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Sciences, Diabetes and Cardiovascular Disease - Genetic Epidemiology, Skåne University Hospital, Malmö, Sweden, 3 Department of Odontology, Umeå University, Umeå,
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Abstract

Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether
these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC)
and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We
sought replication in a southern Swedish cohort (the MDC Study; N = 2,943). GLACIER Study participants (N = 6,064) were
genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study.
The TC- and TG-specific GRSs were strongly associated with change in lipid levels (b= 0.02 mmol/l per effect allele per
decade follow-up, P = 2.0610211 for TC; b= 0.02 mmol/l per effect allele per decade follow-up, P = 5.061025 for TG). In
individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (b= 0.12 mmol/l per effect allele per decade follow-
up, P = 2.061025), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (b= 0.09 mmol/l per effect allele per decade
follow-up, P = 5.161024) and apolipoprotein A-I (APOA1) rs6589564 (b= 0.31 mmol/l per effect allele per decade follow-up,
P = 1.461028), remained significantly associated with longitudinal changes for the respective traits after correction for
multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE
rs4420638, TRIB1 rs2954029, and APOA1 rs6589564 associations were confirmed (P#0.001). In summary, trait-specific GRSs
are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr
changes in lipid levels.
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Introduction

The implementation of genome-wide association studies

(GWAS) into large, well-characterized cohort collections has

spurred the discovery of hundreds of genetic variants for complex

cardiometabolic disorders [1]. Of those variants, many have been

for blood lipids, with a total of 164 common single nucleotide

polymorphisms (SNPs) identified to date at a genome-wide

significance level (P#561028) [2,3]. These findings come from

large-scale, cross-sectional meta-analyses with sufficient power to

detect variants with very small effect-sizes for the corresponding

traits (OR<1.01). Although demonstrating cross-sectional genetic

associations is important (e.g., for elucidating biological pathways),

from a clinical perspective, the discovery of genetic variants that

predict a worsening of lipid levels over time might be more relevant

[4]; to our knowledge, no large prospective cohort study focused on

the full spectrum of established lipid loci has yet been performed.

The purpose of this study was to examine the predictive ability

of 157 established lipid loci (as defined by 164 SNPs), singly and

together (genetic risk score (GRS)), on changes in lipid concen-

trations over a decade of follow-up. Replication analyses in

another Swedish cohort were also performed.
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Results

GLACIER Study participant characteristics are shown in

Table 1 (baseline only) and Table 2 (longitudinal subset). The

cross-sectional MetaboChip genotype data from the GLACIER

Study were combined with many other cohorts in one of the prior

lipid meta-analyses [3]. Malmö Diet and Cancer (MDC) Study

participant characteristics are shown in Table 3.

The results for cross-sectional analyses in the GLACIER Study

are presented in Text S1. The established SNPs explained 8.8%,

4.9%, 9.1% and 4.8% variance for TC, TG, LDL-C and HDL-C,

respectively. The weighted GRS (wGRS) (allele counts multiplied

by previously published effect sizes for each SNP) explained 7.0%,

3.9%, 6.9% and 2.6% of the variance in TC, TG, LDL-C and

HDL-C, respectively.

Longitudinal analyses
A statistically significant overall decrease in plasma TC

concentrations between the baseline and follow-up visits (mean

change = 20.1861.12 mmol/l; P,0.0001), but no change in the

TG levels (mean change = 0.0261 mmol/l; P = 0.32), was ob-

served.

In individual SNP analysis, Benjamini-Hochberg false discovery

rate (FDR) corrected statistically significant associations were

observed for the rs6589564 and DTG (b= 0.31 mmol/l per allele

per decade follow-up, 95% CI: 0.21, 0.41, SE = 0.05,

PFDR = 6.661027), rs2954029 and DTG (b= 0.09 mmol/l per

allele per decade follow-up, 95% CI: 0.03, 0.15, SE = 0.03,

PFDR = 0.009) and rs4420638 and DTC (b= 0.12 mmol/l per

allele per decade follow-up, 95% CI: 0.06, 0.18, SE = 0.03,

PFDR = 0.002). One additional SNP (rs2131925) showed nominally

significant evidence of association with DTC (b= 0.07 mmol/l per

allele per decade follow-up, 95% CI: 0.03, 0.11, SE = 0.02,

P = 0.002, PFDR = 0.083). Seven and five additional SNPs were also

nominally statistically associated with DTC and DTG, respectively

(P,0.05), but did not survive multiple-test corrections. Nominally

significant SNP associations are shown in Table 4 and all

longitudinal SNP associations are reported in Table S1.

