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Robust and Automatic Data-Adaptive Beamforming
for Multi-Dimensional Arrays

S. D. Somasundaram∗, Member, IEEE, A. Jakobsson†, Senior Member, IEEE, and N. H. Parsons∗, Member, IEEE

Abstract— The robust Capon beamformer has been shown
to alleviate the problem of signal cancellation resulting from
steering vector errors, caused, e.g., by calibration and/or angle-
of-arrival errors, which would otherwise seriously deteriorate
the performance of an adaptive beamformer. Here, we examine
robust Capon beamforming of multi-dimensional arrays, where
robustness to angle-of-arrival errors is needed in both azimuth
and elevation. It is shown that the commonly used spherical
uncertainty sets are unable to control robustness in each of
these directions independently. Here, we instead propose the
use of flat ellipsoidal sets to control the angle-of-arrival un-
certainty. To also allow for other errors, such as calibration
errors, we combine these flat ellipsoids with a higher-dimension
error ellipsoid. Computationally efficient automatic techniques
for estimating the necessary uncertainty sets are derived, and
the proposed methods are evaluated using both simulated data
and experimental underwater acoustics measurements, clearly
showing the benefits of the technique.

Index Terms— Robust beamforming, signal cancellation, ellip-
soidal uncertainty sets, underwater acoustics.

I. INTRODUCTION

BEAMFORMING is often used for source localization,
power estimation, and for improving the detectability of

weak sources (see, e.g., [1]–[3]). As the conventional delay-
and-sum (DAS) beamformer is only optimal for a single source
embedded in spatially white noise (see, e.g., [4]), the trend
has been to employ adaptive beamforming techniques, such
as the minimum variance distortionless response (MVDR)
beamformer (also known as the Capon beamformer) [5], which
exploit array covariance measurements to form data-adaptive
beams able to achieve superior performance as compared to the
DAS beamformer. However, as is well known, the MVDR-type
beamformers suffer from the risk of cancellation of the signal-
of-interest (SOI) due to array steering vector (ASV) errors and
snapshot deficiency [6]–[11]. This makes the issue crucial to
consider in any practical system exploiting such beamformers,
as, in practice, ASV errors arise naturally as a result of angle-
of-arrival (AOA) errors, array calibration errors, and due to
deviations from the exploited plane-wave assumptions. The
AOA errors are caused by sampling only a coarse grid of
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angles, often being necessary in practical systems due to,
e.g., computational constraints and/or downstream processing
requirements, which means that the assumed AOA may be
significantly different from the true AOA. Calibration errors
arise as a result of sensor gain/phase errors, mutual coupling
effects, and/or sensor position errors, whereas deviations from
plane-wave assumptions may be caused by near-field sources
and/or inhomogeneity of the propagating medium. In order
to alleviate these effects, a wealth of robust adaptive beam-
forming techniques have been proposed (see, e.g., [12], [13]
and the references therein). Recently, spherical and ellipsoidal
uncertainty sets have been exploited to provide robustness
to ASV errors [14]–[17]. An appealing property of these
techniques is that they maximize the worst-case signal-to-
interference-plus-noise ratio (SINR) over the uncertainty set.
These approaches, whilst formulated differently, yield equiv-
alent weight vectors; however, the robust Capon beamformer
(RCB) algorithms proposed in [16], [17] are the most com-
putationally efficient. In [17], the RCBs were shown to have
superior finite sample size performance to the standard Capon
beamformer and belong to the class of diagonally loaded
beamformers, with the loading level calculated to satisfy the
uncertainty set constraints. In general, the performances of the
RCBs will depend critically upon the specification of the used
uncertainty sets. Most RCB applications have used spherical or
flat ellipsoidal sets to beamform uniform linear arrays, where
the AOA uncertainty is restricted to a single angle dimension
(e.g., azimuth angles), or have used spherical sets to beamform
multi-dimensional arrays, where independent restrictions on
azimuth and elevation uncertainty were not imposed [16]–
[21] (see also [13] and the references therein). In many
applications, however, one is interested in beamforming multi-
dimensional arrays such that one place restrictions on both the
azimuth and elevation AOA uncertainty simultaneously. When
spherical uncertainty sets are used, the AOA error can only be
controlled in either azimuth or elevation, but not in both. This
is a consequence of the fact that the size of a spherical set
is described by a single parameter (its radius) and, therefore,
cannot be used to independently control azimuth and elevation
uncertainty. In this work, we examine alternative approaches
to form the necessary uncertainty sets, concluding that flat
ellipsoids offer enough flexibility to allow for modeling AOA
errors in both azimuth and elevation. In addition to deriving
flat ellipsoids via the minimum volume ellipsoid [15], [22],
we also examine a computationally simpler low-rank method
based on the mean and covariance [23]. However, these flat
ellipsoids cannot be used to allow for non-AOA errors, such as
calibration errors, covariance estimation errors or those caused
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by wavefront distortion, since these are not accounted for in
their design. To overcome this shortcoming, we proceed to
extend the proposed flat AOA ellipsoids by combining them
with an error ellipsoid, to allow for the modeling of non-AOA
errors, thereby producing ellipsoids that allow for non-AOA
errors as well as for AOA uncertainty in both azimuth and
elevation. On both simulated data and data recorded in an
underwater acoustics application, we confirm the benefits of
using RCBs with these sets. This paper is organized as follows:
In the next section, we briefly summarize the RCB approach.
In Section III, we discuss the design of ASV uncertainty
sets for multi-dimensional arrays. Sections IV and V contain
examples on simulated and experimental data, respectively.
Finally, Section VI contains our conclusions.

In the following, (·)T , (·)H , (·)−1, (·)†, tr{·}, Re{·},
Im{·}, and E{·} denote the transpose, Hermitian transpose,
inverse, Moore-Penrose pseudo-inverse, trace, real, imaginary,
and expectation operators, respectively. Furthermore, sup{·},
‖·‖2 and diag {x} denote the supremum, the two-norm and a
diagonal matrix with the vector x along the main diagonal.
Finally, X ≥ 0 is understood to mean that the Hermitian
symmetric matrix X is positive semi-definite.

