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Abstract
Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) is a popular 
method to calculate the free energy of the binding of ligands to proteins. It involves molecular 
dynamics (MD) simulations with an explicit solvent of the protein–ligand complex to give a set of 
snapshots for which energies are calculated with an implicit solvent. This change in the solvation 
method (explicit → implicit) would strictly require that the energies are reweighted with the 
implicit-solvent energies, which is normally not done. In this paper we calculate MM/GBSA 
energies with two generalised Born models on snapshots generated by the same methods or by 
explicit-solvent simulations for five synthetic N-acetyllactoseamine derivatives binding to galectin-
3. We show that the resulting energies are very different both in absolute and relative terms, 
showing that the change in solvent model is far from innocent and that standard MM/GBSA is not a
consistent method. The ensembles generated with the various solvent models are quite different 
with root-mean-squared deviations of 1.2–1.4 Å. The ensembles can be converted to each other by 
performing short MD simulations with the new method, but the convergence is slow, showing mean
absolute differences in the calculated energies of 6–7 kJ/mol after 2 ps simulations. Minimisations 
show even slower convergence and there are strong indications that the energies obtained from 
minimised structures are different from those obtained by MD.

Keywords: MM/GBSA, implicit solvation, generalised Born solvation, reweighting, galectin-3.
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Introduction
Molecular mechanics with generalised Born and surface-area solvation (MM/GBSA)1,2 is among the
most popular methods to estimate protein–ligand binding affinities,3,4 to find important residues for
protein–protein interactions,5,6 and to study macromolecular stability.1,7 When computing the
MM/GBSA free energy, the system of interest is first simulated using either molecular dynamics
(MD) or Metropolis Monte Carlo and snapshots are sampled at regular intervals. Second, for each
snapshot, the following free energy is calculated in a post-processing step

G = Eint + Eele + Evdw + Gpol + Gnp – TS (1)

where the three first terms on the right-hand side are the molecular-mechanics internal, electrostatic,
and van der Waals energies, respectively. Gpol and Gnp are the polar and non-polar solvation free
energies, and T and S are the absolute temperature and an entropy estimate, respectively. Usually,
the system is solvated in a box of explicit water molecules during the simulation. These solvent
molecules are removed before the post-processing and replaced with an implicit representation,
using either the generalised Born (GB) or Poisson–Boltzmann methods together with a surface-area
term (the Gpol and Gnp terms in Eqn 1).4,8 Thus, the solvent model and therefore the Hamiltonian are
different in the simulation and in the post-processing, an inconsistency that has hardly been
discussed.

Strictly, such a shift in the Hamiltonian requires that the snapshots should be reweighted with
the new (implicit-solvent) energy function: When computing the average MM/GBSA energy over
all snapshots, each snapshot should be assigned a weight that is the Boltzmann factor of the
difference between the energies with the simulation Hamiltonian (explicit solvent) and the post-
processing Hamiltonian (implicit solvent). However, this is normally ignored and a plain average is
computed, i.e., all snapshots are weighted equally. 

An alternative is to perform also the simulation in implicit solvent, thereby circumventing the
reweighting and giving a solvent-consistent MM/GBSA method. However, an implicit solvent is a
theoretically less rigorous approach than explicit solvent, and it is not certain that the two sampling
approaches will give equivalent ensembles.9 In addition, implicit-solvent simulations sometimes
give poor results, e.g. dissociation of ligands or protein subunits.10

In this paper, we make a thorough comparison of MM/GBSA energies calculated from
simulations with either implicit or explicit simulations. Furthermore, we quantify the similarity of
the obtained snapshots by converting the explicit solvent-simulated snapshots to implicit simulated-
snapshots using short MD simulations or minimisations. As a test case, we use the binding of five
inhibitors to the carbohydrate-recognition domain of the protein galectin-3 (gal3). These systems
have been used previously in MM/GBSA calculations11 and they have also been studied
experimentally.12 

Methods

System preparation. The five ligands illustrated in Figure 1 were studied when bound to gal3. The
five ligands are synthetic N-acetyllactoseamine derivatives and will be denoted as in the original
publication,12 viz., 2 through 6. The crystal structures of the complexes of gal3 with ligands 2 and 3
(PDB codes: 2XG313 and 1KJR13) were used as starting structures for the simulation of these
ligands. For ligands 4, 5, and 6, we used the crystal structure of gal3–3 after removing the methoxy
group of 3 and replacing fluorine with hydrogen atoms. This structure was used because ligands 4, 5,
and 6 are all fluorinated and therefore expected to have a binding mode similar to that of 3, whereas
2 is not fluorinated and displays a different binding mode regarding the conformation of Arg-144, as
can be seen in Figure 2. The preparation of the protein has been described in detail previously.11 All
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residues were assigned their normal protonation states at pH 7, i.e. all Asp and Glu residues were
negatively charged and all Lys and Arg residues were positively charged. The His residue at the
binding site (His-158) was protonated on the ND1 atom, whereas the other three His residues were
protonated on the NE2 atom. The protein was described with the Amber99SB force field14 and the
ligands were described with the general Amber force field.15 Charges for the ligands were obtained
by restrained electrostatic potential (RESP) calculations16 on ESPs calculated at the Hartree–Fock/6-
31G* level and sampled with the Merz–Kollman scheme.17 

