the SB91B cohort mostly did not receive any form of adjuvant 
endocrine treatment whereas the patients in the BC-blood study were more often 
given endocrine treatment (tamoxifen). Tamoxifen is a SERM-like 27HC, and thus 
the presence of tamoxifen complicates the entire ER signaling scenario—it is yet 
not known how the ligands compete for the receptor binding sites or how the 
downstream signaling is modified in the presence of these three ligands.  

Tamoxifen treatment is also known to reduce blood cholesterol levels. In a large 
study of 8010 postmenopausal breast cancer patients, it was shown that total serum 
cholesterol levels were reduced during tamoxifen treatment99. This study did not 
measure the 27HC levels specifically. However, the total cholesterol and 27HC 
levels in circulation are positively correlated. Later a smaller pilot study (n=15) in 
patients with a median age of 58 years reported that tamoxifen treatment had no 
effect on 27HC levels but rather significantly reduced other oxysterols like 24HC, 
7α HC, and 25HC. A larger study in premenopausal patients treated with tamoxifen 
is needed to adequately address the impact of tamoxifen treatment on 27HC levels 
and thus the impact on prognosis. 

The in vitro experiments in this paper were performed specifically to look at the 
mechanistic impact of 27HC alone (in the absence of other lipids) on the 
proliferation of breast cancer cells. While this is a hypothetical scenario that any 
tumor is unlikely to experience, these experiments are key to understanding the 
mechanistic impact of 27HC on breast cancer biology. Previous publications that 
evaluated the impact of 27HC in breast cancer cell lines in vitro 56, 64 used cell culture 
media supplemented with charcoal-stripped serum and not regular cell culture 
media. Our study used two different kinds of cell culture media as controls: 1) 
regular cell culture media and 2) phenol red free media supplemented with charcoal 
stripped serum. Under conditions controlled for estradiol, 27HC treatment did not 
significantly impact the cell proliferation as reported in previous publications.  

  



52 

Paper V 

Results 

To understand the molecular changes behind concomitant, long-term statin and 
endocrine treatment, we generated endocrine therapy-resistant breast cancer cells 
treated with or without atorvastatin. Atorvastatin treatment was initiated at day 0, 
day 30, or at first passage of the endocrine treatment. Cells were harvested after the 
respective treatment periods, and molecular characterization was performed by 
qRT-PCR and immunoblotting. The molecular characterization had three main 
focus areas: 1) estrogen receptor/signaling, 2) cholesterol homeostasis, and 3) 
epithelial mesenchymal transition (EMT). The MCF7 and CAMA1 cells had 
heterogeneous response to the respective treatments.  

Upon long-term estrogen deprivation to mimic the aromatase inhibition setting, the 
gene expression of ER (ESR1) and cyclin D1 (CCND1) was significantly reduced 
in the MCF7 cells, while CAMA1 cells had a significant upregulation of ESR1 and 
CCND1. Concomitant statin treatment did not impact the expression of ESR1 in 
either cell line while CCND1 was downregulated in both cell lines. The expression 
of genes involved in cholesterol homeostasis machinery ABCA1 and CYP27A1 were 
significantly upregulated in both long-term estrogen-deprived cell lines (MCF7_AI 
and CAMA1_AI). The addition of a statin reversed this upregulation in 
MCF7_AI_Ato cells, while expression of these genes were either increased 
(ABCA1) or unchanged (CYP27A1) in CAMA_AI_Ato cells. Long-term estrogen 
deprivation alone did not alter the expression of the EMT markers E-cadherin 
(CDH1) or Snail (SNAI1) in either cell lines. However, the expression of CDH1 and 
SNAI1 was significantly downregulated in MCF7_AI cells concomitantly treated 
with statins; no changes were observed in the CAMA1_AI cells.  