The GRSs were strongly associated with their corresponding

trait (b= 0.02 mmol/l per allele per decade follow-up, 95% CI:

0.01, 0.03, SE = 0.003, P = 2.0610211 for DTC; b= 0.02 mmol/l

per allele per decade follow-up, 95% CI: 0.01, 0.03, SE = 0.005,

P = 0.0005 for DTG). Using the wGRS increased the strength and

magnitude of the associations for both traits (b= 0.02 mmol/l per

allele per decade follow-up, 95% CI: 0.01, 0.03, SE = 0.003,

P = 9.8610218 for DTC; b= 0.03 mmol/l per allele per decade

follow-up, 95% CI: 0.02, 0.04, SE = 0.005, P = 6.5610211 for

DTG) (Figure 1A–B). The difference between the highest and

lowest quartiles of the wGRS was 0.037 mmol/l for DTC, and

0.032 mmol/l for DTG.

The variance in lipid changes explained by the wGRS, the

baseline lipid measure, sex, age and age2 were 33% and 25% for

TC and TG, respectively. However, the wGRSs alone explained a

small fraction of these proportions (,0.05% for both traits).

To compare the predictive accuracy of traditional risk factors,

genetic factors and combined models in relation to hyperlipidemia

at follow-up, receiver operating characteristics area under the

curve (ROC AUC) analyses were performed. The specificities of

the predictive models were above 95%, while the sensitivities of

the models were below 20%. The ROC AUC curves are shown in

Figure 2A–B, and the pairwise differences and classification

statistics in the models for high TC and high TG are shown in

Table 5. The lowest ROC AUC values were obtained for the basic

models including only age, age2, sex and BMI (62% and 65% for

high TC and high TG, respectively) and the highest for the

combined genetic-lifestyle models (66% and 67% for high TC and

high TG, respectively). The difference between these two models

was statistically significant for high TC (P = 0.011) and approached

nominal statistical significance for high TG (P = 0.052).

Replication and meta-analysis
As described above, 15 variants (16 associations, as rs2131925

associated with both DTC and DTG) were nominally associated

with change in TG or TC over 10-years follow-up in the

GLACIER Study. Results of replication analyses in MDC are

presented in Table 6. Associations for five SNPs (rs2131925,

rs2954029, rs4420638, rs442177, rs6511720) for DTC and six

SNPs (rs11057408, rs2072183, rs2131925, rs2954029, rs442177,

rs6589564) for DTG were nominally statistically (P,0.05)

significant and directionally consistent with GLACIER results in

MDC. Furthermore, four SNPs (rs2954029, rs4420638, rs442177,

rs6511720) also associated with DLDL-C. None of the SNPs

associated with DHDL-C in MDC. All three previously associated

variants (rs2954029 and rs6589564 in relation to DTG and

rs4420638 for DTC) in GLACIER replicated in MDC.

Meta-analysis results for the 15 longitudinally associated

variants are shown in Table S2. Three DTC associated variants

and six DTG associated variants had statistically significant pooled

effects (P,0.05).

Discussion

This study extends work reported in two recent large-scale

cross-sectional GWAS meta-analyses for lipid loci [2,3] by

examining these variants in the setting of a prospective cohort

study (10-yrs follow-up). The trait-specific GRSs were strongly

associated with their corresponding lipid traits in both cross-

sectional and longitudinal models. Three previously associated

variants yielded statistically significant main effects in the

longitudinal analyses, namely the APOA1 rs6589564 and DTG

(PFDR = 7.361027), the TRIB1 rs2954029 and DTG (PFDR = 0.013)

and the APOE rs4420638 and DTC (PFDR = 0.002). We used

rs6589564 as the best available proxy in our panel for the APOA1

rs964184 variant (distance = 24.8 kb; r2 = 0.688; D’ = 1) [5].

