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Summary

The combination of quantum mechanics and molecular mechanics (QM/MM) 

methods is one of the most promising approaches to study the structure, function, and 

properties of proteins. The number of QM/MM applications on metalloproteins is 

steadily increasing, especially studies with density functional methods on redox-active 

metal centres. Recent developments include new parameterised methods to treat 

covalent bonds between the quantum and classical systems, methods to obtain free 

energy from QM/MM results, and the combination of quantum chemistry and protein 

crystallography.

Abbreviations

MM – molecular mechanics

QM – quantum mechanics

QM/MM – combined quantum mechanics and molecular mechanics

Keywords

QM/MM, free energy perturbations, crystallographic refinement, quantum 

refinement, metalloproteins, reaction mechanisms, protein strain.

Teaser

Recent developments and applications of QM/MM methods on metalloproteins are 

reviewed, showing that QM/MM is one of the most promising approaches to study the 

structure, function, and properties of proteins. 

Running head: QM/MM calculations on metalloproteins
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Introduction

During the last decade, quantum chemical methods have become an important 

complement to experiments for the study of structure and function of metalloproteins, 

mainly owing to the increase in computer power and the introduction of accurate 

density functional methods [1,2]. However, an entire protein is still too large to study by

such methods. Therefore, quantum chemical studies have traditionally isolated the 

interesting part of the protein (e.g. the active site), including only a restricted number of 

atoms (30–200) in the calculations, whereas the surrounding protein has been ignored or

is represented as a homogenous continuum solvent [1,2].

Naturally, such a treatment is not fully satisfactorily, even if it often works 

surprisingly well [1-3]. A natural improvement is to include the surrounding protein by 

molecular mechanics, adding the quantum chemical and molecular mechanics energies 

and forces. This gives the combined quantum mechanics and molecular mechanics 

methods (QM/MM), pioneered by Warshel, Levitt, and Kollman [4,5]. Many variants of

QM/MM methods and programs have been proposed and QM/MM codes are now 

available in many quantum chemistry and molecular dynamics software [6-11]. This has

led to a steadily increasing number of applications of QM/MM methods to proteins, 

even if there still are almost as many QM/MM method development articles. 

Here, I review recent (January 2000 to September 2002) QM/MM applications on 

proteins with metal ions in the quantum system. QM/MM applications on other proteins

have recently been reviewed [6-12]. Model complexes have been excluded, but they are 

the subjects of a recent review [13]. Likewise, I avoid discussing technical aspects and 

method developments, unless they are of major interest for metalloprotein applications. 

I use a strict definition of QM/MM methods; for example, applications of the empirical 

valence bond method [14,15] are excluded.
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Reaction mechanisms

QM/MM methods are often used to study the reaction mechanism of an enzyme, 

optimising all reactants and transition structures along one or several suggested reaction

pathways. The philosophy behind such a treatment is to test if the mechanism is 

energetically feasible, i.e. if the highest activation energy is in accordance with observed

reaction rates [1,2]. Other properties, such as structures, spectra, or isotope effects, are 

often also studied. 

Several groups have studied metalloenzymes in this way. Most of them have dealt 

with redox-inactive metals, e.g. mandelate racemase (Mg2) [16], cAMP kinase (2 Mg2+) 

[17], phospholipase A2 (Ca2+) [18], thermolysin (a Zn2+-containing peptidase) [19], and 

leucine aminopeptidase (2 Zn2+) [20]. All these studies have been performed with 

semiempirical methods and they typically give too high activation energies (90–160 

kJ/mole), even when recalculated with density functional methods. Only a purely 

density functional study of stromelysin (another Zn2+ peptidase) gave a more reasonable

barrier (55 kJ/mole) [21].

