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Abstract

Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether
these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC)
and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We
sought replication in a southern Swedish cohort (the MDC Study; N=2,943). GLACIER Study participants (N =6,064) were
genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study.
The TC- and TG-specific GRSs were strongly associated with change in lipid levels (3=0.02 mmol/l per effect allele per
decade follow-up, P=2.0x10""" for TC; f=0.02 mmol/l per effect allele per decade follow-up, P=5.0x10"" for TG). In
individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (3 =0.12 mmol/l per effect allele per decade follow-
up, P=2.0x10"2), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (B =0.09 mmol/l per effect allele per decade
follow-up, P=5.1x10"* and apolipoprotein A-I (APOAT) rs6589564 (B =0.31 mmol/I per effect allele per decade follow-up,
P=1.4x10"%), remained significantly associated with longitudinal changes for the respective traits after correction for
multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE
rs4420638, TRIBT rs2954029, and APOAT rs6589564 associations were confirmed (P<0.001). In summary, trait-specific GRSs
are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr
changes in lipid levels.
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Introduction

The implementation of genome-wide association studies
(GWAS) into large, well-characterized cohort collections has
spurred the discovery of hundreds of genetic variants for complex
cardiometabolic disorders [1]. Of those variants, many have been
for blood lipids, with a total of 164 common single nucleotide
polymorphisms (SNPs) identified to date at a genome-wide
significance level (P<5x107%) [2,3]. These findings come from
large-scale, cross-sectional meta-analyses with sufficient power to
detect variants with very small effect-sizes for the corresponding

PLOS Genetics | www.plosgenetics.org

traits (OR=~1.01). Although demonstrating cross-sectional genetic
associations is important (e.g., for elucidating biological pathways),
from a clinical perspective, the discovery of genetic variants that
predict a worsening of lipid levels over time might be more relevant
[4]; to our knowledge, no large prospective cohort study focused on
the full spectrum of established lipid loci has yet been performed.

The purpose of this study was to examine the predictive ability
of 157 established lipid loci (as defined by 164 SNPs), singly and
together (genetic risk score (GRS)), on changes in lipid concen-
trations over a decade of follow-up. Replication analyses in
another Swedish cohort were also performed.
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Author Summary

Although large cross-sectional studies have proven highly
successful in identifying gene variants related to lipid
levels and other cardiometabolic traits, very few examples
of well-designed longitudinal studies exist where associ-
ations between genotypes and long-term changes in lipids
have been assessed. Here we undertook analyses in the
GLACIER Study to determine whether the 157 previously
identified lipid-associated genes variants associate with
changes in blood lipid levels over 10-yr follow-up. We
identified a variant in APOE that is robustly associated with
total cholesterol change and two variants in TRIBT and
APOAT1 respectively that are robustly associated with
triglyceride change. We replicated these findings in a
second Swedish cohort (the MDC Study). The identified
genes had previously been associated with cardiovascular
traits such as myocardial infarction or coronary heart
disease; hence, these novel lipid associations provide
additional insight into the pathogenesis of atherosclerotic
heart and large vessel disease. By incorporating all 157
established variants into gene scores, we also observed
strong associations with 10-yr lipid changes, illustrating
the polygenic nature of blood lipid deterioration.

Results

GLACIER Study participant characteristics are shown in
Table 1 (baseline only) and Table 2 (longitudinal subset). The
cross-sectional MetaboChip genotype data from the GLACIER
Study were combined with many other cohorts in one of the prior
lipid meta-analyses [3]. Malmé Diet and Cancer (MDC) Study
participant characteristics are shown in Table 3.

The results for cross-sectional analyses in the GLACIER Study
are presented in Text S1. The established SNPs explained 8.8%,
4.9%, 9.1% and 4.8% variance for TC, TG, LDL-C and HDL-C,
respectively. The weighted GRS (WGRS) (allele counts multiplied
by previously published effect sizes for each SNP) explained 7.0%,
3.9%, 6.9% and 2.6% of the variance in TC, TG, LDL-C and
HDL-C, respectively.