II. ROBUST CAPON BEAMFORMING

In [16], [17], the RCB was proposed by coupling the
covariance fitting formulation of the Capon beamformer [24]
with an ellipsoidal uncertainty set, solving

max
σ2,a

σ2 s.t. R− σ2aaH ≥ 0, {a = Bu + ā
∣∣ ‖u‖2 ≤ 1} (1)

with R ∈ CM×M , σ2 and a ∈ CM×1 denoting the array
covariance matrix, the SOI power and its ASV, respectively,
and where M denotes the number of array elements. The
assumed actual array steering vector is thus viewed as allowing
the assumed steering vector, ā, to vary within the given
uncertainty ellipsoid. The center of the ellipsoid is defined by
ā, and its principal semi-axes by the unit-norm left singular
vectors of the (full column rank) matrix B ∈ CM×L, scaled
by the corresponding singular values.

A. Non-Degenerate and Spherical Uncertainty Sets

If B in (1) is square, such that L = M , the set is termed
non-degenerate (ND), and one may write a

∣∣ [a−ā]HC−1[a−
ā] ≤ 1, where C = BBH . Then, (1) reduces to [16], [17]

min
a

aHR−1a s.t. (a− ā)H C−1 (a− ā) ≤ 1. (2)

To exclude the trivial solution a = 0, it is assumed that
āHC−1ā > 1. Letting

C−1 =
1
ε
DHD (3)

and forming ă = Da, ˘̄a = Dā and R̆ = DRDH , (2) can be
rewritten as

min
ă

ăHR̆−1ă s.t.
∥∥ă− ˘̄a

∥∥2

2
≤ ε, (4)

where the constraint is now a spherical one. Denoting ˆ̆a as the
solution1 to (4), an estimate of the ASV is formed as

â0 = D−1 ˆ̆a. (5)

Setting B =
√

εI, yields a spherical set with radius
√

ε.

B. Flat Uncertainty Set

When B is rectangular, so that L < M , the ellipsoid is
termed flat or degenerate, and (1) reduces to [17]

min
u

(Bu + ā)H R−1 (Bu + ā) s.t. ‖u‖2 ≤ 1. (6)

To exclude the trivial solution a = 0, it is assumed that
āH

(
B†)H

B†ā > 1. Denoting û as the solution1 to (6), an
estimate of the ASV is formed as

â0 = Bû + ā. (7)

Given the estimate â0 from either (5) or (7), the ASV is scaled
so that its Euclidean length squared equals M , forming

ˆ̂a0 =
(√

M â0

)
/ ‖â0‖2 . (8)

Then, the RCB power and weight estimates are given by
σ̂2

0 = 1
ˆ̂aH
0 R−1 ˆ̂a0

and w = R−1 ˆ̂a0
ˆ̂aH
0 R−1 ˆ̂a0

. We remark that in
the RCB optimization in (1), the norm of the ASV is not
constrained, but is scaled later, as in (8). In [18] and [25],
doubly constrained RCBs (DCRCBs) were derived assuming
that the ASV lies within the uncertainty set and has a constant
norm. Here, we do not examine the DCRCBs, but remark that
they could exploit the ellipsoids derived herein.

III. ARRAY STEERING VECTOR UNCERTAINTY SETS

In this section, we present methods to form spherical,
flat, and ND (ellipsoidal) ASV uncertainty sets, for a single
beam that is parameterized by an azimuth and elevation
angle pair and their respective angle uncertainties. For wide-
band applications, it is assumed that the time-series data are
Fourier transformed to a suitable resolution and that these sets
are estimated for each frequency bin, though for notational
convenience we do not include the frequency parameter in
the following exposition. We remark that by estimating sets
for each frequency bin, one can obtain constant power-width
beamformers (see, e.g., [19]). Initially, we discuss the estima-
tion of sets allowing for AOA uncertainty, and then, where
needed, proceed to extend these to allow for other forms of
uncertainty. Let θ and φ denote a generic center point for the
range of considered azimuth and elevation angles, respectively,
thus indicating the center for the region of interest for these
angles. These center points can be determined by possible
a priori information of the region of interest, for instance due
to the look angle of the system. In many practical systems,
the azimuth/elevation space is sampled using a fixed number
of beams. Then, the beamformer used for a given beam is not
being designed to pass an SOI at a single azimuth/elevation
angle pair (θ, φ), but is expected to pass an SOI whose azimuth
and elevation angle may be anywhere with a range of values.

1We refer the reader to [16], [17] for solutions to (4) and (6).
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Without loss of generality, let ∆Az and ∆El denote the allowed
deviations for a beam with center points, θ and φ, such that
the AOA is allowed to vary within the azimuth and elevation
ranges

ΘAz = [θ − 0.5∆Az, θ + 0.5∆Az] (9)
ΦEl = [φ− 0.5∆El, φ + 0.5∆El] (10)

respectively, thus forming a rectangle in azimuth/elevation
angle space.The dual-directional array steering vector is eval-
uated over NAzNEl uniformly distributed sampling points,
forming a set

A =
{
a(θk, φl)

}
k,l

k = 1, . . . , NAz, l = 1, . . . , NEl, (11)

where a(θk, φl) is calculated from the delays of a plane-
wave impinging on the array from direction azimuth θk and
elevation φl (see, e.g., [4], [12]), where

θk = θ +
(

k − 1
NAz − 1

− 1
2

)
∆Az (12)

φl = φ +
(

l − 1
NEl − 1

− 1
2

)
∆El. (13)

Using the above definitions, we proceed to discuss the esti-
mation of different types of uncertainty sets.

