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Abstract

A coupled diffusion-deformation, multiphase field model for elastoplastic materials is pre-
sented. The equations governing the evolution of the phase fields and the molar concentra-
tion field are derived in a thermodynamically consistent way using microforce balance laws.
As an example of its capabilities, the model is used to study the growth of the intermetallic
compound (IMC) Cu6Sn5 during room-temperature aging. This IMC is of great importance
in, e.g., soldering of electronic components. The model accounts for grain boundary diffu-
sion between IMC grains and plastic deformation of the microstructure. A plasticity model
with hardening, based on an evolving dislocation density, is used for the Cu and Sn phases.
Results from the numerical simulations suggest that the thickness of the IMC layer increases
linearly with time and that the morphology of the IMC gradually changes from scallop-like
to planar, consistent with previous experimental findings. The model predicts that plastic
deformation occurs in both the Cu and the Sn layers. Furthermore, the mean value of the
biaxial stress in the Sn layer is found to saturate at a level of −8MPa to −10MPa during
aging. This is in good agreement with experimental data.

Keywords: Intermetallic compounds; Cu6Sn5; Phase field model; Finite element method

1. Introduction

Over the past years phase field modeling has evolved into a powerful tool for compu-
tational materials science. One advantage of phase field models is that there is no need
to explicitly track the position of interfaces during microstructural evolution. Instead, the
position of the interfaces is implicitly given by the evolution of the phase field variables used
to describe the microstructure. This makes it possible to simulate complex polycrystalline
microstructures without making assumptions on, e.g., the shape of the grains [1]. Phase field
models have been used to study, for example, solidification processes and dendritic growth
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[2, 3], recrystallization [4], and martensitic phase-transformation [5]. Another phenomena
to which phase field modeling is well adapted is growth of intermetallic compounds (IMC).
The focus of the present work is the IMC in the Cu-Sn system. These IMC are of great
importance due to their role in soldering of electronic components. The recent transition to
lead-free solders, driven by environmental concerns and legislation, have further increased
the interest for the Cu-Sn system, both from experimental [6–13] and modeling [14–18]
perspectives.

During a soldering process, a layer of the intermetallic compound Cu6Sn5 (η-phase) will
form at the interface between the Cu substrate and the liquid solder [9]. A small amount
of IMC is necessary to achieve sufficient bonding between the substrate and the solder.
However, in the presence of too much IMC, the mechanical properties of the solder joint
will degrade due to the brittleness of the intermetallic phase [19]. The thickness of the IMC
will increase during aging and the growth of the Cu6Sn5 phase will introduce stresses in the
surrounding microstructure [8]. These stresses are believed to be responsible for another
reliability concern in the electronics industry, namely the growth of tin whiskers [20].

The formation and growth of intermetallic compounds in the Cu-Sn system has been
previously studied using the phase field method. A one-dimensional model of the growth
of Cu6Sn5 was developed by Umantsev in [17]. In this model the phase fields represent
ordering and crystallization rather than individual grains. Huh et al. [14] developed a
model for simulating growth of Cu6Sn5 between a Cu substrate and molten solder. Based
on the model by Huh and coworkers, several additional studies have been presented, e.g.
[15, 16]. None of these models, however, take the mechanical behavior of the material into
account. In [18], the stress build-up caused by the growth of IMC is simulated using the
finite element method. The model in [18] is uncoupled and only deformation is taken into
account while the growth of IMC is added based on curve fitting of experimental data.

In this paper, we present a coupled diffusion-deformation, multiphase field model ca-
pable of simulating both the growth of the Cu6Sn5 phase and the associated build-up of
stresses. The equations governing the evolution of the simulated microstructure are derived
in a thermodynamically consistent way using the concept of microforces [21, 22] and the
constitutive framework developed by Ammar et al. [23]. The model is used to study the
growth behavior of Cu6Sn5 during isothermal aging at room temperature.

The paper is structured in the following way: In Section 2 the multiphase field model is
derived, starting from a dissipation inequality and a postulated free energy. In Section 3 and
Section 4 numerical aspects of the model and the choice of model parameters are discussed.
Results from the simulations are presented in Section 5. The paper is closed with some
concluding remarks in Section 6.

2. Multiphase field Model

In multiphase field models a polycrystal microstructure is represented by a set of non-
conserved phase fields ϕ = (ϕa(t,X), ϕb(t,X), . . . , ϕn(t,X)), where each phase field repre-
sents one grain in the microstructure. The phase fields are functions of time, t, and spatial
coordinates, X. Grain boundaries are taken as the regions where two or more phase field
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variables vary smoothly between 0 and 1. The smooth variation occurs over some distance,
creating a diffuse interface region. Based on the properties of each phase present at the inter-
face, the material properties of the interface region can be estimated using the interpolation
function introduced in [15]:

hi(ϕ) =
ϕ2
i∑
j ϕ

2
j

, (1)

where the sum in the denominator is taken over all phase fields, i.e. j = 1 . . . n.
To simulate diffusion, conserved field variables x = (xa(t,X), xb(t,X), . . . , xn(t,X)),

representing the molar fraction in each grain is used. The molar fraction fields are related
to the global molar concentration field c through

c =
∑
n

hn
xn

Vm

, (2)

where the interpolation function hi in (1) is used to interpolate between the molar fraction
field corresponding to each phase field and where Vm is a constant molar volume.