Author Summary

Although large cross-sectional studies have proven highly
successful in identifying gene variants related to lipid
levels and other cardiometabolic traits, very few examples
of well-designed longitudinal studies exist where associ-
ations between genotypes and long-term changes in lipids
have been assessed. Here we undertook analyses in the
GLACIER Study to determine whether the 157 previously
identified lipid-associated genes variants associate with
changes in blood lipid levels over 10-yr follow-up. We
identified a variant in APOE that is robustly associated with
total cholesterol change and two variants in TRIB1 and
APOA1 respectively that are robustly associated with
triglyceride change. We replicated these findings in a
second Swedish cohort (the MDC Study). The identified
genes had previously been associated with cardiovascular
traits such as myocardial infarction or coronary heart
disease; hence, these novel lipid associations provide
additional insight into the pathogenesis of atherosclerotic
heart and large vessel disease. By incorporating all 157
established variants into gene scores, we also observed
strong associations with 10-yr lipid changes, illustrating
the polygenic nature of blood lipid deterioration.

Longitudinal Effects of Established Lipid Loci
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Tentative evidence for association was observed for angiopoietin-like

3 (ANGPTL3) rs2131925 and DTC (P = 0.002, PFDR = 0.083),

which given the high prior for association, likely reflects an

additional locus that influences changes in lipid levels. These

statistically significant associations in GLACIER were successfully

replicated in MDC (P = 4.061025 for APOA1 rs6589564 and

DTG; P = 5.061025 for TRIB1 rs2954029 and DTG; P = 0.01 for

APOE rs4420638 and DTC; P = 0.03 for ANGPTL3 rs2131925 and

DTC) and 9 of the 16 nominally significant associations in

GLACIER remained significant after meta-analyzing the two

cohorts. In ROC analyses, the combined genetic-lifestyle model

had higher predictive ability than other models for both traits, but

after Bonferroni correction of ROC AUC comparative P values,

this difference was not statistically significant.

Two large, recent cross-sectional meta-analyses identified a total

of 164 new variants associated with blood lipid levels [2,3]. Whilst

these studies highlight numerous, previously unknown biologic

pathways underlying dyslipidemia, they have focused exclusively

on cross-sectional data, which may not be informative of the

genetic mechanisms underlying the deterioration of blood lipid

profiles. Prospective data is clinically more relevant, as knowledge

of loci that predict change in lipids over time may provide

information for clinical translation and risk prediction [4];

however, the extent to which clinical translation could be realized

depends on achieving a high level of predictive accuracy using

genetic risk algorithms, which at present is not the case for

common cardiometabolic diseases [6]. A small number of

prospective genetic association studies for lipid loci have been

reported [7–10], but these studies have focused on only a handful

of the 157 established lipid-loci. In the present study, we show that

the ability of these established lipid loci to predict incident

dyslipidemia is low in these Swedish populations; adding the

wGRS to the risk prediction model incorporating the conventional

risk factors for hyperlipidemia (comparing Model 3 and Model 4

(shown in Table 5)) increased the AUC values by 4% and 2% for

high TC and high TG, respectively. This is comparable to the 3%

AUC difference for incident hypercholesterolemia reported by Lu

et al., although they used an unweighted GRS of only 12

established TC variants [10].

Teslovich et al. reported ,12% variance explained by the 95

loci discovered in their meta-analysis for TC, TG, LDL-C and

HDL-C [2]. The 62 lipid loci recently discovered by Willer et al.

explain an additional ,2% of the variance per lipid trait [3]. In Lu

et al. ’s report, 12 candidate SNPs explained 6.9% of the variance in

TC, while Sabatti et al. attributed 4.8%, 6%, and 6% of the total

variance in TG, LDL-C and HDL-C to 4-11 GWAS identified

SNPs [10,11]. In cross-sectional analyses in the GLACIER Study

the variances explained by the established SNPs for TC, TG, LDL-

C and HDL-C were 8.8%, 4.9%, 9.1% and 4.8%, respectively.

