Lund University

A combined quantum and molecular mechanical study of the $0-2$ reductive cleavage in the catalytic cycle of multicopper oxidases

Rulisek, Lubomir; Solomon, E I; Ryde, Ulf
Published in:
Inorganic Chemistry

DOI:
10.1021/ic050092z

2005

Document Version:
Peer reviewed version (aka post-print)
Link to publication

Citation for published version (APA):
Rulisek, L., Solomon, E. I., \& Ryde, U. (2005). A combined quantum and molecular mechanical study of the 0-2 reductive cleavage in the catalytic cycle of multicopper oxidases. Inorganic Chemistry, 44(16), 5612-5628. https://doi.org/10.1021/ic050092z

Total number of authors:
3

Creative Commons License:
Unspecified

General rights

Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A QM/MM Study of the $\mathbf{O}_{\mathbf{2}}$ Reductive Cleavage in the

Catalytic Cycle of Multicopper Oxidases

Lubomír Rulíšek, ${ }^{\text {§ }}{ }^{\$ \pi}$ Edward I. Solomon, ${ }^{\ddagger}$ and Ulf Ryde ${ }^{\dagger} *$

Department of Theoretical Chemistry, Lund University, Chemical Center, P.O. Box 124, S-221 00
Lund, Sweden, E-mail: Ulf.Ryde@teokem.lu.se

Department of Molecular Modeling, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 16610 Praha 6, Czech Republic

Department of Chemistry, Stanford University, Stanford, California 94305, U.S.A.

[^0]
Abstract

The four-electron reduction of dioxygen to water in multicopper oxidases takes place in a trinuclear copper cluster that is linked to a mononuclear blue copper site, where the substrates are oxidized. Recently, several intermediates in the catalytic cycle have been spectroscopically characterized and two possible structural models have been suggested for both the peroxy and native intermediates. In this study, these spectroscopic results are complemented by hybrid quantum and molecular mechanical (QM/MM) calculations, taking advantage of recently available crystal structures with a full complement of copper ions. Thereby, we obtain optimized molecular structures for all experimentally studied intermediates involved in the reductive cleavage of O_{2} molecule and energy profiles for individual reaction steps. This allows identification of the experimentally observed intermediates and further insight into the reaction mechanism that is probably relevant for the whole class of multicopper oxidases. We suggest that the peroxy intermediate contains an $\mathrm{O}_{2}{ }^{2-}$ ion, in which one oxygen atom bridges the type 2 copper ion and one of the type 3 copper ions, whereas the other one coordinates to the other type 3 copper ion. Oneelectron reduction of this intermediate triggers the cleavage of the $\mathrm{O}-\mathrm{O}$ bond, which involves uptake of a proton. The product of this cleavage is the observed native intermediate, which we suggest to contain a O^{2-} ion coordinated to all three copper ions in the center of the cluster.

1. Introduction

The multicopper oxidases (MCO) are enzymes that couple four one-electron oxidations of a substrate with the four-electron reduction of molecular oxygen to water. ${ }^{1,2}$

$$
\begin{equation*}
\mathrm{O}_{2}+4 \mathrm{e}^{-}+4 \mathrm{H}^{+} \quad \xrightarrow[4 \mathrm{Cu}^{2+}]{ } 2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

The most prominent and studied members of this family are laccase (Lc), ${ }^{3,4}$ ascorbate oxidase $(\mathrm{AO}),{ }^{5}$ ceruloplasmin (Cp), ${ }^{6} \mathrm{Fet} 3 \mathrm{p}$ (which along with Cp exhibits ferroxidase activity), ${ }^{7}$ and CueO (part of the copper regulation system). ${ }^{8}$

All known MCOs contain at least four copper atoms, denoted according to the spectroscopic characteristics as type 1 , type 2 , and type 3 (T3). The type 1 copper (Cu1) is located at the substratebinding site and is coordinated to one cysteine (Cys) and two histidine (His) residues. In most structures, it also binds to a fourth weak axial ligand, typically methionine. It shows a strong absorption around 600 nm , which arises from a $\mathrm{S}_{\text {Cys }}$-to-copper charge-transfer excitation and gives rise to the intense blue color of the copper oxidases. The type 2 copper (Cu2) is located at one vertex of a trinuclear copper cluster. It is bound to two His residues and to a solvent molecule (cf. Figure 1). The two T3 copper ions have three His ligands each and are bridged by a solvent molecule in the oxidized state. They form an antiferromagnetically coupled pair and show a characteristic 330 nm absorption band arising from an $\mathrm{OH}^{-} \rightarrow \mathrm{Cu}^{\mathrm{II}}$ charge-transfer transition. The four electrons necessary for the reduction of dioxygen are shuttled from Cu 1 to the trinuclear cluster, where the reduction of O_{2} takes place. The two sites are connected by a His-Cys-His peptide link (where Cys is a ligand of Cu 1 and each of the two His residues is bound to one of the two T3 copper ions), which span a $\mathrm{Cu}-\mathrm{Cu}$ distance of $\sim 13 \AA$.

Eleven crystal structures of MCOs containing a full set of copper ions and with a resolution less than $2.5 \AA \AA^{9,10,11,12,13,14,15}$ are available in the Protein Data Bank (December 2003). ${ }^{16}$ In Table 1, the most important structural parameters of these are summarized. Because we are primarily interested in the oxygen reduction at the trinuclear copper cluster, the analysis will be restricted to this part of the structure. The general structure around this cluster is shown in Figure 1.

It can be seen that the $\mathrm{Cu}-\mathrm{Cu}$ distances range between 3.5 and $5.1 \AA$, mainly depending on the oxidation state of the cluster (it is shorter in the oxidized than in the reduced structures). In most structures, the $\mathrm{Cu}-\mathrm{N}_{\mathrm{His}}$ distances are $1.90-2.15 \AA$, with those of Cu 2 being $\sim 0.05 \AA$ shorter than those of Cu3 and Cu3' (the two T3 copper ions). No correlation between these distances and oxidation state of copper ion can be discerned.

Almost all structures contain a ligand bridging the two T3 copper ions. The only exceptions are the reduced structure and two structures of AO with either azide or peroxide bound apically to one of the T 3 copper ions. ${ }^{12}$ In one case (laccase from Melanocarpus), ${ }^{13}$ the bridging ligand is an O_{2} molecule (the $\mathrm{O}-\mathrm{O}$ distance is $1.20 \AA$) bound symmetrically between $\mathrm{Cu} 3 / 3^{\prime}$. In all the other structures, a solvent molecule bridges the two T3 copper ions.

The reaction of fully reduced (i.e. by four electrons) MCOs has been studied by a number of spectroscopic techniques. ${ }^{1,4,17,18,19,20,21,22}$ These have observed one intermediate in the reaction, called the native intermediate (NI). This is a four-electron reduced hydroxide product of the $\mathrm{O}-\mathrm{O}$ bond cleavage, bound to a fully oxidized trinuclear cluster. ${ }^{20}$ It has a total spin of $1 / 2$ and shows electronic coupling over all three copper ions in the trinuclear cluster. The native intermediate decays to the resting oxidized state. However, this process is so slow that it is believed that it is the NI, and not the oxidized resting state, that is the catalytically relevant fully oxidized form of the enzyme. ${ }^{20}$

Figure 1. A schematic representation of the trinuclear copper cluster in the MCOs. All the His ligands are connected by a His-X-His motif and the corresponding pairs are marked by letters A-C. The fourth His-Cys-His pair is drawn schematically by the green line (Cys binds to Cu). Coordination and hydrogen bonds are depicted by broken lines.

No other intermediates are observed in the reaction cycle of the native enzyme. However, if Cu 1 is removed or replaced by a redox-inactive ion, a less reduced intermediate can be trapped. ${ }^{17,18}$ It contains a two-electron reduced O_{2} molecule, i.e., at the peroxide level, and is therefore called the peroxy intermediate (PI). It is formed at the same rate as the NI in the native enzyme and decays to a native-like intermediate at a slow rate, which depends on the protonation of a nearby residue. Therefore, it is believed to be a catalytically relevant intermediate also in the normal reaction cycle, indicating that the cycle consists of two two-electron reduction steps.

For both the native and peroxy intermediates, the spectroscopic studies have lead to two alternative structural interpretations, shown in Figure 2. The key feature of both structures for both intermediates is that the oxygen intermediate bridges between the T2 and T3 centers. ${ }^{18,20}$ One suggestion for the PI has a $\mathrm{O}_{2}{ }^{2-}$ ion in the center of the trinuclear cluster, with one oxygen atom coordinated to Cu 2 and the other bridging between the two T 3 copper ions (Fig. 2A, top). The other alternative has a HO_{2}^{-}ion at the periphery of the trinuclear cluster, with the unprotonated oxygen atom bridging between Cu 2 and one of the two T 3 copper ions (Fig. 2A, bottom). Recent studies of the Fet3p protein indicate that the former structure fits the experimental data best.

Figure 2. The structural models for PI (A) and NI (B) intermediates as suggested by spectroscopic measurements. ${ }^{18,20}$

Likewise, one possible model for the NI is a structure with three OH^{-}ions, each bridging two of the copper ions of the trinuclear cluster (Fig. 2B, top). The other alternative contains an O^{2-} ion
in the center of the trinuclear cluster (coordinating to all three copper ions) and with one or two solvent molecules coordinating to the T 3 copper ions in a non-bridging manner (Fig. 2B, bottom). Finally, it should be noted that a crystal structure of the peroxide adduct of AO shows a third coordination mode of the peroxide, viz. terminal coordination to one T3 copper ion and with no bridging ligand between the two T3 Cu's (cf. Fig. 3g). ${ }^{12}$

Thus, despite all these achievements, some uncertainty still remains concerning the details of the reaction mechanism of O_{2} reduction in MCOs. The goal of the present study is to see if a theoretical investigation may distinguish between the structural alternatives for the peroxy and native intermediates and yield a consistent picture of the reaction cycle. Quantum chemical investigations have been successfully used to study various properties of copper proteins. ${ }^{23}$ In particular, several studies have been performed on hemocyanin, ${ }^{24}$ tyrosinase, ${ }^{25}$ and catechol oxidase, ${ }^{26}$ which also contain a binuclear copper pair that binds and activates O_{2}. However, no quantum chemical investigation has evaluated the mechanism of O_{2} reduction by the trinuclear cluster of MCOs. In this paper, we use combined quantum and molecular mechanics (QM/MM) methods to obtain structures and energetics of the peroxy and native intermediates, as well as the oxidized and reduced states of the MCOs.