The derivation of the equations governing the evolution of the phase fields and the
concentration field is presented below. The derivation is based on the framework developed
by Ammar et al. [23]. In the present work, this framework is extended to a multiphase
setting by making use of the interpolation function (1) and by formulating the free energy
and other quantities as summations over all phase fields. Following [21] and [22], a system of
microforces is associated with each phase field. These forces represent configurational forces
acting on the crystal lattice. The microforce system belonging to phase field a comprises an
internal microstress vector ξa and a scalar microforce πa, as well as an external microforce
γa. The microforces in the other phases are defined analogously. In the same way as the
Cauchy stress σ is energy-conjugated with the gradient of the displacement ∇u, πa and ξa
are energy-conjugated with ϕa and ∇ϕa, respectively. Each microforce system is presumed
to follow a balance law, cf. [21], of the form

∇ · ξi + πi + γi = 0. (3)

The term microforce system is motivated by (3) having the same form as the equilibrium
equation for the Cauchy stress,

∇ · σ + b = 0, (4)

where b denotes the body force vector.

2.1. Dissipation inequality
Following the procedure in [23], with the enhancement that the power densities are

formulated as sums over all phase fields, the first and second laws of thermodynamics result
in a Clausius-Duhem inequality,

−
∑
i

πiϕ̇i +
∑
i

ξTi ∇ϕ̇i + σ : ε̇− ḟ + µċ− JT∇µ ≥ 0, (5)
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where ε = εe + ε∗ + εp is the total strain, consisting of elastic strains εe, transformation
strains ε∗, and plastic strains εp. In (5), a tensorial contraction over two indices is denoted
by (·) : (·). The chemical potential and the diffusion flux are denoted µ and J respectively
and a superposed dot denotes differentiation with respect to time. The free energy density
f = f(ϕ,∇ϕ, c, εe,κ) is taken as a function of the set of phase fields ϕ, their gradients ∇ϕ,
the global concentration field c, the elastic strain εe and a set of internal variables κ related
to plasticity in terms of the evolving dislocation density, to be specified later on. Using the
chain rule to calculate the time derivative of f and inserting it into (5) gives

−
∑
i

(
πi +

∂f

∂ϕi

)
ϕ̇i +

∑
i

(
ξi −

∂f

∂∇ϕi

)T

∇ϕ̇i +

(
µ− ∂f

∂c

)
ċ

+

(
σ − ∂f

∂εe

)
: ε̇e + σ : ε̇p − JT∇µ−

∑
i

∂f

∂κi

κ̇i ≥ 0.

(6)

To ensure that the second law of thermodynamics is fulfilled, (6) should hold for any combi-
nation of ϕ,∇ϕ, c, εe, and κ. We can therefore extract state laws for the internal microstress,
the chemical potential and the Cauchy stress:

ξi =
∂f

∂∇ϕi

, µ =
∂f

∂c
, σ =

∂f

∂εe
. (7)

Inserting the state laws into (6), results in the dissipation inequality

D = −
∑
i

πdis
i ϕ̇i − JT∇µ+ σ : ε̇p −

∑
i

Kiκ̇i ≥ 0, (8)

where πdis
i = πi +

∂f
∂ϕi

and Ki = ∂f
∂κi

. From the dissipation inequality it is possible to
identify three dissipative processes. The first term represents the phase field dissipation,
which is related to the rearrangement of atoms during the evolution of the phase fields
[23]. The second term is the mass transport caused by diffusion and the third and fourth
terms represent the dissipation caused by plastic deformation. The dissipative processes are
assumed to be governed by a convex dissipation potential Ω = Ω(πdis,ϕ, c,∇µ,σ,K) such
that

ϕ̇i = − ∂Ω

∂πdis
i

, (9)

J = − ∂Ω

∂∇µ
, (10)

κ̇i = −λ̇i
∂Ω

∂Ki

, (11)

ε̇pi = λ̇i
∂Ω

∂σi

, (12)

where λ̇i ≥ 0 is a Lagrange multiplier associated with plastic deformation. Equation (9) is
the evolution equation for phase field i, the other phase fields are treated in the same way.
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Equation (10) represents the diffusion flux. Equations (11) and (12) describe the evolution of
the internal variables in the plasticity model associated with phase field i and the evolution
of the plastic strains in grain i, respectively. The free energy density f and the dissipation
potential Ω will be defined in the following sections.

2.2. Free energy functional
The free energy of the system is taken as the volume integral of the free energy density,

F =

∫
V

f(ϕ,∇ϕ, c, εe,κ) dV, (13)

consisting of three separate contributions,

f(ϕ,∇ϕ, c, εe,κ) = fch(ϕ, c) + fint(ϕ,∇ϕ) + fu(ϕ, c, ε
e,κ), (14)

where fch, fint and fu are the chemical, interfacial, and mechanical free energy densities,
respectively. The three components are detailed individually below.