Longitudinal analyses

A statistically significant overall decrease in plasma TC
concentrations between the baseline and follow-up visits (mean
change = —0.18%1.12 mmol/l; P<<0.0001), but no change in the
TG levels (mean change=0.02*1 mmol/l; P=0.32), was ob-
served.

In individual SNP analysis, Benjamini-Hochberg false discovery
rate (FDR) corrected statistically significant associations were
observed for the 56589564 and ATG (f=0.31 mmol/l per allele
per decade follow-up, 95% CI: 0.21, 0.41, SE=0.05,
Prpr=6.6x1077), 132954029 and ATG (B=0.09 mmol/l per
allele per decade follow-up, 95% CI: 0.03, 0.15, SE=0.03,
Prpr=0.009) and rs4420638 and ATC (B=0.12 mmol/l per
allele per decade follow-up, 95% CI: 0.06, 0.18, SE=0.03,
Prpr=0.002). One additional SNP (rs2131925) showed nominally
significant evidence of association with ATC (B =0.07 mmol/1 per
allele per decade follow-up, 95% CI: 0.03, 0.11, SE=0.02,
P=0.002, Pppr=0.083). Seven and five additional SNPs were also
nominally statistically associated with ATC and ATG, respectively
(P<<0.05), but did not survive multiple-test corrections. Nominally
significant SNP associations are shown in Table 4 and all
longitudinal SNP associations are reported in Table S1.

The GRSs were strongly associated with their corresponding
trait (B=0.02 mmol/] per allele per decade follow-up, 95% CI:
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0.01, 0.03, SE=0.003, P=2.0x10""! for ATC; p=0.02 mmol/I
per allele per decade follow-up, 95% CI: 0.01, 0.03, SE =0.005,
P=0.0005 for ATG). Using the wGRS increased the strength and
magnitude of the associations for both traits (§ =0.02 mmol/1 per
allele per decade follow-up, 95% CI: 0.01, 0.03, SE=0.003,
P=9.8x10"" for ATC; B=0.03 mmol/l per allele per decade
follow-up, 95% CIL: 0.02, 0.04, SE=0.005, P=6.5x10""" for
ATG) (Figure 1A-B). The difference between the highest and
lowest quartiles of the wGRS was 0.037 mmol/] for ATC, and
0.032 mmol/1 for ATG.

The variance in lipid changes explained by the wGRS, the
baseline lipid measure, sex, age and age? were 33% and 25% for
TC and TG, respectively. However, the wGRSs alone explained a
small fraction of these proportions (<0.05% for both traits).

To compare the predictive accuracy of traditional risk factors,
genetic factors and combined models in relation to hyperlipidemia
at follow-up, receiver operating characteristics area under the
curve (ROC AUC) analyses were performed. The specificities of
the predictive models were above 95%, while the sensitivities of
the models were below 20%. The ROC AUC curves are shown in
Figure 2A-B, and the pairwise differences and classification
statistics in the models for high TC and high TG are shown in
Table 5. The lowest ROC AUC values were obtained for the basic
models including only age, age®, sex and BMI (62% and 65% for
high TC and high TG, respectively) and the highest for the
combined genetic-lifestyle models (66% and 67% for high TC and
high TG, respectively). The difference between these two models
was statistically significant for high TC (P=0.011) and approached
nominal statistical significance for high TG (P=0.052).

Replication and meta-analysis

As described above, 15 variants (16 associations, as rs2131925
associated with both ATC and ATG) were nominally associated
with change in TG or TC over 10-years follow-up in the
GLACIER Study. Results of replication analyses in MDC are
presented in Table 6. Associations for five SNPs (rs2131925,
rs2954029, rs4420638, rs442177, rs6511720) for ATC and six
SNPs (rs11057408, rs2072183, rs2131925, rs2954029, rs442177,
rs6589564) for ATG were nominally statistically (P<<0.05)
significant and directionally consistent with GLACIER results in
MDC. Furthermore, four SNPs (rs2954029, rs4420638, rs442177,
rs6511720) also associated with ALDL-C. None of the SNPs
associated with AHDL-C in MDC. All three previously associated
variants (rs2954029 and rs6589564 in relation to ATG and
rs4420638 for ATC) in GLACIER replicated in MDC.

