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Quantum mechanical free energy barrier for an enzymatic reaction

Thomas H. Rod∗ and Ulf Ryde
Department of Theoretical Chemistry, Lund University,
Chemical Center, P.O. Box 124, S-22100 Lund, Sweden

(Dated: January 4, 2005)

We discuss problems related to in silico studies of enzymes and show that accurate and converged
free energy changes for complex chemical reactions can be computed if a method based on a thermo-
dynamic cycle is employed. The method combines the sampling speed of molecular mechanics with
the accuracy of a high-level quantum mechanics method. We use the method to compute the free
energy barrier for a methyl transfer reaction catalyzed by the enzyme catechol O-methyltransferase
at the level of density functional theory. The surrounding protein and solvent are found to have a
profound effect on the reaction and we show that energies can be extrapolated easily from one basis
set and exchange-correlation functional to another. Using this procedure we calculate a barrier of
69 kJ/mol in excellent agreement with the experimental value of 75 kJ/mol.

PACS numbers: 82.20.Wt 82.39.Rt 31.15.-p 82.20.Pm

Enzymes are biocatalysts helping reactions to occur
that would not otherwise occur under the mild conditions
where life prevails. Enzymes catalyze almost all biochem-
ical reactions and a fundamental understanding of how
they function is important for the development of better
biocatalysts and drugs against diseases. This becomes in-
creasingly relevant as more genomes are sequenced. Such
knowledge is traditionally gathered by experiments but
the possibilities to employ computational methods ex-
pand rapidly with the continuing gain in computer power
and development of efficient quantum and statistical me-
chanical methods. This development has made in silico
design of solid state materials possible from first princi-
ple [1], but computer simulations and modeling of soft
matter continue to be a demanding task for a number of
reasons.

Enzymes catalyze chemical reactions and an accurate
description of a chemical reaction demands high-level
quantum mechanics (QM) methods capable of describing
subtle changes in electron exchange and correlation en-
ergy [2]. Advances in density functional theory (DFT)
now make it tractable to treat hundreds of atoms at
the quantum mechanical level with sufficient accuracy.
Unfortunately, the size of nano-particles, macro- and
biomolecules exceeds that limit and therefore prevents
a full quantum mechanical description of the entire sys-
tem. The combined quantum mechanics and molecular
mechanics (QM/MM) approach circumvents this prob-
lem by utilizing that often only a few atoms are di-
rectly involved in the chemical reaction, and these are de-
scribed quantum mechanically, whereas remaining atoms
are described by a cheaper molecular mechanics (MM)
approach [3, 4]. However, the many degrees of freedom
for large and complex systems also imply that sampling
of phase space is necessary to obtain accurate thermody-
namic properties. Adequate sampling is nonetheless diffi-
cult to achieve because of the computational cost of using
a high-level QM method on even a modest QM region.

Ab initio QM/MM Car-Parrinello like MD simulations
are currently limited to a few picoseconds for enzymatic
reactions [5, 6], and for that reason, fast but less accurate
semi-empirical methods are still widely used because they
allow the phase space to be adequately sampled [7–9].
Sometimes the influence from the environment is simply
ignored and only the active site is modeled. The protein
matrix is, however, essential for a proper understanding
of enzymatic reactions and small changes in the protein
matrix, in the form of mutations, can have drastic ef-
fects [9, 10]. This is illustrated by the enzyme HIV-1
protease, where mutations, even far from the active site,
cause drug resistance [5, 10], which is a serious problem
in fighting AIDS. In a similar fashion, mutant catecholO-
methyltransferase enzymes are suspected to be involved
in phobic anxiety [11].

Here we compute the free energy barrier for the
methyl transfer reaction catalyzed by catechol O-
methyltransferase (COMT) using a method that com-
bines the sampling speed of molecular mechanics with
the accuracy of high-level quantum mechanical methods
and that incorporates the effect from the environment in
a rigorous way. The method allows for long simulation
times (hundreds of picoseconds) and is trivially paral-
lelizable. We study the reaction in solution using a setup
of altogether ∼27 000 atoms.

The method is based on the thermodynamic cycle de-
picted in Fig. 1. It shows how a QM/MM (or QM) free
energy change between two systems A and B can be cal-
culated as the sum of three terms, namely 1) the free
energy difference between A and B described classically,
2) the negative free energy change in going from A de-
scribed classically to A described by QM/MM, and 3)
the free energy change in going from B described clas-
sically to B described by QM/MM. The individual free
energy changes can be calculated on the basis of simu-
lations by means of free energy perturbation (FEP) by
∆F = −kT ln ⟨exp(−∆V/kT )⟩A, where ∆V ≡ VB − VA
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FIG. 1: Thermodynamic cycle used to calculate the QM/MM
free energy change, ∆FA→B

QM , between system A and B on the
basis of classical sampling of the phase space for system A
and B. The free energy change is calculated as ∆FA→B

QM =

−∆FA
MM→QM +∆FA→B

MM +∆FB
MM→QM.

and ⟨. . .⟩A denotes an ensemble average for system A
[12, 13].

