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MOLECULAR ORBITAL THEORY 1

1 THE MOLECULAR ORBITAL

The molecular orbital (MO) is the basic concept in contemporary quantum
chemistry [1, 2, 3]. It is used to describe the electronic structure of molec-
ular systems in almost all models, ranging from simple Hiickel theory to
the most advanced multiconfigurational treatments. Only in Valence Bond
(VB) theory is it not used. Here, polarized atomic orbitals are instead the
basic feature. One might ask why the MOs have become the key concept
in molecular electronic structure theory. There are several reasons, but the
most important is most likely the computational advantages of MO theory
compared to the alternative VB approach. The first quantum mechanical
calculation on a molecule was the Heitler-London study of Hy [4] and this
was the start of VB theory. It was found, however, that this approach led to
complex structures of the wave function when applied to many-electron sys-
tems and the mainstream of quantum chemistry was to take another route,
based on the success of the central-field model for atoms introduced by by
Hartree in 1928 and developed into, what we today know as the Hartree—
Fock (HF) method, by Fock, Slater and co-workers (see Ref. [5] for a review
of the HF method for atoms). It was found in these calculations of atomic
orbitals that a surprisingly accurate description of the electronic structure
could be achieved by assuming that the electrons move independently of each
other in the mean-field created by the electron cloud. Some correlation was
introduced between electrons with parallel spin, through the fulfillment of
the Pauli exclusion principle, which required that the total wave function

was written as an anti-symmetrized product of atomic spin-orbitals, instead
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of a simple product.

At the same time, molecular orbitals were used in simplified treatments of the
m-electrons in conjugated organic molecules [6]. Similar empirical or semi-
empirical electron structure models were developed and successfully applied
in other areas of chemistry. They have been described in other chapters of
this book. The field was therefore open for a development of a non-empirical
HF theory for molecules. A key paper was published by Roothaan in 1951 [7].
Albeit not first, he gave a clear and detailed description of a HF procedure
for molecules that could almost be used as a manual for the development of
a computer code. The computers were not quite ready, though, and it was to

take another 10 years before the first general-purpose codes were produced.

Today we know that the HF method gives a very precise description of the
electronic structure for most closed-shell molecules in their ground electronic
state. The molecular structure and physical properties can be computed with
only small errors. The electron density is well described. The HF wave func-
tion is also used as a reference in treatments of electron correlation, such as
perturbation theory (MP2), Configuration Interaction (CI), Coupled Cluster
(CC) theory, etc. Many semi-empirical procedures, such as CNDO, INDO,
the Pariser—Parr—Pople method for m-electron systems, etc., are based on
the HF method. Density Functional Theory (DFT) can be considered as HF
theory including a semi-empirical estimate of the correlation error. Hartree—
Fock theory is the basic building block in modern quantum chemistry and

the basic entity in HF theory is the molecular orbital.

Below we shall describe this model in more detail and study its possibilities
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and limitations (because it has serious limitations), but first a few words

about electron densities and molecular orbitals in general.

2 THE MANY-ELECTRON WAVE FUNC-
TION AND THE NATURAL ORBITALS

Building wave functions in molecular quantum chemistry starts from generat-
ing a basis set, which normally consists of atom-centered functions obtained
from calculations on individual atoms. Let us assume that there are m of
these atomic orbitals (AOs) and call them (x,,p = 1, m). We can construct
the MOs, ¢; as a linear expansion in these basis functions (the LCAO method;
LCAQO = Linear Combination of Atomic Orbitlas). A spin function has to be
attached to each molecular orbital and we define the molecular spin orbitals,
(SO) as:

Ui = il = > aipXph; (1)

p

The spin function 6; can take two values (a or 3) so with m linearly inde-

pendent basis functions we can construct 2m SOs.

Now, suppose that our system has n electrons. We can then build N = (2;”)
Slater determinants, @, by occupying n of the 2m SOs in all possible ways.

The total wave function, ¥ can be expanded in this n-electron basis:

v = ZCK‘I’K (2)

The variation principle can be used to determine the expansion coefficients,
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Ck. This leads to the well known secular equation:

;(HKL — 0k E)CL =0 (3)
In the limit of a complete basis set, this equation becomes equivalent to
the Schrédinger equation. For a finite basis set, equation (2) represents
the best wave function (in the sense of the variation principle) that can
be obtained. It is called the Full CI (FCI) wave function. It serves as a
calibration point for all approximate wave function methods. It is obvious
that many of the coefficients in (3) are very small. We can consider most
approximate MO models in quantum chemistry as approximations in one
way or the other, where one attempts to include the most important of the
configurations in (2). We notice that the FCI wave function and energy
are invariant to unitary transformations of the MOs. We could actually
use the original AO basis set, properly orthonormalized. We may then ask
the question whether there is any special representation of the MOs that
will concentrate as much information as possible in as few configurations
as possible. An answer to this question was given by P.-O. Léwdin in a
famous article from 1955 [8], where he gives strong indications that the fastest
convergence of the CI expansion is obtained when the orbitals used are the

natural spin-orbitals.
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2.1 The First-Order Density Matrix and the Natural
Spin-Orbitals

The probability density of electrons p*)(z) in a quantum mechanical system
is given by the diagonal element of the first-order reduced density matriz,
P\ (z;2') (the superscript s indicates that these quantities depend on the

electron-spin:
P (z;2) = n/\If(a:';xQ,xg...,xn)*\If(x;:r2,xg...,xn)dxgdxg...dxn. (4)

x; = (r;, (;), where r; is the space and (; the spin variable for electron 7. If we
know this matrix we can compute all one-electron properties of our system.
To compute also the two-electron properties, including the total energy, we
need to know also the second-order reduced density matrix. We can represent

the density matrix in our basis of SOs as:
P (w;a') = 32 D i(a') vy (a) (5)
(2

The matrix D®) is Hermitian and can be brought to diagonal form by a
unitary rotation of the orbitals. The new orbitals are called the Natural

Spin-Orbitals (NSOs), )\Z(-s). In terms of them, the density matrix is given as:
P (@sa') = 30N (@) A (a) (6)

The quantities nfs) are called the occupation numbers of the NSOs and fulfill

the condition: 0 < (¥ <1 [8].
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2.2 Spin Integration and the Natural Orbitals

The electron spin can be separated out in p®)(z;2'). If we do that and
integrate over the spin variables we obtain the charge density matrix, p(r;r’),

which we shall also call the 1-matrix. It can be expanded in the MOs:
p(r;r) = D;¢i(r')"¢;(r) (7)
1,J

Again, we can diagonalize the matrix D and obtain a representation of the

1-matrix in diagonal form:
p(r:r') = Y mh () A x) (8)

The orbitals A; are called Natural Orbitals (NO). Their occupation numbers,
7; fulfill the condition: 0 < 7; < 2.

The natural orbitals have properties that are very stable, independently of
how the wave function has been obtained. We find for all molecular systems
that the NOs can be divided into three different classes: One group of or-
bitals have occupation numbers close to 2. These orbitals may be considered
as almost doubly occupied. We call them strongly occupied. There is another
large group of orbitals that have occupation numbers close to zero (typically
smaller than 0.02). These are the weakly occupied NOs. For stable closed-
shell molecules close to their equilibrium geometry, we shall only find these
two types of NOs. However, in more complex situations (molecules far from
equilibrium geometry, excited states, radicals, ions, etc.) we find a third class
of NOs with occupation numbers that are neither small nor close to two. In

open-shell systems (radicals, transition-metal compounds, etc.) we find one
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or more orbitals with occupation numbers close to one. If we follow a chem-
ical reaction over a barrier we may find cases where an occupation number
changes from two to zero while another moves in the opposite direction. An
example is given in Fig. 1, which shows how the occupation numbers of the
NOs varies when two ethene fragments approach each other and form cyclo-
butane (the approach is along the symmetry-forbidden reaction path which

keeps Dy, symmetry).