Meta-analysis results for the 15 longitudinally associated
variants are shown in Table S2. Three ATC associated variants
and six ATG associated variants had statistically significant pooled
effects (£<<0.05).

Discussion

This study extends work reported in two recent large-scale
cross-sectional GWAS meta-analyses for lipid loci [2,3] by
examining these variants in the setting of a prospective cohort
study (10-yrs follow-up). The trait-specific GRSs were strongly
associated with their corresponding lipid traits in both cross-
sectional and longitudinal models. Three previously associated
variants yielded statistically significant main effects in the
longitudinal analyses, namely the APOAI rs6589564 and ATG
(Prepr=7.3%10"7), the TRIBI 152954029 and ATG (Ppg=0.013)
and the APOE rs4420638 and ATC (Prpr=0.002). We used
rs6589564 as the best available proxy in our panel for the APOA!
15964184 variant (distance =24.8 kb; r*=0.688; D’=1) [5].
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Table 1. Baseline characteristics of the GLACIER Study participants (N =5,862).

Data available, N Mean (SD) Median (IQR) %
Sex (male/female) 5,862 = 61/39
Age (years) 5,862 48.4 (8.7) 50 (40, 60)
BMI (kg/m?) 5,862 25.7 (4.0) 25.2 (229, 27.7)
TG (mmol/l)* 4,335 1.32 (1.0, 1.7)
TC (mmol/l) 5,839 6.0 (1.3) 5.9 (5.1, 6.8)
HDL-C (mmol/l) 3,096 14 (0.4) 14 (1.2,1.6)
LDL-C (mmol/I) 3,085 43 (1.2) 43 (3.5, 5.0
High TG (no/yes) 4,335 73/27
High TC (no/yes) 5,839 = 28/72
Lipid lowering medication (no/yes) 5,862 - 99/1

total cholesterol; TG - triglyceride.
*Only median is reported for TG, as the trait’s distribution is not Gaussian.
doi:10.1371/journal.pgen.1004388.t001

Tentative evidence for association was observed for angioporetin-like
3 (ANGPTL3) rs2131925 and ATC (P=0.002, Pppr=0.083),
which given the high prior for association, likely reflects an
additional locus that influences changes in lipid levels. These
statistically significant associations in GLACIER were successfully
replicated in MDC (P=4.0x107> for APOAI rs6589564 and
ATG; P=5.0x10""° for TRIBI rs2954029 and ATG; P=0.01 for
APOE 14420638 and ATC; P=0.03 for ANGPTLS3 rs2131925 and
ATC) and 9 of the 16 nominally significant associations in
GLACIER remained significant after meta-analyzing the two
cohorts. In ROC analyses, the combined genetic-lifestyle model
had higher predictive ability than other models for both traits, but
after Bonferroni correction of ROC AUC comparative P values,
this difference was not statistically significant.

Two large, recent cross-sectional meta-analyses identified a total
of 164 new variants associated with blood lipid levels [2,3]. Whilst
these studies highlight numerous, previously unknown biologic
pathways underlying dyslipidemia, they have focused exclusively
on cross-sectional data, which may not be informative of the
genetic mechanisms underlying the deterioration of blood lipid
profiles. Prospective data is clinically more relevant, as knowledge
of loci that predict change in lipids over time may provide
information for clinical translation and risk prediction [4];
however, the extent to which clinical translation could be realized
depends on achieving a high level of predictive accuracy using
genetic risk algorithms, which at present is not the case for
common cardiometabolic diseases [6]. A small number of
prospective genetic association studies for lipid loci have been
reported [7-10], but these studies have focused on only a handful
of the 157 established lipid-loci. In the present study, we show that
the ability of these established lipid loci to predict incident
dyslipidemia is low in these Swedish populations; adding the
wGRS to the risk prediction model incorporating the conventional
risk factors for hyperlipidemia (comparing Model 3 and Model 4
(shown in Table 5)) increased the AUC values by 4% and 2% for
high TC and high TG, respectively. This is comparable to the 3%
AUC difference for incident hypercholesterolemia reported by Lu
et al., although they used an unweighted GRS of only 12
established TC variants [10].