Tamoxifen-resistant MCF7 cells had a significant downregulation of ESR1 and 
CCND1, while no significant changes were observed in the CAMA1 cells. The 
addition of concomitant statin treatment in MCF7_TAM cells reversed the 
downregulation of ESR1. The cholesterol transporter ABCA1 was significantly 
upregulated in TAM-resistant MCF7 and CAMA1 cells and was downregulated 
upon statin addition. CYP27A1 levels remained unaltered in MCF7 cells, but it was 
upregulated in CAMAI_TAM cells and was further upregulated upon statin 
addition.  Expression of ESR1 in MCF7_TAM_ATO cells were comparable to the 
untreated parent MCF7 cells. Expression of EMT markers CDH1 and SNAI1 were 
significantly upregulated in the tamoxifen-resistant MCF7 cells that was 
significantly downregulated during combination (TAM+ATO)-treated MCF7 cells. 
In contrast, CDH1 was upregulated in tamoxifen-treated CAMA1 cells—these cells 
were, not impacted by the addition of atorvastatin. SNAI1 was downregulated in 
TAM-resistant CAMA1 cells, which was reversed upon the addition of atorvastatin.  
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Discussion 

Long-term atorvastatin treatment induces differential and heterogeneous molecular 
responses in endocrine therapy-resistant breast cancer cells. In all our cell line 
models with the exception of MCF7_Tam cells, the expression of ESR1, CCND1, 
CDH1 and SNAI1 followed a similar trend, suggesting that the impact of endocrine 
therapy with or without statin treatment is impacting the ER signalling axis. The 
expression of cholesterol homeostasis machinery genes were upregulated in the long 
term estrogen deprived cells as expected. However the cell lines MCF7 and CAMA1 
responded differentially to the addition of atorvastatin. This differential response 
could be attributed to the differential p53 status of these two cell lines136. In study 
III we show that high intratumoral CYP27A1 expression is a marker of poor 
prognosis in post-menopausal breast cancer patients and it was speculated that statin 
addition might be beneficial for these patients. In this study, long term atorvastatin 
treatment downregulated the CYP27A1 expression. This indicate that in the long-
term estrogen deprived cell line MCF7 cell models, statins attenuate the 
upregulation of genes involved in the cholesterol homeostasis mechanism. By doing 
this statins block the alternative pathway, the resistant cells might have hijacked for 
continued proliferation under estrogen deprived conditions. The impact of 
atorvastatin treatment on EMT markers CDH1 and SNAI1 followed the expression 
of ESR1 and CCND1 in the majority of our developed cell line models. The 
exception was tamoxifen resistant MCF7 cells. This together with the proliferation 
data suggest that, the ER signalling is disrupted in this model.  

In conclusion, our results show that the combination of endocrine therapy and statins 
is a complex scenario that involves the interplay between various signalling (ER, 
LXR and SREBP) pathways. The heterogeneity of patient and tumor characteristics 
add another level of complexity to this. These complexities could partially explain 
the divergent results observed in different epidemiology studies investigating the 
cholesterol, statin and breast cancer link. Further pre-clinical and clinical studies are 
warranted to delineate the molecular complexity of statin and endocrine therapy 
combination in breast cancer.  
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Conclusions 

Paper I 

 Statin treatment induced dose- and time-dependent lipid droplet 
accumulation in statin-insensitive cell lines.  

 Statin treatment led to a significantly higher upregulation of the key 
regulator of lipid biosynthesis: Stearoyl-CoA desaturase. 

 Members of fatty acid metabolism could be potential statin-treatment 
predictive markers. 

Paper II 

 In the MDCS cohort, post-diagnosis statin use was significantly associated 
with reduced incidence of distant breast cancer recurrence.  

 If confirmed in clinical trials, statins could be used as an adjuvant anti-
cancer therapeutic in the clinic in post-menopausal patients. 

Paper III 

 High CYP27A1 protein expression was associated with aggressive tumor 
characteristics in both study cohorts.  

 In the MDCS cohort, high CYP27A1 expression was a prognostic marker 
of late lethal disease in postmenopausal breast cancer patients. 

 In the BC-blood cohort, high CYP27A1 expression indicated poor 
prognosis during the early follow-up period in premenopausal breast cancer 
patients treated with adjuvant hormonal treatments. 

 CYP27A1 might be a potential target for intervention by CYP27A1 
inhibitors or cholesterol-lowering medications.  
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Paper IV 

 High CYP27A1 expression was associated with aggressive tumor 
characteristics. 