Implicit simulations. All MD simulations were run by the sander module of Amber11. Two implicit
solvation models were tested, viz. the generalised Born models by Mongan et al. (GBn)18 and by
Onufriev, Bashford, and Case (GBOBCI; the first model, i.e. with the three parameters set to 0.8, 0.0,
and 2.9).19 For GBn, Bondi radii20 were used, whereas the second set of modified Bondi radii
(mbondi2)19 was used with GBOBCI. The non-polar solvation was calculated by multiplying the
solvent-accessible surface-area (SA) with a surface-tension parameter, i.e., γSA.21 SA was estimated
by the LCPO method22 (linear combinations of pairwise overlaps) and γ was set to 0.021 kJ/mol/Å2.
The non-bonded cutoff, as well as the cutoff for the calculation of the effective Born radius, were
set to 15 Å. The temperature was kept at 300 K using Langevin dynamics23 with a collision
frequency of 2 ps–1. All bonds to hydrogen atoms were constrained using SHAKE24 and a 2 fs time
step was used for the integration of motion. The forces of slowly-varying motions (the derivatives
with respect to effective Born radii and pair interactions whose distances are greater than 8 Å) were
evaluated every second step, and the non-bonded pair list was updated every 25 steps. 

The protein–ligand complexes were first minimised by 500 steps of steepest descent, using a
harmonic restraint towards the crystal structure with a force constant of 418.4 kJ/mol/Å2 on non-
hydrogen atoms, followed by a 20 ps MD simulation with the same restraints but with the force
constant halved, and a 1000 ps MD simulation without any restraints. The final structure of this
simulation was used to start 40 independent simulations by assigning different initial velocities.
Each independent simulation was further simulated for 300 ps, and snapshots were extracted every
5 ps during the last 200 ps. This has shown to be a proper simulation protocol for gal3.11

Explicit simulations. The systems were solvated in a pre-equilibrated truncated octahedral box of
TIP4PEw water molecules.25 The temperature was kept at 300 K using Langevin dynamics23 as for
the implicit simulations, and the pressure was kept at 1 atm using an isotropic weak-coupling
algorithm26 with a relaxation time of 1 ps. SHAKE24 was used to constrain bonds to hydrogen atoms
and the time step was 2 fs. The cut-off for the van der Waals interactions was 8 Å and the long-
range correction was estimated using a continuum approach.27 Electrostatic interactions were
computed using particle-mesh Ewald summation28 with a forth-order B-spline interpolation, a
tolerance of 10−5 and a real-space cut-off equal to 8 Å. The non-bonded pair list was updated every
25 step. The simulation protocol, i.e., the minimisation, equilibration, and production MD
simulations, was identical to that used for the implicit simulations. 

MM/GBSA calculations. The binding free energy between the protein and a ligand was estimated by

ΔG = 〈G (PL) − G(P) − G(L)〉PL (2)

where PL, P, and L are the protein–ligand complex, the protein, and the ligand, respectively, and the
free energy of each of these species was calculated using Eqn 1.1 The brackets indicate an average
over snapshots from the MD simulations of the complex. To compute the energies for the protein
and the ligand, the coordinates of the other moiety were removed. This is the standard approach of
MM/GBSA, giving precise energies in an efficient manner.29 Moreover, the Eint term in Eqn 1
cancels.
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The Eint, Eele, and the Evdw terms in Eqn 1 were evaluated using the same force field as in the
simulation, but without any cutoff. The Gpol and Gnp terms were estimated using the same methods
used in the implicit simulation, i.e. with GBn or GBOBCI and γSA. The entropy was calculated as a
combination of the rotational and translational entropy from standard formulas for gas-phase
molecules and the vibrational entropy, calculated from frequencies obtained by a normal-mode
analysis. The normal-mode analysis was computed on truncated systems as described previously30

yielding an improved precision and efficiency.31 For each protein–ligand complex and solvation
model, we calculated the MM/GBSA energy on 40 snapshots from 40 independent simulations, i.e.,
1600 snapshots in total.

Statistical analysis. Each reported uncertainty of MM/GBSA estimates is the standard deviation of
the mean over the 40 independent simulations, i.e., the standard deviation over the average
MM/GBSA result from the 40 independent simulations divided by √40 . The MM/GBSA estimates
were compared to experimental free energies using the mean unsigned error after removal of the
systematic error (i.e. the mean signed deviation from the experimental results; MUEtr), the
correlation coefficient (r2), and Kendall's rank correlation coefficient (τ). The uncertainties of these
quantities were obtained by a bootstrapping procedure outlined previously.11

Results and Discussion
We have estimated binding affinities of five ligands to gal3 using MM/GBSA. The MM/GBSA
calculations were based on snapshots generated using MD simulation with either explicit TIP4PEw
water molecules or two implicit GB methods. In what follows, we will discuss the binding affinities
obtained and the differences between the snapshots generated with the different solvent models.