2.2.1. Interface free energy density
Following [15], the interfacial free energy density is taken as

fint = mf0(ϕ) +
α

2

∑
i

(∇ϕi)
2 , (15)

with f0 being a fourth order Landau polynomial of the phase fields,

f0(ϕ) =
∑
i

(
ϕ4
i

4
− ϕ2

i

2

)
+
∑
i

∑
j ̸=i

β

2
ϕ2
iϕ

2
j +

1

4
. (16)

The model parameters m, α and β are related to the surface energy σint and the width of
the diffuse interface region δ through the expressions

m =
6σint

δ
, α =

3δσint

4
, β =

3

2
. (17)

The minima of the Landau polynomial are located in the interior of each phase field domain,
i.e where (ϕa, ϕb, . . . , ϕn) = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). In such points it
holds that f0 = 0, which means that the bulk materials do not contribute to the interface
energy. Furthermore, since α is a strictly positive parameter, interfaces will always be
energetically unfavorable.

2.2.2. Mechanical free energy
The mechanical free energy density is split into an elastic and a plastic part,

fu(ϕ, c, ε
e, κk) = f e(ϕ, c, εe) + fp(ϕ, c,κ), (18)
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denoted by superscripts e and p, respectively. The elastic energy density is interpolated
from the strain energies of all coexisting phases using the interpolation function (1),

f e =
∑
i

hif
e
i , (19)

where f e
i = 1

2
(ε− ε∗i − εpi ) : Di : (ε− ε∗i − εpi ) is the elastic energy of phase i. It is assumed

that the total strain, ε, is the same in all coexisting phases, but each phase can have different
transformation strains and plastic strains. This corresponds to the, so called, Voigt-Taylor
assumption [24]. Other ways of calculating the elastic energy includes the Reuss-Sach model,
where it is assumed that the stresses in all coexisting phases are the same, i.e. σi = σj = σ,
and the Khachaturyan scheme [25], which is essentially a combination of the Reuss-Sachs
and Voigt-Taylor models.

The plastic free energy is taken as

f p =
∑
i

hif
p
i =

∑
i

hi
1

2
Hiκ

2
i , (20)

where Hi is the plastic hardening modulus and κi = κi(ρ̄i) is an internal hardening variable,
which is a function of the normalized dislocation density ρ̄i, as will be specified later on.

A consequence of the interpolation of the mechanical free energy is that no plastic de-
formation is inherited from the parent phase to the newly formed phase during the phase
transformation. It is also possible to formulate phase field models where the plastic de-
formation is inherited to the new phase. The behavior of real materials probably lies in
between full inheritance of plastic deformation and no inheritance at all [26]. This inter-
mediate behavior necessitates the development of models allowing for partial inheritance of
plastic deformation, which however is beyond the scope of the present work.

2.2.3. Chemical free energy
Again following [15], the chemical free energy is taken as

fch =
∑
i

hi
Gi(xi)

Vm

, (21)

where Vm is the molar volume and Gi is the molar Gibbs energy of phase i, which is a
function of the molar fraction xi. In phase field modeling, the Gibbs energy of each phase
is commonly approximated as a parabolic function of the molar fraction [15, 23, 27]. Here,
a parabola of the form

Gi =
Ai

2
(xi − x̂i)

2 +Bi (xi − x̂i) + Ci (22)

is used to approximate the Gibbs energy. Following [27], the parameters Ai, Bi and Ci are
taken as

Ai =
d2Ĝi

dx2
i

∣∣∣∣∣
xi=x̂i

, Bi =
dĜi

dxi

∣∣∣∣∣
xi=x̂i

, Ci = Ĝi

∣∣∣
xi=x̂i

, (23)
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where x̂i is the equilibrium molar fraction of phase i and where Ĝi is the composition-
dependent Gibbs energy as obtained from, e.g., thermodynamic databases. The reason for
not using Ĝi directly in the phase field model is that these functions usually involve rather
complicated logarithmic terms, which may cause numerical difficulties. It will also later turn
out to be convenient to take advantage of the second derivative of Gi being constant.

2.3. Dissipation potential
The dissipation potential Ω governing the dissipative processes is divided into three parts,

one part for each of the dissipative processes, Ω(πdis,ϕ, c,∇µ,σ,K) = Ωc(∇µ)+Ωϕ(π
dis)+

Ωu(ϕ, c,σ,K). The first term, Ωc, is the dissipation potential related to diffusion, while Ωϕ

and Ωu are the potentials for the phase field and the mechanical dissipation, respectively.
To ensure that the dissipation inequality (8) is fulfilled, Ωc, Ωϕ, and Ωu are taken as convex
functions of their arguments.

Following [23], the chemical dissipation is taken as

Ωc(∇µ) =
1

2
M(ϕ)(∇µ)2, (24)

where

M(ϕ) =
∑
i

hi

Vm

(
Di

d2Gi

dx2
i

+
∑
j ̸=i

hjMgb

)
(25)

is the mobility. In (25), Di denotes the diffusion coefficient of grain i. Using the parabolic
approximations of the Gibbs energy it is seen that d2Gi

dx2
i

= Ai is a constant, which makes
the mobility independent of composition. The second term in (25) is included to take into
account the higher diffusion rate in grain boundaries, compared to in the bulk material. The
additional contribution to the mobility of a grain boundary between grains i and j is taken
as

Mgb = 3
Dgb

hiAi + hjAj

δgb
δ
. (26)

It is assumed that all grain boundaries have the same diffusion coefficient, Dgb, and width,
δgb.