2. Computational details

2.1. QM/MM procedure

All QM/MM calculations have been carried out with the CoMQum program. ${ }^{27,28}$ In the current version, it uses Turbomole 5.6^{29} for the QM part and AMBER 7^{30} with the Cornell force field ${ }^{31}$ for the MM part. In this approach, the protein and solvent are split into three subsystems: The QM region (system 1) contains the most interesting atoms and is relaxed by QM methods. System 2 consists of all the residues within $6 \AA$ of any atom in system 1 and is relaxed by a full MM minimization in each step of the QM/MM geometry optimization. Finally, system 3 contains the
remaining part of the protein and surrounding solvent molecules and is kept fixed at the original (crystallographic) coordinates. In the quantum chemical calculations, the QM system is represented by a wave function, whereas all the other atoms are represented by an array of partial point charges, one for each atom, taken from Amber libraries. Thereby, the polarization of the quantum chemical system by the surroundings is included in a self-consistent manner. In the MM calculations, all atoms are represented by the Amber force field. When there is a bond between systems 1 and 2 (a junction) the hydrogen link atom approach is employed: The quantum region is truncated by hydrogen atoms, the positions of which are linearly related to the corresponding carbon atoms in the full system. ${ }^{27,32}$ In order to eliminate the non-physical effect of placing point charges on atoms in MM region bonded to junction atoms (i.e., the closest neighbors of QM system), these are zeroed (a standard procedure in $\mathrm{QM} / \mathrm{MM}$ methods).

The total energy is calculated as:

$$
\begin{equation*}
E_{\text {tot }}=E_{\mathrm{QM}}+E_{\mathrm{MM123}}-E_{\mathrm{MM} 1} \tag{1}
\end{equation*}
$$

Here, E_{QM} is the QM energy of the quantum system truncated by the hydrogen atoms, excluding the self-energy of the surrounding point charges. $E_{\text {MM1 }}$ is the MM energy of the quantum system, still truncated by hydrogen atoms, but without any electrostatic interactions. Finally, $E_{\text {MM123 }}$ is the classical energy of all atoms in the system with normal atoms at the junctions and with the charges of the quantum system set to zero (to avoid double-counting of the electrostatic interactions). By using this approach, which is similar to the one used in the Oniom method, ${ }^{33}$ errors caused by the truncation of the quantum system should cancel out. The calculated forces are the gradient of this energy, but owing to the differing junctions in the various calculations, they have to be corrected using the chain rule.

The geometry optimizations were carried out in two steps. First, systems 2 and 3 were frozen and only the quantum system was optimized (this structure will be referred to as Protein_Fixed).

Second, both systems 1 and 2 were allowed to relax. In the MM optimization of system 2, the charges on the quantum atoms were updated in each iteration of the $\mathrm{QM} / \mathrm{MM}$ optimization. This optimization was performed with the looser convergence criterion of 10^{-4} a.u. for the change in energy and 10^{-2} a.u. for the maximum norm of Cartesian gradient ($0.26 \mathrm{~kJ} / \mathrm{mol}$ and $50 \mathrm{~kJ} / \mathrm{mol} / \AA$). Then, system 2 was frozen again and the geometry optimization was continued with default convergence criteria (10^{-6} and 10^{-3} a.u.). The resulting structure will be denoted Protein_Free in the following. Such an approach was followed to get a feeling for the relaxation of the surrounding protein, but also to minimize artifacts caused by shortcomings of the MM force field. ${ }^{34,35}$

For complexes with more than one $\mathrm{Cu}^{\mathrm{II}}$ ion, two electronic states are possible, depending on the coupling of the unpaired spins on the $\mathrm{Cu}^{\text {II }}$ ions. For these complexes, the two above calculations were performed for the ferromagnetically coupled state. One of the $\mathrm{Cu}^{\text {II }}$ spins was then reversed to obtain the antiferromagnetically coupled state and the quantum system was fully relaxed again with the default convergence criteria to obtain the final Protein_Free geometry. Such an approach is plausible, because the geometries of the anti- and ferromagnetically coupled states are very similar.

2.2. The protein

All QM/MM calculations were based on the $1.4-\AA$ structure of CueO (PDB code 1 KV 7). ${ }^{15 \mathrm{a}}$ This structure has been selected because it had the best resolution among the published MCO structures. In addition, it is a monomer and lacks glycosylated surface residues, which are common in the eukaryotic proteins. Hydrogen atoms were added to the crystal structure and this was solvated in a sphere of water molecules with a radius of $38 \AA$. The positions of the hydrogen atoms and solvent water molecules were then optimized by a $90-\mathrm{ps}$ simulated annealing calculation with molecular dynamics followed by a conjugate gradient energy minimization of their positions. We assumed the normal protonation state at pH 7 for all amino acids, except for the copper-bound Cys residue, which was assumed to be deprotonated. For the His residues, the protonation status was decided form a detailed study of the hydrogen-bond network around the residue and the solvent accessibility. Thus, His-71, 111, 113, 393, 395, 446, and 448 were assumed to be protonated on the
N^{81} atom, His-73, 390, and 452 on the $\mathrm{N}^{\varepsilon 2}$ atom, and the other eight His residues on both these atoms (the crystal was obtained at $\mathrm{pH}=4.6$). The space created by a disordered loop, missing in the CueO crystal structure (residues $380-402$; more than $22 \AA$ from the trinuclear copper cluster) was filled by water molecules.

It should be noted that recent results indicate that the Cu3/3' bridging ligand, which is modeled as an OH^{-}ion in the crystal structure, may be a chlorine anion instead. ${ }^{15 b}$ However, this should not affect our structures, because we relax the surrounding protein.

2.3. Quantum chemical calculations

All quantum chemical calculations have been performed with density functional theory. Geometry optimizations were carried out at the Becke-Perdew86 (BP86) level. ${ }^{36}$ These calculations were sped up by expanding the Coulomb interactions in an auxiliary basis set, the resolution-ofidentity (RI) approximation. ${ }^{37,38}$ They employed the $6-31 \mathrm{G}^{*}$ basis set on all atoms except Cu , for which we used the DZP basis set of Schäfer et al., enhanced with p, d, and f-type functions with coefficients of $0.174,0.132$, and 0.39 , respectively. ${ }^{39,40}$ Accurate single-point energies were then calculated on these geometries with the B3LYP method ${ }^{41}$ as implemented in Turbomole. ${ }^{42}$ These calculations employed the $6-311+\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p})$ basis set ${ }^{43}$ and the basis set on Cu was enhanced with s, p, and f functions with coefficients of $0.0155,0.046199$, and 3.55 , respectively. Both ferromagnetically coupled states ($S=3 / 2$ for Ox and $\mathrm{NI} ; S=1$ for PI) and antiferromagnetically coupled states ($S=1 / 2$ or 0 , respectively) have been calculated for all the species containing at least two $\mathrm{Cu}^{\text {II }}$ ions. ${ }^{44}$ The broken-symmetry approach was employed to obtain the low-spin states. ${ }^{45}$

In order to study the detailed effect of the protein surrounding, we have also carried out geometry optimizations of some complexes in a dielectric continuum, using the COSMO ${ }^{46,47}$ method. These calculations were performed at the BP86 level of theory, using default values for all parameters (implying a water-like probe molecule) and a dielectric constant $\left(\varepsilon_{\mathrm{r}}\right)$ of 80 . For the generation of the cavity, a set of atomic radii has to be defined. We used the optimized COSMO radii ${ }^{48}$ in Turbomole and $2.0 \AA$ for Cu .

2.4. Model systems and nomenclature

The QM system in the $\mathrm{QM} / \mathrm{MM}$ calculations consisted of the three Cu ions in the trinuclear cluster, eight imidazole (Im) molecules (models of the histidine ligands, truncated at the C^{β} atom), the solvent molecule bridging Cu 3 and $\mathrm{Cu} 3^{\prime}(B)$ and a water molecule hydrogen-bound to it (W_{B}, cf. Figure 1), the solvent molecule coordinated to $\mathrm{Cu} 2(L)$, and possibly additional O_{2}-derived ligands (e.g., $\mathrm{O}_{2}, \mathrm{HO}_{2}^{-}, 2 \times \mathrm{O}^{2-}$). These contained a total of $80-87$ atoms. System 2 consisted of 71 amino acids and $13 \mathrm{H}_{2} \mathrm{O}$ molecules, whereas System 3 is the rest of protein and water molecules (in total 469 residues and 4339 water molecules). All the details of the structure setup, including the position of all hydrogen atoms after equilibration, partial charges in MM region, and residue names can be found from a sample PDB file in the supplementary material.

The situation is complicated by the fact that both the O_{2}-derived molecule and copper-bound solvent molecules may have varying protonation states: $\mathrm{O}_{2}, \mathrm{HO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}_{2}$ (with a varying net charge depending on the oxidation state) for the former, and $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$, or O^{2-} for L and B, and the O_{2} ligand after $\mathrm{O}-\mathrm{O}$ bond cleavage. Moreover, the ligands may also be missing. We assume that W_{B} is always present and neutral $\left(\mathrm{H}_{2} \mathrm{O}\right)$, unless explicitly stated. In the following we will define the various states by listing explicitly the nature of the ligand and the protonation state for each of the ligands in the order $\left\{L, B, \mathrm{O}_{2}\right.$-derivative $\}$. A missing L or B ligand is marked by a dash, e.g. $\{-,-$, HO_{2}^{-}\}.