Binding affinities. The computed binding affinities are shown in Table 1 for the various
combinations of solvent models used in the MD simulations and energy post-processing. In the
conventional MM/GBSA approach,  the protein–ligand complex is simulated with an explicit
solvent representation.4 Using such an approach and post-processing the snapshots with the GBn
model gives binding affinities that are anti-correlated with the experimental binding affinities. The
correlation coefficient (r2) is 0.78±0.06, but the Kendall's τ of –0.78±0.04 shows that a majority of
the affinities are incorrectly ranked. The mean unsigned error after removal of the systematic error
(MUEtr) is 21±2 kJ/mol, which is much larger than for the null hypothesis that all ligands have the
same affinity (MUEtr = 2.9 kJ/mol). This is mostly caused by the exaggerated range of the
MM/GBSA estimates, 54 kJ/mol compared to 10 kJ/mol for the experimental affinities, which leads
to a slope that is much larger than 1. 

If we instead use the GBOBCI method for the Gpol term on the same snapshots, the results are
not improved. The correlation coefficient is basically zero, τ shows that most of the affinities are
incorrectly ranked, and the MUEtr of 9.4±0.4 kJ/mol is larger than for the null hypothesis.
However, the difference in uncertainty of the two approaches is interesting. GBn gives consistently
a worse precision than GBOBCI, 3.5 kJ/mol compared to 0.9 kJ/mol on average. From Table 2, it can
be seen that this comes entirely from the Gpol term, which has an average precision of 3.3 kJ/mol
when evaluated with the GBn model but 1.1 kJ/mol when evaluated with the GBOBCI model. The
second largest uncertainty is for the electrostatic term, 1.5 kJ/mol on average for both models. The
other terms have uncertainties that are smaller than 1 kJ/mol. Hence, the uncertainty of the GBn
estimates is dominated by the uncertainty in the Gpol term, whereas the uncertainty of the GBOBCI

estimates is dominated by the Eele term. 
An alternative to simulate with explicit water is to simulate with the same GBSA model used

in the energy post-processing, an approach we will call solvent-consistent MM/GBSA (sc-
MM/GBSA) in the following. Such binding affinities have been estimated as well, and using GBn
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both in the simulations and the energy calculations improves the affinities compared to the explicit-
solvent simulation. However, the results are still quite poor, with basically no correlation and a
MUEtr (14±1 kJ/mol) that is much larger than for the null hypothesis. 

However, if we instead use the GBOBCI model both in the MD simulations and the energy
calculations, we obtain good affinities: The correlation coefficient is decent (r2 = 0.70±0.06) and the
τ of 0.8±0.2 shows that most of the affinities are correctly ranked. Moreover, MUEtr (2.4±0.3
kJ/mol) is lower than for the null hypothesis, showing that the affinities are good on a relative scale,
although the estimation are much more negative than the experimental affinities (by 61 kJ/mol on
average). A similar remarkable difference in MM/GBSA binding affinities obtained with the two
GB models has previously been observed for the avidin protein.9 Again, there is also a large
difference in the precision of the binding affinities obtained with the two approaches. The average
precision when using the GBn model is 2.4 kJ/mol, whereas the corresponding value for the GBOBCI

model is only 0.7 kJ/mol (see Table 2). It is noteworthy that these uncertainties are smaller than
when the simulation was performed with explicit solvent, indicating that there is some mismatch
between the ensembles generated with explicit and implicit solvent.

It is also interesting to estimate affinities from energies calculated by one GB model and
based on simulation with the other GB model. These estimates are shown in Table 1 as well. Using
the GBn model to post-process snapshots generated with the GBOBCI model gives bad results: There
is a negative correlation and most of the affinities are incorrectly ranked, as is indicated by τ = –
0.3±0.1. The range of the estimates are about six times as large as the range of the experimental
affinities, leading to a MUEtr that is much worse than the MUEtr of the null hypothesis (19±1
kJ/mol). However, if we instead use the GBOBCI model to post-process snapshots generated with the
GBn model, we obtain quite good results: r2 = 0.50±0.05 and τ = 0.6±0.1, whereas MUEtr =
2.7±0.2 kJ/mol is on par with the null hypothesis. These results indicate that the GBn method gives
reasonable structures but unstable energies, which is also corroborated by the larger uncertainties of
the GBn energies in Tables 1 and 2. 

In Table 3, we list the term-wise difference between sc-MM/GBSA estimates obtained with
the GBn and GBOBCI models. It is clear that the largest difference comes from the Gpol term, between
–39 and –101 kJ/mol, and –74 kJ/mol on average. There are smaller differences also for the other
terms and the differences are for most of the ligands statistically significant. Besides Gpol, the Eele

term shows the largest variation among the ligands, with differences between –30 and 2 kJ/mol. Of
course, this difference is caused by differences in the structures generated by the two methods (for
the same snapshot, the two methods differ only in the Gpol term). The Gnp term shows the smallest
variation among ligands and also the smallest difference between the two sc-MM/GBSA
approaches. It is also the term that makes the smallest contribution to the free energy.