The figure shows the four orbitals with occupation numbers, which deviate
most from two or zero. At large distances they are the 7 bonding and anti-
bonding orbitals of the two ethene fragments. They have occupation numbers
about 1.9 and 0.1, respectively. Close to the transition state for the reaction,
one of the bonding orbitals becomes antibonding and weakly occupied, while
another orbital becomes bonding and strongly occupied. A picture of the
four orbitals in this region is shown in Fig. 2. The two first orbitals have

occupation numbers close to one, the third about 1.9 and the fourth 0.1.

At the end of the reaction we have two new bonding orbitals from the ring.
They are single bonds, which typically have occupation numbers close to
two. The importance of this analysis is that it is valid for the exact wave
function. Whether it remains true for approximate methods depends on the
method. Below we shall discuss an approach that takes these features of the
electronic structure explicitly into account. But first, we shall look closer at
the situation where all occupied orbitals have occupation numbers close to
two. This situation is common for most molecules in their ground electronic

state, close to their equilibrium geometry. It is a natural first approximation
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Figure 1: Natural orbital occupation numbers for the active orbitals in C,Hg
as a function of the distance between the two CoH, fragments. The NOs are
shown in Fig. 2. The occupation number profiles of the four orbitals (1-4)

have the following colors: black, red, magenta, and blue.
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Figure 2: The four natural orbitals in C4Hg, which change character during

the reaction. The distance between the two ethene fragments is 2 A.

to assume that the occupation numbers are exactly two or zero, which can be
shown to be equivalent to assuming that the total wave function is a single
configuration (Slater determinant). This is the closed-shell Hartree-Fock

model [7].

3 THE HARTREE-FOCK METHOD

The simplest approximation we can make of the full CI expansion of the wave
function is to assume that one configuration is enough to describe the wave
function. This is equivalent (in the spin-orbital formulation) to select n SOs
form the full set. The corresponding wave function is the anti-symmetrized

product of these SOs:

Uynr = A{th (21)ha(w2) - - P (20) }, 9)

where A is the antisymmetrizer (A = Zp(—l)pp; the summation running
over all permutations with parity p, 15, of the electron coordinates). In this

model, we thus divide the SO space into an occupied and an unoccupied
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(virtual) part. Obviously, the quality of this wave function will strongly
depend on how we choose the occupied orbitals (in contrast to full CI, which
is invariant to this choice). The Hartree—Fock orbitals are those, which makes
the energy corresponding to (9) stationary. We shall not attempt to derive
the corresponding equations here; the reader is referred to existing literature
on the subject (see for example Ref. [9]). The final result is an equation for

the orbitals that can be written in the form:

Py = ey, (10)
where F is a one-electron operator, which for a molecule has the following
form:

A ~ 1 A N
F=T+) ———+J-K. 11

; TRy (11)
Here, T is the kinetic energy operator and the second term gives the Coulomb
attraction between the electron and the nuclei A. The third and fourth terms

describe the interaction between one electron and all other electrons. The

first of them is the Coulomb operator:

Jute) = [Py )as, (12

This term is thus completely classical and describes the Coulomb repulsion
between an electron in spin-orbital ¢; and the total electron density p. We
note that p is given in term of the orbitals. The HF equation is thus not
linear but has to be solved self-consistently, that is, until the input density
used to construct J equals the output density. The efficiency of current SCF
programs lies in their ability to achieve fast convergence in this iterative
process and many ingenious convergence procedures have been derived for

this purpose.
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The second term is the exchange operator. It results from the antisymmetry

of the wave function and may be written as:

Ki(1) = / ”(Lfl)zpim)dm. (13)

r

It is easy to see by inserting the definition (5) of p that while all electrons
contribute to J , only those with the same spin as 1; will be included in K.
It may be shown that this contribution to the total energy is negative. The
exchange terms thus lowers the energy of the system, because electrons with
parallel spins avoid each other, resulting in a reduction of the repulsion. The
antisymmetry of the wave functions results in zero probability for finding two
electrons with the same spin in the same point in space. This is the so called
Fermi hole. The HF model does not prevent electrons with opposite spins
to occupy the same point in space, which has important consequences for
the energy error of the HF model, the so called correlation energy. It arises
mainly from the interaction of pairs of electrons with opposite spins and can
to a good approximation be written as a sum of pair energies. The success
of second-order perturbation theory (MP2) for computing the correlation

energy is based on this property of the HF wave function.

We also notice that the exchange operator is non-local, because the results
depend on the value of v; in all points in space. One of the challenges in

DFT theory is to model the non-local exchange with a local operator.

The eigenvalue of the HF orbital v;, €;, can be identified as an energy of the

electron in that orbital. The background is Koopmanns’ theorem that states
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that removing one electron from an occupied orbital, without modifying the
remaining ones, results in an energy increase —¢;, thus relating the eigenval-
ues of the occupied orbitals to the ionization energies of the molecule. In the
same way it may be shown that the energies of the virtual orbitals give a mea-
sure of the electron affinity. It is important to emphasize that these relations
are only approximate because they do not include relaxation of the density
and electron correlation effects. They are nevertheless important conceptu-
ally because they give a model of the electronic structure where the electrons
move in well-defined molecular orbitals with an equally well defined orbital

energy. This is the shell model for molecules, except for one little detail.

The formalism given above assigns one spin orbital to each electron. In
principle they all have different space parts. However if you perform such
a calculation for the water molecule, you will find that orbitals for o and
[ spin are pairwise identical. The result is 5 occupied MOs, each with two
electrons of opposite spin. The concept of the closed shell is thus a result
in HF theory. Not all molecules behave in this way, but many do so when
they are close to their equilibrium geometry. The pairing is self-consistent for
an even number of electrons, that is, if the electrons are paired in identical
orbitals, the HF equation for o and S spin orbitals will be identical and thus
give a paired solution. The only question is whether the solution is stable (is
a minimum). It may be shown that this property of the solution is related
to the energy difference between the closed-shell state and the lowest triplet
state. When this energy is too low, the paired solution becomes unstable
and another solution with different orbitals for different spins appears with a

lower energy. Such a wave function is no longer an eigenfunction of the total
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spin and may also break the molecular point-group symmetry.

A closed-shell structure for a ground-state molecular wave function is only
possible for an even number of electrons. An open shell will always lead to
spin-polarization, that is, different orbitals for different spins for all electrons.
The model with this property is called Unrestricted Hartree—Fock, UHF. 1t is
possible to impose the restriction of pairing also for open-shell systems, but
this is then an additional condition that will lead to a higher energy than the
corresponding UHF solution. Such an approach is called Restricted Hartree—
Fock, RHF. It may be constructed in such a way that the wave function is an
eigenfunction of the total spin, which is not a property of the UHF approach
[10]. However, as we shall discuss below, open-shell systems need in general a
higher order treatment, where more than one determinant is used to expand

the wave function.

The HF approach is surprisingly accurate for normal closed-shell molecules
involving only light (first and second-row) atoms. Bond distances are usually
represented with an accuracy of 0.02 A or better and the accuracy in bond
angles is a few degrees. Physical properties like dipole moments, etc. are
predicted with errors of the order of 10%. For an extensive error analysis of
different quantum chemical methods see for example Ref. [11]. It should be
noticed, however, that for systems including heavier atoms, the errors may be
larger also when the system is a closed-shell. A typical example is ferrocene,
where the metal ring distance is overestimated with 0.23 A at the HF level
[12]. The error can be related to strong electron correlation effects in the

3d shell of iron. Thus, one cannot use the HF approach with confidence for
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studies of coordination compounds. Electron correlation has to be invoked

already when the wave function is determined.

HF theory cannot be used to compute properties the are related to processes
where electron pairs are formed or broken. The correlation error depends
strongly on the number of such pairs. Examples of such processes are disso-
ciation of a chemical bond, ionization, excitation, passing a transition state
in a chemical reaction, etc. The possible applications of HF theory are thus
severely limited. Methods to compute the correlation energy starting from a
HF reference wave function are described in several articles in this book. The
most commonly used methods today for ground-state systems are probably

second-order perturbation theory and density functional theory.