Finally, the ligands, especially the O_{2} derivative, may bind in many different positions in the cluster. A single O^{2-} ion may bind in the center of the cluster, coordinated to all three copper ions. Such a coordination will be denoted C $\left(\mathrm{O}^{2-}: \mathrm{C}\right.$; cf. Fig. 3a). An O_{2} molecule (possibly protonated) may also bind in the center of the cluster, and the $\mathrm{O}-\mathrm{O}$ bond may then be either parallel ($\mathrm{C}_{\|}$; cf. Fig. 3b) or perpendicular (C_{\perp}; cf. Fig. 3c) to the $\mathrm{Cu} 3-\mathrm{Cu} 3$ ' bond. It may also bind on the side, with one of the oxygen atoms bridging two copper ions. This conformation will be denoted $\mathrm{S}_{23}, \mathrm{~S}_{23}$, or S_{33}, depending on which two copper ions are bridged (Figs. 3d-f). Finally, the O_{2} derivative (as well as
B) may bind to only one T 3 copper ion, which will be denoted as A_{3} or A_{3} ((apical binding; cf. Figs. 3 g and h). If no binding mode is given, it is assumed that L binds in the A_{2} position (Figure 3i) and B binds in the S_{33}, mode. With this nomenclature, the two suggested states for both the peroxy and native intermediates, given in the introduction (Figure 2), are $\left\{L,-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{\perp}\right\}$ or $\left\{L, B, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23 / 3^{\prime}}\right\}$ and $\left\{L, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23^{\prime}}\right\}$ or $\left\{L,\left(\mathrm{OH}^{-}: \mathrm{A}_{3 / 3^{\prime}}\right)_{n}, \mathrm{O}: \mathrm{C}\right\}$.

(a)

(h)

Figure 3. A schematic explanation of the nomenclature used in this study. In all figures the T 2 copper is on the top, Cu 3 is on the left side, and $\mathrm{Cu} 3^{\prime}$ is on the right side. (a) $\mathrm{O}: \mathrm{C}$, (b) $\mathrm{O}_{2}: \mathrm{C} \|$, (c) $\mathrm{O}_{2}: \mathrm{C}_{\perp}$, (d) $\mathrm{OH}: \mathrm{S}_{23}$, (e) $\mathrm{OH}: \mathrm{S}_{23}$, (f) $\mathrm{OH}: \mathrm{S}_{33} 3^{\prime}$, (g) $\mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}$, (h) $\mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}$, (i) $\mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{2}$.

Consequently, there are quite few possibilities for Ox and Red structures, viz. the combination of the protonation states of L and B. There are additional possibilities for the orientation and protonation of the O_{2}-derived ligand in the peroxy and native intermediates. Initially, most of the
reasonable combinations of possible protonation states and coordination modes were tested in vacuum (including some tests calculations with deprotonated imidazole ligands). Based on these results, the most interesting states were selected for $\mathrm{QM} / \mathrm{MM}$ studies. For the $\mathrm{QM} / \mathrm{MM}$ results, Cu 3 is the copper ion ligated to His-143, 448, and 499, whereas Cu3' is bound to His-103, 141, and 501 (called Cu 2 and Cu 3 in the PDB file, respectively).

3. Results and Discussion

3.1. Structures and energies

This investigation of the MCOs is based on a great number of vacuum and continuum-solvent QM calculations followed by and integrated with ~ 150 QM/MM calculations of the trinuclear copper cluster in various oxidation states and with different B, L, and O_{2}-derived ligands. In most cases, the three types of calculations gave similar results. Therefore, we will mostly describe only the $\mathrm{QM} / \mathrm{MM}$ structures. However, when interesting, we will also discuss similarities and differences with the vacuum and continuum solvent calculations.

The most conspicuous difference between the vacuum and $\mathrm{QM} / \mathrm{MM}$ calculations is that many complexes (especially the oxidized and reduced states) dissociated into fragments in vacuum (typically a bridged binuclear copper center and an isolated mononuclear copper center). For the oxidized complexes, this is an effect of the high net charge of these clusters. In the protein, this charge is compensated by the two conserved carboxylate groups shown in Figure 1, and by the dielectric screening of the surrounding protein bulk. In most proteins, there are additional negatively charged groups close to the copper site. For example, there are seven carboxylate groups, one arginine, one lysine within $6 \AA$ of the copper cluster in CueO, resulting in the total charge of -5 for this region (system 2 in our calculations). This is confirmed by the calculations in a dielectric continuum $\left(\varepsilon_{\mathrm{r}}=80\right)$, which gave stable structures for most of the complexes studied.

For the reduced models, the dissociation is most likely caused by the weak Cu^{I}-ligand interaction: In vacuum, it is more favorable for the imidazole groups to form hydrogen bonds to the other ligands, especially as these are strengthened by the polarizing effect of the metal, than to bind directly to the metal. In the protein, these hydrogen-bond sites are occupied by interactions with the surrounding protein. Also for the reduced structures, optimizations in a dielectric continuum gave stable structures for all complexes. For most of the intermediates, the structures did not dissociate in vacuum.

The results of the QM/MM calculations (geometric data, electronic structure, spin-splitting, and relative energies) are collected in Tables $2-5$. Structural data are presented only for the antiferromanetically coupled (if applicable) Protein_Free calculations. The effect of the antiferromagnetic coupling on the active site geometry is fairly small, typically leading to changes of $\sim 0.03 \AA$ for the $\mathrm{Cu}-\mathrm{Cu}$ distances (maximum change $0.11 \AA$), and $\sim 0.01 \AA$ for the $\mathrm{Cu}-L$ distance. In the following, we will discuss the results for each oxidation state in separate sections.
3.1.1. Oxidized state. Ten $\mathrm{QM} / \mathrm{MM}$ structures were obtained for the oxidized (Ox) state, differing in the protonation and binding positions of the $L\left(\mathrm{H}_{2} \mathrm{O}\right.$ or $\left.\mathrm{OH}^{-}\right)$and $B\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right.$, or $\left.\mathrm{O}^{2-}\right)$ ligands. Most of these are described in Table 2. We tested four structures with an OH^{-}ion bridging Cu 2 and $\mathrm{Cu} 3 / 3^{\prime}$ (rather than Cu 3 and $\mathrm{Cu} 3^{\prime}$), viz. $\left\{\mathrm{OH}^{-},-, \mathrm{OH}^{-}: \mathrm{S}_{23 / 3} 3^{\prime}\right\}$ and $\left\{-, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23 / 3}{ }^{\prime}\right\}$. However, all these structures were $139-202 \mathrm{~kJ} / \mathrm{mol}$ less stable than the most stable other structures (if not otherwise stated, energies cited in the text are total energies with and without the MM energy as a range, i.e. $\Delta E_{\text {tot }}$ and $\Delta E_{\text {totMm }}$ using the nomenclature in Table 5). Moreover, we also tried in vacuum many structures with deprotonated Im ligands. However, all these structures were at least $40 \mathrm{~kJ} / \mathrm{mol}$ less stable than other protonation states ($80 \mathrm{~kJ} / \mathrm{mol}$ with two deprotonated Im molecules). This is in accord with the lack of imidazolate-to-copper charge-transfer transitions in the spectrum of the oxidized resting state of the MCOs. ${ }^{49}$

The calculation with $B=\mathrm{H}_{2} \mathrm{O}$, i.e. $\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}\right\}$, gave a long $\mathrm{Cu} 3-\mathrm{Cu} 3^{\prime}$ distance ($5.4 \AA$) and an unsymmetrical binding of the water molecule. Such features are not consistent with the spectroscopy (the T3 copper ions are antiferromagnetically coupled) nor observed in crystal structures of oxidized MCOs, showing that this is not the correct protonation state of the B ligand. This is further corroborated by the fact that this structure is $40-52 \mathrm{~kJ} / \mathrm{mol}$ less stable than the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$structure, in agreement with the expectation that it would be more favorable to deprotonate a ligand bridging two copper ions than a terminal ligand.

The two calculations with $B=\mathrm{O}^{2-}$ (as well as all vacuum and continuum solvent calculations with $B=\mathrm{O}^{2-}$) resulted in structures where O^{2-} was located in the center of the trinuclear cluster $\left(\mathrm{O}^{2-}\right.$:C). This is somewhat unexpected because we included in the quantum system the water molecule $\left(W_{B}\right)$ that bridges the B ligand and the negatively charged Asp/Glu group that is bordering QM region from the MM side, further polarizing W_{B} (cf. Figure 1). Thus, it can donate a hydrogen bond to the carboxylate group and it may donate and accept a hydrogen bond to B, but there is no further hydrogen-bond partner in its neighborhood. Therefore, it would be quite favorable for it to donate a hydrogen bond to O^{2-} in an S_{33}, position. Moreover, the $\mathrm{QM} / \mathrm{MM}$ calculation would allow for a proton transfer from this water molecule to the O^{2-} group, if this would lead to an energetically improved structure. This is not observed, however.

Such an $\left(\mathrm{O}^{2-}: \mathrm{C}\right)$ coordination is not consistent with the spectroscopy on resting state and has not been observed in any of the available crystal structures of oxidized MCOs having $\mathrm{Cu}-\mathrm{Cu}$ distances of 3.8-3.9 \AA, appreciably longer than in these calculated structures ($3.1-3.5 \AA$). Therefore, it seems unlikely that the bridging ligand is O^{2-} in the oxidized crystal structures. However, the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}\right\}$ state is actually $66 \mathrm{~kJ} / \mathrm{mol}$ more stable than the tautomeric $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$ state (in vacuum or a dielectric continuum the difference is 22 and $51 \mathrm{~kJ} / \mathrm{mol}$, respectively). We have at present no good explanation why the $\left\{L, \mathrm{O}^{2-}\right\}$ structures are not observed in crystals, although they are energetically more stable (but we will see below that such a structure may be present in the native intermediate).