Moreover, we have compared the MM/GBSA terms obtained with the GBOBCI model for
snapshots generated either with  GBOBCI or TIP4PEw solvation. From Table 3B, it can be seen that
the difference in the Gpol term is smaller (because the energies are calculated with the same  GBOBCI

model) and that the differences in the Eele and  Gpol terms to a large degree cancel, so that it is
actually the Evdw term that dominates for all ligands except 2.

RMSD analysis. It is of interest to quantify also the geometric the differences between the three
generated ensembles. We started by computing the root mean square deviation (RMSD) between
the various snapshots and the crystal structure for the heavy atoms of the protein backbone. The
results are shown in Table 4. It is clear that the explicit-solvent model gives snapshots that are
closest to the crystal structure. The RMSD is ~0.7 Å for all ligands. With the GBn model, we obtain
slightly larger RMSDs, between 1.0 and 1.2 Å (1.1 Å on average), and with the GBOBCI model, we
obtain even larger RMSDs of 1.1–1.5 Å (1.3 Å on average). These results follow the expectations,
because the explicit TIP4PEw model, which is expected to give the most accurate results, gives
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trajectories closest to crystal structure and the more modern GB model (GBn) gives trajectories
closer to the crystal structure than the older GBOBCI model. However, it does not explain why the
GBOBCI model gave better affinities than the GBn model.

Next, we computed the RMSD between the snapshots in the same ensemble, i.e. between
snapshot generated with the same solvent model. These measurements are listed in the upper part of
Table 5. For the TIP4PEw ensemble, we obtain RMSDs between 0.6 and 0.7 Å for the protein
backbone and 1.2–1.3 Å for the ligand. For the GBn ensemble, the variation is slightly larger with
an average backbone RMSD of 0.9 Å and an average ligand RMSD of 1.3 Å. The GBOBCI ensemble
gives even larger RMSD, 1.0 Å for the backbone and 1.4 Å for the ligand on average. The latter
finding is consistent with the larger uncertainties for the GBOBCI snapshots in all MM/GBSA terms
except Evdw , as shown in Table 2

We also computed the RMSD between snapshots from different ensembles, i.e. between
snapshots generated with different solvent models. These measurements are shown in the lower part
of Table 5. Comparing the GBn and TIP4PEw ensembles, we obtain an average RMSD of 1.2 and
1.7 Å for the protein backbone and ligand, respectively. This is higher than the average RMSDs for
the individual GBn and TIP4PEw ensembles, indicating the two ensembles are more different than
the snapshots within the ensembles. However, the difference observed for the ligand RMSD is not
statistically significant for all ligands. The same observation holds true when comparing the GBOBCI

and TIP4PEw ensembles, and when comparing the GBOBCI and the GBn ensembles. However, the
RMSD analysis does not indicate that any ensemble is more different than the other, because for
most ligands, the differences between the inter-ensemble RSMD measurements are not statistically
significant. 

Converting explicit-solvent generated snapshots to solvent-consistent snapshots
Owing to the large fluctuations of the total energies, it is not possible to directly reweight the
snapshots from the explicit-solvent simulations to the implicit-solvent Hamiltonian. As an
alternative, we can attempt to convert the snapshots to the solvent-consistent ensemble using short
MD simulations or minimisations. In some implementations of a semiempirical quantum-mechanics
variant of MM/GBSA, it is standard to minimise snapshots with the semiempirical Hamiltonian
before computing of Eqn 1,32,33 and here we attempt something similar but with a much purer test
case, because we can perform the MD simulation with the GB Hamiltonian. 

Therefore, for each of the snapshots generated with TIP4PEw water molecules, we performed
either short MD simulations or steepest decent minimisations for 1, 3, 5, 10, 20, 50, 100, 200, or
1000 steps with a GBSA model and then evaluated the free energy the normal way. The results are
collected in Table 6 and they are presented as the difference compared to the sc-MM/GBSA
estimates with the same GB model in Table 1. 

It can be seen that with short MD simulations, the estimates converge towards the sc-
MM/GBSA results but only slowly. For GBn there is a mean absolute deviation (MAD) of 43
kJ/mol after 10 MD steps, which is reduced to 7 kJ/mol after 1000 steps. In the latter case, the
difference is not statistically significant for three of the ligands, but mostly owing to the poor
precision of the GBn estimates. The situation is similar for GBOBCI, although the differences were
smaller from the start. After 1000 MD steps, the difference is 4 kJ/mol and the difference is not
statistically significant for three ligands. However, for all the other numbers of MD steps, the MAD
is actually larger than for the starting point. 