Teslovich et al. reported ~12% variance explained by the 95
loci discovered in their meta-analysis for TC, TG, LDL-C and
HDL-C [2]. The 62 lipid loci recently discovered by Willer et al.
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BMI - body mass index; HDL-C - high density lipoprotein cholesterol; IQR - interquartile range; LDL-C - low density lipoprotein cholesterol; SD - standard deviation; TC -

explain an additional ~2% of the variance per lipid trait [3]. In Lu
et al.’s report, 12 candidate SNPs explained 6.9% of the variance in
TC, while Sabatti ef al. attributed 4.8%, 6%, and 6% of the total
variance in TG, LDL-C and HDL-C to 4-11 GWAS identified
SNPs [10,11]. In cross-sectional analyses in the GLACIER Study
the variances explained by the established SNPs for TC, TG, LDL-
C and HDL-C were 8.8%, 4.9%, 9.1% and 4.8%, respectively.

Aulchenko et al. used GRSs comprising 7-11 lipid loci; the
variances explained by these SNPs were 3.9%, 3.0%, 3.4% and
4.8% for TC, TG, LDL-C and HDL-C, respectively [12]. Lutsey
et al. evaluated the explained variance by trait specific GRSs, in
which they incorporated the 95 loci identified by Teslovich ez al.;
the explained variance for TC, TG, LDL-C and HDL-C were
6.8%, 6.0%, 6.0% and 1.6%, respectively [7]. In the GLACIER
Study, the corresponding wGRSs accounted for 7.0%, 3.9%, 6.9%
and 2.6% of the trait variances, respectively.

The TRIBI locus, which harbors one of the variants (rs2954029)
strongly associated with change in TG in our study, encodes a
protein with a regulatory effect on mitogen-activated protein
kinases (MAPKSs) [13]. Studies in mice suggest that TRIBI plays a
role in the transcription of lipogenic genes in hepatocytes and
thereby affects overall apolipoprotein B (ApoB) particle accumu-
lation, alters particle composition and regulates very large density
lipoprotein (VLDL), LDL and TG levels [14]. In humans, TRIB!
variation has been associated with blood lipid levels [2,3,15,16]
and increased risk of coronary artery disease [15,17], ischemic
heart disease [18] and myocardial infarction [18]. An i vitro study
suggested that the protein product of 7TRIBI is in control of
vascular smooth muscle cell proliferation and consequently may
drive the development of atherosclerosis [19].

We detected a statistically significant association between
rs4420638 and TC change. This variant maps to the APOE-
APOCI-APOC2 cluster on chromosome 19. APOE translates to
ApoE, which is the main apolipoprotein of the chylomicron, and
thus crucial for breaking down TG-rich lipoproteins and essential
in maintaining normal plasma cholesterol and TG levels. APOE
variants have been associated with blood lipid levels [2,3,20],
familial dyslipoproteinemia [21], polygenic dyslipidemia [22],
elevated plasma C-reactive protein levels [23,24], coronary heart
disease [20,23], and myocardial infarction [15].

We used rs6589564 as a proxy for the APOAI rs964184 variant
(chromosome 11). Both variants localize to the APOAI1/C3/A44/
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Table 2. Longitudinal characteristics of the GLACIER Study participants (N=3,495 for TC; N=2,211 for TG).