We have tested if the W_{B} water molecule may protonate the O^{2-} ion, by optimizing the $\left\{\mathrm{OH}^{-}\right.$, $\left.\mathrm{OH}^{-}\right\}$state with W_{B} deprotonated. However, during the geometry optimization, a proton migrated from the bridging OH^{-}to W_{B}, giving a structure that was essentially identical to the $\left\{\mathrm{OH}^{-}, \mathrm{O}^{2-}\right\}$ state.

The best agreement with the crystal structures is achieved for the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$and $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$ states, with $\mathrm{Cu}-\mathrm{Cu}$ distances of $3.8-4.1 \AA$ and $3.8-4.2 \AA$, respectively. Thus, our results indicate one of these two protonation states is observed experimentally. The $\mathrm{Cu}-\mathrm{Cu}$ distances for the $\left\{\mathrm{OH}^{-}\right.$, $\left.\mathrm{OH}^{-}\right\}$state is slightly closer to those in the crystal structures (by $\sim 0.1 \AA$ in $\mathrm{Cu} 2 / 3^{\prime}$). On the other hand, the $\mathrm{Cu} 2-L$ distance in the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$state $(2.12 \AA)$ is in better agreement with that observed in the three oxidized structures $(2.0-2.4 \AA)$ than the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$state $(1.87 \AA)$. Energetically, the two structures are not directly comparable, but if the structures are optimized in a dielectric continuum with the $\mathrm{Cu}-\mathrm{Cu}$ distances constrained to the crystal values, the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$state is less destabilized (by $2 \mathrm{~kJ} / \mathrm{mol}$ compared to the fully optimized structure) than the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$state (22 $\mathrm{kJ} / \mathrm{mol}$). Moreover, experimental data indicate that L is deprotonated to OH^{-}throughout the physiological pH range. ${ }^{50}$ Therefore, we conclude that $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$is the protonation state observed in the oxidized crystal structures.

The calculated spin densities for the ferro- and antiferromagnetically coupled electronic states are listed in Table 4. They can be used to assign the formal oxidation states of copper ions and to study the spin coupling between the copper ions. It can be seen that the two spin-coupling schemes give quite similar results (disregarding the sign of the spin), although the antiferromagnetically coupled states in general have somewhat lower spin densities, especially on O_{B}. The spin densities on copper ions are $0.4-0.8 e$ with the remaining spin delocalized on the ligands. Water molecules have negligible spin, whereas OH^{-}and O^{2-} have a spin of $0.1-0.5 e$, except when bridging two antiferromagnetically coupled copper ions. The spin is in general higher on the L ligand than on the B ligand. In most of the structures, Cu 3 and Cu 3 ' are antiferromagnetically coupled, but in $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$and $\left\{\mathrm{OH}^{-}, \mathrm{O}^{2-}\right\}$, it is instead Cu 2 that has spin of the opposite sign. This may seem
strange, but we have checked thoroughly that there are no other antiferromagnetically coupled states that are lower in energy. Still, the preferred $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$model has the expected antiferromagnetic coupling between the two T3 copper ions. ${ }^{2}$

An important quantity is the energy difference between the ferro- and antiferromagnetically coupled states. Experimentally, it is quantified by the value of the J coupling constant. The calculated values of the energy difference between the ferro- and antiferromagnetically coupled states $\left(\Delta E_{\text {spin }}\right)$ are listed in Table 4. They are quite small, less than $20 \mathrm{~kJ} / \mathrm{mol}$. For the most interesting state, $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$, the antiferromagnetically coupled state is $11 \mathrm{~kJ} / \mathrm{mol}$ more stable than the ferromagnetically coupled state, in agreement with the observed doublet ground state. ${ }^{2}$ The same applies for all the protonation states, except $\left\{\mathrm{OH}^{-}, \mathrm{O}^{2-}\right\}$.
3.1.2. Reduced state. For the reduced state (Red), eight structures were optimized with various protonation states of the L and B ligands $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right.$, or -$)$. The results are quite similar to those of the oxidized state: With $B=\mathrm{H}_{2} \mathrm{O}$, a long $\mathrm{Cu} 3-\mathrm{Cu} 3^{\prime}$ distance is obtained ($5.0-5.2 \AA$) and the binding of $\mathrm{H}_{2} \mathrm{O}$ is asymmetric (one of the $\mathrm{Cu} 3-\mathrm{O}$ distances is $2.1-2.3$, the other 2.7-3.5 \AA). Moreover, the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$state is $59-104 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}\right\}$ state (30 and $38 \mathrm{~kJ} / \mathrm{mol}$ in vacuum and in a dielectric continuum, respectively), again confirming that a bridging water is more easily deprotonated than a terminal one.

With $B=\mathrm{OH}^{-}$, the $\mathrm{Cu} 3-\mathrm{Cu} 3^{\prime}$ distance is much shorter, 4.0-4.3 \AA. The $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$state gives a strange structure with OH^{-}in the center of the trinuclear cluster and with the two $\mathrm{Cu} 2-\mathrm{Cu} 3$ distances of 2.8-2.9 \AA. A similar structure is also obtained in vacuum and in a dielectric continuum.

The Cu3-Cu3' distances in the complexes with no B ligand are similar to those with $B=\mathrm{H}_{2} \mathrm{O}$, $\sim 5.2 \AA$. These are the structures that are most similar to the crystal structure of reduced AO (which also lacks a B ligand). ${ }^{12}$ All $\mathrm{Cu}-\mathrm{Cu}$ distances of the $\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$ structure are slightly closer to the crystal structure than those of the $\{\mathrm{OH},-\}$ structure, but the difference is less than $0.1 \AA$. However, the $\mathrm{Cu} 2-\mathrm{O}_{\mathrm{L}}$ distance in the $\{\mathrm{OH},-\}$ structure $(1.94 \AA)$ is closer to that in the crystal $(2.18 \AA)$ than
that in the $\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$ structure $(2.62 \AA)$. It is a general problem in our calculations that the $L=\mathrm{H}_{2} \mathrm{O}$ ligand tends to form too long a bond to Cu 2 in most structures, perhaps indicating that the quantum system should have been extended to include the water molecules and the Asp residue connected to the L ligand (cf. Figure 1) to obtain more accurate geometries of this ligand. Therefore, we suggest $\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$ as the best model of the reduced state of the MCOs.

Finally, it is notable that the $\mathrm{Cu}-\mathrm{N}_{\mathrm{His}}$ distances are not very different from those of the oxidized complexes (there is a tendency to shorten at least one of the $\mathrm{Cu}-\mathrm{N}_{\text {His }}$ distances of Cu 3 , but the difference is less than $0.1 \AA$). Thus, these distances show only a minor variation between the various oxidation states of the trinuclear copper cluster and will not be further discussed.
3.1.3. Peroxy intermediate. The PI is one of the two key intermediates in the catalytic cycle of the MCOs. It is formally a $\mathrm{Cu}^{\mathrm{I}} \mathrm{Cu}^{\mathrm{II}}{ }_{2} \mathrm{O}_{2}{ }^{2-}$ complex with Cu 1 in the reduced state. Fifteen distinct models of this intermediate have been obtained from $\mathrm{QM} / \mathrm{MM}$ optimization of molecular geometry and are described in Tables 3 (geometries), 4 (spin densities), and 5 (relative energies). They differ in the protonation state of the $\mathrm{O}_{2}\left(\mathrm{O}_{2}{ }^{2-}, \mathrm{HO}_{2}^{-}\right.$, or $\left.\mathrm{H}_{2} \mathrm{O}_{2}\right), B$, and $L\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right.$, or none) ligands, as well as in the binding mode of the O_{2}-derived ligand.

As was discussed in the introduction, three binding modes of the peroxide ligand have been suggested: in the center of the trinuclear cluster $\left(\mathrm{C}_{\perp}\right)$, on one of the sides of the cluster $\left(\mathrm{S}_{23 / 3}\right)$, or as a terminal ligand of one of the T3 copper ions $\left(\mathrm{A}_{3 / 3}\right)^{\prime}$, cf. Figures 2A and 3e. We have tried hard to obtain all three structures, both in the protein, in vacuum, and in a continuum solvent. Interestingly, independently on the starting structures, only two coordinating modes were observed in the optimized structures. One was the $\mathrm{S}_{23 / 3}$, mode, where one of the oxygen atoms bridges Cu 2 and $\mathrm{Cu} / 3^{\prime}$, whereas the other (the protonated one for HO_{2}^{-}) points out of the trinuclear cluster. This structure is depicted in Figure 4.

Figure 4. The $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$ structure, illustrating the S_{23} binding mode of the PI. Note the distorted coordination of some of the imidazole ligands.

In the other mode, the peroxide was bound in the center of the trinuclear cluster, but not in the $\mathrm{C}_{\|}$or C_{\perp} conformations, but rather in an intermediate, diagonal, mode with one oxygen atom coordinated to Cu 3 'and the other atom bridging Cu 2 and Cu 3 . We will call this binding mode C_{3}; ; it is illustrated in Figure 5. No structure with the $\mathrm{A}_{3 / 3}$, coordination mode was obtained, even if optimizations (both in vacuum and in the protein and with various protonation states of the B and L ligands) were started in this coordination mode.

Figure 5: The $\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}: \mathrm{C}_{3},\right\}$ structure, illustrating the C_{3}, binding mode.