A. Spherical Uncertainty Sets
Spherical uncertainty sets are a common choice in the

literature. The (squared) radius of the uncertainty sphere, ε,
can be selected as ε ≥ ‖a− ā‖2

2, ∀ a ∈ A. Here, to handle
AOA errors and to guarantee that all the ASVs simulated over
the ROI belong to the sphere, one may select ε = εsph, where

εsph = sup
k,l

‖a(θk, φl)− ā‖2
2 , (14)

for k = [1, . . . , NAz], l = [1, . . . , NEl], and where θk and
φl are given by (12) and (13), respectively. Often the sphere
center is selected as

ā = a(θ, φ), (15)

which is the ASV at the middle of the ROI, usually termed
the assumed ASV [17], [21]. Alternatively, one could choose
ā as the mean of the ASVs covering the ROI, that is as

ā =
1

NAzNEl

NAz∑
k=1

NEl∑
l=1

a(θk, φl). (16)

In [13] (Ch. 3), a tighter spherical set was proposed, based
on the observation that R− σ2aaH is unchanged by a phase
shift of a. Specifically, ε is chosen so that

ε ≥ min
α

∥∥aeiα − ā
∥∥2

2
∀a ∈ A. (17)

It was noted in [13] that such an approach will not affect the
SOI power estimate or the output SNR, but can produce phase
errors in signal waveform estimates. Using this approach to
allow for AOA uncertainty, we may choose ε = εtight, where

εtight = sup
k,l

min
α

∥∥a(θk, φl)eiα − ā
∥∥2

2

= sup
k,l

∥∥∥∥∥a(θk, φl)
(

a(θk, φl)H ā
āHa(θk, φl)

)1/2

− ā

∥∥∥∥∥
2

2

(18)

for k = 1, . . . , NAz and l = 1, . . . , NEl. In the following,
the sets denoted “Spherical Middle” and “Spherical Mean”
have centers formed from (15) and (16), respectively, and
radii calculated using (14). The sets denoted “Tight Spherical
Middle” and “Tight Spherical Mean” have centers formed
from (15) and (16), respectively, and radii calculated using
(18). To summarize, the following steps are required

1) For a given beam with a ROI defined by, e.g. (9) and
(10), form the set of NAzNEl complex vectors A in (11).

2) For “Spherical Middle” or “Tight Spherical Middle”,
form the set center using (15). For “Spherical Mean” or
“Tight Spherical Mean”, form the set center using (16).

3) For “Spherical Middle” or “Spherical Mean”, use (14)
to calculate the set radius. For “Tight Spherical Middle”
or “Tight Spherical Mean”, use (18) to calculate the set
radius.

Since the spherical uncertainty set size is described by a single
parameter, its radius, it is clear that it cannot be used to restrict
elevation and azimuth AOA uncertainty independently. This
aspect is discussed further in Section IV. Here, the sets have
been designed to allow for AOA error only, however, since
spherical sets allow for arbitrary norm bounded errors, they
are often robust to a whole host of other error types.

B. Flat Ellipsoidal Uncertainty Sets

As spherical sets are unable to control AOA uncertainty
independently in both azimuth and elevation, we proceed to
examine alternative sets. Since real ellipsoids can generally
be formed tighter than their complex counterparts [15], [23],
we transform to the real space R2M , forming the set Z from
A, using the element z =

[
Re

{
aT

}
Im

{
aT

} ]T
in Z

from each element a ∈ A. One alternative is to estimate the
minimum volume ellipsoid (MVE), containing the points in
Z [15], [23]. We also consider an approach based upon the
estimation of the mean and covariance of the elements in Z ,
which we term the low-rank (LR) method.

1) Minimum Volume Ellipsoid Method: Here, we briefly
describe the procedure, proposed in [15], for computing the
MVE covering the NAzNEl points in Z , which for notational
convenience we here index as {zk}NAzNEl

k=1 . Assuming that
the points used to estimate the MVE are m-dimensional,
we remark that procedures for computing the MVE require
that the affine hull of these points must span Rm [13], [22].
Consequently, if we were to apply such procedures directly
to the set of points in Z , we would require that their affine
hull spanned R2M . As seen in [23], this is often not the case
and the (real versions of the) ASVs sampling the ROI will
often not span all of R2M , but will lie in a subspace of lower
dimension, say L. We therefore apply a rank-preserving affine
transformation, f(z) = UT

1 (z − z1), to each member of Z ,
where U1 consists of the L dominant left singular vectors of
the following 2M × (NAzNEl − 1) matrix[

(z2 − z1) (z3 − z1) . . . (zNAzNEl − z1)
]
. (19)

This results in a new set of NAzNEl samples lying in RL, which
we denote Z̃ and contains the points {z̃k}NAzNEl

k=1 . The non-
degenerate MVE in RL, described by {B̃u + ˜̄a| ‖u‖2 ≤ 1},
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is then found by solving

min
M,g

− ln detM subject to (20)

(Mz̃k − g)T (Mz̃k − g) ≤ 1, M > 0

for k = 1, . . . , NAzNEl, where B̃ = M−1 and ˜̄a = M−1g.
The flat MVE in R2M is described by {Bu + ā| ‖u‖2 ≤ 1},
where B = U1B̃ and ā = U1 ˜̄a + z1. Evaluating (20) is
computationally intensive, quickly becoming intractable as
NAzNEl and/or L become large. A theoretical complexity
bound on computing the MVE from m points was given in [26]
as O(m3.5 ln[m/η)]) operations to a relative accuracy of η in
the volume. For further details on solving (20), we refer the
reader to the computationally efficient, combined interior-point
and active set method proposed in [22].

2) Low-rank Method: An alternative, computationally
cheaper method, is to treat the points in Z as random vectors
and compute the ellipsoid from their mean and covariance. A
similar approach was used for one-dimensional arrays in [15].
For a multidimensional array, we compute ā and C as

ā =
1

NAzNEl

NAz∑
k=1

NEl∑
l=1

z(θk, φl) (21)

C =
1
β
C′, (22)

where θk and φl are given by (12) and (13), and where

C′ =
1

NAzNEl

NAz∑
k=1

NEl∑
l=1

[z(θk, φl)− ā] [z(θk, φl)− ā]H (23)

with z(θk, φl) =
[

Re
{
aT (θk, φl)

}
Im

{
aT (θk, φl)

} ]T
,

and where

β = sup
k,l

[z(θk, φl)− ā]H C′−1 [z(θk, φl)− ā] , (24)

for k = [1, . . . , NAz] and l = [1, . . . , NEl]. The scaling by β
is required to ensure that all of the points used to estimate
the ellipsoid also belong to the resulting ellipsoid. That is,
so that [z(θk, φl)− ā]H C−1 [z(θk, φl)− ā] ≤ 1, for k =
[1, . . . , NAz] and l = [1, . . . , NEl]. As shown in [15], providing
that the inverse exists, the ellipsoid may be formed with center
ā as given in (21) and configuration matrix B = C1/2, where
C is given by (22). Often, however, the estimate C′ in (23) is
rank-deficient, indicating that the AOA uncertainty ellipsoid
is flat. We remark that such a scenario was not considered
in [15]. In this case, the calculation of β in (24) is not possible
as C′−1 will not exist. Furthermore, a rank-deficient C cannot
be used in the RCB with the ND ellipsoidal uncertainty
proposed in [16], [17], since C−1 in (3) will not exist. In
the following, we therefore propose a method for calculating
a flat ellipsoid from C′ by, firstly, factorizing C′ using the
singular value decomposition (SVD) as C′ = UCΛCVH