Using minimisation with the GBn model, the differences compared to sc-MM/GBSA
decreases somewhat, but very slowly. After 1000 steps of minimisation, the MAD is still 54 kJ/mol.
Likewise, with the GBOBCI model, the deviations have only decreased by 1 kJ/mol after 1000 steps.
Hence, it seems very hard to correct the ensemble using minimisation. The reason for this is
probably that the ensembles obtained by MD simulations and minimisations are different, which
call into question the re-emerging suggestion to base MM/GBSA and similar approaches on
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minimised structures, rather than on MD snapshots (to save time).34,35,36,37

Structural differences in the binding site
A covariance analysis of the snapshots generated by TIP4PEw and GBOBCI  for each ligand shows
that the structural differences in the binding site are similar for the various ligands. In summary, the
binding site is slightly extended in the GB simulations, with the distance between the Trp-181 and
Ser-237 backbones increasing by ~1 Å (Figure 2 shows residues in the ligand-binding site). The
interactions with the ligand also become slightly weaker, e.g. the distance from the Trp-181
sidechain is increased by ~0.5 Å. This is also reflected in the calculated binding affinities, which are
on average ~8 kJ/mol less attractive when the GBOBCI snapshots are employed (if both sets are
evaluated with the same method, GBOBCI ). 

The largest differences are seen for the conformation of Arg-144. In both available crystal
structures (for ligands 2 and 3),13 the guanidine group of this residue forms a stacking interaction
with the aromatic ring of the ligand, but with opposite faces of the ring in the two structures (the
ring is also tilted by ~90 degrees; cf. Figure 2). For ligands 2, 5, and 6, the starting conformation
(i.e. the crystal structure for 2, 3, and 3, respectively) is kept in the TIP4PEw simulations,
suggesting that the stacking interaction is stable in explicit water. In the GBOBCI simulations, the
Arg-144 appears much more flexible and occupies several conformations. Interestingly, in the
GBOBCI  simulation of ligand 2, the most populated conformation is the one corresponding to the
crystal structure of ligand 3. This suggests that the two conformations have similar stability and that
the discrimination between them is sensitive to the force field, solvent model, and simulation
methodology. For ligands 5 and 6, the dominant conformation of Arg-144 in the GBOBCI  simulation
does not interact with the ligand at all, which leads to a decrease in van der Waals attraction by ~20
kJ/mol (see Table 3B). For ligands 3 and 4, the stacking interaction is lost already in the TIP4PEw
simulations in favour of an interaction with the side of the ring. Nevertheless, the interaction
becomes even weaker when using the GBOBCI  model. These results are summarized in Figure 3,
which shows the distribution of the distance between the Arg-144 guanidine group and the aromatic
ring of the ligand for various simulations.

The corresponding results for two time-points from the short GBOBCI  MD simulations are 
also shown in Figure 3. It is evident that after 200 steps, the predominant conformation of Arg-144 
is still the same as in the TIP4PEw simulations. On the other hand, after 1000 steps, the 
conformational distribution has started to shift towards the equilibrated GBOBCI  distribution for three
of the ligands (and in the opposite direction for one ligand). Similar trends are seen for the binding 
site as a whole. For the three "well-behaving" ligands, 2, 5, and 6, the RMSD of the binding site (the
ligand and the ten closest residues) relative to the average GBOBCI  structure decreases slightly during
the short GBOBCI simulations; the ensemble initiated with TIP4PEw snapshots relaxes towards the 
fully equilibrated GBOBCI  ensemble, as expected, although 1000 steps is too short to see a full 
convergence. On the other hand, for ligands 3 and 4, the RMSD relative to the average GBOBCI  

structure actually increases during the short simulations, suggesting the presence of many accessible
conformations. However, the low deviation (only 1.2 kJ/mol) between the binding affinities 
calculated using the 1000-steps snapshots and the equilibrated GBOBCI snapshots for ligand 4 (see 
Table 6) indicates that once the Arg-144 residue has lost its interaction with the ligand, its exact 
position is not so important energetically.
 It is also interesting to note that, for all ligands, a cluster analysis38 performed on the
coordinates of the ligand and the 10 closest residues, places all the 1600 TIP4PEw snapshots in the
same cluster, which means that there exists a snapshot which is within 1 Å RMSD of all the other
snapshots. On the other hand, the same cluster analysis for the GBOBCI snapshots gives 4–9 clusters
(average 6.4) for the various ligands, showing that much more conformations of the binding site (in
particular Arg-144) are sampled in the GBOBCI  simulations.
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Conclusions
In this study we have computed MM/GBSA estimates of ligand-binding affinities using snapshots
generated with MD simulations based on one explicit and two implicit-solvent models. We have
compared the estimated affinities, and quantified the difference between the three snapshot
ensembles. The study has provided several interesting results.