However, in several cases it is not possible to use HF theory at all. It is based
on the assumption that the natural orbitals have occupation numbers close
to either two of zero (in the closed-shell case). We saw in the example of
C4Hg that this is not always the case. Some orbitals may drastically change
their occupation during a chemical process. In strongly correlated systems,
like some transition metals, the HF method might give large errors even if
the occupation numbers are not very different from zero, one or two. In such
cases it is necessary to extend the theory and allow for occupation numbers

different from two or zero.
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4 ACTIVE ORBITALS AND MULTICON-
FIGURATIONAL WAVE FUNCTIONS

Let us take a closer look at the CoHy + CoHy — C4Hg reaction. Why do the
orbitals change their occupation numbers? Let us introduce the following

notations:

¢1  ethene bonding but antibonding between the two (orbital 1 in Fig 2)
¢o  ethene antibonding but bonding between the two (orbital 2)
¢3; bonding between all four carbons (orbital 3)

¢4; antibonding between all four carbons (orbital 4)

At large distances between the two moieties, the orbitals ¢; and ¢35 will be
doubly occupied. This gives a wave function that we symbolically can write

as (forgetting all other electrons):

U1 = (61)*(¢3)* (14)

When cyclobutane has been formed the two orbitals that form the new bonds,

¢o and ¢3, will instead be occupied and we get the wave function:

Uy = (62)*(¢3)* (15)

So, orbital ¢3 is always occupied and its occupation number changes only
little during the reaction. Orbital ¢, is always weakly occupied. Orbitals ¢,
and ¢9, however, change their occupation, ¢; from zero to two and ¢, in the

opposite way.

What will happen to the energies along the reaction path for these two HF

configurations. The energy surface for ¥, will clearly become repulsive when
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the two ethene molecules approach each other, because ¢, is antibonding. ¥,
will on the other hand become repulsive when we dissociate the new bonds,
since this configuration cannot give the ethene double bonds. The electronic
configuration will have to change from W¥; to ¥, at some point along the
reaction path. This will happen at the point where the two potentials cross,
that is, where they have the same energy. If they are used as basis functions

in a two-by-two CI calculation one obtains:

1
V=50 — 1) (16)

The natural orbitals of this wave function will be the same, but now ¢; and
@2 will have the occupation number one. This is the crossing point shown
in Fig. 1. So, we have three wave functions: (14), valid at infinite distance,
(15) valid at the C4,Hg equilibrium geometr and (16) valid in the transition
state region. How do we write a wave function that is valid for the full
reaction path. The obvious choice is to abandon the single-configuration

(HF) approach and write:
U =19 + Ca¥, (17)

and determine not only the orbital but also the configuration mixing coeffi-
cients by the variation principle. The example illustrates a chemical process
where we need to go beyond the single-determinant approach in order to
understand the electronic structure. But note that the basic quantity is still
the natural orbitals. It is obvious that this example illustrates a whole class
of chemical processes: chemical reactions that involve a change of electronic

configuration.
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Let us take another example, which is of interest in coordination chemistry.
It concerns the nickel atom and its lower excited states. The ground state
is 3D (3d%4s), but 0.03 eV higher is *F (3d®4s?). These values are aver-
aged over the J components. 1.70 eV higher we find the closed shell 'S
(3d'%) state. If we compute these relative energies at the RHF level, we find
AE(*D —3F) = —1.63 ¢V and AE(*D —!'S) = 4.33 V. It turns out to be
very difficult to compute these energies accurately (see for example [13] for a
discussion of results at different levels of theory). The reason is strong radial
correlation effects in the (almost) filled 3d shell. Actually, it was early noted
for the copper atom that a large fraction of the correlation energy could be
recovered if an electron configuration 4s3d°3d’ was used instead of 4s3d*°
[14]. This double-shell effect has been found to be important for a quantita-
tive understanding of the electronic spectra of transition metals with more
than a half filled d-shell, not only for free atoms but also for complexes [15].
The occupation numbers of the orbitals in the second d-shell are not very
large (of the order of 0.01-0.02) but their contribution to the energy is large.
The example shows that there is not always a trivial relation between the oc-
cupation numbers and the importance of a natural orbital for the description

of the electronic structure and the energetics of a molecular system.

How can we extend Hartree—Fock theory to incorporate the effects of the most
important natural orbitals even in cases where the occupation numbers are
not close to two or zero. Actually, Lowdin gave an answer to this question in
his 1955 article, where he derived something he called the extended Hartree—
Fock equations [8]. The idea was to use the full CI wave function (2), but

with a reduced number of orbitals, and determine the expansion coefficients
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and the molecular orbitals variationally. His derivation was formal only and
had no impact on the general development at the time. It was only 20
years later that a similar idea was suggested and developed into a practical

computational procedure. The approach is today known as the Complete

Active Space SCF method, CASSCF [16].

The CASSCF method is based on some knowledge of the electronic struc-
ture and its transformation during a molecular process (chemical reaction,
electronic excitation, etc.). This knowledge can, if necessary, be achieved by
making experiments on the computer. Let us use C,Hg as an example. We
noticed that four of the MOs in this molecule will change their occupation
numbers considerably along the reaction path. Four electrons are involved
in the process. We shall call these orbitals active. The other electrons re-
main in doubly occupied orbitals. Such orbitals will be called inactive. The
inactive and active orbitals together constitute a subset of the MO space.
Remaining orbitals are empty. We can define configurations in this subspace
by occupying the four active orbitals with the four electrons in all possible
ways. It is left to the reader to show that the number of such configurations
with the spin quantum number zero (singlet states) is 20. The number of
Slater determinants is (Z) = 70, which includes, in addition to the singlet
states, 3 x 15 triplet and 5 X 1 quintet states. Of the 20 singlet configura-
tions, only 8 have the correct symmetry. The wave function is thus in this
case a linear combination of these 8 configuration functions (CFs). Above,
we discussed the electronic structure in terms of only two CFs, so it is clear
that we do not need to invoke all eight functions. However, the selection of

individual configurations to use in the construction of the total wave function
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is a complicated procedure that easily becomes biased. The CAS approach

avoids this by only specifying the inactive and active orbitals.

The choice of the active orbitals is in itself non-trivial. Again, we can use
C,Hg as an example: we chose the four orbitals that changed character along
the reaction path. Two of them are C-C o-bonding in the final molecule
and the other two are antibonding in the same bonds. Thus we have a
description where two of the bonds are described by two orbitals each, while
the two other C—C bonds (those of the original ethene moieties) are inactive.
If we optimize the geometry of the C4;Hg molecule with such an active space
we shall find it to be rectangular and not quadratic. The Dy, symmetry of
the molecule demands that the four C—C bonds are treated in an equivalent
way. Thus we need an active space consisting of eight orbitals and eight
electrons. The resulting wave function will comprise 1764 CF's, which will be

reduced to a few hundred due to the high symmetry.

4.1 Bond Dissociation

Another example that illustrates the breakdown of the HF approximation,
concerns the dissociation of a chemical bond. Assume that two atoms A and
B are connected with a single bond involving two electrons, one from each
atom. To a good approximation we can describe the bond with the electronic

configuration ¥; = (0)?, where

0=N(os+05) (18)
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and 04 and op are two atomic orbitals, one on each atom. This wave function
is, however not valid at large interatomic distances, because it contains ionic
terms, where both electrons reside on the same atom. Here, the wave function

is better described in terms of the localized orbitals:
Uy = (04a(1)op(2) +04(2)0op(1))O (19)

Where O is a spin function for a singlet state with two electrons. This wave

function can also be written as:

1
Voo = (01— T) (20)

where VU, is the bonding configuration given above and ¥y = (¢*)?, where o*

is the antibonding orbital:
0= N*(oa—0B) (21)

Thus, the wave function is described by two electronic closed-shell config-
urations at infinite distance between the atoms. The situation is actually
identical to what was obtained in the transition-state region for the cyclobu-
tane reaction. The reason is also the same: The two configurations ()% and
(0*)? become degenerate at dissociation and will mix with equal weights. Tt
is clear that a wave function that describes the full potential curve for the

dissociation of a single bond should have the form:
U = 01‘111 + 02\112 (22)

The two natural orbitals o and o* will have the occupation numbers n = 2C?

and n* = 2C%, respectively. At infinite distance they will both be one but
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near equilbrium almost all of the occupation will reside in the bonding orbital.
For weak bonds, an intermediate situation obtains and we can actually define

a bond order, BO, from the natural orbital occpuation numbers:

BO:n—n*
n+n

which becomes one when 7* is zero and zero when both are one.