The phase field dissipation is taken as

Ωϕ(π
dis) =

1

2
L(ϕ)

∑
i

(πdis
i )2 =

1

2
L(ϕ)

∑
i

(
πi +

∂f

∂ϕi

)2

, (27)

where, following [15], the kinetic coefficient L(ϕ) is

L(ϕ) =

∑
i

∑
j ̸=i Lijϕ

2
iϕ

2
j∑

i

∑
j ̸=i ϕ

2
iϕ

2
j

. (28)

For diffusion controlled grain boundary migration, Lij is taken as

Lij =
2mVm

3α
(
xeq
i − xeq

j

)2 Mi +Mj

2
, (29)
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where Mi =
Di

Ai
and Mj =

Dj

Aj
are the mobilities and xeq

i and xeq
j are the equilibrium molar

fractions of phases i and j respectively.
The mechanical contribution to dissipation is due to the plastic strains. A local plastic

dissipation potential Ωu,i(c,σi, Ki) is associated with each phase field. The total plastic
dissipation is then obtained, using the interpolation function, as

Ωu(ϕ, c,σ,K) =
∑
i

hiΩu,i(c,σi, Ki). (30)

This treatment of the plastic dissipation allows for different phases to follow different consti-
tutive laws. In this work it is assumed that the IMC is purely elastic, i.e. Ωu,IMC = 0, and
that the plastic behavior of the Cu and Sn phases is described by an isotropic hardening von
Mises model. Taking the derivatives of Ωu,i with respect to Ki and σi should, according to
equations (11) and (12), result in κ̇i and ε̇pi . For isotropic von Mises plasticity, Ωu,i is taken
as the yield function gi, i.e.

Ωui = gi = σeff
i − σy

i (κi), (31)

with the additional Karush-Kuhn-Tucker relations λ̇i ≥ 0, gi ≤ 0 and giλ̇i = 0. The effective
stress and the initial yield stress are denoted σeff

i and σy0
i , respectively. The current yield

stress is taken as
σy
i (κi) = σy0

i +Hiκi(ρ̄i). (32)

The hardening variable κi can be related to the normalized dislocation density,

ρ̄i =
ρi
ρ0i

, (33)

through
κi =

√
ρ̄i − 1, (34)

where ρi and ρ0i denotes the current and the initial dislocation density in grain i, respectively.
Following Hallberg et al. [28] the evolution of the dislocation density is given by a classical
Kocks-Mecking law of the form

˙̄ρi =
(
d1,i

√
ρ̄i − d2,iρ̄i

)
λ̇i. (35)

The model parameters d1,i and d2,i control the creation and annihilation of dislocations,
respectively.

Combining equations (24), (27), and (30), the dissipation potential becomes

Ω(πdis,ϕ, c,∇µ,σ,K) =
1

2
L(ϕ)

∑
i

(
πi +

∂f

∂ϕi

)2

+
1

2
M(ϕ)(∇µ)2

+
∑
i

hi(ϕ)Ωu,i(c,σi, Ki).
(36)
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2.4. Governing equations
Using the free energy (14), the state laws (7) become

ξi = α∇ϕi , µ = µ̃ , σ =
∑
i

hiDi : (ε− ε∗i − εpi ) . (37)

To determine the chemical potential, it is enforced that all coexisting phases are in equilib-
rium under diffusive constraints, i.e.,

µi =
∂Gi

∂xi

=
∂Gj

∂xj

= µj = µ̃. (38)

The molar fraction of each phase must therefore be determined so that both mass balance
(2) and equilibrium according to equation (38) are fulfilled. Using the state laws and the
dissipation potential (36), the diffusion flux (10) becomes

J = −M(ϕ)∇µ̃. (39)

The evolution of the global molar concentration field follows the diffusion equation

ċ = −∇ · J = ∇ · (M(ϕ)∇µ̃) . (40)

From (9), the time derivative of phase field i is obtained as

ϕ̇i = −L(ϕ)

(
πi +

∂f

∂ϕi

)
. (41)

In this equation the microforce πi as well as ϕ̇i are unknowns. Using the balance law for the
microforces (3) and calculating the derivative ∂f

∂ϕi
, the evolution equation for phase field i

becomes

ϕ̇i =L(ϕ)

[
∇ · α∇ϕi −m

(
ϕ3
i − ϕi + 2ϕi

∑
j ̸=i

βϕ2
j

)

− 2ϕi∑
k ϕ

2
k

(
(1− hi)(f

e
i + f p

i )−
∑
j ̸=i

hj(f
e
j + fp

j )

)

− 2ϕi∑
k ϕ

2
k

(
(1− hi)

(
Gi

Vm

− xi

Vm

µi

)
−
∑
j ̸=i

hj

(
Gj

Vm

− xj

Vm

µj

))]
,

(42)

and analogously for the other phase fields.
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3. Numerical implementation

The computational domain is represented by a regular grid of 41 by 61 nodal points and
the weak form of (40) and (42) are discretized in space using two-dimensional four-node
finite elements of size ∆x = ∆y = 50 nm and with bi-linear interpolation. Introducing the
finite element approximations ϕ̇i = Nϕ̇i and ċ = Nċ, where N contains the element shape
functions, and choosing the weight function according to the Galerkin method yields the
following FE-formulation of the evolution of the phase fields,∫

V

NTN dV ϕ̇i =

∫
S

NTL(ϕ)α (∇ϕi)
T n dS −

∫
V

BTL(ϕ)α∇ϕi dV

−
∫
V

NTL(ϕ)
∂f

∂ϕi

dV,

(43)

and of the diffusion equation,∫
V

NTN dV ċ =

∫
S

NTM(ϕ) (∇µ̃)T n dS −
∫
V

BTM(ϕ)∇µ̃ dV, (44)

where B = ∇N is the gradient of the shape functions. The time integration of equations
(43) and (44) can be performed efficiently using the Runge-Kutta-Chebyshev solver, RKC
[29]. The RKC solver is intended for problems of the form ẏ = f(y, t), however, (43) and
(44) are of the form Mẏ = f(t, y). To overcome this, the mass matrix M =

∫
V
NTN dV

is lumped into a vector by taking the sum over each row. The RKC solver is then used to
integrate the problem ẏ = f(t, y)/M .