First, it is clear that the choice of solvent model both in the MD and in the energy
calculations, strongly affects the accuracy and precision of the estimates, as shown in Tables 1 and
2. For this test case, it is best to both run the MD simulations and to post-process the snapshots
using the GBOBCI model, although MD simulations with GBn, followed by energy calculations with
GBOBCI give similar results. However, this is most certainly not a general conclusion, considering
the small test set used and the fact that the explicit-solvent simulations gave structures closest to the
crystal structure. Similar large differences between MM/GBSA energies obtained with the GBn and
GBOBCI  have also been observed previously for the avidin protein.9 In both studies, it was clear that
GBn exaggerated the range of the binding affinities, leading to a relatively large MUEtr, although
the ranking of the ligands can be as good or better than those obtained with GBOBCI. The best
approach would be to evaluate the free energies by free-energy perturbation methods and explicit
water. However, if one chooses to use an implicit model in the evaluation of free energy, as in the
MM/GBSA approach, it is no longer certain that structures generated with explicit waters will give
better results than those generated by implicit water, even if the former are closer to the crystal
structure. In our case, the results actually become worse, which may be related to the inconsistency
of not reweighting the snapshots.

Second, it is very hard to distinguish the generated ensembles by a simple RMSD analysis. It
is clear that both GB models shows more variability among the snapshots than TIP4PEw, and that
GBn shows less variation than GBOBCI. Furthermore, we have shown that the inter-ensemble
variability is larger than the intra-ensemble variability, i.e., the snapshots from distinct ensembles
are more different than snapshots from the same ensemble. However, it is not possible to show by
the RMSD analysis which ensemble is most different. In the binding site, the most prominent
differences caused by the solvation model are seen for Arg-144, which adopts a much greater
variety of conformations in the GB simulations than in the explicit-solvent simulations.

Third, we have attempted to convert the explicit-solvent snapshots to solvent-consistent
snapshots by performing short MD simulations or minimisations with a GBSA model on the
snapshots before evaluating the MM/GBSA free energy. Using MD, the results converge slowly
towards to sc-MM/GBSA estimates, although more than 1000 steps or 2 ps of simulation seem to be
required before the results converge. This is a significant amount of time (3.2 ns for all 1600
snapshots) compared to the total 13 ns used for the MD simulations of standard (and sc-)
MM/GBSA. Using minimisations instead of simulations, seems to show even worse convergence.
Most likely the explicit-solvent and the implicit-solvent snapshots represent two distinct energy
minima that are not easily interconvertible. The results indicate that MM/GBSA based on
minimisations does not give the same results as standard MM/GBSA based on MD simulations.

Most importantly, the present results show that the standard MM/GB(PB)SA approach is
inconsistent in that it uses snapshots sampled with explicit water molecules, but then calculates
energies on these snapshots with an implicit-solvent model without reweighting the snapshots. Our
result shows that such an approach gives results that are very different from the consistent approach
of using the same solvent model in both the simulations and energy calculations. However, we do
not expect that the sc-MM/GBSA approach will be significantly more accurate than standard
MM/GBSA, because both approaches are limited by other approximations inherent in the
method.9,10,39 

Recently, there have been quite some interest of performing MM/GBSA-like calculations in
which energies are calculated with quantum-mechanical (QM) methods.40,41 Then, a similar question
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arises whether the MD snapshots obtained with MM methods are representative also for energy
calculations with QM. Experience from reaction energies indicates that MM and QM potentials are
so different that MM→QM reweighting normally does not converge, unless the QM system is kept
fixed.42,43,44 In this paper, we have instead tried to obtain the correct ensemble with short MD
simulations or minimisations. Unfortunately, it seems that a large number of MD steps are needed
for convergence (>1000), which would be prohibitive for most QM applications. 
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Table 1. MM/GBSA estimates of the binding free energy (kJ/mol), using different combinations of 
solvent models in the MD simulations and the energy evaluations. 

Energya GBn GBOBCI Exp

MDb GBn GBOBCI TIP4PEw GBn GBOBCI TIP4PEw

2 -169.2 ±2.4 -6.5 ±2.8 -76.1 ±3.8 -93.6 ±0.5 -87.2 ±0.7 -75.8 ±1.1 -29.7

3 -182.3 ±1.9 -39.7 ±3.9 -66.6 ±3.0 -95.5 ±0.6 -87.1 ±0.7 -89.6 ±0.8 -34.8

4 -156.1 ±2.2 -52.7 ±1.8 -107.1 ±2.4 -89.9 ±0.4 -75.1 ±0.5 -91.2 ±0.6 -24.5

5 -131.4 ±3.4 -35.3 ±2.2 -86.8 ±4.6 -89.4 ±0.6 -86.5 ±0.7 -98.7 ±1.4 -29.7

6 -178.0 ±2.2 -68.6 ±2.5 -120.2 ±3.9 -83.0 ±0.6 -81.3 ±0.7 -101.0 ±0.8 -26.3

MUEtr 14.2 ±1.2 19.0 ±1.1 20.7 ±1.5 2.7 ±0.2 2.4 ±0.3 9.4 ±0.4

r2 c 0.07 ±0.03 -0.20 ±0.06 -0.78 ±0.06 0.50 ±0.05 0.70 ±0.06 -0.07 ±0.02

τ 0.33 ±0.06 -0.33 ±0.08 -0.78 ±0.04 0.56 ±0.10 0.78 ±0.17 -0.33 ±0.08

range 50.9 62.0 53.6 12.5 12.2 25.3 10.3
a The solvent model used in the MM/GBSA energy post-processing. 
b The solvent model used in the MD simulations to generate the snapshots. 
c A negative sign or r2 indicates that r is negative.