(23)

An illustration of a more complicated multibonding situation is given by the
chromium dimer. Here, six weak bonds are formed between the 3d and 4s
orbitals of the two Cr atoms. CASSCEF calculations with 12 electrons in
the 12 valence orbitals gives the following NO occupation numbers at the

equlibirium geometry:

Orbital pair Bonding Antibonding Bond order

4s 1.890 0.112 0.89
3do 1.768 0.227 0.77
3dm 3.606 0.394 1.61
3dd 3.134 0.868 1.13

The computed total bond order, using the formula given above, is 4.4. Ef-
fectively, two Cr atoms form a quadruple bond even if all twelve electrons
are involved. One notices that the occupation number of the antibonding
0—orbital is large, indicating a weak bond only. In Fig. 3 we show how the

NO occupation numbers vary with the interatomic distance.

The vertical line indicates the equilibrium distance. We can see how the 4s
bond is formed at larger distances than the 3d bonds and also that the 3do
and 3d7 bonds are stronger than the 3dd bond [17].
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Figure 3: Natural orbital occupation numbers for the bonding and antibond-

ing orbitals in Cry as a function of the distance between the two atoms.
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The general conclusion we can draw from the above exercises is that in or-
der to describe the formation of a chemical bond, we need to invoke both
the bonding and antibonding orbitals. It is only for strong bonds close to

equilibrium that the bonding orbital dominates the wave function.

Another conclusion we can draw is that if we are in a situation where two
or more electronic configurations (of the same symmetry) have the same or
almost the same energy, they will mix strongly and a quantum mechanical

model that only takes one of them into account will not be valid.

4.2 The Complete Active Space SCF Model-CASSCF

The CASSCF model has been developed to make it possible to study situ-
ations with near-degeneracy between different electronic configurations and
considerable configurational mixing. In Fig. 4 we illustrate the partitioning

of the orbital space into inactive, active and virtual.

The wave function is a full CI in the active orbital space. By using spin-
projected configurations we can select those terms in the full CI wave function
that have a given value of the total spin. When the system has symmetry,
we can also add the condition that the selected terms shall belong to a
given irreducible representation of the molecular point group. The wave
function will then be well defined with respect to these properties. It will
considerably reduce the length of the CI expansion. In the example of C,Hg
we could decrease the size from a total of 70 CFs to 8 by selecting only the
terms for which S = 0 (singlets) and which belong to the totally symmetric
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Figure 4: The partitioning of the orbital space into inactive, active and

virtual in the CASSCF method.
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representation of the Doy, point group. Apart from these restriction, our wave
function is completely general. It may contain an arbitrary number of open
shells and it may belong to any of the irreducible representations of the point
group. With the CASSCF approach it becomes equally simple to study the
potential of the *¥} state of Cry as it is to study the 'S ground state (both

dissociate to ground state Cr atoms).

We shall not discuss here in any detail how one proceeds to optimize a
CASSCF wave function. The reader is referred to the existing literature
[11, 16, 18]. Instead we shall continue with some study cases to illustrate
how the multiconfigurational approach is used in practical applications. But,

before that, a few words about the remaining error.

The CASSCF model allows us to include into the wave functions contribu-
tions from the most important NOs that describe the most important cor-
relation effects among the electrons. This type of correlation if often called
static or non-dynamic. It is usually long range and describes effects on the
electronic structure leading to separation of the electrons in a pair. Typical
examples are dissociation of a chemical bond or the C,Hg reaction described
above. This partitioning of the electron correlation is not strict, as is illus-
trated by the Ni atom, where the separation of the electrons through the
introduction of a second 3d—shell is not long range. The remaining error is
called dynamic correlation and is caused by the instantaneous correlation of
electrons in the region where the inter-electronic distance is close to zero —
the cusp region. It can be treated by the CASSCF method only for very

small molecules with few electrons because a large number of NOs is needed
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for an accurate description. A thorough discussion of the convergence of the

dynamic correlation energy in CI like methods may be found in Ref. [11].

Only a few accurate methods exist today for the treatment of the dynamic
correlation energy in cases where the non-dynamic effects are large. For
systems where Hartree—Fock theory is adequate, a number of different ap-
proaches exist, the most accurate being coupled-cluster (CC) theory. The
most commonly used approach for large molecules is probably Mgller—Plesset
second-order perturbation theory, MP2. We again refer to Ref. [11] for a de-
tailed discussion of these methods. They are all based on a HF reference
function. DFT may also be considered to belong to this type of methods,
even if it is not so clear how well this method will work in the case of near-
degeneracy. Some applications indicates that it might work reasonably well,

but others give less accurate results.

It has not yet been possible to extend the CC approaches in a systematic
way to the multi-configurational regime. For small molecules it is in this case
possible to use large multi-reference CI methods, where the most important
configurations in a CASSCF wave function is used as reference functions
and the CI expansion comprise all single and double excitations form the
occupied orbitals to virtual or other (partially) occupied orbitals. The size
to such a CI expansion grows, however, too quickly to be of interest for larger

molecules.

An alternative approach was developed about ten years ago. It may be
regarded as an extension of the MP2 method to the case where the reference

function (the zeroth-order approximation) is not a HF but a CASSCF wave
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function [19, 20, 21]. It has been named CASPT2. We shall not describe the
method in detail here, but it will be used in the illustrations discussed below.
The accuracy is limited by the possibility to choose an adequate active space
for the CASSCF wave function and by the fact that the remaining correlation
effects are only treated to second order in perturbation theory. Nevertheless,
it has been used successfully in a large number of studies of a variety of
properties of ground and excited states in organic and inorganic molecules
and coordination compounds involving transition metals, lanthanides and
actinides. Also metal containing active sites in proteins have been studied.

We shall below give a few examples.

5 THE COORDINATION OF NICKEL WITH
ETHENE

As a first example we use the complex formed between a nickel atom and the
ethene molecule. This compound is a prototype for coordination of a transi-
tion metal to a double bond in an organic molecule. It is traditionally under-
stood in terms if the Dewar-Chatt-Duncanson (DCD) model [22, 23] where
the bonding is described as donation of electrons from the ethene m—orbital
to Ni and a corresponding back-donation from Ni(3d) to the m*—orbital.
However, it is not obvious that the binding may be described in such a sim-
ple model, because there is no empty Ni orbital into which electrons may
be donated. The dissociation of the molecule gives Ni in the 3d%4s, 'D,

state with one occupied 4s orbital, which would prevent an effective back-
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donation. A number of studies of this compounds have been performed using
the CASSCF/CASPT2 method [24, 25, 26]. From these studies a somewhat
more complex picture of the bonding has emerged, which is not in conflict
with the DCD model, but explains how the problem with the 4s orbital is
solved by the bonding mechanism. This explanation is multiconfiguration in
nature and resembles in a way our preceding discussions about how a con-
figuration changes to another one in the course of a chemical reaction. Let
us take a closer look at these results. The molecule has Cs, symmetry with
nickel bonded at the center of the C—C bond perpendicular to the ethene

plane.