C ,
where UC and VC contain the left and right singular vectors,
respectively, and where ΛC = diag

{[
λ1 . . . λ2M

]}
contains the singular values λ1 ≥ . . . ≥ λ2M arranged in
non-increasing order on the main diagonal. The best rank-
L approximation of C′ is given by the truncated SVD (see,
e.g., [27]) C′

L = UC,LΛC,LVH
C,L, where UC,L, VC,L, and

ΛC,L are formed using the L dominant singular vectors and
values. Clearly, as C′ is guaranteed to be symmetric positive
semi-definite, UC = VC and ΛC will only contain real non-
negative values. Let

B′ = UC,LΛ1/2
C,L, (25)

where C′
L = B′B′H . To ensure that the NAzNEl points in Z

lie within the ellipsoid, we form

B = β′B′, (26)

where
β′ = sup

k,l

∥∥B′†(z(θk, φl)− ā)
∥∥

2
, (27)

for k = [1, . . . , NAz] and l = [1, . . . , NEl]. We term this the
low-rank (LR) method for computing the AOA uncertainty
ellipsoid, whose main computational burden is forming the
SVD of C′. Whilst ellipsoids derived via the mean and
covariance are not as tight as those derived via the MVE [15],
[23], their computation is simpler. Further, as we shall see in
Sections IV and V, in both cases the ellipsoids typically need
altering to allow for other errors such as calibration errors.

3) Dimension Selection: An important practical consider-
ation is how to choose the dimension of the LR or MV
ellipsoids, something not considered in most of the earlier
works. In [23], the dimension of the ellipsoids were chosen via
mean-squared error (MSE) plots of the power, requiring prior
evaluation of the ellipsoids and manual scanning of the MSE
plots. Such an approach is prohibitive in practice, since sets
often need to be estimated for multiple frequency bins, azimuth
angles and elevation angles. We note that in [23], the LR and
MVE MSE results were similar, indicating that their optimal
dimensions are probably similar. Thus, a dimension selection
method working well for one method would likely work well
for the other. Here, we propose an automatic method that does
not require prior evaluation of the ellipsoids and is based upon
the SVD of C′ in (23), which is required for evaluating the LR
ellipsoid. The singular values of C′ represent the distribution
of the NAzNEl samples of the array response among each of the
left singular vectors, where the left singular vectors represent a
basis for the AOA uncertainty. Therefore, one may choose the
dimension such that the energy in the basis is greater than or
equal to a fraction of the total energy. Specifically, we choose
L as the smallest integer such that∑L

l=1 λl

tr{C′}
> γ, (28)

where 0 < γ < 1 represents the minimum fraction of the
total energy contained in the associated basis. Clearly, the
smaller γ, the greater the reduction in robustness to AOA
uncertainty; however, choosing it larger will increase the rank
of B, increasing the computational load of the flat RCB,
and also decreasing the gain against noise. We will discuss
the effect of varying γ further in Section IV. We remark
that combining this dimension selection method with the LR
method, results in a fast automatic method of estimating flat
ellipsoids providing robustness to AOA uncertainty, since the
SVD of C′ is exploited in both methods. To summarize, the



5

following steps are required to compute the parameters B and
ā defining a “Flat LR” ellipsoid or a “Flat MVE”, exploiting
our dimension selection rule.

1) For a given beam with a ROI defined by, e.g. (9) and
(10), form the set of NAzNEl complex vectors A in (11)
and then form the set of real vectors Z from A.

2) Form ā using (21) and C′ using (23).
3) Calculate the SVD, C′ = UCΛCVH

C .
4) Given γ and the singular values of C′, calculate the flat

ellipsoid dimension L using (28).
5) For the “Flat LR ” set: (a) form UC,L ∈ CM×L and

ΛC,L ∈ CL×L from the dominant left singular vectors
and values, (b) form B′ using (25) and β′ using (27), (c)
the ellipsoid is formed from B = β′B′ with center given
by (21), calculated above in step 2. For “Flat MVE”: (a)
Calculate U1 as the L dominant singular vectors of (19),
(b) Apply f(z) = UT

1 (z − z1) to the points in Z , to
form the set Z̃ , (c) use techniques in, e.g., [22], to solve
(20) for M and g, (d) the “Flat MVE” is defined by
B = U1M−1 and center ā = Bg + z1.

C. Non-Degenerate Ellipsoidal Uncertainty Sets

So far, the discussion has not allowed for the possibility
of non-AOA errors, such as calibration errors or those caused
by wave-front distortion. We now proceed to examine also
such errors, assuming that these can be well modeled as
additive errors (to the ASV) and are described by an error
ellipsoid, E(aerr,Berr). We note that in [15], calibration errors
were assumed multiplicative and were propagated via the
outer approximation to the Hadamard product. Assuming that
the ellipsoids describing the AOA errors and the non-AOA
errors are given by E (ā,B) =

{
Bu + ā

∣∣ ‖u‖2 ≤ 1
}

and
E(aerr,Berr) =

{
Berru + aerr

∣∣ ‖u‖2 ≤ 1
}

, respectively, one
may use the results in [15], [28] to write their sum as

E
(
ǎ, Č(p)1/2

)
=

{
Č(p)1/2u + ǎ

∣∣ ‖u‖2 ≤ 1
}

, (29)

with

ǎ = ā + aerr (30)
Č(p) = (1 + p−1)BBT + (1 + p)BerrBT

err, (31)

and where p is often chosen to minimize either the deter-
minant or trace of Č(p), or to produce the MVE. However,
minimizing the determinant requires O(M3) operations and is
ill-posed for degenerate ellipsoids, whilst calculating the MVE
requires the solution to a generalized eigenvalue problem, also
requiring O(M3) operations. Thus, both these methods would
likely be excluded from online updating of the sum of the
ellipsoids. Minimizing the trace is the most computationally
efficient of these approaches, requiring only O(M) operations,
and its solution can be written in closed form as

p̂ =

√
tr(BBT )

tr(BerrBT
err)

. (32)

In the following, the sets “ND Trace LR” and ”ND Trace
MVE” denote sets, formed from “Flat LR” sets and “Flat
MVE” sets, respectively, and by using the trace combination
method, which uses (30) as the set center, and (32) in (31).