Fewer studies have been directed towards proteins containing transition metals with 

an unfilled d shell. Rothlisberger et al. have studied the reaction mechanism of galactose

oxidase and compared it with a model complex [22]. This enzyme catalyses the two-

electron oxidation of primary alcohols to the corresponding aldehydes, coupled with the

reduction of dioxygen to hydrogen peroxide. The rate limiting step is a  hydrogen-atom 

abstraction from the deprotonated alcohol to a tyrosyl radical, which is a ligand of the 

catalytic copper ion. This residue is covalently attached to a cysteine residue by a 

thioether link at the ortho position.  The results indicate that the enzyme obtains a lower

activation energy (67 kJ/mole) than the model (88 kJ/mole) by delocalisation of the 

unpaired spin density over the modified tyrosine ligand. However, this conclusion is 
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opposed by another QM/MM study, in which the activation energy changes by only 4 

kJ/mole when the modification of the tyrosine ligand (modelled by a SH substituent) is 

removed [23]. 

Recently, Friesner et al. (personal communication) have studied the first step of the 

hydroxylation of camphor  by cytochrome P450, i.e. the abstraction of a hydrogen atom 

from the substrate by compound I , a FeIV=O – haem radical complex. They find that the

protein enhances this reaction by over ten orders of magnitude compared to vacuum. 

The major source of this enhancement is improved electrostatic interactions with the 

surrounding protein in the transition state, in particular more favourable hydrogen bonds

between the propionate side-chains of the haem group and arginine and histidine 

residues.

Finally, five articles have been devoted to the calculation of hydrogen tunnelling and 

kinetic isotope effects in alcohol dehydrogenase (hydride transfer in a Zn2+ enzyme) 

[24-27], xylose isomerase (hydride transfer in a di-Mg2+ enzyme) [28], and 

lipoxygenase (hydrogen-atom transfer in a Fe3+ enzyme) [26] using variational 

transition-state theory.

Structures and properties

One important application of QM/MM methods is to predict protein structures, e.g. 

the effect of mutants on the chlorophyll special pair in the photosynthetic reactions 

centre [29], the structure of mutants and metal substitutions in blue copper proteins 

(electron carriers) [30], or the structure and distortion of the porphyrin substrate in 

ferrochelatase (the enzyme that inserts the iron ion into haem, probably by deforming 

the porphyrin ring) [31].

Other investigations have studied how much the protein distorts the structure of the 
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active site, both in geometry and energy terms. Blue copper proteins have been 

suggested to distort the copper geometry and a QM/MM study of amicyanin and 

rusticyanin estimates the strain energy (i.e. the QM energy difference of the active site 

optimised in vacuum and with QM/MM methods) to 74–82 kJ/mole [32]. However, 

another study gives a much smaller effect, 25 kJ/mole [33], which still is said to be an 

overestimate [34]. On the other hand, the strain energies for four models of methane 

monooxygenase and ribonucleotide reductase are 50–200 kJ/mole [35] and similar 

energies have been observed in several other QM/MM calculations (6–200 kJ/mole) 

[33,36-38]. Thus, strain is a problematic concept, which depends strongly on the size 

and charge of the system, the presence of polar groups, what interactions are included,  

and the reference state [34]. Studies of haemerythrin, cytochrome P450, and blue copper

proteins indicate that the functional effect of strain is small [33,39]. 

Several other properties have been studied, e.g. the binding free energy of O2 to 

haemerythrin [39], vibration frequencies and hydrogen bond-strengths in myoglobin 

[40,41], reorganisation energies of blue copper proteins and iron–sulphur clusters [33, 

36], and the relative stability of the Zn–OH and Zn–OH2 forms in metallo--lactamase 

[42]. Two groups have studied the electronic structure of various intermediates of 

cytochrome P450, which is extremely sensitive to the surroundings and the theoretical 

treatment [43,44]. Finally, QM/MM methods have also been used to identify Cu2+ 

binding sites in the prion protein [45] and to improve the results of molecular dynamics 

simulations of metallothioneins with Zn2+ and Cd2+ ions [46].

Free energies from QM/MM calculations

The previous studies have obtained only pure (internal) energies or have estimated 

free energies from a harmonic vibrational analysis of the quantum system [1-3,21,23, 
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39]. Combinations of QM methods and free energy techniques have recently begun to 

be developed [11,47,48], but only a few studies of metalloenzymes combine QM/MM 

techniques and methods to obtain free energies. This can be predicted to be an important

area of developments in the future.