Most of the structures ended up in the C_{3}, binding mode and showed only small changes in the structure, compared to the crystal structure. With O_{2} binding in this mode, the three $\mathrm{Cu}-\mathrm{Cu}$ distances were 3.4-3.6, 3.8-3.9, and 4.4-4.6 \AA, independent of the B and L ligands and if the optimization was performed in vacuum, in a dielectric continuum, or in the protein. Quite surprisingly, the same distances were also obtained for the C_{3} binding mode (where one of the oxygen atoms binds to Cu 3 rather than Cu 3 '), for which it could have been expected that $\mathrm{Cu} 2-\mathrm{Cu} 3$ and $\mathrm{Cu} 2-\mathrm{Cu} 3^{\prime}$ distances were interchanged. This shows that the protein favors shorter $\mathrm{Cu} 2-\mathrm{Cu} 3$ (rather then $\mathrm{Cu} 2-\mathrm{Cu} 3^{\prime}$) distances. This is also observed in most of the other complexes (in the crystal structure the difference is $0.44 \AA$). The shorter of the $\mathrm{Cu}-\mathrm{Cu}$ distances $(3.45-3.57 \AA)$ is in reasonable agreement with the observation of a $\mathrm{Cu}-\mathrm{Cu}$ interaction of $3.4 \AA$ in EXAFS experiments of the PI. ${ }^{17}$ The two modes have essentially the same energy, with the C_{3} mode being $4-9 \mathrm{~kJ} / \mathrm{mol}$ more stable than the C_{3}, mode (Table 5).

Only a few calculations converged to the $\mathrm{S}_{23 / 3}$, coordination mode. It was only obtained in the presence of bridging B ligand (if it was removed, the structures reorganized to the C_{3} mode). Moreover, all these structures showed some awkward interactions (short distances between Cu and
carbon atoms in Im or with copper ions significantly displaced out of the plane of their Im ligands; cf. Figure 4). This indicates that the $\mathrm{S}_{23 / 3}$, structures are disfavored in the protein - there is simply not enough space for the O_{2}-derived ligand on the side of this sterically crowded cluster. This is also confirmed by the fact that all $\mathrm{S}_{23 / 3}$, structures in vacuum or a dielectric continuum lost one or more Im ligands. Moreover, in two of the $\mathrm{QM} / \mathrm{MM}$ structures, the shortest $\mathrm{Cu}-\mathrm{Cu}$ distance is only 2.8 or $3.0 \AA$, which is much shorter than observed by EXAFS $(3.4 \AA)$. However, in the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}_{2}{ }^{2-}\right.$ $/ \mathrm{HO}_{2}^{-}: \mathrm{S}_{23^{\prime}}$ \} structures, the shortest interaction is $3.42-3.53 \AA$, which is similar to that in the C_{3} structures. The latter structures are by $36-50 \mathrm{~kJ} / \mathrm{mol}$ the most stable among the $\mathrm{S}_{23 / 3}$, structures (except for the O_{2} complex with the MM term, $-17 \mathrm{~kJ} / \mathrm{mol}$).

Unfortunately, it is hard to get a direct estimate of the relative energy of the $\mathrm{S}_{23 / 3}$, and $\mathrm{C}_{3 / 3}$, binding modes in the protein, because the former structures have a bridging B ligand, whereas the latter do not. The $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$ structures were set up for this purpose, because their energies are comparable to the $\mathrm{S}_{23 / 3}$, structures (which must have a B bridging ligand). Even if the $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}: \mathrm{A}_{3}$ ligands are unnatural for the C_{3}, mode, the $\left\{\mathrm{H}_{2} \mathrm{O}^{\prime}, \mathrm{OH}^{-}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$ structure turned out to be $44-97 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}\right\}$, and $65-122 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{C}_{\perp}\right\}$ structure (which was actually started in the S_{23} mode). Likewise, the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$ structure is $24-130 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{H}_{2} \mathrm{O}^{2}, \mathrm{OH}^{-}, \mathrm{HO}_{2}{ }^{-}: \mathrm{S}_{23 / 3}{ }^{\prime}\right\}$ structures, despite the fact that the $\mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}$ molecule is loosely bound and makes the interactions with the surrounding enzyme less favorable. These comparisons clearly indicate that the $\mathrm{C}_{3 / 3}$, state is more favorable, by at least $24 \mathrm{~kJ} / \mathrm{mol}$ (even if an unfavorable B ligand has been added to the $\mathrm{C}_{3 / 3}$, state). In vacuum and a dielectric continuum, the C_{3}, mode is still more stable than the S_{23}, coordination modes, but the difference is only $5-10 \mathrm{~kJ} / \mathrm{mol}$, showing that the main discrimination comes from the surrounding protein (however, it should be noted that the vacuum energies were obtained for complexes with one or more dissociated Im ligands, which would favor the crowded S_{23} mode).

An even larger discrimination is obtained if we delete the B ligand in the S_{23}, state (which would disfavor this state in the same way as the $\mathrm{OH}^{-}: \mathrm{A}_{3}$ ligand disfavors the C_{3} state): From Table 5, it can be seen that the $\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$ structure is $40-65 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{OH}^{-}\right.$,$\left., \mathrm{O}_{2} \mathrm{H}^{-}: \mathrm{S}_{23}\right\}$ and $\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}\right\}$ states in vacuum and a dielectric continuum. Likewise, the $\left\{\mathrm{OH}^{-}\right.$ $\left.,-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$ state is $38-53 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}{ }^{\prime}\right\}$ state (as was mentioned above, such an $\mathrm{S}_{23 / 3}$, starting structure without any B ligand reorganized to the $\mathrm{C}_{3 / 3}$, state in the protein). Thus, we can safely conclude that the C_{3}, coordination mode of the O_{2}-derived ligand is more stable than the S_{23}, mode, especially in the protein environment.

The protonation state of the peroxide ligand is unclear. It binds as a neutral O_{2} molecule, which is reduced by internal electron transfer, and should then be successively protonated to finally form two water molecules. If two protons are added (giving $\mathrm{H}_{2} \mathrm{O}_{2}$), it automatically dissociates into two OH moieties during the geometry optimizations (no stable structure with $\mathrm{H}_{2} \mathrm{O}_{2}$ bound to the trinuclear copper cluster is found in the protein, vacuum, or solvent continuum calculations). This is associated with a considerable weakening of one of the Cu 3 -Im bonds $(2.7 \AA$), because one of the OH^{-}ions binds to the Cu 3 ion in a square-planar fashion (and forms a hydrogen bond to another OH^{-}molecule), with the weakly bound Im residue as the axial ligand. The spin density (Table 4) shows that two of the copper ions (Cu 2 and Cu 3 ') are oxidized and antiferromagnetically coupled (spin density of $0.6-0.7 e$), whereas the third (Cu3) has no spin. The spin on the OH^{-}ligands is quite small ($0.03-0.18 e)$. Together, these clearly indicate that the Cu 3 ion has been oxidized to the $\mathrm{Cu}^{\mathrm{III}}$ state and $\mathrm{H}_{2} \mathrm{O}_{2}$ has been reduced to two OH^{-}ions. However, even if this shows the facile breaking of the $\mathrm{O}-\mathrm{O}$ bond and that it can be triggered by protonation, it is unlikely that this represents an intermediate in the catalytic cycle of MCOs.

For the HO_{2}^{-}state in the $\mathrm{C}_{3 / 3}$, mode, the hydrogen atom can point in two directions, either towards the Cu 2 ion (denoted H_{-}up in the tables) or towards the W_{B} molecule. The latter conformation is more stable by $22-27 \mathrm{~kJ} / \mathrm{mol}$ and gives structures similar to those of the $\mathrm{O}_{2}{ }^{2-}$ complexes, whereas the H_{-}up structure gives longer $\mathrm{Cu} 2-\mathrm{Cu} 3 / 3$ ' bonds of $4.1-4.3 \AA$. The spin
densities in Table 4 show that HO_{2}^{-}has low spin density of $0.1-0.3 e$, in accordance with its interpretation as a hydroperoxide ion. This is also corroborated by a long O-O bond, 1.44-1.46 \AA. The ferro- and antiferromagnetically coupled states are close in energy, with the former state more stable by $0-5 \mathrm{~kJ} / \mathrm{mol}$. In the latter states, any pair of copper ions may be coupled, depending on the L ligand.

For the $\mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}$, complexes, our calculations indicate that the ferromagnetically coupled states are most stable by $6-20 \mathrm{~kJ} / \mathrm{mol}$. This is not in agreement with experimental results, which show that the peroxy intermediate is diamagnetic (i.e., $\mathrm{Cu} 3 / 3^{\prime}$ pair is antiferromagnetically coupled). ${ }^{17}$ However, all calculated $\Delta E_{\text {spin }}$ are less than $20 \mathrm{~kJ} / \mathrm{mol}$ and thus within the error bar of our method. Moreover, it is well known that DFT methods overestimate the delocalization, ${ }^{51}$ which would be expected especially for these mixed-valence $\mathrm{Cu}^{\mathrm{I}} \mathrm{Cu}_{2}{ }^{\mathrm{II}}$ structures. This is confirmed by preliminary calculations with a more accurate method, second-order perturbation theory on a complete active space self-consistent field wave function (CASPT2), ${ }^{52}$ which give an antiferromagnetically coupled ground state by $3 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}$, state. ${ }^{53}$ Therefore, $\Delta E_{\text {spin }}$ cannot be used to discard the C_{3} coordination mode. On the contrary, all the other results strongly favor the C_{3} mode, indicating that the S_{23} mode is hard to obtain, sterically crowded, and energetically disfavored by at least $24 \mathrm{~kJ} / \mathrm{mol}$, even with an unfavorable B ligand for the C_{3}, state.

If we conclude that it is the C_{3} binding mode that is observed experimentally, the next question is whether O_{2} is protonated or not. Experimentally, it is clear that no external proton is involved in the formation of the PI. ${ }^{18}$ This indicates that either O_{2} is not protonated or that it takes its proton from one of the copper ligands. We have seen that the Red state is most likely $\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$. Consequently, PI must be either $\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}\right\}$ or $\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}\right\}$(once deprotonation of W_{B} water has been ruled out). However, the results in Table 5 clearly show the former state is $58-98 \mathrm{~kJ} / \mathrm{mol}$ more stable (46-72 kJ/mol in vacuum or a dielectric continuum). Therefore, we suggest that the experimentally observed peroxy intermediate is $\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$.