Aulchenko et al. used GRSs comprising 7-11 lipid loci; the

variances explained by these SNPs were 3.9%, 3.0%, 3.4% and

4.8% for TC, TG, LDL-C and HDL-C, respectively [12]. Lutsey

et al. evaluated the explained variance by trait specific GRSs, in

which they incorporated the 95 loci identified by Teslovich et al.;

the explained variance for TC, TG, LDL-C and HDL-C were

6.8%, 6.0%, 6.0% and 1.6%, respectively [7]. In the GLACIER

Study, the corresponding wGRSs accounted for 7.0%, 3.9%, 6.9%

and 2.6% of the trait variances, respectively.

The TRIB1 locus, which harbors one of the variants (rs2954029)

strongly associated with change in TG in our study, encodes a

protein with a regulatory effect on mitogen-activated protein

kinases (MAPKs) [13]. Studies in mice suggest that TRIB1 plays a

role in the transcription of lipogenic genes in hepatocytes and

thereby affects overall apolipoprotein B (ApoB) particle accumu-

lation, alters particle composition and regulates very large density

lipoprotein (VLDL), LDL and TG levels [14]. In humans, TRIB1

variation has been associated with blood lipid levels [2,3,15,16]

and increased risk of coronary artery disease [15,17], ischemic

heart disease [18] and myocardial infarction [18]. An in vitro study

suggested that the protein product of TRIB1 is in control of

vascular smooth muscle cell proliferation and consequently may

drive the development of atherosclerosis [19].

We detected a statistically significant association between

rs4420638 and TC change. This variant maps to the APOE-

APOC1-APOC2 cluster on chromosome 19. APOE translates to

ApoE, which is the main apolipoprotein of the chylomicron, and

thus crucial for breaking down TG-rich lipoproteins and essential

in maintaining normal plasma cholesterol and TG levels. APOE

variants have been associated with blood lipid levels [2,3,20],

familial dyslipoproteinemia [21], polygenic dyslipidemia [22],

elevated plasma C-reactive protein levels [23,24], coronary heart

disease [20,23], and myocardial infarction [15].

We used rs6589564 as a proxy for the APOA1 rs964184 variant

(chromosome 11). Both variants localize to the APOA1/C3/A4/

Table 1. Baseline characteristics of the GLACIER Study participants (N = 5,862).

Data available, N Mean (SD) Median (IQR) %

Sex (male/female) 5,862 - - 61/39

Age (years) 5,862 48.4 (8.7) 50 (40, 60) -

BMI (kg/m2) 5,862 25.7 (4.0) 25.2 (22.9, 27.7) -

TG (mmol/l)* 4,335 - 1.32 (1.0, 1.7) -

TC (mmol/l) 5,839 6.0 (1.3) 5.9 (5.1, 6.8) -

HDL-C (mmol/l) 3,096 1.4 (0.4) 1.4 (1.2, 1.6) -

LDL-C (mmol/l) 3,085 4.3 (1.2) 4.3 (3.5, 5.0) -

High TG (no/yes) 4,335 - - 73/27

High TC (no/yes) 5,839 - - 28/72

Lipid lowering medication (no/yes) 5,862 - - 99/1

BMI - body mass index; HDL-C - high density lipoprotein cholesterol; IQR - interquartile range; LDL-C - low density lipoprotein cholesterol; SD - standard deviation; TC -
total cholesterol; TG - triglyceride.
*Only median is reported for TG, as the trait’s distribution is not Gaussian.
doi:10.1371/journal.pgen.1004388.t001

Longitudinal Effects of Established Lipid Loci
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A5/BUD13 cluster. APOA1 encodes the major apolipoprotein of

plasma HDL particles and plays a central role in lipid metabolism.

The rs964184 variant in APOA1 has been associated with blood

lipid levels [2,3,22], polygenic dyslipidemia [22], metabolic

syndrome [25], coronary heart disease [26], and myocardial

infarction [27].