 The incidence of disease recurrence and death was significantly lower in 
premenopausal, lymph node negative, hormonal treatment naïve breast 
cancer patients. 

 27HC treatment potently inhibited ER+ BC cell proliferation under lipid-
depleted conditions regardless of estradiol levels. 

 The impact of 27HC on cell proliferation was transcriptionally mediated 
through the downregulation of ER signaling with a concomitant 
upregulation of cholesterol export. 

 If validated in a larger cohort, high CYP27A1 expression could be a marker 
for treatment de-escalation in premenopausal patients. 

Paper V 

 Concomitant and long-term combination treatment of statin and endocrine 
treatment induced a heterogeneous response in breast cancer cell lines 
MCF7 and CAMA1. 

 Tamoxifen atorvastatin combination treated MCF7 cells maintained ESR1 
expression comparable to untreated parent cells.  

 In the long term estrogen deprived MCF7 cells, upregulation of ABCA1 and 
CYP27A1 was prevented by concomitant statin treatment.  

 Statin combination with endocrine treatment did not significantly impact 
the expression the two EMT markers (CDH1 and SNAI1) in our cell line 
models. 
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Overall Discussion and Future 
Perspectives 

Cancer cells deregulate the cholesterol homeostasis mechanism to meet the 
increased energy and structural requirements. Cholesterol is the precursor of 
isoprenoids, steroid hormones and oxysterols, all biologically relevant molecules in 
breast cancer proliferation. It has also been shown that triple negative breast cancer 
cells depend on exogenous cholesterol supply for proliferation. Limiting the 
intracellular cholesterol biosynthesis and consequently the downstream signaling is 
a promising therapeutic strategy. Originally developed as preventive medication for 
cardiovascular diseases, statins have been shown to have pleiotropic effects. Statins 
act by inhibiting the intracellular cholesterol biosynthesis. Considering the 
tolerability of statins by most patients, it is an appealing strategy to repurpose statin 
as an anticancer agent.  

Experimental studies included in this thesis identified two markers of statin 
insensitivity, HMGCR and Stearoyl-CoA desaturase. These targets should be 
further studied in clinical studies to assess their treatment predictive value in the 
clinical setting. Another key prognostic marker identified is the enzyme CYP27A1, 
with differential prognostic impact in pre- and postmenopausal breast cancer. The 
long-term estrogen deprived and atorvastatin treated MCF7 cell line give credence 
to a mechanistic link between CYP27A1 expression and statin use. However, the 
clinical utility of this link could not be satisfactorily tested in our biomarker studies. 
Further clinical studies should assess the treatment predictive impact of CYP27A1 
expression in aromatase inhibitor treated, post-menopausal breast cancer patients, 
specifically for recurrent disease, ideally separately tested the impact on local and 
distant recurrences, respectively. 

Intracellular cholesterol levels are mainly maintained by the action of two 
transcriptional factors with opposing effects, LXRα and SREBP. Interestingly 
estrogen signalling is also involved in the regulation of SREBP genes and 
subsequently on LXRα genes. The common mechanism of statins is to upregulate 
the SREBP genes and replenish LDL, but in breast cancer cells, particularly in 
MCF7 cells, the baseline expression of LDLR is low and from preliminary data 
(unpublished), we speculate that in MCF7 cells the feedback mechanism to 
upregulate LDLR protein expression is disrupted. This speculation is supported by 
the findings that supplementing LDL in lipid-depleted medium did not induce levels 
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of cholesterol esters in MCF7 cells, suggesting that the exogenous lipid uptake is 
not an efficient mechanism in MCF7 cells81. Thus we hypothesize that in ER+ breast 
cancer cells, statins do not induce an influx of exogenous cholesterol via LDLR. 
Thus, in the event of estrogen deprivation in combination with statins, the cells face 
a double blockade of different proliferative signaling pathways, depriving the cells 
of estrogen, isoprenoids as well as oxysterols. This speculation must be extensively 
tested in pre-clinical studies. A far fetching extension of this speculation would also 
be that, a patient sub-group that would benefit the most from statin use will be post-
menopausal breast cancer patients with low baseline LDLR receptor expression.  
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