From Table 4, it can be seen that this complex in the experimentally observed antiferromagnetically coupled state has essentially no spin on Cu 2 and L, whereas the two Cu 3 ions are antiferromagnetically coupled with $0.2-0.4$ spins each and with some spin also on the $\mathrm{O}_{2}{ }^{2-}$ ligand $(0.2 e)$. This is in reasonable accordance with the experimental X-ray K-edge absorption results, which show that two copper ions are oxidized, ${ }^{17}$ and therefore confirm the interpretation of this complex as a peroxide-level intermediate.
3.1.4 Peroxide adduct to the oxidized structure. This state (PA) is obtained by adding $\mathrm{H}_{2} \mathrm{O}_{2}$ to the oxidized state of MCOs, giving a state (formally $\mathrm{Cu}^{\mathrm{II}}{ }_{3} \mathrm{O}_{2}{ }^{2-}$) that is one step more oxidized than the peroxy intermediate. ${ }^{54} \mathrm{PA}$ is not relevant for the catalytic cycle of MCOs, but it has been included in our study from two reasons: First, it has been spectroscopically characterized and the same two structural interpretations as for the peroxy intermediate have been proposed $\left(\mathrm{C}_{3 / 3}\right.$, and $\mathrm{S}_{23 / 3^{\prime}}$, cf. Figure 2). Second, most of its spectroscopic characteristics are very similar to those of the peroxy intermediate. Therefore, we can employ data of PA to elucidate the structure of the peroxy intermediate.

Five structures of PA have been studied: $\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3 / 3}\right\},\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$, and $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23 / 3}{ }^{\circ}\right\}$, covering the suggested structural alternatives. One of the structures - $\left\{\mathrm{OH}^{-}\right.$ $\left., \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$ - ended up in the strange $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{C}_{\perp}\right\}$ H_up conformation, with a dissociated Im ligand on Cu3' (but this once again illustrates that it is hard to obtain the $\mathrm{S}_{23 / 3}$, binding mode, owing to the steric crowding). The geometries of the optimized structures are included in Table 3. EXAFS measurements have identified a $\mathrm{Cu}-\mathrm{Cu}$ distance of $3.4 \AA$ for $\mathrm{PA} .{ }^{54}$ It can be seen that the only structure that gives a $\mathrm{Cu}-\mathrm{Cu}$ distance close to this is the $\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\text {}}\right\}$ structure ($3.52 \AA$; the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$ structure gave two $\mathrm{Cu}-\mathrm{Cu}$ distances of $3.72 \AA$). Energetically, it is $9-12 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$ isomer (with a $\mathrm{Cu}-\mathrm{Cu}$ distance of $3.66 \AA$). The plausibility of this binding mode is further corroborated by the fact that the $\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$ complex is $35-53$ and $149-179 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}{ }^{-}\right.$
$\left.: \mathrm{C}_{\perp}\right\}$ and $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$ structures, respectively, despite that the former has an extra B ligand.

As for the PI, the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$ structure is antiferromagnetically coupled, whereas for the other four complexes, the ferromagnetically coupled spin state is $2-7 \mathrm{~kJ} / \mathrm{mol}$ more stable than the antiferromagnetically coupled state, which is in variance with the observed doublet ($\mathrm{S}=1 / 2$) ground state. ${ }^{54}$ However, as discussed above, these energies are within the error limit of the method. $\Delta E_{\text {spin }}$ is smaller than for peroxy intermediate, indicating the above discussed shortcoming of DFT methods is smaller in $\mathrm{Cu}_{3}{ }^{\text {II }}$ redox state, as expected. Again, the more accurate CASPT2 method gives an antiferromagnetically coupled ground state (by $2 \mathrm{~kJ} / \mathrm{mol}$) for the $\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3} \cdot\right\}$ state. ${ }^{53}$ The spin densities on the copper ions predict that Cu 2 is antiferromagnetically coupled with one of the T 3 copper ions in all except the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{C}_{\perp}\right\}$ structure.

In conclusion, we have obtained a number of results indicating that it is the $(\mathrm{H}) \mathrm{O} 2: \mathrm{C}_{3 / 3}$, mode that is observed experimentally for the PI and PA state. First, the C_{3}, binding mode is always energetically more favorable than the S_{23}, mode, even if this state is destabilized by the addition of an artificial B ligand. Second, the shortest $\mathrm{Cu}-\mathrm{Cu}$ distance of $3.5-3.6 \AA$ is close to the experimental value of $3.4 \AA$ for the C_{3} mode, but not for the $\mathrm{S}_{23 / 3}$, mode. Third, the $\mathrm{C}_{3 / 3}$, PI and PA states have almost identical structure and electronic states, in agreement with the spectroscopic observations. ${ }^{54}$ Fourth, most geometry optimizations (also those started in the A_{3} and C_{\perp} modes) converged to C_{3} structure. Fifth, all $\mathrm{S}_{23 / 3}$, structures are awkward and seemingly strained. Finally it is notable that in no case an $\mathrm{A}_{3 / 3}$, type coordination is obtained, in contrast to what is observed in the crystal structure of AO. ${ }^{12}$
3.1.5 Native intermediate. In the native intermediate, an electron has been added to the PI (i.e. to formally yield $\mathrm{Cu}_{2}^{\mathrm{I}} \mathrm{Cu}^{\mathrm{II}} \mathrm{O}_{2}{ }^{2-}$), which leads to cleavage of the $\mathrm{O}-\mathrm{O}$ bond, with uptake of protons (i.e. formally $\left.\mathrm{Cu}^{\mathrm{II}}{ }_{3}\left(\mathrm{OH}^{-}\right)_{2}\right)$. The latter structures are at the same oxidation level as the oxidized state. We will denote these two types of native intermediate structures NI' and NI (before and after the
cleavage of the $\mathrm{O}-\mathrm{O}$ bond). Ten structures of each type were studied, varying in the protonation state of the L and B ligands $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}\right.$, or vacant $)$, the state of the O_{2}-derived ligand $\left(\mathrm{O}_{2}{ }^{2-}\right.$, $\mathrm{HO}_{2}^{-}, \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{OH}^{-}, \mathrm{OH}^{-}+\mathrm{O}^{2-}$, or $2 \mathrm{O}^{2-}$), and the binding mode of the latter. In all the calculations, we assumed that Cu 1 is in the oxidized state.

The results for NI' structures with the $\mathrm{O}_{2}{ }^{2-}$ and $\mathrm{HO}_{2}{ }^{-}$are similar to those of PI and PA: Stable and unstrained structures were obtained for the C_{3}, binding mode for both ligands and the $\mathrm{Cu}-\mathrm{Cu}$ distances were similar to those of the PI and PA structures, 3.3-3.5, 3.7-4.2, and 4.6-4.9 \AA (Table 3). In analogy with the peroxy intermediate, it was more favorable to let the proton on $\mathrm{HO}_{2}{ }^{-}$ point toward W_{B} than towards $\mathrm{Cu} 2\left(\mathrm{H} _u p\right)$ by $19-91 \mathrm{~kJ} / \mathrm{mol}$. The latter structures also gave longer $\mathrm{Cu} 2-\mathrm{Cu} 3 / 3^{\prime}$ distances. Moreover, the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{HO}_{2}{ }^{-}: \mathrm{C}_{3}\right.$ ' $\}$ complex is $39-93 \mathrm{~kJ} / \mathrm{mol}$ more stable than the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HO}_{2}{ }^{-}: \mathrm{S}_{23}\right\}$ complex, providing yet another argument in favor of C_{3}, binding mode also for NI'.

Likewise, if another proton is added to the O_{2}-derived ligand (i.e. giving $\mathrm{H}_{2} \mathrm{O}_{2}$), the $\mathrm{O}-\mathrm{O}$ bond breaks automatically, and a $\left\{L, \mathrm{OH}, \mathrm{OH}: \mathrm{S}_{23}, \mathrm{OH}: \mathrm{S}_{23}\right\}$ structure is obtained. As can be seen in Figure 6, it has three OH^{-}molecules bridging each of the three pairs of copper ions. This is one of the two possible structural models for the native intermediate. ${ }^{20}$ It gives two $\mathrm{Cu}-\mathrm{Cu}$ distances of 3.26-3.44 \AA (3.42 and $3.62 \AA$ for $L=\mathrm{OH}^{-}$), which are similar to that observed by EXAFS for the native intermediate, $3.3 \AA .{ }^{20}$ The third $\mathrm{Cu}-\mathrm{Cu}$ distance is $\sim 3.9 \AA$. All three structures are predicted to be antiferromagnetically coupled, in agreement with the observed doublet ground state. ${ }^{20}$ They also all have the two T3 copper ions coupled, with ~ 0.6 spin on the copper ions.

Figure 6: The $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}\right\}$ structure, illustrating the S_{23} binding mode of the native intermediate. L can be either $\mathrm{H}_{2} \mathrm{O}$ as pictured or OH^{-}.

The alternative structural model of the native intermediate is $\left\{L, \mathrm{OH}^{-}: \mathrm{A}_{3 / 3}, \mathrm{O}^{2-}: \mathrm{C}\right\}^{20}$ We have studied six structures of this type. They always have O^{2-} in the middle of the cluster, in accordance with the suggested structure. However, we were not able to obtain an A_{3} or A_{3}, ligation of the B ligand (in protein, vacuum, and dielectric continuum calculations). Instead, it always moved to an almost symmetrically bridging position between the two T 3 copper ions (S_{33}, i.e. the normal position of the bridging ligand), as is shown in Figure 7. The six structures (with $B=\mathrm{O}^{2-}, \mathrm{OH}^{-}$or none and $L=\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$or none) gave $\mathrm{Cu}-\mathrm{Cu}$ distances of 2.9-3.5 \AA, with averages $3.27-3.33 \AA$ without and $3.08-3.18 \AA$ with $B=\mathrm{O}^{2-}$. The former are in excellent agreement with EXAFS measurements, which gave two or three $\mathrm{Cu}-\mathrm{Cu}$ distances of $\sim 3.3 \AA .{ }^{20}$

Figure 7: The $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$ structure, illustrating the C binding mode of the native intermediate.