It is possible to form a computationally simpler solution
than the trace-based method that also has better source local-
ization results. This is done by replacing (31) with

C̆ = BBT + BerrBT
err, (33)

which is similar to adding the covariances describing the two
ellipsoids (where the ellipsoid center is still given by (30)).
Sets obtained via (33) are denoted ND2 sets. In the following,
“ND LR” and “ND MVE” denote ND sets obtained from “Flat
LR” and “Flat MVE” sets, respectively.

In many applications, calibration data is scarce and infor-
mation on the statistics of the wave-front distortion errors
non-existent; consequently, a special case of interest is using
a conservative, spherical error ellipsoid with radius

√
ε̌, i.e.,

setting aerr = 0 and Berr =
√

ε̌I. Then, C̆ = BBT + ε̌I, whose
inverse, for general B, can be written as

C̆−1 =
1
ε̌
I− 1

ε̌2
B

(
I +

1
ε̌
BT B

)−1

BT , (34)

which needs only O(L3), instead of O(M3), operations. We
exploit (34) when computing the proposed “ND MVE” set for
Berr =

√
ε̌I. Further computational savings can be made if

B is computed via the LR method, for which one may write
C̆ as in (35), given at the top of next page. We note that
the RCB in [17] exploits the matrix D̆ and its inverse, where
C̆−1 = D̆HD̆ [see (3)–(5)], where one may thus form

D̆ = Γ̆
− 1

2 UH
C , (36)

with Γ̆
− 1

2 defined as in (37), given at the top of next page.
In some situations, it might be useful to adjust the value of ε̌,
e.g., to reduce the size of the uncertainty set and trade good
power estimation performance for possibly better detection
performance and/or spatial resolution. An important advantage
of the proposed “ND LR” approach is that the update of
D̆ (and its inverse), as a result of an update of ε̌, can be
done computationally efficiently using (36) and (37), as no
numerical matrix inversion is required.

We summarize the steps required to produce the aforemen-
tioned sets, given a flat AOA ellipsoid defined by B with center
ā and an error ellipsoid defined by Berr with center aerr.

1) Form the ellipsoid center ǎ using (30).
2) For “ND Trace LR” or “ND Trace MVE”: (a) form p̂

using (32), (b) form Č(p̂) using (31) with p̂. The set is
then a|[a− ǎ]HČ(p̂)−1[a− ǎ], where generally Č(p̂)−1

and its associated square root (see (3)) are computed
numerically3.
For “ND MVE” or “ND LR” with general Berr, form C̆
using (33). The set is then a|[a− ǎ]HC̆−1[a− ǎ] where
also C̆−1 and its associated square root are computed
numerically.

2Generally, combining the AOA and error ellipsoids may not produce a
ND ellipsoid, though in practice, where one needs to allow for calibration
and/or covariance matrix errors, the resulting set will likely be ND. Thus, for
notational simplicity, we term the set ND.

3We remark that when Berr =
√

ε̌I, the “ND Trace MVE” and “ND Trace
LR” sets could be computed more efficiently using equations analogous to
(34) and (36), respectively. However, as they have poorer properties than the
“ND LR” and “ND MVE” sets, we have omitted these here.
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C̆ = BBT + ε̌I =
[

UC,L UC,M−L

] [
|β′|2ΛC,L + ε̌IL 0

0 ε̌IM−L

] [
UH

C,L

UH
C,M−L

]
4
= UCΓ̆UH

C (35)

Γ̆
− 1

2 = diag
{[

1
(|β′|2λ1+ε̌)1/2 . . . 1

(|β′|2λL+ε̌)1/2
1

ε̌1/2 . . . 1
ε̌1/2

]}
(37)

For “ND MVE” with Berr =
√

ε̌I, compute C̆−1 using
(34). The associated square root is computed numerically.
For “ND LR” with Berr =

√
ε̌I, write the square root D̆

using (36), (37) and UC. Note that D̆−1 can be written

as D̆−1 = UCΓ̆
1
2 .

In Section IV, when using “ND LR” with Berr =
√

ε̌I, we
find that if γ is set too large when estimating the flat LR AOA
ellipsoid, so that the AOA uncertainty is overfitted, the loss
in control of AOA uncertainty is greater for the same value
of ε̌. The reason for this is that when the AOA ellipsoid is
overfitted, the smallest dominant eigenvalues of C′ in (23)
are very small and so will give a very small weighting to
the associated eigenvectors when used to calculate B′ in (25).
However, as shown in (35), when a spherical error ellipsoid is
added, the contributions of these eigenvectors is significantly
increased due to the weighting by ε̌. The trace-based method
significantly compromises AOA uncertainty, especially so for
larger values of γ. For ND Trace LR, the reasons for this can
be understood as follows: For the special case of a spherical
error ellipsoid, (32) can be written as

p̂ =

√
|β′|2

∑L
k=1 λk

Mε̌
. (38)

Also, one may write Č(p) = UCΓ̌pUH
C , where

Γ̌p =
[

(1 + p̂−1)|β′|2ΛC,L + (1 + p̂)ε̌IL 0
0 (1 + p̂)ε̌IM−L

]
Numerical simulations show that, for practical values of γ,
the |β′|2λk, for k = 1, . . . , L, are relatively large compared
to ε̌. In such cases, (38) imply that p̂ will be greater (often
significantly) than unity, therefore enhancing the spherical
uncertainty and suppressing the control of AOA uncertainty.