After each time step the non-linear mechanical equilibrium equation,∫
V

B̃
T
σ dV = f ext, (45)

where B̃ denotes the strain-displacement matrix, is solved using the Newton-Raphson scheme.
In each iteration the plastic strains in all grains are updated using a radial return algorithm.
In this work, the external force vector f ext = 0 and the only loading included in the model
comes from the applied transformation strain, ε∗.

To ensure that all coexisting phases are in thermodynamic equilibrium, the molar fraction
field of each phase is updated so that equations (2) and (38) are fulfilled. Using the parabolic
approximations of the Gibbs free energy in (22) greatly simplifies this task. For an interface
where three phases coexist, the update of the molar fraction fields simply means that the
system of equations, hi

Vm

hj

Vm

hk

Vm

Ai −Aj 0
0 Aj −Ak

xi

xj

xk

 =

 c
Aix̂i − Ajx̂j +Bj −Bi

Ajx̂j − Akx̂k +Bk −Bj

 , (46)

needs to be solved. For interfaces where more or fewer phases coexist, a similar system of
equations can be constructed.
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4. Numerical example

The model described above is used to study the growth of the intermetallic compound
Cu6Sn5 during isothermal aging at room temperature (25 ◦C). When a Cu substrate is in
contact with liquid tin, for example during reflow soldering, scallop-shaped grains of Cu6Sn5
will form at the interface [6]. The height and curvature of the scallops are affected by the
solidification of the tin layer. Low cooling rates will lead to large scallops with greater
curvature while faster cooling rates will give smaller scallops with less curvature [30]. To
investigate the influence of the initial morphology of the Cu6Sn5 layer on the growth behavior
during aging, three cases have been studied. The model cases are illustrated in Fig. 1, where
case 1 (IC1) represents a microstructure with small scallops, i.e. a high cooling rate, case 2
(IC2) and case 3 (IC3) represents microstructures with large scallops, i.e. a low cooling rate.
In all cases, two grains of Cu6Sn5 (η1 and η2) grow between one grain of Cu and one grain
of Sn. In the Cu and Sn layers, the vertical boundaries of the computational domain can
be seen as immobile grain boundaries. The difference between IC2 and IC3 is thus that the
largest IMC scallop is growing in the bulk of the Sn grain for IC2 and in the grain boundary
for IC3.

Symmetry boundary conditions for the phase fields and for the concentration field are
applied on the left and right boundaries of the domain. Homogeneous Neumann conditions
are used at the top and bottom. The left side of the computational domain is held fixed
in the horizontal direction and the bottom side is fixed in the vertical direction. The right
boundary is free to move both horizontally and vertically, but with the horizontal displace-
ments constrained so that the boundary remains straight. For simplicity it is assumed that
the system is stress free at the start of the simulation.

4.1. Choice of parameters
The model parameters m, α and β in the interface free energy (15) are functions of

the surface energy σint and the width of the diffuse interface δ. To properly resolve the
interfaces, the diffuse interface region must include at least a few nodal points. In this work,
the interface width is taken as δ = 6∆x where ∆x is the size of a finite element. We will
also assume that all interfaces have the same surface energy, i.e., the model parameters m,
α and β are taken as constant parameters.

The volume change associated with the growth of the IMC is simulated by applying a
transformation strain to the newly formed intermetallic compound. Boettinger et al. [31]
reports a lower bound of the transformation strain at ε∗η = −0.02, which would lead to
tensile stresses in the IMC layer of about 4.8GPa. Due to the brittle nature of intermetallic
compounds, they are not expected to deform plastically. Since the yield stress of the Cu6Sn5
phase is 2009MPa [32], stresses of 4.8GPa in the IMC layer are unphysical. In [31] it is
therefore argued that reasonable values for the transformation strain are in the interval
(0,−0.003]. A transformation strain of εη = −0.003 would give a decrease in volume of
around 1% due to the formation of IMC. In reality this volume change is split into a volume
expansion on the Sn side and a volume contraction on the Cu side. For simplicity, we take
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Figure 1: Schematic representation of the initial microstructure and boundary conditions for the three
model cases, IC1, IC2, and IC3. The computational domain is discretized using 40 × 60 finite elements of
size ∆x = 50nm. IC1 corresponds to a microstructure obtained with a high cooling rate during reflow,
which gives small scallop-shaped grain of IMC. IC2 and IC3 represent microstructures obtained with a low
cooling rate, resulting in large IMC scallops.

the transformation strain as ε∗i =
[
ε∗xx ε∗yy ε∗xy

]T
= −0.003

[
1 1 0

]T for the IMC grains
and ε∗i = 0 for the other grains.