The Ni atom in its ground state has one singly occupied 3d and one 4s orbital
coupled to a singlet. The situation resembles two radicals, but here we have
both electrons on the same atom. With two radicals we can form the bonding
and antibonding combination of the localized radical orbitals and write the
wave function as a linear combination of two configuration as was discussed
above in the section on bond dissociation (equation (16)). We can do the
same here and form the orbitals 3d +4s and 3d —4s. The wave function then

has the symbolic form:
U = C,(3d + 45)* + Cy(3d — 45)?, (24)

with C7 = —Cy = % This is an equally valid representation of the ' D state.
The 3d + 4s orbital is the hybrid that points towards the C-C bond of the

ethene molecule, while the other hybrid points away from ethene.

The coefficient C; will start to decrease when the nickel atom approaches

the ethene double bond, while Cs will increase to a value close to one. Thus,
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the electron pair, which causes the repulsion is moved out of the way and
binding can take place between the 3d+4s orbital on Ni and the m—orbital on
ethene. The two orbitals are shown in Fig. 5 as 9a; and 10a; (bottom left).
It is evident from the shape of 9a; that a rather covalent bond is formed.
The occupation number of this orbital is close to two, because there is no

low-lying orbital that can be used for correlation.

The second bond is formed between the 3d,, orbital (zz is the NiCC plane)
and the empty ethene 7*—orbital. This bond is also quite covalent (orbital
5by in the figure) but weaker. The occupation number is 1.91 with 0.09
electrons in the corresponding antibonding 6b, orbital. The other orbitals
in Fig. 5 are the doubly occupied 3d orbitals of Ni and the corresponding
correlating orbitals, the 3d’ orbitals of the Ni double shell. It can be seen
from the pictures that the latter orbitals occur in pairs with the 3d orbitals

and have a clear 4d character.

The covalency of the Ni—ethene bond is a result of the multiconfigurational
treatment. The charge of the Ni atom at the HF level is +0.9, which reduces
to +0.5 when the extra NOs are added. For a more detailed discussion of
the bonding, including also a discussion of the bond energy, we refer to the
original article [26]. What we have seen here is another example of the need
of a multiconfigurational treatment for the complete understanding of the

binding mechanism.
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Figure 5: Natural orbitals in the NiCoH, molecule. Counted from left to right

and from bottom up, the orbitals are (occupation numbers within parenthe-
sis): 9a; (2.00), 10a; (1.98), 11a; (1.97), 12a; (0.03), 13a; (0.02), 5by (1.91),
6by (0.09), 4b; (1.98), 5b; (0.02), 2ay (1.98), 3as (0.02).
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6 THE FERROCENE MOLECULE

As a second example of the coordination of a transition metal to carbon,
we shall look at the binding in another prototype molecule, ferrocene. This
molecule was a challenge to ab initio quantum chemistry for a long time
because of the difficulty to compute the iron-ring distance. Calculations
at the HF level overestimate this distance with as much as 0.20 A. Adding
correlation at the MP2 level leads instead to a distance that is 0.17 A too
short [26]. Only highly correlated calculations, which includes all valence
electrons, the semi-core of Fe, and the dispersion interaction between the
two cyclopentadienyl rings, was able to reproduce the experimental bond
distance [26, 27]. Here we shall not discuss these problems in detail, but only
illustrate how the bonding mechanism is described in a multiconfigurational
approach. It should be mentioned, however, that when the most important
NOs are included in the wave function (as described below) the bond distance
is reduced from 1.86 A (SCF result) to 1.72, now only 0.06 A longer than
the experimental value. Thus, a semi-quantitative result may be obtained
already at this level of theory. Higher accuracy can only be obtained by
adding dynamical correlation effects. Before starting the discussion of the
electronic structure it might be of some interest for the reader to show in
some detail how the calculations of the NOs were performed. We therefore

give below computational details.
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6.1 Computational Details

A new set of calculations were performed for the present discussion. They
were done on a Linux equipped laptop. The MOLCAS quantum chemistry
software was used [28]. The basis set was of the Atomic Natural Orbital type
(ANO-L of the MOLCAS library [29, 30]). The ANOs are well suited for
multiconfigurational calculations, because they have been determined from
correlated calculations on the atoms. Thus, the basis set contains functions
that are optimized for atomic correlation. For iron, the basis set contained 7
s-type, 6 p-type, 3 d-type and 1 f-type ANOs. 3s2pld was used for carbon
and 2slp for hydrogen. This is a rather limited basis set. It cannot be used
to compute energy-related quantities, but for the present purpose of demon-
strating the NOs and their occupation, it is satisfactory. The geometry cho-
sen was from an earlier study [26]: Fe-ring distance = 1.643, r(C-C)=1.423,
and r(C-H)=1.086 A. The symmetry of the molecule is Ds;,. In practice Cs,

was used, but the full symmetry was preserved in the calculation.

A CASSCEF calculation was performed with input orbitals from a preceding
SCF calculation. The active space was chosen according to the 10-electron
rule: The five 3d orbitals were first chosen. For each doubly occupied orbital,
an empty correlating orbital of the same symmetry was added. This can ei-
ther be a 3d’ orbital (the double shell), an empty ligand orbital (7* from the
ring), or a combination of both determined by the CASSCF orbital optimiza-
tion procedure. For each empty 3d’ orbital an occupied ligand orbital of the
same symmetry was added. This gives and active space with 10 electrons in

10 orbitals. This way of selecting active orbitals for a coordination compound
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is quite general. It was used above for NiC,H,. More examples and a more

detailed discussion may be found in Ref. [15].

Figure 6: Natural orbitals in the Ferrocene molecule. Counted from right
to left and from top down, the orbitals are (occupation numbers within
parenthesis): 8a/(1.96), 4€(1.95), 4€7(1.95), 4e,(1.94), 4e,(1.94), 5¢7(0.07),
5€5(0.05), 5e5(0.05), 9a(0.03), 5¢{(0.07).

6.2 The Electronic Structure of Ferrocene

Fe?* has the electronic configuration (3do)?(3dd)* in ferrocene, where we have

assumed that the z-axis is the five-fold symmetry axis. Rewritten in the Dy,
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symmetry it is (a})?(e})*. The empty 3d orbitals are 3dm (). The 10 ligand
m—orbitals have the symmetries: af, aj, e}, e/, e, and e with the following
occupation: (a})?(ay)%(e})?(ef)?. Following the recipe give above we thus
choose the following active space (introducing also the correct numbering of

the orbitals). (8,9)d’, (4,5)e} and (4, 5)é€,.
1 1 2

What bonding mechanism will this active space result in. Let us first look at
the doubly occupied 3d—orbitals. 8a} will only interact repulsively with the
ring because the ring m—orbital of the same symmetry is also occupied. We
thus expect a rather isolated orbital and the correlating orbital 9| will then
describe the double shell effect and also be localized to iron. The orbitals are

shown in Fig. 6. They have the expected shape.

The situation is different for the four electrons in the 4e), orbital pair. The
correlating orbital is now the empty ligand orbital pair 5e,. Back-transfer
from Fe to the rings is thus possible and a bonding and antibonding pair or
orbitals may be formed. As can be seen from the picture, the delocalization is
rather limited in the doubly occupied orbital. The corresponding correlating
orbital pair 5¢,, is partly 4d in character but shows also an interesting ring—
ring bonding feature, which would be absent in a staggered conformation.

The total population in this pair is 0.11 electrons.

The 4e! orbital pair should be mainly located on the rings. It is, however,
extensively delocalized onto the 3dm orbitals and an almost covalent bond is
formed. The Mulliken population analysis gives 0.74 electrons in each of the
3dr orbitals. The corresponding correlating pair is a mixture of 4d and ring

m—orbitals. It has a total occupation of 0.14 electrons.
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In total, 0.27 electrons are moved from the strongly to the weakly occupied
orbitals, thus illustrating the difference in the picture of the bonding that
the CASSCF model gives compared to HF. It is interesting to see that quite
a redistribution occurs among the 3d—electrons. The Mulliken population
analysis gives a total of 6.78 electrons in these orbitals to be compared to
6 in the free ion (note that the populations also include the correlating 4d
orbitals). Of these, 1.48 goes into the 3dw—orbitals, which are empty in the
free ion and 0.53 electrons are moved out of the 3dd—orbitals. The total
charge of the Fe atom is +0.82. The difference between this number and the

total number of 3d—electrons is due to the population of 4p.