Baseline Follow-up
Mean (SD) Median (IQR) Mean (SD) Median (IQR)
TG subset Sex (male/female, %) 62/38
Age (years) 45.9 (6.4) 50 (40, 50) 55.8 (6.4) 60 (50, 60)
TG (mmol/l)* - 1.3 (1.0, 1.7) - 1.3 (1.0, 1.8)
TC subset Sex (male/female, %) 61/39
Age (years) 45.3 (6.7) 50 (40, 50) 55.2 (6.7) 60 (50, 60)
TC (mmol/l) 5.7 (1.2) 5.6 (4.9, 6.4) 5.5 (1.1) 5.5 (4.8, 6.2)

*Only median is reported for TG, as the trait’s distribution is not Gaussian.
doi:10.1371/journal.pgen.1004388.t002

A5/BUDI3 cluster. APOAI encodes the major apolipoprotein of
plasma HDL particles and plays a central role in lipid metabolism.
The rs964184 variant in APOAI has been associated with blood
lipid levels [2,3,22], polygenic dyslipidemia [22], metabolic
syndrome [25], coronary heart disease [26], and myocardial
infarction [27].

An important strength of this study is the inclusion of replication
data. The findings of this study would be enhanced by further
investigation of lipoprotein subclasses and the analysis of the effects
of lipid lowering interventions in randomized controlled trials.

In conclusion, the trait-specific GRSs were robustly associated
with baseline and longitudinal changes in blood lipid concentra-
tions. We detected three novel longitudinal associations in relation
to TC and TG changes over a 10-yr follow-up period. As these loci
have been previously associated with cardiovascular traits, such as
coronary heart disease and myocardial infarction, their associa-
tions with lipid changes provide further insight into how these
variants contribute to cardiovascular risk.

Materials and Methods

Ethics statement

Ethical approval for the GLACIER Study was obtained from
the Regional Ethical Review Board in Umea, Sweden. The Ethics
Committee at Lund University approved the MDC study.

BMI - body mass index; IQR - interquartile range; SD - standard deviation; TC - total cholesterol; TG - triglyceride.

Study participants

The GLACIER Study (N~19,000) is a prospective, population-
based cohort study nested within the Visterbotten Health Survey
(VHU) in the northern Swedish county of Visterbotten [28].
Baseline examinations were undertaken from 1985 through 2004.
GLACIER participants were invited to attend an examination on
their 40th, 50th and 60th birthdays. In a subcohort (N =5,010),
ten-year follow-up data are also available, of whom 3,495 were
genotyped (see below). Anthropometric measures (age, sex, height
and weight) were collected, and detailed assessments of lifestyle
were obtained using a validated questionnaire [28,29]. All
participants provided written informed consent as part of the
VHU. The MDC Study constitutes southern Swedish adults
participating in a cardiovascular program, with baseline data
recorded from 1991 through 1996 [30,31]. All individuals who
were alive and still living in Sweden were invited for follow-up
between 2007 and 2012. A total of 3,734 individuals attended
follow-up investigation and 2,943 individuals with no history of
coronary events had available data for replications analyses.

Clinical measures

Clinical measures have been described in detail elsewhere
[28,29]. Capillary blood was drawn following an overnight fast.
Serum lipid concentrations were measured on fresh capillary
plasma with a Reflotron bench-top analyzer (Roche Diagnostics

Table 3. Longitudinal characteristics of the MDC Study participants (N =2,943).

Baseline Follow-up

Mean (SD) or n (%) Median (IQR) Mean (SD) or n (%) Median (IQR)
Sex (male) 1,148 (39) - 1,148 (39) -
Age (years) 56.4 (5.7) 56.1 (9.7) 73.0 (5.6) 73.0 (9.2)
TC (mmol/l) 6.11 (1.06) 6.07 (1.42) 5.59 (0.91) 5.60 (1.20)
TG (mmol/l)* = 1.10 (0.68) = 1.00 (0.60)
InTG (In mmol/l) 0.125 (0.433) 0.095 (0.60) 0.025 (0.425) 0.000 (0.56)
HDL-C (mmol/l) 1.42 (0.37) 1.38 (0.48) 1.42 (0.44) 1.36 (0.59)
LDL-C (mmol/l) 4.13 (0.96) 4.10 (1.20) 3.67 (0.79) 3.60 (0.91)
BMI (kg/m?) 25.3 (3.6) 249 (4.6) 26.8 (4.4) 26.2 (5.2)

total cholesterol; TG - triglyceride.
*Only median is reported for TG, as the trait’s distribution is not Gaussian.
doi:10.1371/journal.pgen.1004388.t003