An important strength of this study is the inclusion of replication

data. The findings of this study would be enhanced by further

investigation of lipoprotein subclasses and the analysis of the effects

of lipid lowering interventions in randomized controlled trials.

In conclusion, the trait-specific GRSs were robustly associated

with baseline and longitudinal changes in blood lipid concentra-

tions. We detected three novel longitudinal associations in relation

to TC and TG changes over a 10-yr follow-up period. As these loci

have been previously associated with cardiovascular traits, such as

coronary heart disease and myocardial infarction, their associa-

tions with lipid changes provide further insight into how these

variants contribute to cardiovascular risk.

Materials and Methods

Ethics statement
Ethical approval for the GLACIER Study was obtained from

the Regional Ethical Review Board in Umeå, Sweden. The Ethics

Committee at Lund University approved the MDC study.

Study participants
The GLACIER Study (N,19,000) is a prospective, population-

based cohort study nested within the Västerbotten Health Survey

(VHU) in the northern Swedish county of Västerbotten [28].

Baseline examinations were undertaken from 1985 through 2004.

GLACIER participants were invited to attend an examination on

their 40th, 50th and 60th birthdays. In a subcohort (N = 5,010),

ten-year follow-up data are also available, of whom 3,495 were

genotyped (see below). Anthropometric measures (age, sex, height

and weight) were collected, and detailed assessments of lifestyle

were obtained using a validated questionnaire [28,29]. All

participants provided written informed consent as part of the

VHU. The MDC Study constitutes southern Swedish adults

participating in a cardiovascular program, with baseline data

recorded from 1991 through 1996 [30,31]. All individuals who

were alive and still living in Sweden were invited for follow-up

between 2007 and 2012. A total of 3,734 individuals attended

follow-up investigation and 2,943 individuals with no history of

coronary events had available data for replications analyses.

Clinical measures
Clinical measures have been described in detail elsewhere

[28,29]. Capillary blood was drawn following an overnight fast.

Serum lipid concentrations were measured on fresh capillary

plasma with a Reflotron bench-top analyzer (Roche Diagnostics

Table 3. Longitudinal characteristics of the MDC Study participants (N = 2,943).

Baseline Follow-up

Mean (SD) or n (%) Median (IQR) Mean (SD) or n (%) Median (IQR)

Sex (male) 1,148 (39) - 1,148 (39) -

Age (years) 56.4 (5.7) 56.1 (9.7) 73.0 (5.6) 73.0 (9.2)

TC (mmol/l) 6.11 (1.06) 6.07 (1.42) 5.59 (0.91) 5.60 (1.20)

TG (mmol/l)* - 1.10 (0.68) - 1.00 (0.60)

lnTG (ln mmol/l) 0.125 (0.433) 0.095 (0.60) 0.025 (0.425) 0.000 (0.56)

HDL-C (mmol/l) 1.42 (0.37) 1.38 (0.48) 1.42 (0.44) 1.36 (0.59)

LDL-C (mmol/l) 4.13 (0.96) 4.10 (1.20) 3.67 (0.79) 3.60 (0.91)

BMI (kg/m2) 25.3 (3.6) 24.9 (4.6) 26.8 (4.4) 26.2 (5.2)

BMI - body mass index; HDL-C - high density lipoprotein cholesterol; IQR - interquartile range; LDL-C - low density lipoprotein cholesterol; SD - standard deviation; TC -
total cholesterol; TG - triglyceride.
*Only median is reported for TG, as the trait’s distribution is not Gaussian.
doi:10.1371/journal.pgen.1004388.t003

Table 2. Longitudinal characteristics of the GLACIER Study participants (N = 3,495 for TC; N = 2,211 for TG).