The two states might be physically different as A and
B in Fig. 1 or they might be methodologically different
as in Fig. 1 where A (or B) is described either by MM
solely or by QM/MM. Notice that by using FEP only
one state needs to be sampled in order to calculate the
free energy change between two states and therefore a
QM/MM free energy change between two states A and B
can be calculated by sampling the phase space of A and B
classically rather than by QM/MM if the thermodynamic
cycle in Fig. 1 is employed.

Although QM/MM simulations can be avoided,
QM/MM energies should be calculated if FEP is to be
applied to the vertical branches in Fig. 1 and, thus, the
benefit might seem insignificant. However, in practice
when sampling the phase space by either molecular dy-
namics (MD) or Monte Carlo (MC) simulations, we per-
form many more energy evaluations than will actually be
used in a subsequent calculation of an ensemble average.
This is because many simulation steps are needed to move
between two points in phase space that are not correlated
with one another, i.e. separated by a time longer than the
correlation time of the property, in which we are inter-
ested [14]. Points separated by less than the correlation
time do not provide much additional information. More-
over, many different motions exist in enzymes and some
of these can be very slow (in some cases up to seconds)
[9] and therefore sampling should generally be performed
for as long a time as possible. The thermodynamic cy-
cle approach ensures that quantum mechanical calcula-
tions are performed only on points well separated in time,
whereas points connecting these points are treated by a
cheaper approach. In the simulations for COMT, de-
scribed below, we perform one QM/MM calculation for
every picosecond of simulation, i.e. for every 500 classi-
cal MD steps. Compared to the alternative of sampling
the QM/MM potential energy surface directly by per-
forming QM/MM MD simulations, this is a significant
save, since such simulations demand a QM/MM calcula-
tion for every time step, i.e. 500 times as many QM/MM
calculations to move the same distance in time as in the

thermodynamic cycle approch.
Adapting a thermodynamic cycle to convert a diffi-

cult free energy calculation into simpler calculations has
been utilized in many studies [13]. Warshel and cowork-
ers have used a cycle similar to Fig. 1 to calculate various
free energies [7, 15–17] including an activation energy for
an enzyme reaction [7]. However, they obtained poorly
converged results because of large fluctuations of the per-
turbation (∼ 40 kJ) and the calculations were always sup-
plemented by results obtained by other methods. In this
paper, we base the calculations on optimized QM/MM
structures along a reaction coordinate [18] and show that
the convergence problem can be avoided by keeping the
QM system fixed during the MD simulations.
As a representative enzymatic reaction, we study the

methyl transfer reaction catalyzed by the enzyme cate-
chol O-methyltransferase (COMT) using DFT. COMT
is important in the central nervous system where it in-
activates neurotransmitters containing a catechol group,
such as dopamine and adrenaline. Neurotransmitters me-
diate electric signals across synaptic clefts and many dis-
eases are related to malfunction of this part. Patients
with Parkinson’s disease have low levels of dopamine,
which causes uncontrolled muscle movements. Patients
are treated with drugs containing levodopa, which in turn
is transformed to dopamine in the brain. Levodopa, to-
gether with dopamine, are inactivated by COMT and
COMT inhibitors are therefore supplied along with lev-
odopa.
In the methyl transfer reaction, a CH3 group is

transfered from a sulfur atom of the cofactor S-
adenosylmethionine (SAM) to an oxygen atom of cat-
echolate, cf. right panel of Fig. 2 and, hence, a bond is
broken and another bond formed. Catecholate binds to
the enzyme via a Mg2+ ion. The enzyme is relatively
small (∼3400 atoms), the transfered group is sufficiently
large that tunneling can be ignored, and large-scale mo-
tions on longer time scales are presumably absent [19],
which makes this enzyme a proper test case. The re-
action has in addition been considered by other groups
using different computational methodologies [8, 19–21]
and with vastly different results. Kohn and Kuhn [19]
computed a barrier of 94–103 kJ/mol using the so-called
quantum mechanical-free energy method where interac-
tions between the QM region and MM region are treated
classically. On the other hand, Roca et al. obtained
a barrier of 44 kJ/mol using a semi-empirical (AM1)
method and a value of 87 kJ/mol when extrapolated to
the level of second order Möller-Plesset (MP2) perturba-
tion theory.
Our setup for the calculations are based on the crys-

tal structure [22] and is illustrated in Fig. 2. Ten points
along the reaction pathway are sampled by means of con-
stant temperature MD simulations performed with the
program CHARMM [23]. In these simulations atoms in
the QM region are represented by point charges, which
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FIG. 2: Setup employed in the simulations. Left panel shows the unit cell employed in the calculations. Solvent molecules are
depicted with dots, whereas non-solvent atoms are illustrated by spheres with the active site in a lighter color. Right panel
shows a close up of the active site. Atoms in the QM region are depicted with thick sticks and the methyl transfer reaction
is indicated with arrows. The QM system consists of the catecholate molecule, the Mg2+ ion coordinated by catecholate, an
S(CH3)