The electronic structures of the $\left\{L, B, \mathrm{O}^{2-}: \mathrm{C}\right\}$ structures are similar to those of the oxidized state. Thus, all three copper ions have significant spin density ($0.4-0.7 \mathrm{e})$ and the antiferromagnetically coupled state is most stable for all complexes by $2-8 \mathrm{~kJ} / \mathrm{mol}$, except for $\left\{\mathrm{OH}^{-}\right.$ $\left.,-, \mathrm{O}^{2-}: \mathrm{C}\right\}$ and $\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}: \mathrm{C}\right\}$. This is in agreement with experiments. ${ }^{20}$ The spin coupling depends on the L ligand: If $L=$ water or vacant, the two T3 copper ions are antiferromagnetically coupled, whereas if $L=\mathrm{OH}^{-}, \mathrm{Cu} 2$ has a negative spin density and is therefore antiferromagnetically coupled to one of the other copper ions.

Thus, both suggested structures of the native intermediate, $\left\{L, B, \mathrm{O}^{2-}: \mathrm{C}\right\}$ and $\left\{L, \mathrm{OH}, \mathrm{OH}: \mathrm{S}_{23}, \mathrm{OH}: \mathrm{S}_{23}\right\}$, give results in good agreement with the experimental data. One possible way to discriminate between these two spectroscopic possibilities is to compare the energy between the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right)$ and $\left\{-, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}\right\}$ structures. The former is $116-143 \mathrm{~kJ} / \mathrm{mol}$ more stable than the latter. In vacuum and a dielectric continuum, the difference is 42 and $6 \mathrm{~kJ} / \mathrm{mol}$, so the main difference comes from the protein, which once again seems to be too crowded for
bridging $\mathrm{S}_{23 / 3}$, ligands. Thus, our results indicate that it is likely the $\left(\mathrm{O}^{2-}: \mathrm{C}\right)$ state that is observed as the native intermediate in the protein. Starting from the reduced $\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$ state and allowing for a single electron and proton transfer, we would actually directly end up in the $\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}\right.$:C) state. L can also be deprotonated to $\mathrm{OH}-$ in NI. It is notable that for the $\left\{L, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}\right\}$ type of complexes, an OH^{-}ion has to be taken up from the surroundings during the reaction.

3.2. Reductive cleavage of $\mathrm{O}-\mathrm{O}$ bond in MCOs

In the previous section, we saw that there are two different types of complexes at the level of the native intermediate, depending on whether the $\mathrm{O}-\mathrm{O}$ bond is cleaved or not. Our results actually allow us to get an estimate of the activation barrier for the O-O bond cleavage reaction, starting from various structures. Thereby, we may check if the bond breakage is energetically feasible and how the energies change if the peroxide is protonated. Therefore, we have studied five possible pathways starting from the $\mathrm{NI}^{\prime}\left\{-/ \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-},-, \mathrm{O}_{2}^{2-} / \mathrm{HO}_{2}^{-}\right\}$complexes. We assume that two electrons are transferred to $\mathrm{O}_{2}{ }^{2-}$ concomitantly, in accordance with experimental results. ${ }^{18}$

The calculated reaction and activation energies are listed in the last 15 rows in Table 5. It should be noted that the energy of the transitions states were only obtained in an approximate way, viz. by a linear interpolation in Cartesian coordinates of the reactant and product $\mathrm{QM} / \mathrm{MM}$ structures. Thereby, we obtain an upper estimate of the true reaction barrier. However, owing to the high similarity of the initial and final structures, these estimates are probably fairly accurate. In particular, the relative values for the five reactions should be comparable.

Several trends can be seen in Table 5. First, the reaction energies are more favorable with $\mathrm{HO}_{2}{ }^{-}$than with $\mathrm{O}_{2}{ }^{2-}$, especially if the (less accurate) MM energies are not included (-23 to -118 compared to -1 and 65). Likewise, $\mathrm{HO}_{2}{ }^{-}$gives a lower activation energy ($78-112 \mathrm{~kJ} / \mathrm{mol}$) than $\mathrm{O}_{2}{ }^{2-}$ ($\sim 125 \mathrm{~kJ} / \mathrm{mol}$). Third, $L=\mathrm{OH}^{-}$significantly stabilizes the product (by $50-64 \mathrm{~kJ} / \mathrm{mol}$), whereas it has a smaller effect on the activation energy ($1-19 \mathrm{~kJ} / \mathrm{mol}$).

Altogether, our calculations favor the reaction from $\left\{-,-, \mathrm{O}_{2} \mathrm{H}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$ or $\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2} \mathrm{H}^{-}: \mathrm{C}_{3},\right\}$, because it has the lowest activation energy ($78-112 \mathrm{~kJ} / \mathrm{mol}$) and a slightly exothermic reaction energy (-38 to $-68 \mathrm{~kJ} / \mathrm{mol}$). The reactions with $\mathrm{O}_{2}{ }^{2-}$ are unlikely because they give higher activation energies and the reaction of $\left\{-,-, \mathrm{O}_{2}{ }^{2-}\right\}$ is endothermic. This indicates that protonation of the peroxide facilitates $\mathrm{O}-\mathrm{O}$ bond cleavage. The calculated activation energy are reasonable in comparison with the turnover rate of the protein, $0.13-560 \mathrm{~s}^{-1},{ }^{20}$ corresponding to a free energy of activation of 58-79 kJ/mol.

3.3. The catalytic cycle of multicopper oxidases

It is now time to collect all the available results to discuss a detailed mechanism for the O_{2} reduction by MCOs. Such a mechanism should include the protonation states of the copper ligands and the oxidation state of the cluster. One of the most important points when suggesting a detailed mechanism is the total charge of the trinuclear copper cluster. It has frequently been suggested that a metal site in the protein should have small net charge ${ }^{55,56}$. However, it is well established that clusters with a net charge of -2 are present in proteins, e.g. the rubredoxin active site $\left(\mathrm{Fe}^{2+} \mathrm{Cys}_{4}\right)$ and structural and zinc-finger sites $\left(\mathrm{Zn}^{2+} \mathrm{Cys}_{4}\right),{ }^{57,58,59}$ but such highly charged sites are strongly solvated by numerous hydrogen bonds to backbone NH groups. ${ }^{57,60}$ In other sites with uncompensated charge in the first coordination sphere, second-sphere ligands often provide a neutralization, for example in the form of Asp/Glu-His hydrogen bonds, found in heme peroxidase, carbonic anhydrase, and coenzyme B_{12} enzymes. ${ }^{61,62,63}$

Regarding the trinuclear cluster in the MCOs, the cluster has a strong positive charge, +6 minus the charge on the L and B ligands in the oxidized state. As can be expected, this charge is partly compensated by carboxylate groups around the cluster. Thus, all available crystal structures of MCOs show the motif in Figure 1: There is an aspartate (Asp) group $6 \AA$ from Cu 2 , which forms a hydrogen bond to the L ligand via a crystal-water molecule. Moreover, there is an Asp or a glutamate (Glu) residue 6-7 \AA away from the T3 copper ions. This group forms a hydrogen bond to the B ligand via the W_{B} water molecule. These two hydrogen-bond networks lie at the end of two
solvent channels leading to the trinuclear cluster and providing ways in and out for oxygen, water, and protons. ${ }^{11}$ The former group also forms a hydrogen bond to the Im group one of the Cu 3 ligands, whereas the side-chain of an additional Asp residue forms a similar hydrogen bond to one of the Cu3' ligands. In fact, the total charge of a $6 \AA$ region around trinuclear copper cluster (system 2 in our calculations) is -5 , so it may compensate a quite high charge of the trinuclear copper cluster.

We will base our mechanism on the reduced structure, for which a crystal structure is available,,12 and the spectroscopic data on the PI^{17} and NI. ${ }^{20}$ From the crystal structure, it is clear that the B ligand is missing in the reduced state. We have seen in section 3.1.2. that the $\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$ protonation state fits the experimental data best. This gives a total charge of +3 for the copper cluster (quantum system), but this charge is exactly compensated by the three Asp and Glu groups mentioned above are included, illustrating the neutralizing effect of the protein.

Based on this assignment, we can now go forward. The reduced state is known to bind the O_{2} molecule. In section 3.1.3., we have seen that it most likely binds in the $\mathrm{C}_{3 / 3}$, mode, thus yielding the $\mathrm{PI}\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{3}\right\}$ state.

Next, this intermediate will be reduced by Cu1. Following the charge arguments above, the site could then also take up a proton from the surroundings, to keep the total charge constant. As mentioned above, there are two proton-transfer paths in the protein, one ending at the T 2 solvent molecule (L) and the other at the T3 bridging molecule (B). This will initially produce $\mathrm{NI}^{\prime}\left\{\mathrm{H}_{2} \mathrm{O},-\right.$ $, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}$, $\}$ state, which is in good agreement with the results in the previous section, indicating that cleavage of the $\mathrm{O}-\mathrm{O}$ bond is most favorable in this complex. The immediate product of the $\mathrm{O}-\mathrm{O}$ breakage would be the $\mathrm{NI}\left\{\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$ state, which is also our suggested structure for the observed native intermediate (section 3.1.5).

Finally, this native intermediate should be converted to the reduced state (remember that the oxidized resting state cannot be in the catalytic cycle ${ }^{20}$) by the uptake of three electrons and three protons (note again the charge balance) and the dissociation of two water molecules (the products of
the reaction). This part of the reaction cycle is not yet experimentally defined and it is not considered in this article.