Yang et al. have studied two consecutive reactions catalysed by enolase (2 Mg2+) 

[49]. They calculate QM/MM structures along a postulated reaction coordinate and  

perform free energy perturbations between these structures, keeping the whole quantum 

system fixed. Four studies of alcohol dehydrogenase (Zn2+) [24,25,27] and 

acetohydroxy acid isomeroreductase (2 Mg2+) [50] use umbrella sampling along a 

simple reaction coordinate to obtain the potential of mean force for the reaction, 

keeping only this coordinate fixed. Thus, they do not use the QM/MM structures in the 

free energy calculations.

We have tested alternative methods to get free energies from QM/MM calculations 

for the enzyme catechol O-methyltransferase (Mg2+), viz. Langevin-dipole models or 

Poison– Boltzmann solvation methods on the QM/MM geometries, combined with 

entropy obtained from a vibrational analysis of the whole enzyme (T Rasmussen, K 

Nilsson & U Ryde, unpublished data), i.e. methods similar to the MM/PBSA method 

[51]. The results indicate that stable and accurate results can be obtained in a relatively 

short time compared to free energy perturbations. 

Effect of the protein environment

Is a QM/MM treatment of a protein really necessary? Of course, this depends on the 

protein and properties of interest. Siegbahn et al. has argued that it is possible to 

discriminate between various reaction mechanism of metalloenzymes by performing 

QM calculations on small models of the active site, once a few key residues are 
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included [1,2]. Such a small environmental effect has been demonstrated in myoglobin: 

The difference in hydrogen-bond energy between O2 or CO and the distal histidine 

residue is 21, 24, and 21–22 kJ/mole when calculated in vacuum without or with a few 

constraints to mimic steric effects of the protein, and with QM/MM methods, 

respectively [3,41]. Likewise, no important effects of the protein were found for the 

reaction energies of galactose oxidase [22].  

However, for other systems, the protein environment has an appreciable effect. For 

example, it reduces inner-sphere reorganisation energies of iron–sulphur clusters and 

blue copper proteins by a factor of two or more [33,36] and reduces the activation 

energy by 20 kJ/mole in phospholipase A2 [18]. 

An important goal of QM/MM calculations is to identify the mechanisms and 

interactions by which enzymes accomplish their function. This has been done in several 

studies. For example, Friesner and coworkers show that haemerythrin stabilises bound 

O2 by 57 kJ/mole, compared to aqueous solution, using van der Waals interactions in a 

pre-formed cavity and electrostatic stabilisation by a second-sphere glutamate residue 

[39]. Similarly, Yang et al. have studied two consecutive reactions catalysed by enolase 

and show that the first step is favoured by the two Mg2+ ions in the active site, whereas 

the second step is disfavoured by these ions, but this is more than compensated by other 

residues in the protein [49]. 

Method development

A well-know problem of QM/MM methods is how to treat covalent bonds between 

the QM and MM systems. The QM system can either be terminated by a dummy atom 

or by a special localised orbital [52]. Many variants have been suggested. Both methods

have their shortcomings [52] and a direct comparison of the two methods indicated that 
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the simple hydrogen link-atom method gave the best results [28]. Recently, Friesner and

coworkers have developed a strongly parameterised localised frozen-orbital approach 

[43,53]. They have performed a detailed analysis of the accuracy of the junctions and 

the effect of increasing the quantum system [54]. Interestingly, out of 35 recent 

QM/MM investigations on metalloenzymes, only five [19,25,39,43,49] do not use 

hydrogen link atoms.

Electrostatic interactions can be treated in several different ways in QM/MM 

calculations [10]. Although methods to include polarisation of both the QM and MM 

systems self-consistently have been presented [55] and the first polarisable force fields 

for biological systems have appeared [56], most QM/MM implementations only include

electrostatic interactions in the QM calculations. Moreover, some QM/MM applications 

still treat electrostatics only in the MM calculations [21,23,30,32], thus excluding 

effects of hydrogen bonds and solvation. Interestingly, such an approach [30] actually 

gave improved geometries of blue copper proteins, indicating problems in the point-

charge model. 