+
3 molecule to model S-adenosylmethionine, HCOO−, HCOO−, and HCONH2 to mimic the Mg2+ ligands: Asp-141,

Asp-169, and Asn-170, respectively, and a Mg coordinating water molecule.

in turn have been fitted to reproduce the QM electro-
static potential around the active site [24]. Atoms in the
QM region are fixed in the simulations, but MM atoms
are completely mobile. Solvent is modeled explicitly by
the three-point TIP3P model [25] and the protein by the
Amber94 force field [26]. Periodic boundary conditions
are employed and the particle mesh Ewald method [27]
is used to calculate the electrostatic interactions. Each
point is simulated for 600 ps, of which the last 400 ps are
used to calculate free energy changes. Configurations are
stored every 1 ps, resulting in a total of 400 configura-
tions for each simulation. For each of these configurations
the energy change upon moving a step along the reaction
pathway (horizontal step in Fig. 1, i.e. upon changing
point charges and positions of the atoms in the QM re-
gion), and by changing from a purely classical description
to a QM/MM description (vertical steps in Fig. 1), are
calculated and used for the FEP calculations.

The QM system consists of 44 atoms (right panel of
Fig. 2). Five of these atoms are so-called link atoms that
are bonded covalently to the MM region. In the QM cal-
culations, these atoms are modeled by hydrogen atoms
such that the QM region is truncated properly [3, 4].
DFT calculations with the resolution-of-the-identity (RI)
approximation for the Coulomb terms [28], the Perdew-
Becke-Ernzerhof exchange correlation functional [29] and
a medium sized basis set (6-31(+)G*) are used to de-
scribe the QM region. Calculations are performed with
the program Turbomole [30] and the effect from the sur-
rounding MM atoms is treated as an external field in
these calculations.

The above QM setup turns out not to be fully ade-
quate for the description of the transition state. The
free energy barrier can, however, easily be extrapo-
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FIG. 3: Calculated barrier for the methyl transfer reaction
catalyzed by catechol O-methyltransferase using the B3LYP
hybrid functional and a large basis set. Forward reaction is
from right to left. Dashed line indicates the contribution to
the free energy from the MM-QM interaction. Error bars are
not shown, but the statistical standard errors are less than
1 kJ/mol (for comparison, the height of a dot corresponds
to ∼ 4 kJ/mol). Inset: Correlation between QM/MM energy
fluctuations calculated with the B3LYP functional and a large
basis set (vertical axis) and the PBE functional and a medium
sized basis set (horisontal axis).

lated to higher accuracy because energy fluctuations in
a single simulation are fairly independent of the ba-
sis set and exchange-correlation functional chosen, see
also Fig. 3. Here, we extrapolate to the Becke-3-Lee-
Yang-Parr (B3LYP) functional [31] and a larger basis
set (6-311++G(2d,2p)). This setup consumes 80 times
more CPU time per QM/MM calculation than the former
setup [32] and, thus, the extrapolation scheme saves sig-
nificant computer time. More details of the calculations
will be discussed elsewhere [33].

The results are presented in Fig. 3 and show a barrier
of 69± 1 kJ/mol (56± 1 without extrapolation). The re-
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sults are well converged with statistical standard errors
of less than 1 kJ/mol on the individual energy changes
as well as for the activation energy [34]. This shows that
it is feasible to calculate converged QM/MM free energy
barriers based on the thermodynamic cycle in Fig. 1. In
addition to the statistical uncertainty, there is a slight
hysterisis of 1.6 kJ/mol for the transition state upon cal-
culating the barrier for forward and backward reaction.
This is a computational artifact, which is likely to disap-
pear with denser sampling of the reaction pathway. The
contribution to the free energy originating from inter-
actions between the MM and QM region is included in
Fig. 3 as well (dashed line) and shows how important a
proper description of the environment is for an accurate
calculation of the free energy barrier. If the environment
described by MM atoms were omitted the reaction would
occur almost spontanouesly. The importance of the envi-
ronment has also been discussed in other computational
studies [8, 17, 19].
The activation energy of the enzymatic reaction can be

determined to be about 75 kJ/mol based on experimental
results [35] in good agreement with our calculated one.
The agreement may be caused by cancellation of errors.
Both the force field and DFT methods have limited accu-
racy and the fixed reaction pathway spanned by relatively
few degrees of freedom provides another potential source
for errors. Moreover, we have ignored entropic changes
associated with the relatively few degrees of freedom for
the nuclei in the QM region [36]. Nonetheless, the cur-
rent example demonstrates that it is feasible to apply
the thermodynamic cycle in Fig. 1 for the calculation of
converged high-level QM/MM free energy changes.
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