IV. SIMULATED DATA EXAMPLES

Here, we examine simulated data examples using a planar
array, consisting of two rows of ten sensors, with half-
wavelength spacing. In the following, we select a region of
interest (ROI), where a source may be present, as the region
covering azimuth and elevation angles in the ranges Θ̄Az =
[−117.5,−112.5] and Φ̄El = [105, 115] degrees, respectively,
and design the uncertainty sets to cover this region. Therefore,
in (9) and (10), we set θ = −115◦, ∆Az = 5◦, φ = 110◦,
and ∆El = 10◦. We evaluate the performance of the RCB for
the ten different types of uncertainty set, “Spherical Middle”,
“Spherical Mean”, “Tight Spherical Middle”, “Tight Spherical
Mean”, “Flat LR”, “Flat MVE”, “ND Trace LR”, “ND Trace
MVE”, “ND LR” and “ND MVE”. We assume a spherical
error ellipsoid in the latter four sets.

A. Localization Patterns

Here, we evaluate how well the different sets are able to
protect against SOI cancellation for a source lying inside
the ROI, but still provide good rejection of a source that
is outside of the ROI. To do this, we simulate a single
source, corrupted by white Gaussian noise, at varying az-
imuth and elevation angles, in steps of 0.5 degrees, over
the intervals [−135,−95] and [70, 150], respectively. At each
azimuth/elevation angle pair (θs, φs), the beamformers are
provided with the theoretical covariance matrix, given by
R(θs, φs) = σ2

sa(θs, φs)a(θs, φs)H + I, where a(θs, φs) and
σ2

s denote the source ASV and its power. In the following,
we set σ2

s = 60 dB. At each azimuth/elevation angle pair,
the beamformer weights and power are estimated. Though
the source position, adaptive weights and beamformer power
estimate can change at each new angle, the uncertainty set
is fixed as the one designed to cover the ROI. We term
the resulting plot a localization pattern4. For good robustness
to AOA uncertainty, the beamformer should not suppress
the source when it is inside the ROI. However, for good
localization, it should also suppress the source when it is
outside of the ROI. For an ideal beamformer, one would thus
desire the beamformer power estimate to be zero outside the
ROI, whereas the power of the source is undistorted within it.
Figures 1(a), (b), (c) and (d) show the localization patterns
for “Spherical Middle” with εsph = 10.2, “Tight Spherical
Middle”, with εtight = 4.3, ”Spherical Mean” with εsph = 8.8
and “Tight Spherical Mean” with εtight = 4.0, respectively,
indicating that they all provide robustness to AOA uncertainty,
but the tight spherical sets gives better suppression of the
source when it lies outside of the ROI, as compared to the
spherical sets. That is, the tight spherical sets give better
localization of a source than the spherical sets. There does
not appear to be any significant difference in the localization
pattern between selecting the sphere center as the ASV at the
middle of the ROI, or selecting it as the mean of the ASVs
covering the ROI. From Figures 1(a)-(d), we see that in order
to control the azimuth uncertainty, the radii of the spheres are
too large to control the elevation uncertainty. This is a result
of the fact that, for our array, the horizontal aperture is greater
than the vertical aperture and, therefore, the rate of change of
phase (of the ASV elements) with azimuth angle is greater than

4We remark that these patterns are different from both beampatterns and
power patterns. To produce a beampattern, one plots

˛̨
wHa(θ, φ)

˛̨2 for
different values of θ and φ, but fixed w. Our pattern is different because
we do not fix w. In a power pattern, one fixes a in a direction and plots˛̨
wH(θ, φ)a

˛̨2, recalculating w(θ, φ) for different values of θ and φ. Our
pattern is different because we do not fix a.
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(g) (h)
Fig. 1. For a ROI shown by the square, when there is no calibration uncertainty, the localization patterns for (a) Spherical Middle, (b) Tight Spherical Middle,
(c) Spherical Mean, (d) Tight Spherical Mean, (e) Flat LR with 1− γ = −80 dB, (f) Flat MVE with 1− γ = −80 dB, (g) Flat LR with 1− γ = −20 dB
and (h) Flat MVE with 1− γ = −20 dB.
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(e) (f)
Fig. 2. Localization patterns, when 1− γ = −80 dB for (a) ND Trace LR with ε̌ = 0.1, (b) ND Trace MVE with ε̌ = 0.1, (c) ND LR with ε̌ = 0.1, (d)
ND MVE with ε̌ = 0.1, (e) ND LR with ε̌ = 1 and (f) ND MVE with ε̌ = 1.

that for elevation angle. Therefore, to control an x-degree error
in azimuth, a larger value of ε is required than to control an
x-degree error in elevation. For 1−γ = −80 dB, Figures 1(e)
and 1(f) illustrate the localization patterns of the flat LR and
MV ellipsoidal sets, respectively, and show that, unlike the
spherical sets, these are able to provide much tighter control
of AOA uncertainty in both elevation and azimuth, as they
give much better rejection of the source, when it lies outside
of the ROI. As expected, the MVE allows for a tighter control
of AOA uncertainty than the LR ellipsoid. We remark that for
1− γ = −80 dB, the dimension of the LR and MV ellipsoids
was selected as L = 11 using (28). Figures 1(g) and 1(h)
show the same results, but with 1−γ = −20 dB, which gives
L = 3, illustrating that SOI cancellation can occur with a flat
uncertainty set even if there is only AOA error, if γ is not

chosen large enough. For 1 − γ = −80 dB, Figure 2 shows
localization patterns for the ND sets. Comparing the patterns
in Figure 2 with Figures 1(e) and 1(f), it is clear that including
a spherical error ellipsoid with the flat ellipsoids reduces the
ability to reject a source that is close to, but outside of the
ROI. Figures 2(a)–(d) show results for the four different ND
sets for ε̌ = 0.1, illustrating that, as discussed in Section III-C,
the ND sets obtained by using the trace method have much
poorer localization properties than their counterparts, obtained
by the proposed combination method. Thus, we now only
examine localization patterns for ND sets derived using our
proposed method which uses (33). Comparing Figures 2(e)
and (f) with (c) and (d), shows that the larger the error
sphere radius is in ND LR and ND MVE, the further away
the source has to be from the ROI before it is treated as
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(c) (d)
Fig. 3. Localization patterns, when 1− γ = −20 dB, for (a) ND LR with ε̌ = 0.1, (b) ND MVE with ε̌ = 0.1, (c) ND LR with ε̌ = 1, and (d) ND MVE
with ε̌ = 1.