The multiconfigurational picture of the electronic structure in ferrocene shows
a molecule with (of course) strong ionic bonding, but in addition promi-
nent covalent features, mainly arising from ligand to metal charge transfer
from the filled ligand orbitals of €] symmetry to the corresponding empty
3dm—orbitals. The bond is reasonably strong with an antibonding population
of 0.07 in each orbital of the degenerate pair. One pair of weakly occupied
orbitals also exhibits pronounced ring-ring bonding. There is a clear differ-
ence between this picture and the one obtained at the SCF level, which gives
an ion more similar to free Fe?*. The number of electrons in the different
3d—orbitals is at that level of theory: 1.89 (3do), 0.94 (3dr), and 3.78 (3d9).
The most pronounced difference is found in the population of the bonding

3dm—orbitals.
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7 THE [Re,Cl]>~ ION

This ion was one of the prototypes of multiple bonding between two transition
metal ions. It was discovered and characterized in 1965 by Cotton and Harris
[31]. The Re-Re bond distance was determined to be only 2.24 A and it was
concluded that it is a quadruple bond. A similar short bond had earlier been
found in the tri-nuclear complex [Re3Clio]>~ [32]. These ions were to form
the conceptual basis for the forthcoming development of the field multiple

metal-metal bonding in transition metal chemistry.

So, is there really a quadruple bond between the Re atoms in [ReyClg]?.
In 1965 it was impossible to give a final theoretical answer to this question.
The theoretical models that could be used were not advanced enough. The
multiconfigurational approach we have access to today is, however, capable
of giving a conclusive answer to the question. We know from the preceding
discussion that a single bond is formed when the occupation number of the
bonding orbital is close to two, while the corresponding antibonding orbital
has a small occupation number. The ion has been studied in recent exten-
sive CASSCF/CASPT?2 calculations, which involve an optimization of the
ground-state geometry, a characterization of the electronic structure and a
detailed analysis of the electronic spectrum [33]. The calculation used a large
relativistic ANO basis set and included spin-orbit coupling. We refer to the
full article for all details. Here we shall only present the NOs and see what

they tell us about the nature of the chemical bond.

Rhenium appears in the complex as Re3t with the electronic configuration
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(5d)*. If we place the z-axis along the Re-Re bond and the Cl ions in
the planes bisecting the xz- and yz-planes, we can write the configuration
as (5d,2)(5dy2_y2)(5dy,)(5dy,) with all spins parallel. The (5d,,) orbital is
empty because of the interaction with the Cl 3p orbitals. We can thus, in
principle, form a quadruple bond between the two Re ions. Cotton noted
already in 1965 that this bonding pattern explains the eclipsed structure of
the ion, which allows one of the the 3dd orbitals to be involved in the Re-Re
bonding [34].

Let us now perform a CASSCF calculation with all the 5d orbitals active
and in addition the two Cl orbitals that interact with (5d,,). This gives 12
orbitals and 12 electrons. We perform the calculation in Dy, symmetry but

can classify the orbitals using the full Dy, point group.

The resulting NOs are shown in Fig. 7 with their occupation numbers (the
active orbitals are for simplicity numbered from one up). We can clearly
see the pairing of orbitals into bonding and antibonding. The sum of the
occupation numbers for each such pair is very close to 2.0. Most strongly
occupied are the two Re-Cl bonding orbitals, which, involve the 5d,, metal
orbital. The two orbitals are mainly located on the Cl ions but a population
analysis gives a gross atomic population of 0.7 for each of the 5d,, orbitals.
The occupation numbers are close to two. The two corresponding antibond-
ing orbitals (bottom right in the figure) are mainly 5d,, in character and are

only weakly populated.

The remaining eight orbitals in the figure describe the Re-Re bond. Most

strongly bonding is, as expected, the o—orbital, 1a;4, which has an occupa-
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Figure 7: Natural orbitals in the [Re;Clg|*~ ion. Counted from right to left

and from top down, the orbitals are (occupation numbers within parenthesis):
1014,(1.98), 1b14(1.98), 1a14(1.92), le,(1.87), 1e,(1.87), 1bgy(1.54), 1boy,(0.46),
ley(0.13), 1e4(0.13), 1ag,(0.08), 2b1,(0.02), 2b1,4(0.02).
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tion number of 1.92. Next in strength is the pair of m—orbitals, le,, with a
total occupation number of 3.74. Finally, the —bonding orbital is occupied
with 1.54 electrons. The corresponding antibonding orbitals have occupation

numbers two minus that of the bonding orbital.

So, is this a quadruple bond? Formally it would seem so, because we have
four bonding orbitals. But we remember from the preceding discussion that
a bond is broken if the bonding and antibonding orbitals have the same
occupation number one and it is fully formed when the bonding orbital is
occupied by two electrons. Here we clearly see intermediate situations. The
bond formation varies in the order: ¢ > m > 4. Thus it does not seem
reasonable to talk about a quadruple bond. If we define the covalent bond
order for the orbital pairs i, BO;, according to equation (23), we obtain:
BO, = 0.92, BO, = 1.75, and BOs = 0.54. The summed bond order
is 3.21, which is considerably less than four. It seems more appropriate
to say that [ReyClg]>~ has an effective triple bond. The weak d—bond is
reflected in the electronic spectrum of the ion, which shows a transition at
14700 cm™" due to the excitation § — §* [35]. It is clear that the weak
multiple bonding, occurring between transition metals in bimetallic systems,
can only be understood in a multiconfigurational framework that allows the
natural orbitals to have occupation numbers different from two and zero.
This is a general finding for such complexes. It was earlier demonstrated
for the diatomic Cry. More details about the Re complex will be published
separately [33].
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8 BLUE COPPER PROTEIN MODELS

The earlier sections of this chapter have been mostly concerned with the
multiconfigurational description of the electronic structure of compounds in-
volving a transition metal. In this final section, we goal is slightly different.
We shall show an example, where the approach has been used to explain
the bonding and spectroscopic properties in an important class of transition
metal compounds, the so called blue copper proteins. The emphasis will now
be on the results obtained and the comparison of different quantum chemical
methods. Only a brief summary can be given here and the reader is referred

to the original literature for more details.

Blue copper proteins transfer electrons between various biological systems,
e.g. between the two photosystems in photosynthesis (plastocyanin). They
are characterized by a number of unusual properties, viz. a bright blue
color, an unusually high reduction potential, and distinctive electronic spin
resonance spectra. The active site of these proteins consists of a copper ion
bound to the protein in a trigonal geometry involving one cysteine and two
histidine residues. The coordination sphere is normally completed by one or
two weak axial ligands, e.g. methionine, glutamine, or a back-bone carbonyl
group. The reason for the unusual properties and the strange geometry has
been much discussed, but it seems now generally accepted that it comes
mostly from the choice of metal ligands (in particular the cysteine thiolate
ligand), rather than from mechanical strain enforced by the protein [36, 37,

38].
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symmetry).

8.1 CuSH

Let us first look at the very simple CuSHY* model as a representative of
the important Cu?™ 4+ S~ interaction of the blue copper proteins. This
system is so small that it can be studied with most theoretical methods and
with extended basis sets. We have studied three states of this model (neutral
CuSH and CuSH™ in the 2A’ and 2A” states) [39]. All three states give similar
results and a typical example is given in Table 1. From this comparison, it can
be seen that the HF and CASSCF methods give poor geometries and energies.
On the other hand, the MP2, CCSD(T) and CASPT2 methods give similar
results, which indicates that the system is not especially multiconfigurational
in nature. This is confirmed by the weight of the major CF, which is 0.96.
The three DFT functionals tested give quite differing results, especially for
the Cu-S bond length. B3LYP, seems in general to give the best results,
although the Cu—S bond length is often somewhat too long with this method.
A notable result for this model is the strong basis-set dependence of the
CASPT2 method. Whereas the DFT results change very little (less than 1
pm and 1° when the basis set is enlarged, the CASPT2 geometry change by
up to 8 pm and 4° when the basis set is enlarged from ANO-S to ANO-
L [39]. This is a typical feature of wave function based methods, where the
correlation energy is computed in a CI framework. The DFT method, which

is based on the density alone, depneds much less on the basis set.
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Table 1: The structure of the ?A” state of CuSHT, optimised with var-
17512p9d4 f [6s4p3d2f, C:

ious methods and an ANO-S basis set (Cu:

13s10p4d/4s3p2d, H: 7s3p/2slp). Distances in pm, angle in degrees, energy

difference to the 2A’ state in kJ/mole.