PLOS Genetics | www.plosgenetics.org 4

BMI - body mass index; HDL-C - high density lipoprotein cholesterol; IQR - interquartile range; LDL-C - low density lipoprotein cholesterol; SD - standard deviation; TC -

June 2014 | Volume 10 | Issue 6 | €1004388



Longitudinal Effects of Established Lipid Loci

#001'88€001 uabd jeunol/Lzg1°0L:10p
‘4a4 s.61aqyd0oH-1utweluag buisn Hupsar-s|dinw 1oy sanjea 4 mes ayl paisnipe
3\ "s3|qeneA Juapuadap se sabueypd ey pidi] Yim sajgerien Juspuadapul a3 se (|9pow dAIIPPE) SIUBLIBA [enpIAIpUl pajeidosse Aisnoiaaid syl Bunily AQ paisal 919M SUOIIRIDOSSe dNS *S|9POW UOISSa16a1 Jeaul| Uo paseq aie sanjeA d

wsiydiowAjod

9pno3PNU BIBUIS - dNS ‘J01I9 piepuRlS - 3§ ‘184 AIDA0DSIP 3s|e) - Y4 ‘Aouanbauy oj9|je 10943 - 43 ‘39||e 1299 - Y3 ‘@bueyd apLadA|6L1 - D1V ‘Dbueyd [0431S9]0YD [B10] - DLV ‘IUSIDJI0D 1] - ¢ [RAIDIUI DIUSPYUOD %S6-1D %S6

,-01X9'9 - OLXS'L (#L¥'0 Z07°0) 80E0 900 b) 1¥0dv 95685951 51V
€€0 €200 (110 '800°0) 090°0 S50 1 8THT LL1THS) 51V

70 €00 (0L1'0 ¥00°0) £50°0 090 L 15 9rLTL62s) 51V

¢ 01x83 p OLX LY (€10 !1¥0'0) T60°0 v50 v Lg1YL 620556751 51V
sT0 €200 (0710 %600°0) ¥90°0 90 L €1LdONY STELELTS! 51V

74 0v0'0 (9110 €00°0) 650°0 LEO L ¥ 92092154 51V

620 €00 (110 '500°0) 850°0 €90 5 $99INZ 80vLSOLLS! 5LV

8€0 9€0'0 (0710 ¥00°0) 290°0 910 1 osgv 68117651 oLV

9€0 6200 (S60°0 500°0) 050°0 290 b) paWLL 920788951 LV

€L'0 6000 (2810 1920°0) £0L'0 260 5 41071 0TL11595! oLV

¢ OLXS'L 6-0LX0T (€£1'0 ¥90°0) 8110 070 5 Jodv 8E90ZYYS) LV
9€0 8€0'0 (8600 ‘€00°0) 050°0 €€0 5 8/5908V 9L£667151 oLV

800 ¢-0LXTT (6110 1920°0) 7£0°0 (90 L €1LdONY szeLeLTs) LV

SL'0 8000 (#LL0 *L0'0) 9900 70 B L712dN €817£0754 oLV

sLo 9000 (€210 1120°0) TLO'O €20 v YdH 666000754 LV

9€0 EV0'0 (9210 €00°0) 680°0 €60 b} 34H 295008151 oLV
uady d (ioww) (1> %sé6) ¢ 4v3 va sn>oq dNS yeuy

(DLV 40} LLZ'T=N DLV 04 S65'€ =N) APNiS YIDYID dY3 Ul S|ppow [euspnibuo| ays woly SdNS Juedubis AjjleuiwoN ¥ 3jqeL

June 2014 | Volume 10 | Issue 6 | €1004388

PLOS Genetics | www.plosgenetics.org



.01
)