The plasticity model described by equations (31)-(35) have been calibrated to experi-
ments by Champion et al. [33] for the Cu phase and by Amagai et al. [34] for the Sn phase,
respectively. In addition, the parameters are calibrated so that the hardening behavior, (32),
matches the behavior predicted by the Taylor equation,

σy
i = σy0

i + αµb
√

ρ̄iρ0i , (47)

where α = 0.35 is a parameter related to the strength of dislocation interactions, µ is the
shear modulus and b is the magnitude of the Burgers vector, taken as b = 0.256 nm for Cu
and b = 0.412 nm for Sn. The resulting parameters are presented in Table 1.

The kinetic coefficient Lab, as calculated using (29), only applies to interfaces between
grains of different phases. For interfaces between grains of the same phase, the kinetic
coefficient relates to the grain boundary mobility mii according to [15],

Lii =
miiσii

αii

. (48)

Due to a lack of experimental data on the grain boundary mobility of Cu6Sn5 it is assumed
that Lηη = LηCu.

The initial molar fractions and the molar volume are taken as xCu = 0.200%, xη =
41.7%, xSn = 99.9%, and Vm = 16.29 cm3mol−1, respectively. Other parameters used in
the simulations are given in Table 1.
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Table 1: Material parameters used in the simulations. The mechanical parameters E, σy0, H, d1, d2, and ρ0

for Cu and Sn are calibrated from [33] and [34], respectively. The diffusion coefficients, D, are representative
for the material behavior at 25 ◦C.

Cu Cu6Sn5 Sn Ref.

E (GPa) Young’s modulus 150 112.3 19 [32]
ν Poisson’s ratio 0.35 0.31 0.36 [18, 35]
σy0 (MPa) Initial yield stress 170 12
H (MPa) Hardening modulus 0.69 0.75
d1 Creation of dislocations 1700 1400
d2 Annihilation of dislocations 12 80
ρ0 (m−2) Initial dislocation density 1.8× 1010 48× 1010

σint (Jm−2) Surface energy 0.5 0.5 0.5 [15]
D (m2 s−1) Bulk diffusion coefficient 2.877× 10−36 6.575× 10−19 2.452× 10−17 [36]

4.2. Approximation of Gibbs energy
The composition dependence of the Gibbs energy in the Cu and Sn phases can be de-

scribed, using the substitutional model [37], by

Ĝp
m(T, x) =(1− x)Gp

Cu(T ) + xGp
Sn(T ) +RT [(1− x) ln (1− x) + x lnx]

+ x(1− x)
∑
j

Lp
j(T )(1− 2x)j, (49)

where x is the molar fraction of Sn, R is the gas constant, T is the temperature and Gp
Cu,

Gp
Sn and Lp

j are the Gibbs energy and the interaction parameters for the pure element of
phase p, respectively. The Gibbs energy of Cu6Sn5 is taken according to [16, 38] as

Ĝη(T, x) = 2× 105(x− x̂η)
2 + 0.545Gα

Cu + 0.455Gbct
Sn − 6869.5− 0.1589T. (50)

The first term in (50) is added to introduce a composition dependency to the otherwise
constant Gibbs energy of the intermetallic phase. To obtain the Gibbs energy curves used
in the phase field model, parabolas of the form (22) are fitted to (49) and (50). The
thermodynamic parameters used and the coefficients of the fitted parabolas are presented
in Table 2. The fitted curves are shown in Fig. 2.

5. Results and discussion

5.1. Evolution of the microstructure
In Fig. 3 the evolution of the microstructure is shown for simulations with IC1, IC2,

and IC3. The solid white contour lines correspond to the position of the grain boundaries,
represented by the level set hη = 0.5, at times 1 h, 10 h, 150 h, and 600 h. The dashed
white contour lines represent the initial position of the grain boundaries. The colormap of
Fig. 3 corresponds to the von Mises stress and will be discussed in the next section. In
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Table 2: Thermodynamic data for Cu and Sn at 25 ◦C, provided in [37] and coefficients obtained by fitting of
parabolic functions. The two values for x̂eq for Cu6Sn5 represents the equilibrium molar fraction of Cu6Sn5
in contact with Cu and Sn, respectively.

Cu Cu6Sn5 Sn

Gα (Jmol−1) −9.8837× 103 −1.2272× 104

Gbct (Jmol−1) −3.9957× 103 −1.5259× 104

Lα
0 (Jmol−1) −1.0888× 104

Lα
1 (Jmol−1) −1.1270× 104

A (Jmol−1) 1.0133× 105 4.0× 105 4.2059× 106

B (Jmol−1) −2.1146× 104 −6.9892× 103 7.1680× 103

C (Jmol−1) −1.2842× 104 −1.9185× 104 −1.5265× 104

x̂ 0.105 69 0.417 53 0.999 41
x̂eq 0.105 69 0.382 10/0.452 90 0.999 41
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Figure 2: Gibbs energy curves for all phases at 25 ◦C.
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Table 3: Growth rates of the Cu6Sn5 obtained from simulations with the three initial conditions IC1, IC2,
and IC3 and using different values for the grain boundary diffusion coefficient Dgb.