Baseline Follow-up

Mean (SD) Median (IQR) Mean (SD) Median (IQR)

TG subset Sex (male/female, %) 62/38

Age (years) 45.9 (6.4) 50 (40, 50) 55.8 (6.4) 60 (50, 60)

TG (mmol/l)* - 1.3 (1.0, 1.7) - 1.3 (1.0, 1.8)

TC subset Sex (male/female, %) 61/39

Age (years) 45.3 (6.7) 50 (40, 50) 55.2 (6.7) 60 (50, 60)

TC (mmol/l) 5.7 (1.2) 5.6 (4.9, 6.4) 5.5 (1.1) 5.5 (4.8, 6.2)

BMI - body mass index; IQR - interquartile range; SD - standard deviation; TC - total cholesterol; TG - triglyceride.
*Only median is reported for TG, as the trait’s distribution is not Gaussian.
doi:10.1371/journal.pgen.1004388.t002

Longitudinal Effects of Established Lipid Loci
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Scandinavia AB). HDL cholesterol was measured after precipita-

tion of the other lipoproteins with sodium phosphowolframate-

magnesium chloride. For the ROC AUC analyses, lipid levels

were dichotomized (low/high) according to the American Heart

Association criteria [32]. At baseline, 5% of the individuals

reported not having fasted for at least 8 hours before the blood

draw, and information on fasting time was missing in a further

15% of the participants; therefore analyses were adjusted with a

variable indicating fasting status, but this did not materially affect

the results. In the MDC Study, TC, TG and HDL-C concentra-

tions in the fasting blood samples were measured with a DAX 48

automatic analyzer (Bayer AB, Göteborg, Sweden) using reagents

and calibrators from the supplier of the instrument. HDL-C

concentrations were determined by the same procedure as used for

TC, but after precipitation of LDL-C and very low-density

lipoprotein cholesterol (VLDL-C) with dextran–sulphate [33]. The

same laboratory methods where applied for analyzing lipid levels

Figure 1. TC and TG level changes (95% CI) over 10-yr follow-
up by wGRS quartiles. The TC wGRS was robustly associated with TC
changes over follow-up (b= 0.02 mmol/l per allele per follow-up, 95%
CI = 0.01, 0.03, SE = 0.003, P = 9.8*10218) (A). The TG wGRS was robustly
associated with TG changes over follow-up (b= 0.03 mmol/l per allele
per follow-up, 95% CI = 0.02, 0.04, SE = 0.005, P = 6.5*10211) (B).
doi:10.1371/journal.pgen.1004388.g001

Figure 2. ROC AUC for high TC (A) and high TG (B) at follow-
up. In ROC analyses we excluded individuals with hyperlipidemia at
baseline and compared the predictive accuracy of four models (age,
sex and BMI (Model 1), Model 1 + trait specific wGRS (Model 2), Model 1

Longitudinal Effects of Established Lipid Loci
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at both visits. Direct anthropometry was measured by nurses.

LDL-C concentrations were calculated with the Friedewald

formula for both studies [34].

Lipid medications
One percent of participants reported using lipid-lowering

medications, which we controlled for in analyses using a constant,

as described by Tobin et al [35]. There was no information

available on the specific type of the lipid lowering agent used by

the participants, but at the time of the examinations the most

common class of lipid lowering drugs in northern Sweden was

statins, used by ,96% of lipid lowering medication users [36].

Therefore, to correct lipid levels we used the statin constants

proposed by Wu et al. [37]: HDL-C: 20.059 mmol/l; LDL-C: +
1.279 mmol/l, TC: +1.336 mmol/l, TG: +0.207 mmol/l. The

MDC Study participants who reported using lipid-lowering–

medication at baseline (3%) were excluded from analyses because

the type of medication used could not be determined. 28.3%

(n = 834) of the MDC Study participants reported using lipid

lowering medication at follow-up; of these, 28% used LDL

lowering agents (Crestor, Lipitor, Pravachol, Zocord or Ezetrol)

and 0.3% used fibrates (Lopid). Their lipid measures were

corrected by adding the appropriate constants proposed by Wu

et al [37].

Genotyping
DNA was extracted from peripheral white blood cells and

genomic DNA samples were diluted to 4 ng/ml as previously

described [38,39]. Samples were genotyped with the MetaboChip

(Illumina iSelect) array [40]. The 102 associated SNPs from

Teslovich et al. [2] and the 62 SNPs from Willer et al. [3] were

extracted from the MetaboChip. We used proxy SNPs for 18

variants. Proxies for two SNPs (the TG-associated rs2929282 and

the HDL-C associated-rs1047891 variants) were unavailable.