ATC
-02 -.01

-.03
1

-.04
1

1 2 3 4
TC wGRS Quartile

ATG

1 2 3 4
TG wGRS Quartile

Figure 1. TC and TG level changes (95% Cl) over 10-yr follow-
up by wGRS quartiles. The TC wGRS was robustly associated with TC
changes over follow-up (=0.02 mmol/l per allele per follow-up, 95%
Cl= 0.01,0.03, SE=0.003, P=9.8*10"'®) (A). The TG wGRS was robustly
associated with TG changes over follow-up (f=0.03 mmol/l per allele
per follow-up, 95% Cl= 0.02, 0.04, SE=0.005, P=6.5*10""") (B).
doi:10.1371/journal.pgen.1004388.9001

Scandinavia AB). HDL cholesterol was measured after precipita-
tion of the other lipoproteins with sodium phosphowolframate-
magnesium chloride. For the ROC AUC analyses, lipid levels
were dichotomized (low/high) according to the American Heart
Association criteria [32]. At baseline, 5% of the individuals
reported not having fasted for at least 8 hours before the blood
draw, and information on fasting time was missing in a further
15% of the participants; therefore analyses were adjusted with a
variable indicating fasting status, but this did not materially affect
the results. In the MDC Study, TC, TG and HDL-C concentra-
tions in the fasting blood samples were measured with a DAX 48
automatic analyzer (Bayer AB, Géteborg, Sweden) using reagents
and calibrators from the supplier of the instrument. HDL-C
concentrations were determined by the same procedure as used for
TC, but after precipitation of LDL-C and very low-density
lipoprotein cholesterol (VLDL-C) with dextran—sulphate [33]. The
same laboratory methods where applied for analyzing lipid levels
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Figure 2. ROC AUC for high TC (A) and high TG (B) at follow-
up. In ROC analyses we excluded individuals with hyperlipidemia at
baseline and compared the predictive accuracy of four models (age,
sex and BMI (Model 1), Model 1 + trait specific wGRS (Model 2), Model 1
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+ traditional risk factors for hyperlipidemia (Model 3) and M1 + trait
specific GRS + traditional risk factors for hyperlipidemia (Model 4)) in
relation to hyperlipidemia at follow-up.
doi:10.1371/journal.pgen.1004388.g002

at both wvisits. Direct anthropometry was measured by nurses.
LDL-C concentrations were calculated with the Friedewald
formula for both studies [34].

Lipid medications

One percent of participants reported using lipid-lowering
medications, which we controlled for in analyses using a constant,
as described by Tobin ¢t al [35]. There was no information
available on the specific type of the lipid lowering agent used by
the participants, but at the time of the examinations the most
common class of lipid lowering drugs in northern Sweden was
statins, used by ~96% of lipid lowering medication users [36].
Therefore, to correct lipid levels we used the statin constants
proposed by Wu et al. [37]: HDL-C: —0.059 mmol/l; LDL-C: +
1.279 mmol/1, TC: +1.336 mmol/l, TG: +0.207 mmol/l. The
MDC Study participants who reported using lipid-lowering—
medication at baseline (3%) were excluded from analyses because
the type of medication used could not be determined. 28.3%
(n=2834) of the MDC Study participants reported using lipid
lowering medication at follow-up; of these, 28% wused LDL
lowering agents (Crestor, Lipitor, Pravachol, Zocord or Ezetrol)
and 0.3% used fibrates (Lopid). Their lipid measures were
corrected by adding the appropriate constants proposed by Wu
et al [37].

Genotyping

DNA was extracted from peripheral white blood cells and
genomic DNA samples were diluted to 4 ng/ul as previously
described [38,39]. Samples were genotyped with the MetaboChip
(Illumina iSelect) array [40]. The 102 associated SNPs from
Teslovich et al. [2] and the 62 SNPs from Willer e al. [3] were
extracted from the MetaboChip. We used proxy SNPs for 18
variants. Proxies for two SNPs (the TG-associated rs2929282 and
the HDL-C associated-rs1047891 variants) were unavailable.
Detailed information about the index and proxy SNPs are shown
in Table S3. The average genotyping success rate was 99.9%.
None of the SNPs deviated significantly from Hardy-Weinberg
expectations at a study-wise corrected level (P<<0.0001). There-
fore, we conducted our analyses with a total of 162 SNPs (HDL-C
=73 SNPs; LDL-C =58 SNPs; TC =75 SNPs; and TG =43
SNPs). For the replication effort in MDC, the SNPs analyzed were
genotyped using Illumina OmniExpress Exome. SNP and proxy
information are reported in Table S4.