an interference and rejected. We remark that increasing the
error sphere radius in the ND Trace sets also has this effect.
Figures 3(a)–(d) show the same patterns as in Figures 2(c)–
(f), but now with sets derived using a smaller value of γ, such
that 1 − γ = −20 dB. We remark that the SOI cancellation
exhibited by the original flat ellipsoids, whose localization
patterns are shown in Figures 1(g) and 1(h), has been mitigated
by combining them with a spherical error ellipsoid. Further,
note that for same value of ε̌, increasing γ increases the region
where a source will not be rejected. This observation could be
important, e.g., if we knew that the calibration errors were
large, so that a large value of ε̌ was needed, we might want
to reduce the value of γ (thereby, reducing the dimension of
the used flat ellipsoid) in order to ensure a good rejection of
sources outside of the ROI. Figure 4 illustrates results when
the source ASV has been simulated with calibration errors.
Specifically, the previous source ASV a(θs, φs), at angle pair
(θs, φs), is now replaced with s(θs, φs) = a(θs, φs)+e, where
e is a complex circularly symmetric random vector, such that
‖e‖2

2 = σ2
e . Comparing Figures 4(a) and 4(b) with Figures 1(a)

and 1(b), it is clear that the spherical and tight spherical
uncertainty sets are robust to the addition of these arbitrary
errors, as a source within the ROI is not canceled. We remark
that similar results are obtained for the Spherical Mean and
Tight Spherical Mean sets. However, comparing Figures 4(c)
and 4(d) with Figures 1(e) and 1(f), indicates that the flat
ellipsoids are not robust to these arbitrary errors. Comparing
Figures 4(e) and (f) with Figures 2 (c) and (d), it is clear that

the proposed ND sets are also robust to these arbitrary errors.
We remark that the ND Trace sets are also robust to calibration
errors. So far, we have seen that flat ellipsoids are very good
for controlling AOA uncertainty in both elevation and azimuth,
but they are not robust to arbitrary errors such as calibration
errors that are typically encountered in practice. The spherical
uncertainty sets are good at allowing for all types of error,
though have poor control of AOA uncertainty. By combining
the flat ellipsoids with a spherical error ellipsoid, we are able
to make the flat uncertainty sets robust against arbitrary errors,
yielding sets with good robustness to both AOA and non-AOA
uncertainty, and also with good localization properties.

B. Interference Rejection Properties

A key beamforming criterion is the signal-to-interference-

plus-noise ratio (SINR), defined as SINR = σ2
0

σ2
n

|wHa0|2
wHQw

, where
w, σ2

0 , a0, σ2
n and Q denote the weight vector, the SOI power,

the SOI ASV, the noise-plus-interference power and the noise-
plus-interference covariance matrix, which is normalized such
that tr(Q) = M . The input, receiver, signal-to-noise ratio
(SNR) is given by SNR = σ2

0
σ2

n
. In the following, the data

covariance is given by R = σ2
0a0aH

0 + Q, where the noise-
plus-interference covariance is given by Q =

∑d
k=1 σ2

kakaH
k +

σ2
wI, which consists of terms due to d zero-mean uncorrelated

interfering sources, where for the kth interferer, σ2
k and ak

denote the source power and ASV, and a white noise term σ2
wI,

with power σ2
w. From the localization patterns, it is clear that
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Fig. 4. For a ROI shown by the square, when there is calibration uncertainty such that σ2
e = 0.05, the localization patterns for (a) Spherical Middle, (b)

Tight Spherical Middle, (c) Flat LR with 1− γ = −80 dB, (d) Flat MVE with 1− γ = −80 dB, and when using 1− γ = −80 dB and ε̌ = 0.1, (e) ND
LR and (f) ND MVE.

the main differences between algorithms using the different
sets will be rejecting interferers close to the ROI. Thus, we
examine how well the different algorithms are able to reject
interferers that lie close to the ROI, but not inside of it. At
each Monte-Carlo simulation, we simulate the SOI, anywhere
within the ROI, and a set of d discrete interferers, whose
locations are random but are anywhere within ±5◦ in azimuth
and ±20◦ in elevation from the ROI center, but not in the
ROI. We set σ2

w = 0 dB, and σ2
k = 40 dB for k = 1, . . . , d.

Using the sets estimated above, and where applicable with
1− γ = −80 dB and ε̌ = 0.1, Figures 5(a) and 5(b) illustrate
SINR versus SNR, for d = 3, when there is or is not calibration
error. For the low SNR, interference and noise limited case,
there is a clear gain over the spherical sets for all of the flat

and ND sets, apart from the ND Trace LR set. This gain is
due to the sets being able to null interferers that lie close
to the ROI. In the case of the ND Trace LR set, it behaves
similarly to a spherical uncertainty set as the trace combination
method has emphasized the spherical error ellipsoid. As the
SNR is increased, the flat ellipsoids perform well providing
there is no arbitrary error. For low SNRs the tight spherical
sets outperform the spherical sets as they are able to reject
interference that lies closer to the ROI. Figures 5(c) and 5(d)
show the same plots, except now γ has been reduced so that
1−γ = −20 dB. Now, the SINR for the flat uncertainty sets is
compromised at high SNR, even when there is no calibration
error. This loss in SINR is mitigated, however, if the flat set
is combined with a spherical error ellipsoid. Note that the
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Fig. 5. For MC = 500, SINR vs SNR for three 40 dB interferers within ±5◦ in azimuth and ±20◦ in elevation of ROI center when (a) σ2
e = 0 and

1 − γ = −80 dB, (b) σ2
e = 0.05 and 1 − γ = −80 dB, (c) σ2

e = 0 and 1 − γ = −20 dB, (d) σ2
e = 0.05 and 1 − γ = −20 dB, and for SNR = -50dB,

SINR vs d for (e) 1− γ = −20 dB and σ2
e = 0, and (f) 1− γ = −20 dB with σ2

e = 0.05.

performance when using a ND set constructed from a flat LR
ellipsoid is greatly improved by selecting γ lower. The ND
sets constructed using a flat MVE appear less sensitive to the
choice of γ. Figures 5(e) and 5(f) show SINR as a function of
the number of interferers for an interference and noise limited
situation, when there is or is not calibration error. Again, we
observe that significant gains are achievable if using either flat
or ND sets. Figures 6(a) and 6(b) illustrate the SINR versus
the radius of the error ellipsoid for an interference and noise
limited situation and a high SNR situation, respectively. In the

low SNR, interference and noise limited situation, the smaller
the error ellipsoid, the higher the SINR. This is because we
wish to shrink the uncertainty set size to not allow in noise
and interference. Further, for low SNR, SOI cancellation due
to ASV errors is less problematic. However, for a high SNR
situation, increasing the size of the error ellipsoid in order to
allow for the calibration errors is important to prevent SOI
cancellation. These results highlight why one would like to
be able to update the ND sets online as a function of the
error sphere radius,