IC1 (nmh−1) IC2 (nmh−1) IC3 (nmh−1)

Dgb = 0 0.66 0.60 0.63
Dgb = 200Dη 0.72 0.65 0.68
Dgb = 1000Dη 0.79 0.72 0.75
Dgb = 5000Dη 0.96 0.89 0.92

all simulations the grain boundary diffusion coefficient is taken as Dgb = 1000Dη. For all
initial conditions it is seen that the IMC layer grows thicker with time. Initially, due to the
faster diffusion in Sn, the IMC grows primarily into the Sn layer, at a later stage, growth
takes place at the Cu side as well. In all simulations, the initially scallop-shaped interface
between Cu6Sn5 and Sn gradually transitions into a more planar morphology. This behavior
has been observed experimentally during solid state aging of tin at different temperatures
below the melting temperature [12, 39, 40]. During aging, the grain boundaries between the
IMC grains remain vertical for IC1, whereas for IC2 and IC3, due to different IMC grain
sizes, curved grain boundaries are obtained.

To study the effect of grain boundary diffusion on the growth of the IMC layer, simu-
lations with different values of the grain boundary diffusion coefficient Dgb have been per-
formed. In Fig. 4 the average thickness of the IMC layer is plotted as a function of time
for simulations with Dgb = 0, Dgb = 200Dη, Dgb = 1000Dη, and Dgb = 5000Dη for all three
initial conditions. The growth of the IMC layer is almost linear for all simulations, however,
a slight decrease in growth rate with time is observed. In Table 3 the growth rates of the
simulations are presented. It is seen that the highest growth rates are obtained for the simu-
lation with Dgb = 5000Dη. In addition, for any given value of Dgb, the growth rate is lowest
for IC2 and highest for IC1. This observation is explained by the IMC acting as a diffusion
barrier between the Cu and the Sn layers, so a thicker IMC layer (i.e. IC2) will grow slower
as the diffusion distance is larger. For the same reason the growth rate decreases towards the
end of the simulations. Whilst only a few experimental studies have been performed on the
room-temperature growth of Cu6Sn5, Tu and Thompson report growth rates of 0.15 nmh−1

and 0.25 nmh−1 for two different samples [41]. However, a growth rate of around 2.3 nmh−1

is obtained from the data in [8]. The large discrepancy in the growth rates reported in
literature makes it hard to quantitatively verify the results from simulations. Nonetheless,
by comparing the experimental results with the values in Table 3, we can conclude that
the growth rate from the simulations are in the correct range. We also conclude that the
simulations show the same tendencies as the experiments, both regarding the linear growth
and the transition from scallop-shaped to plane interface morphology.

5.2. Mechanical behavior
From Fig. 3 we can see that the growth of the IMC generates stress in the IMC layer.

Initially, the highest stress is found in the interface regions where a volume change occurs due
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Figure 3: Evolution of the microstructure and the von Mises stress for the three different initial condition
and using Dgb = 1000Dη. The dashed and solid contours corresponds to the initial and the current position
of grain boundaries, respectively. Top row: Initial condition 1, IC1. Middle row: Initial condition 2, IC2.
Bottom row: Initial condition 3, IC3.

to the transformation strain. With time, the stress in the center of the IMC layer becomes
dominant and the stress in the interface regions decrease. The highest stress in the IMC
layer is found below the large scallop in IC2 and IC3. The stress level is around 300MPa
which is well below the yield stress reported in [32], thus validating the assumption of only
elastic deformation in the IMC.

Due to the negative volume change associated with the formation of IMC, a compaction
of the surrounding microstructure takes place and we expect compressive stress to develop
in the Cu and the Sn layers. In Figs. 5 and 6 the evolution of the von Mises stress in the
Cu and Sn layers are plotted for the three initial conditions. Note that in Figs. 5 and 6 the
stress in the Cu/Sn and IMC layers has been removed for display purposes. In the figures
the red contour indicates the region where the normalized dislocation density, ρ̄, is greater
than 1, i.e. the zone where plastic deformation takes place by evolution of the dislocation
density. For IC1, cf. Fig. 5, the stress in the Sn layer is initially concentrated in the region
close to the interface. With time, the stress spreads throughout the Sn layer and the stress
field becomes almost homogenous. We also see that a plastic zone forms near the interface
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Figure 4: Average thickness of the IMC layer as a function of time for simulations with different values of
Dgb. Left: initial condition 1, IC1. Center: Initial condition 2, IC2. Right: Initial condition 3, IC3.

between IMC and Sn and grows larger with time. At the end of the simulation, for IC1, the
whole Sn layer, except a small region above the grain boundaries between the IMC grains,
is plastically deformed. At the start of the simulation, for IC2 and IC3, the elevated stress
spreads further into the Sn layer than for IC1 and the initial plastic zone is larger. The
growth of the plastic zone takes place mainly above the large IMC scallop, i.e., in the center
for IC2 and along the boundaries for IC3. Outside the plastic zone a nearly stress free region
is found in both IC2 and IC3.

The von Mises stress in the Cu layer for the three initial cases is shown in Fig. 6. Since
the interface between Cu and IMC are identical for all three initial cases the stress fields
are very similar. It is seen that the stress is slightly higher in the regions below the grain
boundaries.