Genetic risk score

The effects of multiple genetic risk loci on blood lipid traits were
studied by constructing two different types of GRS for each study
participant. The first assumed an equal magnitude of effect for
cach risk allele and was generated for each participant by
summing the number of risk alleles at each of the associated
SNP loci for the respective traits. Thus, because these are all
biallelic loci, the GRSs had a minimum possible value of 0 and a
maximum possible value of 146, 116, 150 and 86 for HDL-C,
LDL-C, TC and TG, respectively. To construct the second GRS,
we used published effect sizes for each SNP (from the joint meta-
analysis by Willer ez al. [3]) to weight the contribution of each risk
allele. The weighted alleles were subsequently summed into a
single weighted GRS (wGRS) as previously described [39,41].
Missing genotypes were imputed by mean imputation as

PLOS Genetics | www.plosgenetics.org

1,257 for TC; N=1,660 for TG).

Table 5. Pairwise differences between ROC AUC curves and classification statistics in relation to hyperlipidemia in GLACIER (N

Correctly classified

NPV

Model 2 Model 3 Model 4  Sensitivity Specificity PPV

Model 1

ROC AUC value (%)

99.63% 57.14% 65.04% 65.00%

0.91%

62

Model 1

high TC subset

93.26% 58.02% 67.58% 66.59%

17.23%

0.01

65

Model 2
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previously described [42]. To illustrate results in figures we used
quartiles of the GRSs.

Statistical methods

Statistical analyses were undertaken using SAS (version 9.3,
SAS Institute Inc., NC, USA), STATA (version 12.1, StataCorp
LP, TX, USA), R (version 2.15.3, The R Foundation for Statistical
Computing) and PLINK (version 1.07) [43-46]. Main effects were
estimated with generalized linear models (GLMs) by fitting
genotypes (additive model) or the unweighted/weighted GRSs as
the independent variable with the corresponding lipid traits as the
dependent variable. We used natural logarithmic transformed TG
values for cross-sectional individual SNP analyses and adjusted for
age, age®, sex, fasting time and population substructure (first four
principal components) in all our models. In longitudinal analyses,
we included the follow-up lipid measure as the dependent variable
and adjusted for the respective trait’s baseline value.

ﬁZZUW’uﬁ Zlﬁld = OH_ﬁ SNP/ GRSJ’_ﬁ baseline /1'/71'(1’+ ﬁ cout - '+ﬂ ot

For the sake of simplicity, when reporting the estimates for the
model above, we refer to ATC or ATG throughout the
manuscript. The Benjamini-Hochberg FDR was used to correct
for multiple testing [47]; given the prior knowledge of the SNPs in
the analyses, we decided to use a less stringent approach then the
Bonferroni or the Holm correction. ROC AUCs were computed
and compared using STATA. In these analyses we excluded
individuals with hyperlipidemia at baseline and compared the
predictive accuracy of four models (age, age®, sex and BMI (M1),
M1+ trait specific wGRS (M2), M1+ traditional risk factors (age,
sex, BMI, smoking status, alcohol intake) [10] for hyperlipidemia
(M3) and M1+ trait specific wGRS + traditional risk factors for
hyperlipidemia (M4)) in relation to hyperlipidemia at follow-up.
Random effects meta-analysis was performed using the metan
module in STATA [48]. Statistical analyses for MDC were done
using SPSS (version 20, IBM Corporation). Linear regression was
used to obtain effect sizes (B) and 95% confidence intervals (95%
CI) by fitting genotypes (additive model) as the independent
variables and follow-up lipid measures (T'C, InTG, HDL-C or
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