S-H Cu-S-H AEFE

Method Cu-S
HF 243.1
CASSCF 236.7
LDA 207.8
BP86 213.3
B3LYP 217.7
MP2 218.7
CCSD(T) 219.2
CASPT2 219.5

CASPT2/ANO-L¢ 214.8

133.5
134.0
137.3
136.8
135.5
135.7
136.2
135.7
134.6

100.1
100.6
95.1
95.8
97.0
98.2
96.9
97.5
97.9

66
67
94
91
86
92
93
81
86

@ Cu: 21s15p10d6f4g/7s6p5dd f3g, C: 17s12p5dAf /6s5pdd3 f, H: 8s4p3d/3s2pld
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8.2 Cu2+(NH3)3X

Next, we will look on complexes of the form Cu®"(NH3);X, where X is re-
lated to the thiolate ligand in the blue copper proteins, e.g. SH™, OH™, SeH ™,
PH; and Cl~. Such complexes have been employed to explain why the blue
copper proteins exhibit a trigonal structure, whereas most Cu(II) complexes
assume a tetragonal structure [40]. For all these complexes, local minima
representing both a tetragonal and a trigonal structure could be optimized.
However, the relative stability of the trigonal structure increases as we move
down and to the left in the periodic table, as can be seen in Table 2. It is
also stabilized by negatively charged X ligands. The relative energies were
calculated with both the CASPT2 and B3LYP methods. The two methods
give rather similar results, with maximum and average differences of 18 and
8 kJ/mole, and they therefore give the same predictions of the most sta-

ble structure for all complexes, except for the two complexes where the two

geometries are almost degenerate, Cu(NH3)3(SH)* and Cu(NH;);(PH,)*.

Relativistic corrections (Darwin contact and mass—velocity terms calculated
at the CASSCF level) are also given in the table. For most complexes,
this correction is small and insignificant. However, for three complexes
(Cu(NH3)3(SH)*, Cu(NHj3)3(SeH) ™, and Cu(NH3),(SH)(SHs) ™), the correc-
tions are large (14-16 kJ/mole) and positive (favoring the tetragonal state).
The reason for this is that relativistic corrections in general favor the struc-
ture with the lowest Cu 3d population. For the three complexes exhibiting
large relativistic effects, the Cu 3d population for the tetragonal structure is

9.3-9.4, whereas it is 9.9 for the trigonal structure. For all the other com-
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Table 2: Energy difference (kJ/mole) between the trigonal and tetragonal

structures of the various model complexes.

Model B3LYP CASPT2 CASPT2 + Rel. Corr.
Cu(NH;3)3+ 46.0 42.8 42.2
Cu(NHs)s(OHy)** 33.9 33.9 33.5
Cu(NH;)5ClIt 38.2 49.3 47.4
Cu(NH;)s(OH)* 19.7 37.6 35.9
Cu(NHs)s(SH)* 3.1 —1.7 14.4
Cu(NHs)s(SeH)* ~5.8  —182 —4.7
Cu(NHs)s(PHy)* 2.6 —4.4 —5.1
Cu(NH;3),(SH)(SHy)t  —12.6  —21.1 —7.0

plexes the CASSCF Cu 3d are similar for the tetragonal and the trigonal
structures, either close to 9.3 or close to 9.9 (representing either d° or d*°
states. This is not in accordance with the B3LYP results, where the Cu 3d
populations are always similar (within ~ 0.1) for the two geometries, but it
varies continuously between 9.3 and 9.7 (in general, it is lower for complexes
with stable tetragonal states and higher for those with more stable trigonal
states). This gives also an explanation to the tetrahedral distortion of the
complexes with stable trigonal structures (both trigonal and tetrahedral): In
the latter complexes much charge is donated from the large, soft, and po-
larizable negatively charged X ligand, giving rise to an electronic structure
close to Cu*, which is closed-shell (d'°) and therefore prefers a tetrahedral

structure.
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8.3 Electronic Spectra

Finally, we will discuss the electronic spectra of blue copper proteins. The
absorption spectrum of plastocyanin, the best studied blue copper protein,
is dominated by a bright band at 16 700 cm™' (600 nm), giving rise to its
bright blue color. However, a more thorough investigation of the experimen-
tal spectrum identifies at least six more absorption bands below 22 000 cm ™,
as is shown in Table 3 [41]. Several different methods have been used to in-
terpret this spectrum, ranging from the semi-empirical CNDO/S method,
over various DFT methods (X« and time-dependent B3LYP calculations)
to CASPT2 [42, 43, 41, 44, 45]. The results of the various calculations are

also shown in Table 3 together with calculated oscillator strengths and an

assignment of the various excitations.

All methods agree that in the ground state, the singly-occupied orbital is
comprised of the Cu 3d,, orbital and a Scys 3p orbital, forming an anti-
bonding 7 interaction. The bright blue line arises from the excitation to
the corresponding 7 bonding interaction, and its large intensity arises from
the strong overlap between these two orbitals. This interaction also explains
the trigonal structure of the plastocyanin site: By the 7 bond, Sy, overlaps
with two of the four lobes of the Cu 3d,, orbital. The two histidine ligands
form normal ¢ bonds to copper, overlapping with the remaining two lobes of
the singly-occupied Cu 3d,, orbital, whereas any additional ligand (methio-
nine in plastocyanin) can only overlap with doubly occupied orbitals, and

therefore forms weak axial interactions at long distances.
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The normal Cu-Scys o antibonding interaction is found as the first excited
state in plastocyanin, at an excitation energy of 5 000 cm'. In some other
proteins, e.g. nitrite reductase, this state becomes the ground state, giv-
ing rise to a strongly tetrahedrally distorted (owing to the charge transfer
from Scys) tetragonal structure with o bonds to all four ligands [45]. This
state overlaps strongly with the corresponding ¢ bonding interaction, found
at slightly higher energy than the 7 bond (21 900 cm™! in nitrite reduc-
tase), giving this enzyme a green colour [46]. Other proteins exist that have
intermediate structures and spectra, e.g. cucumber basic protein and pseu-
doazurin [45]. Moreover, various mutant proteins have been constructed with
other ligand sets (but still a cysteine ligand) that have more tetragonal struc-
tures and even brighter excitations to the Cu-Sgys o orbital, giving them a
yellow colour. In fact, the intensity ratio between the yellow and blue bands
of all blue copper proteins can be rationalized by the transition of the struc-
ture from trigonal to tetragonal, e.g. as described by the angle between the

planes defined by the N-Cu-N and S¢ys—Cu—Swye: atoms [45].

Table 3 shows that the accuracy of the CASPT2 method is impressive for this
complicated system (a chromophore in a protein); The six lowest excitations
are calculated with an error less than 1000 cm~!. Owing to the size of the
system, several approximations had to invoked to make the calculations pos-
sible. The chromophore was modelled by Cu(imidazole),(SH)(SHy)™, at the
crystal geometry and with a point-charge model of the surrounding protein.
However, this model is too small to give accurate results. Therefore, the
excitation energies have been corrected (by up to 2600 cm™!) for truncation

effects by using data from the Cu(imidazole)s(SCH3)(S(CH3)2)™, optimised
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Table 3: The experimental spectrum of plastocyanin [41] compared to spec-
tra calculated with the Xo, CASPT2, and time-dependent B3LYP meth-

ods [41, 44, 47]. All excitation energies are given in cm™'.