√
ε̌. Note also then that as ε̌ is decreased,
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Fig. 6. For MC = 500 and for three 40 dB interferers within ±5◦ in azimuth and ±20◦ in elevation of ROI center, SINR vs ε̌ when (a) SNR = -50 dB,
σ2

e = 0.25 and 1 − γ = −20 dB, (b) SNR = 20 dB, σ2
e = 0.25 and 1 − γ = −20 dB, and for SNR = 20 dB, (c) σ2

e = 0.5 and 1 − γ = −20 dB, (d)
σ2

e = 0.5 and 1− γ = −80 dB, (e) σ2
e = 1.5 and 1− γ = −20 dB and (f) σ2

e = 1.5 and 1− γ = −80 dB.

the performance of a ND set tends to the associated flat
set, whilst increasing the radius of the error sphere means
performance tends to a spherical uncertainty set. Figures 6(c)-
(f) illustrate SINR versus ε̌ plots for different values of σ2

e

and γ, illustrating that, for ND LR and ND MVE, there is no
significant differences for the different values of γ, and that
there is a clear correlation between the value of σ2

e and the
value of ε̌ at which they converge to the (tight) spherical set
SINR. It appears that in ND LR and ND MVE one should
select ε̌ at least as large as σ2

e . The ND Trace LR and ND

Trace MVE algorithms converge at much lower value of ε̌
and are more sensitive to the choice of γ.

V. EXPERIMENTAL DATA EXAMPLES

Here, we examine results on data measured using a pla-
nar underwater acoustics array, consisting of two rows of
ten sensors. The data, measured in the Alboran basin, late
afternoon in midwinter between deep sea state condition 1
and 2, contained a strong controlled acoustic source, emitting a
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2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

4

Element number

P
ha

se

 

 

Estimated
Calculated

Fig. 8. A comparison of the estimated and calculated ASV phases.

tonal signal, which was towed behind another vessel in the far-
field of the array. The time-series data were 50% overlapped,
Hann shaded, and Fourier transformed to a resolution chosen
to satisfy the bandwidth limit B < 1/8Ttransit, where Ttransit
denotes the transit time across the array (see, e.g., [21]). Actual
parameter values, e.g., frequencies, are proprietary and are
therefore omitted. Here, only results from the frequency bin
containing the tonal signal are examined. Part of the data was
used to obtain calibration measurements, by using the spherical
RCB (with a large radius) to estimate the true ASV. Figure 7
shows the gain estimates, measured at different times as well
as the average gain, indicating that the measured gains do
differ (significantly) from the assumed values of 1. Figure 8
compares the estimated and calculated5 phases, indicating that
there is a good match. To improve beamformer performance,
one alternative is to apply a gain calibration to the data, before
processing, and then allow for small variations in the un-
certainty sets. However, these calibration measurements were
obtained only for a single frequency and only from a subset of
all possible AOAs. Therefore, a more sensible approach is to

5It is worth noting that the calculated phases are obtained for a source at
the beam center and, therefore, the (slight) systematic error observed is due
to the source not being precisely at the beam center.
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Fig. 9. Azimuth spectra, at one elevation, for the DAS beamformer.

instead use these calibration measurements to get an indication
of the variations from the ideal case. Specifically, the radius
of the uncertainty sphere used to allow for the gain calibration
error has been estimated as6 εgain = supk ‖1M − |âk|‖2

2, where
|âk| are the magnitudes of the kth estimated ASV, which from
the results shown in Figure 7 gives εgain ≈ 0.5. We proceed to
compare the DAS and RCB exploiting Tight Spherical Middle,
Flat MVE, Flat LR, ND MVE and ND LR uncertainty sets,
where the ND uncertainty sets are formed using a spherical
error ellipsoid with ε̌ = 0.5. To obtain a well conditioned
array covariance matrix, a rule of thumb is that K ≥ 2M
independent and identically distributed snapshots are required,
where M denotes the number degrees of freedom (DOF) [29].
Here, M = 20 and obtaining K ≥ 40 snapshots, where
stationarity could reasonably be assumed, was feasible. For
a single elevation, Figure 9 shows the azimuth spectra for the
DAS beamformer. Figures 10 and 11 illustrate azimuth and
elevation spectra at sample 27, where the signal was strongest,
for all of the beamformers. The results using either Flat LR
or Flat MV ellipsoids are very similar, both of which suffer
from severe SOI cancellation when pointing towards the strong
calibration source. Out of the RCBs, the noise floor is highest
for the flat uncertainty sets. The proposed ND LR and ND
MVE sets are able to make the flat uncertainty sets they are
derived from robust to arbitrary errors, such as calibration
errors. They also able to give tighter control of elevation
uncertainty compared to the tight spherical set. We remark
that if the calibration error was smaller, so we could have
reduced the radius of the spherical error ellipsoid, the gain in
elevation localization would have been greater.

VI. CONCLUSIONS

In this paper, we have described fast, automatic methods
for obtaining ellipsoidal ASV uncertainty sets for multi-
dimensional arrays. These ellipsoids allow for angle-of-arrival
(AOA) uncertainty in both azimuth and elevation and also for
other, non-AOA errors, such as calibration errors. We have

6Here, we have first screened the data for outliers and erroneous measure-
ments, and then used the supremum to obtain the radius of the sphere required
to ensure that all observed calibration errors are taken into account.
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Fig. 11. Elevation spectrum at azimuth angle index 10, for sample 27.

modeled AOA uncertainty using flat ellipsoids and proposed
fast, automatic methods for estimating them, including their
dimension. The non-AOA errors are modeled using an error
ellipsoid. We have proposed a simple computationally efficient
technique for combining the AOA and error ellipsoids. Using
both simulated data and data recorded from an underwater
acoustics application, we have confirmed the benefits of ex-
ploiting the ellipsoids using recently proposed robust Capon
beamforming techniques.
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