Table 2. Average uncertainty over the five ligands (kJ/mol) for the various terms of different
combinations of solvent models in the MD simulation and the energy evaluation.

Energy model GBn GBOBCI

MD model GBn GBOBCI TIP4PEw GBn GBOBCI TIP4PEw

Eele 0.8 1.5 1.5 0.8 1.5 1.5

Evdw 0.5 0.4 0.7 0.5 0.4 0.7

Gpol 2.5 2.7 3.3 0.7 1.1 1.1

Gnp 0.0 0.0 0.1 0.0 0.0 0.1

–TS 0.4 0.6 0.7 0.4 0.6 0.7

ΔG 2.4 2.6 3.5 0.6 0.7 0.9
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Table 3. Term-wise differences in kJ/mol (A) between sc-MM/GBSA estimates using GBn and
GBOBCI, and (B) between the MM/GBSA estimates (obtained with GBOBCI for the energy calculation)
using GBOBCI and TIP4PEw trajectories.

A B

Ligand Eele Evdw Gpol Gnp –TS Eele Evdw Gpol Gnp –TS

2 2.2 7.6 -87.5 0.3 -4.7 -15.0 -7.4 3.8 -1.1 8.2

3 -18.7 7.5 -87.7 0.4 3.2 18.3 8.4 -17.9 0.5 -6.8

4 -30.0 -0.7 -53.2 -0.7 3.6 38.8 11.7 -31.7 1.0 -3.7

5 -15.6 1.5 -39.1 -0.4 8.6 16.4 20.5 -26.2 1.6 -0.1

6 -7.3 5.8 -100.8 0.2 5.3 13.0 19.8 -18.6 1.9 3.7

Average -13.9 4.3 -73.7 0.0 3.2 14.3 10.6 -18.1 0.8 0.3
A negative difference indicates that the GBn estimate is more negative than the GBOBCI estimate (A) or that
the results for the  GBOBCI trajectories are more negative than those for the TIP4PEw trajectories (B).
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Table 4. Average RMSD from the crystal structure (Å) for protein backbone atoms of the snapshots
used in the MM/GBSA estimates.

Solvent model GBn GBOBCI TIP4PEw

2 1.11 ±0.01 1.10 ±0.01 0.73 ±0.01

3 1.07 ±0.01 1.32 ±0.01 0.79 ±0.01

4 1.00 ±0.00 1.48 ±0.01 0.69 ±0.00

5 1.14 ±0.01 1.48 ±0.01 0.73 ±0.01

6 1.22 ±0.02 1.30 ±0.01 0.72 ±0.01

Average 1.11 1.34 0.73

Table 5. Average RMSD (in Å) between the various snapshots used in the MM/GBSA estimates.
The RMSD was calculated for every possible pair of snapshots taken every 50 ps in the simulations.

Solvent model GBn / GBn GBOBCI / GBOBCI TIP4PEw / TIP4PEw

Backbone Ligand Backbone Ligand Backbone Ligand

2 0.96 ±0.02 1.34 ±0.17 1.01 ±0.04 1.38 ±0.17 0.67 ±0.01 1.28 ±0.37

3 0.97 ±0.02 1.41 ±0.23 0.91 ±0.05 1.47 ±0.25 0.66 ±0.01 1.19 ±0.27

4 0.80 ±0.05 1.24 ±0.10 1.18 ±0.07 1.49 ±0.27 0.61 ±0.01 1.19 ±0.28

5 0.94 ±0.03 1.27 ±0.12 1.02 ±0.04 1.33 ±0.14 0.67 ±0.01 1.25 ±0.34

6 1.00 ±0.03 1.32 ±0.15 0.88 ±0.05 1.34 ±0.15 0.71 ±0.01 1.23 ±0.32

Average 0.93 1.32 1.00 1.40 0.66 1.23

Solvent model GBn / TIP4PEw GBOBCI / GBn GBOBCI / TIP4PEw

Backbone Ligand Backbone Ligand Backbone Ligand

2 1.14 ±0.02 1.88 ±0.56 1.15 ±0.03 1.40 ±0.09 1.15 ±0.04 1.89 ±0.59

3 1.17 ±0.04 1.54 ±0.15 1.25 ±0.04 1.53 ±0.17 1.33 ±0.07 1.70 ±0.35

4 1.01 ±0.01 1.50 ±0.15 1.37 ±0.08 1.47 ±0.13 1.59 ±0.23 1.65 ±0.29

5 1.21 ±0.02 1.80 ±0.21 1.29 ±0.05 1.45 ±0.11 1.57 ±0.22 1.95 ±0.68

6 1.23 ±0.02 1.59 ±0.18 1.10 ±0.03 1.36 ±0.07 1.33 ±0.07 1.68 ±0.32

Average 1.15 1.66 1.23 1.44 1.39 1.77

14



Table 6. Difference between sc-MM/GBSA estimates in Table 1 and MM/GBSA estimates obtained
after short MD simulations or minimisations of the snapshots from the explicit simulation. 