Detailed information about the index and proxy SNPs are shown

in Table S3. The average genotyping success rate was 99.9%.

None of the SNPs deviated significantly from Hardy-Weinberg

expectations at a study-wise corrected level (P,0.0001). There-

fore, we conducted our analyses with a total of 162 SNPs (HDL-C

= 73 SNPs; LDL-C = 58 SNPs; TC = 75 SNPs; and TG = 43

SNPs). For the replication effort in MDC, the SNPs analyzed were

genotyped using Illumina OmniExpress Exome. SNP and proxy

information are reported in Table S4.

Genetic risk score
The effects of multiple genetic risk loci on blood lipid traits were

studied by constructing two different types of GRS for each study

participant. The first assumed an equal magnitude of effect for

each risk allele and was generated for each participant by

summing the number of risk alleles at each of the associated

SNP loci for the respective traits. Thus, because these are all

biallelic loci, the GRSs had a minimum possible value of 0 and a

maximum possible value of 146, 116, 150 and 86 for HDL-C,

LDL-C, TC and TG, respectively. To construct the second GRS,

we used published effect sizes for each SNP (from the joint meta-

analysis by Willer et al. [3]) to weight the contribution of each risk

allele. The weighted alleles were subsequently summed into a

single weighted GRS (wGRS) as previously described [39,41].

Missing genotypes were imputed by mean imputation as

+ traditional risk factors for hyperlipidemia (Model 3) and M1 + trait
specific GRS + traditional risk factors for hyperlipidemia (Model 4)) in
relation to hyperlipidemia at follow-up.
doi:10.1371/journal.pgen.1004388.g002
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previously described [42]. To illustrate results in figures we used

quartiles of the GRSs.

Statistical methods
Statistical analyses were undertaken using SAS (version 9.3,

SAS Institute Inc., NC, USA), STATA (version 12.1, StataCorp

LP, TX, USA), R (version 2.15.3, The R Foundation for Statistical

Computing) and PLINK (version 1.07) [43–46]. Main effects were

estimated with generalized linear models (GLMs) by fitting

genotypes (additive model) or the unweighted/weighted GRSs as

the independent variable with the corresponding lipid traits as the

dependent variable. We used natural logarithmic transformed TG

values for cross-sectional individual SNP analyses and adjusted for

age, age2, sex, fasting time and population substructure (first four

principal components) in all our models. In longitudinal analyses,

we included the follow-up lipid measure as the dependent variable

and adjusted for the respective trait’s baseline value.

follow-up lipid = a+bSNP/GRS+bbaseline lipid+bcov+…+bcov+e

For the sake of simplicity, when reporting the estimates for the

model above, we refer to DTC or DTG throughout the

manuscript. The Benjamini-Hochberg FDR was used to correct

for multiple testing [47]; given the prior knowledge of the SNPs in

the analyses, we decided to use a less stringent approach then the

Bonferroni or the Holm correction. ROC AUCs were computed

and compared using STATA. In these analyses we excluded

individuals with hyperlipidemia at baseline and compared the

predictive accuracy of four models (age, age2, sex and BMI (M1),

M1+ trait specific wGRS (M2), M1+ traditional risk factors (age,

sex, BMI, smoking status, alcohol intake) [10] for hyperlipidemia

(M3) and M1+ trait specific wGRS + traditional risk factors for

hyperlipidemia (M4)) in relation to hyperlipidemia at follow-up.

Random effects meta-analysis was performed using the metan

module in STATA [48]. Statistical analyses for MDC were done

using SPSS (version 20, IBM Corporation). Linear regression was

used to obtain effect sizes (b) and 95% confidence intervals (95%

CI) by fitting genotypes (additive model) as the independent

variables and follow-up lipid measures (TC, lnTG, HDL-C or

LDL-C) as dependent variables. Baseline lipid levels, sex, age and

age2 were used as covariates. For meta-analysis, regression

estimates with average annual lipid level changes as outcome

measures were used.

Supporting Information

Table S1 Longitudinal associations of previously associated

SNPs in the GLACIER Study.

(XLSX)
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