Significant os-
cillator strengths are indicated in parenthesis. The assignment is based on
the CASPT2 calculations (invoking a coordinate system where the Cu ion is
at the origin, the z-axis is along the Cu-Sy; bond, and the Cu-Sc¢,, bond
is situated in the zy-plane). Two excitations studied with the CASPT2

method could only be studied by severe approximations (see the text) and

are therefore marked by square brackets.

Experimental CASPT2 B3LYP Xa Assignment
5 000 4119 4 206 4 527 o*

10 800 (.0031) 10974 9 441 (.0013) 8691 d,e

12 800 (.0114) 13 117 (.0015) 12 827 (.0142) 11 942 (.046) d,,

13 950 (.0043) 13 493 (.0003) 13 673 (.0010) 15 064 dy,

16 700 (.0496) 17 571 (.1032) 18 364 (.0733) 16 940 (.078) =

18 700 (.0048)

21 390 (.0035) 20 599 (.0014) 20 267 (.0002) 25 313 o

23 440 (31 264] 20 806 (.0003) 15 895,36 700 Met

32 500 (34 992] 21 327 (.0006) 14 770,52 894 His
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with the BBLYP method and C, symmetry. Moreover, the calculations had
to be performed with quite small basis sets, e.g. without polarising functions

on the N, C and H atoms.

The two excitations with the highest energy (charge-transfer excitations to
the methionine and histidine residues, respectively) could only be studied
with the symmetric Cu(imidazole)y(SCH3)(S(CH3)2)*™ model at the opti-
mised geometry. Therefore, these excitation energies are much less accurate,
especially for the former excitation, which is very sensitive to the geometry
of the model and also to the size of the basis sets. Finally, it should be
noted that our assignment left one band unassigned, mainly on the basis
that this band is not present in the spectrum of the related protein nitrate

reductase [46, 45].

The plastocyanin spectrum calculated with the time-dependent BSLYP method
(using the Cu(imidazole)s(SCH3)(S(CH3)2)* model optimised with B3LYP
without symmetry; no point-charge model) is also included in Table 3 [47].
It can be seen that the result is quite similar to both the CASPT2 and the
experimental results for the six lowest excitatons; the largest difference to
the CASPT2 is 1 500 cm™! for the second excitation and the largest dif-
ference to experiments is 1 700 cm~! for the bright blue line. However, for
the true charge-transfer excitations to the methionine and histidine ligands,
the difference is much larger. The B3LYP calculations show one excitation
to methionine at 21 327 cm™!, compared to the experimental line at 23 440
cm~!, and the CASPT?2 result at 31 264 cm~!. However, as was discussed

above, for this excitation the CASPT2 results are not reliable. Similarly,
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Figure 8: One of the models used in the study of the active site in the
blue copper protein plastocyanin. Histidine ligands have been replaced with

imidazole, cysteine with SCH3 and methionine with S(CHjz)s.
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B3LYP gives four excitations to the two histidine residues, two around 21 500
cm !, and two close to 35 500 cm !, all with a low calculated intensity. In
the experimental spectrum, there is only one line at 32 500 cm !, and with
CASPT2, only one excitation could be studied, giving an energy of 34 992
cm~!. Thus, these results indicates that B3LYP gives rise to spurious charge-
transfer excitations. Similar results have been obtained also for other (mostly
organic) models (see for example the discussion of charge transfer bands in

poly-peptides in Ref.[48]).

Finally, Table 3 also contains excitations for plastocyanin calculated with the
density functional X« method [41]. Once again, the result is similar to the
other calculations and experiments for the six lowest excitations, whereas the
discrepancy is much larger for the charge-transfer exciations. In general, X«
seems to give the least accurate results, except for the blue line (which may
be because the method was parameterised to give the correct covalency of
Cu-Sgys bond). It should also be noted that the authors of this investigation

made a different assignment of several bands in the spectrum [41].

In conclusion, we have seen that it is possible to study the spectrum of a
chromophore in a protein with theoretical methods. CASPT2 seems to give
the most accurate results, provided that a reasonable chemical model can
be studied and proper active orbitals can be selected (five Cu 3d orbitals,
five correlating Cu 3d’' orbitals, and all orbitals involved in charge-transfer
excitations). DFT, especially the time-dependent methods also gives reason-
able results at a much lower cost and with a smaller basis-set dependence. It

should be noted, however, that the assignment of the various excitations are
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much easier to perform at the CASPT2 level than with DFT (the orbitals

are more pure).

9 CONCLUSIONS

In this chapter we have tried to illustrate through some examples how a
multiconfigurational model describes the electronic structure in coordination
compounds. The key concept has been the NOs, which are the generalization
of the HF orbitals to a situation where more than one electronic configura-
tion is needed to describe the electronic structure. The examples (with the
exception of the blue proteins) have been confined to the ground state. It
is, however, evident that the multiconfigurational is even more essential in

discussions of excited states and photochemistry.

Many theoretical studies of coordination compounds are today successfully
performed using DFT. This is all good as long as one is aware of the pitfalls
within this approach. The problem of charge-transfer processes was men-
tioned above. The definition of spin and the inclusion of spin-orbit coupling
in heavier systems is another problem, which is of major concern in studies
of electronic spectroscopy and photochemical reactions. Strongly degenerate
situations can hardly be treated with DFT. One example is the Cry molecule,
which was discussed above. We have also tried to use DFT for the [Re,Clg]*~

ion, but failed to converge the calculations.

The virtue of a wave function based multiconfigurational approach is the
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complete generality, meaning that any type of electronic structure may be
studied with exactly defined spin and other symmetry properties. The major
problem with the approach is the size of the active space, which limits the
possibilities to compute the effects of dynamic electron correlation. Today the
only possible approach for large molecules with many electrons is CASPT2,
which is limited with respect to the active space and in some applications
gives severe intruder state problems. It is hoped that in the near future we

shall have access alternative methods where these limitations are removed.
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10 Figure Captions

Fig. 1: Natural orbital occupation numbers for the active orbitals in C,Hg
as a function of the distance between the two Co,H, fragments. The NOs are
shown in Fig. 2. The occupation number profiles of the four orbitals (1-4)

have the following colors: black, red, magenta, and blue.

Fig. 2. The four natural orbitals in C4Hg, which change character during

the reaction. The distance between the two ethene fragments is 2 A.

Fig. 3: Natural orbital occupation numbers for the bonding and antibonding

orbitals in Crq as a function of the distance between the two atoms.

Fig. 4. The partitioning of the orbital space into inactive, active and virtual

in the CASSCF method.

Fig. 5: Natural orbitals in the NiCyH, molecule. Counted from left to right
and from bottom up, the orbitals are (occupation numbers within parenthe-
sis): 9a; (2.00), 10a; (1.98), 11ay (1.97), 12a; (0.03), 13a; (0.02), 5by (1.91),
6by (0.09), 4b; (1.98), 5b; (0.02), 2ay (1.98), 3as (0.02).

Fig. 6: Natural orbitals in the Ferrocene molecule. Counted from right to left
and from top down, the orbitals are (occupation numbers within parenthe-
sis): 8a)(1.96), 4€(1.95), 4€(1.95), 4e,(1.94), 4€,(1.94), 5€/(0.07), 5e5(0.05),
5€5(0.05), 9a/(0.03), 5€7(0.07).

Fig. 7: Natural orbitals in the [ReyClg]?>~ ion. Counted from right to left

and from top down, the orbitals are (occupation numbers within parenthesis):
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161, (1.98), 161,(1.98), 1a1,(1.92), 1ey(1.87), 1ey(1.87), 1byy(1.54), 1by, (0.46),
1e,(0.13), 1€4(0.13), 1agy(0.08), 2b1,(0.02), 2b1,(0.02).

Fig. 8: One of the models used in the study of the active site in the blue
copper protein plastocyanin. Histidine ligands have been replaced with imi-

dazole, cysteine with SCH3 and methionine with S(CHj)s.
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