Molecular dynamics

Solvent GBn GBOBCI 

# Steps 2 3 4 5 6 MAD MAX 2 3 4 5 6 MAD MAX

0 -93.0 -115.7 -49.0 -44.6 -57.9 72.0 115.7 -11.4 2.5 16.2 12.2 19.8 12.4 19.8

1 -91.8 -115.5 -49.2 -44.4 -57.4 71.7 115.5 -9.6 3.5 16.4 13.0 20.6 12.6 20.6

3 -83.7 -103.5 -38.4 -32.9 -47.7 61.2 103.5 -5.1 10.0 23.0 19.0 26.5 16.7 26.5

5 -76.4 -94.0 -30.4 -24.8 -39.6 53.0 94.0 -1.6 14.9 27.1 23.1 31.1 19.5 31.1

10 -68.2 -82.2 -21.8 -13.8 -29.9 43.2 82.2 -0.1 15.1 28.3 26.2 32.2 20.4 32.2

20 -49.2 -60.4 -24.0 -12.7 -27.3 34.7 60.4 6.9 19.8 29.3 29.3 35.1 24.1 35.1

50 -27.2 -20.6 19.2 24.6 10.4 20.4 27.2 8.2 20.1 30.6 30.4 36.7 25.2 36.7

100 -43.7 -14.7 60.9 59.0 54.5 46.6 60.9 -1.5 13.5 28.9 33.0 38.2 23.0 38.2

200 -2.2 21.7 20.2 16.0 14.0 14.8 21.7 -1.8 10.6 24.1 18.0 32.8 17.5 32.8

1000 3.0 -16.9 -2.6 -13.5 0.6 7.3 16.9 -6.6 8.5 1.2 1.3 0.5 3.6 8.5

Minimisation

Solvent GBn GBOBCI 

# Steps 2 3 4 5 6 MAD MAX 2 3 4 5 6 MAD MAX

0 -93.0 -115.7 -49.0 51.5 -57.9 73.4 115.7 -11.4 2.5 16.2 12.2 19.8 12.4 19.8

1 -92.2 -115.3 -49.2 -45.2 -58.3 72.0 115.3 -10.8 2.4 16.1 12.0 19.2 12.1 19.2

3 -91.9 -115.3 -48.8 -44.7 -57.9 71.7 115.3 -10.6 2.9 16.5 12.0 19.2 12.2 19.2

5 -91.6 -114.8 -48.2 -44.4 -57.6 71.3 114.8 -10.4 3.4 16.4 12.1 20.3 12.5 20.3

10 -90.6 -113.0 -46.8 -42.3 -56.3 69.8 113.0 -9.6 4.3 17.9 13.9 22.2 13.6 22.2

20 -93.6 -115.4 -47.9 -43.7 -56.7 71.4 115.4 -8.2 5.9 18.9 14.5 21.7 13.9 21.7

50 -90.8 -101.8 -39.0 -33.3 -46.3 62.2 101.8 -10.0 3.9 17.7 16.1 21.7 13.9 21.7

100 -90.6 -100.4 -38.0 -32.6 -45.6 61.4 100.4 -10.4 3.4 17.1 16.0 22.1 13.8 22.1

200 -89.5 -99.3 -36.7 -30.1 -43.0 59.7 99.3 -10.9 3.2 17.1 16.3 22.2 13.9 22.2

1000 -92.1 -90.6 -31.2 -22.9 -35.0 54.3 92.1 -18.5 -2.3 10.1 10.0 17.2 11.6 18.5
MAD and MAX are the mean and maximum absolute differences for the five ligands.
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Figure 1. The five ligands investigated in this study. The numbering of the ligands follows the
original study.12

Ligand R1 R2 R3 R4 R5

2 H H H H H

3 F F OMe F F

4 F F F F F

5 H F F F F

6 H F H F H
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Figure 2. Overlay of the crystal structures for the complex with 2 (PDB id 2XG313) in red and the
complex with 3 (PDB id 1KJR13) in blue. The closest residues are shown in light red and light blue,
respectively, with the only significant deviation seen for Arg-144, which forms a stacking
interaction on opposite faces of the aromatic ring of the ligand. 
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Figure 3. Distribution of the minimum distance between the guanidine group of Arg-144 and the
carbon atoms in the aromatic ring of the ligand over the 1600 snapshots from the TIP4PEw and
GBOBCI simulations, as well as from the short GBOBCI MD simulations (200 or 1000 steps) initiated
from the TIP4PEw snapshots. Results for all five ligands are shown.
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