The selection of the QM system is of course crucial. For metal-containing systems, 

an important rule is that all metal ligands should be included in the QM system; 

otherwise huge errors may arise, e.g. ~70 kJ/mole in the activation barriers for xylose 

isomerase [28] and cAMP kinase [17]. 

As to the level of the QM calculations, more than half of the applications employ 

density functional methods (typically B3LYP), whereas almost all the others use 

semiempirical methods (AM1 or PM3). Most of the latter calculations are calibrated to 

or use single point density functional calculations to improve the accuracy. Therefore, 

the recent development of a semiempirical density functional method, with an improved

performance over standard semiempirical methods, is of interest [57]. An alternative to 
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QM/MM calculations could be to use frozen or constrained density functional [58] or 

linear-scaling methods [9] for parts of the protein.

Many QM/MM projects start by reoptimising a crystal structure to get structures and 

energies that are comparable with QM results. Unfortunately, there is no guarantee that 

the reoptimised structure stays close to the crystal structure; inaccuracies in the MM 

force field may distort the structure if the surrounding protein is allowed to move, as 

two recent investigations show [38,59]. On the other hand, crystal structures involve 

significant errors, which together with systematic errors in the theoretical method will 

lead to nonsense energies if the crystal structure is used directly. 

A natural solution to this dilemma is to include the crystallographic raw data (the 

structure factors) in the QM/MM calculations by replacing the MM potential with a 

crystallographic refinement penalty function. We have implemented such an approach 

[38] and obtain good results in terms of the crystallographic Rfree factor and electron-

density maps. For example, the method brings a low-resolution structure closer to an 

atomic-resolution structure of the same protein, as can be seen in Figure 1 [60]. Thus, 

the structure is improved locally. 

This method can also be used to interpret crystal structures (what oxidation states and

atoms are present). For example, the protonation states of metal ligands can be 

determined by comparing which of the possible candidates fit the raw data best, as is 

shown in Figure 2 [60]. The method has been applied for superoxide dismutase, 

compound II in myoglobin, and hydrogenase [60, K Nilsson, L Rulisek & U Ryde, 

unpublished results].

Conclusions

QM/MM is a valuable method to study the structure and function of metalloproteins, 
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including the effect of the surroundings in an unbiased way. The applications range 

from studies of structures and spectroscopic or functional properties to investigations of 

the full reaction mechanisms of enzymes. A clear trend is seen towards the study of 

redox-active metal centres using density functional methods and the combination of 

QM/MM methods with free-energy techniques.

It interesting to note that all except two of the QM/MM applications on 

metalloproteins have been done with one of the developers as a coauthor. This shows 

that QM/MM methods are still not widely used. It will be interesting to see if the latest 

developments of general-purpose QM/MM methods, e.g. ONIOM [35] and QSite [53, 

54], may change this.
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Figure 1. The low- (magenta) and high-resolution (orange) crystal structure of haem 

cytochrome c553 compared to the COMQUM-X structure and the electron density (2fo – fc 

omit map at the 2.5  level) from the high-resolution data [60]. Note the differences in 

the position of the iron ion, the histidine ring, and the ethyl side chain on the left.
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Figure 2. The structure of the catalytic zinc ion in alcohol dehydrogenase in complex 

with NAD+ and trifluoroethanol (1axe, 2.0 Å resolution). Structures with a protonated 

(magenta) and a deprotonated alcohol are compared, together with the corresponding 

electron density fo – fc difference maps at the 2.8  level (white and green for the 

protonated structure, blue and red for the deprotonated structure) [60]. The picture 

shows the zinc ion (cross), the alcohol (left), the histidine ligand (bottom), and the two 

cysteine ligands (right). The improvement is seen in the smaller red than green volumes 

in the centre and the smaller blue than white volume on the right. The alkoxide also 

gives a lower Rfree factor and strain energies, and better Zn–ligand distances than the 

protonated alcohol [60]. Kinetic data confirm that the alcohol should be deprotonated at 

the pH (8.4) at which the crystals were grown [60]. 
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