In Fig. 7 the evolution of the dislocation density in the Cu and the Sn layer is shown.
On the Cu side, plasticity is initiated in several regions along the interface for all initial
conditions. These regions merge at a later stage and the plastic zone expands to cover the
whole interface. The plastic zone gets consumed by the growing IMC layer during further
aging and only a small plastic zone is found in the Cu layer at the end of the simulation. In
the Sn layer we see that most dislocations are created around the grain boundary regions
and around the large IMC scallop. It is also seen that the dislocation density is lower in IC1
than it is in IC2 and IC3. This indicates that the curvature of the IMC layer plays a role
in the evolution of the dislocation density. Furthermore, the dislocation density is highest
in IC3, which indicates that dislocations are more easily generated when IMC scallops grow
in the grain boundaries between Sn grains (in the simulations these are represented by the
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lateral boundaries of the computational domain). We also see that the level of the dislocation
density is much higher in the Sn layer than in the Cu layer.

Figure 5: Evolution of the von Mises stress in the Sn layer for the three different initial conditions and using
Dgb = 1000Dη. The stress in the Cu and IMC layers has been removed for display purpose. The red contour
indicates the region inside which the relative dislocation density is greater than 1, i.e., the zone where the
dislocation density has evolved under plastic deformation. The dashed and solid white contours corresponds
to the initial and the current position of grain boundaries, respectively. Top row: Initial condition 1, IC1.
Middle row: Initial condition 2, IC2. Bottom row: Initial condition 3, IC3.

In Fig. 8 the mean biaxial stress in the Sn layer is plotted as a function of time for the
three initial conditions in addition to experimental data from [8], [31] and [42]. The mean
biaxial stress, in Fig. 8, is calculated as

σ̄biax =
1

2
(σ̄xx + σ̄zz) , (51)

where σ̄xx and σ̄zz are the volume averaged stresses in the x- and z-direction, respectively.
From Fig. 8 it is seen that, for all initial conditions, the mean biaxial stress becomes in-
creasingly compressive with time until it reaches a minimum value of −8MPa to −10MPa
after approximately 150 h of aging. During further aging the biaxial stress remains almost
constant, which indicates that the growth of the IMC grains is accommodated by plastic
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Figure 6: Evolution of the von Mises stress in the Cu layer for the three different initial conditions and using
Dgb = 1000Dη. The stress in the Sn and IMC layers has been removed for display purpose. The red contour
indicates the region inside which the relative dislocation density is greater than 1, i.e., the zone where the
dislocation density has evolved under plastic deformation. The dashed and solid white contours corresponds
to the initial and the current position of grain boundaries, respectively. Top row: Initial condition 1, IC1.
Middle row: Initial condition 2, IC2. Bottom row: Initial condition 3, IC3.

deformation of the Sn layer. The curves for IC2 and IC3 are very similar, this is expected
as the only difference between the two cases is the location of the large scallop. For IC1,
the magnitude of the biaxial stress is slightly higher than for the other cases. The predicted
stresses are in very good agreement with the experimental data presented in [42], but slightly
smaller in magnitude than the data in [8] and slightly larger in magnitude than the data in
[31]. It should be noted that the experiments of [31, 42] and [8] were performed on Sn layers
of different thicknesses and the stress is expected to be higher in magnitude for thinner Sn
layers.

6. Conclusions

A multiphase field model taking into account fast diffusion in grain boundaries as well as
elastoplastic material behavior has been developed. The governing equations of the model
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Figure 7: Evolution of the dislocation density in the Sn and Cu layers for the three different initial conditions
and using Dgb = 1000Dη. The red contour indicates the region inside which the relative dislocation density
is greater than 1, i.e., the zone where the dislocation density has evolved under plastic deformation. The
dashed and solid white contours corresponds to the initial and the current position of grain boundaries,
respectively. Top row: Initial condition 1, IC1. Middle row: Initial condition 2, IC2. Bottom row: Initial
condition 3, IC3.

have been be derived in a thermodynamically consistent way in a multiphase setting. The
model approach allows different constitutive laws to be associated with different phase fields,
thus extending the applicability of the model. In the present work, the model has been used
to study the growth of the intermetallic compound Cu6Sn5 during room-temperature aging
for three different initial microstructures. An isotropic von Mises plasticity model with
hardening based on the dislocation density has been used for the Cu and Sn phases, while
the IMC was assumed to behave elastically. It was found that the model qualitatively
captures the transition from a scallop-like to a layered IMC morphology [12, 39, 40] and the
linear growth dependence on time [8, 41], as seen in experiments. We have also shown that
the growth rate of the IMC depends on the grain boundary diffusion coefficient, a higher
value will increase the grain boundary mobility and give a higher growth rate. Furthermore,
the model predicted that the volume change associated with the growing Cu6Sn5 layer gives
rise to stress in the IMC as well as in the Cu and the Sn layers. It was also found that the
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Figure 8: Mean biaxial stress as a function of time for the three initial conditions using Dgb = 1000Dη. The
experimental data is taken from [8], [31] and [42].

Cu and Sn layers both deformed plastically. For all initial microstructures, a large part of
the Sn layer deformed plastically and most dislocations were created around the larger IMC
scallops. The plastic zone in the Cu layer was found to be smaller and more concentrated
to the interface region for all initial conditions. The evolution of the mean biaxial stress
predicted by the model is in good agreement with experimental data and indicates that the
growth of the IMC layer is accommodated by plastic deformation of the Sn layer.
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