Thus, we have seen that our suggested structures fit nicely into a simple and lucid reaction cycle, illustrated in Figure 8. The alternative structures for the PI and NI (Figure 8) would require the binding of an extra water molecule in the O_{2} reaction to form PI. This water would donate a proton to the O_{2} molecule, forming the $\mathrm{PI}\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23 / 3}\right\}$ complex (Figure 4). After the uptake of an electron and a proton, the $\mathrm{NI}^{\prime}\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23 / 3}\right\}$ complex would be obtained, which could reorganize to the $\mathrm{NI}\left\{\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}\right\}$ (Figure 6), although this reaction is appreciably more complicated than the simple $\mathrm{O}-\mathrm{O}$ bond cleavage in the $\mathrm{NI}^{\prime}\left\{\mathrm{H}_{2} \mathrm{O},-\right.$ $\left., \mathrm{HO}_{2}{ }^{-}: \mathrm{C}_{3},\right\}$ state. Finally, this complex could be converted to the reduced state by the uptake of three electrons and three protons, and the dissociation of three water molecules. Thus, we see that the alternative suggestions for the PI and NI give rise to a more complicated reaction mechanism. Moreover, we have seen that the $\mathrm{PI}\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23 / 3}\right\}$ and $\mathrm{NI}\left\{\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}\right.$ $\left.: S_{23^{\prime}}\right\}$ states are energetically disfavored and show strained geometries. However, such a mechanism would explain why it is observed that the B ligand in the oxidized resting state is not derived from $\mathrm{O}_{2}{ }^{20}$ (although the B ligand may exchange with water during the slow conversion between the NI and the Ox state).

$+{ }_{+3 \mathrm{H}^{+}}^{+3-2 \mathrm{H}_{2} \mathrm{O}}$ (or OH^{-})

NI

NI'

Figure 8. The suggested reaction mechanism consistent with the $\mathrm{QM} / \mathrm{MM}$ calculations, spectroscopic measurements, and available crystal structures. Formal oxidation states (not necessarily corresponding to the calculated spin densities) are depicted as well.

4. Conclusions

In this investigation, we have studied five key states of the trinuclear copper cluster in the reaction cycle of MCOs using theoretical methods. The geometric and energetic data in Tables 2-5 has provided significant insight into the experimentally observed intermediates and have allowed us to suggest a reasonable reaction cycle for the O_{2} reduction (Figure 8). We expect that these results will complement the extensive experimental investigations of these enzymes.

Our results indicate that the resting oxidized state of the protein is in the $\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$ protonation state and that the reduced state is $\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$, which is in accordance with experimental suggestions. ${ }^{12,18,50}$ For the peroxy and native intermediates, spectroscopic investigations have led to
two structural interpretations for each of the states (cf. Figure 2). For the peroxy intermediate, the calculations predict that the $\mathrm{C}_{3 / 3}$, coordination mode (Figure 5) is energetically much more favorable than the $\mathrm{S}_{23 / 3}$, mode (Figure 4), which is further corroborated by a better structural agreement of the former with the experimental $\mathrm{Cu}-\mathrm{Cu}$ distances. In general, it has been found that $\mathrm{S}_{23 / 3}$, structures are energetically and structurally disfavored, mainly because there is simply too little space for a bridging ligand between Cu 2 and $\mathrm{Cu} 3 / 3^{\prime}$ and the flexibility of this region is rather limited owing to the presence of four His-X-His links. Thus, the experimentally observed PI seems to be $\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3 / 3}{ }^{\prime}\right\}$. The apical (A) coordination of peroxide to one of the T 3 copper ions, observed in the crystal structure of $\mathrm{AO},{ }^{12}$ is not obtained in any of our geometry optimizations.

Likewise, for the native intermediate, our results show that the $\left\{\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$ state (Figure 6) is energetically more favorable than the $\left\{\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}\right\}$ state (Figure 7). Again, the result is mainly based on the higher stability of the former structure, owing to the lack of space between Cu 2 and $\mathrm{Cu} 3 / 3^{\prime}$; both structures give similar geometries and electronic structures. Moreover, the $\left\{\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$ state also derives naturally in the reaction mechanism as the immediate product of the cleavage of the $\mathrm{O}-\mathrm{O}$ bond in the $\mathrm{NI}^{\prime}\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3 / 3}\right\}$ intermediate. Our results also indicate that such a reaction has a reasonable activation energy of less than $80 \mathrm{~kJ} / \mathrm{mol}$.

In the interpretation of our results, it is important to take into consideration the accuracy of the theoretical method used. Our experience from the modeling of active sites of other copper proteins show that the present method should give $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{Cu}$ distances that are accurate to within 0.07 and $0.12 \AA$, respectively. ${ }^{64,65}$ The stiff bonds to the negatively charged O-ligands are probably even more accurate (to within $\sim 0.04 \AA$), whereas the positions of the weakly bound water molecules are determined by a delicate balance between the weak $\mathrm{Cu}-\mathrm{O}$ interaction and possible hydrogen bonds to the surrounding protein, and are therefore far from reliable. Considering that the average error in crystal structures with a resolution of $1.4-2.6 \AA$ is $\sim 0.1 \AA$ and that errors of over $0.3 \AA$ are frequently found, ${ }^{66,67}$ the $\mathrm{QM} / \mathrm{MM}$ are at least as accurate as the crystal structures.

However, the estimated energies are less accurate. Density functional calculations similar to those in this paper give energies that are accurate to within $\sim 15 \mathrm{~kJ} / \mathrm{mol}$ for gas-phase processes. ${ }^{68,69}$ However, for reactions inside a protein, the accuracy is appreciably lower. We estimate that the accuracy of the relative energies in Table 5 and the of $\Delta E_{\text {spin }}$ in Table 4 are $25 \mathrm{~kJ} / \mathrm{mol}$ without and $\sim 40 \mathrm{~kJ} / \mathrm{mole}$ with the MM energies.

We have demonstrated how these intermediates, suggested by geometric and energetic criteria, give rise to a simple and consistent reaction mechanism. Throughout this mechanism, the total charge of the trinuclear copper site remains constant (at +3). This is probably important, because the surrounding protein is designed to stabilize a certain charge. It also indicates that the electron transfer may be at least partially assisted by proton transfer.

On the other hand there are two observations to be explained. First, isotope labeling indicates that the L, but not the B ligand should derive from $\mathrm{O}_{2}{ }^{20}$ in variance to the mechanism suggested in Figure 8. However, as mentioned above, there can be an exchange of the bridging ligand with water during the slow conversion of native intermediate into resting oxidized state (which does not take place under turnover conditions). Second, the $\mathrm{Ox}\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}: \mathrm{C}\right\}$ state seems to be more stable than the observed $\mathrm{Ox}\{\mathrm{OH}, \mathrm{OH}\}$ state, yet the NI slowly decays to the resting state. However, they do not obscure our other results for the reaction cycle of MCOs, which demonstrate that theoretical methods can be used to complement experimental investigations for the study of complicated enzymes containing multinuclear metal centers to give deeper insight into their enzymatic action.

Acknowledgment. This work has been supported by grants from the Swedish research council and the NIHDK 31450. It has also been supported by computational resources from Lunarc at Lund University Computer Center and the Center for Complex Molecular Systems and Biomolecules (project LN 00A032) in Prague.

Supporting Information Available. The equilibrium geometries of all the studied molecules (or QM regions in case of $\mathrm{QM} / \mathrm{MM}$ calculations) and the complete coordinates of the initial protein structure used as the model throughout this work (in PDB format) are available free of charge via the Internet at http://pubs.acs.org.

References

(1) Messerschmidt, A. In Multicopper oxidases; Messerschmidt, A., Ed.; World Scientific: Singapore; River Edge, NJ, 1997; pp. 23-80.
(2) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563-2605.
(3) Xu, F. Biochemistry 1996, 35, 7608-7614.
(4) Davies, G. J.; Ducros, V. In Handbook of Metalloproteins; Messerschmidt, A., Huber, R., Wieghardt, K., Poulos, T, Eds.; Wiley, New York, 2001, pp. 1359-1368.
(5) Malkin, R.; Malmström, B. G. Advan. Enzymol. 1970, 33, 177-243.
(6) Crichton, R. R.; Pierre, J.-L. BioMetals 2001, 14, 99-112.
(7) de Silva, D.; Askwith, C. C.; Eide, D.; Kaplan, J. J. Biol. Chem. 1995, 270, 1098-1101.
(8) Outten, F. W.; Huffman, D. L.; Hale, J. A.; O’Halloran, T. V. J. Biol. Chem. 2001, 276, 3067030677.
(9) Piontek, K.; Antorini, M.; Choinowski, T. J. Biol. Chem. 2002, 277, 37663-37669.
(10) Bertrand, T.; Jolivalt, C.; Briozzo, PI.; Caminade, E.; Joly, NI.; Madzak, C.; Mougin, C. Biochemistry 2002, 41, 7325-7333.
(11) Messerschmidt, A.; Ladenstein, R.; Huber, R; Bolognesi, M.; Avigliano, L; Petruzzelli, R.; Rossi, A.; Finazzi-Agro, A. J. Mol. Biol. 1992, 224, 179-205.
(12) Messerschmidt, A.; Luecke, H.; Huber, R. J. Mol. Biol. 1993, 230, 997-1014.
(13) Hakulinen, NI.; Kiiskinen, L.-L.; Kruus, K.; Saloheimo, M.; Paananen, A.; Koivula, A.; Rouvinen, J. NI. Struct. Biol. 2002, 9, 601-605.
(14) Enguita, F. J.; Martins, L. O.; Henriques, A. O.; Carrondo, M. A. J. Biol. Chem. 2003, 278, 19416-19425.
(15) (a) Roberts, S. A.; Weichsel, A.; Grass, G.; Thakali, K; Hazzard, J. T.; Tollin, G.; Rensing, C.; Montfort, W. R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 2766-2771. (b) Roberts, S. A.; Wildner, G. F.; Grass, G.; Weichsel, A.; Ambrus, A.; Rensing, C.; Montfort, W. R. J. Biol. Chem. 2003, 278, 31958-31963.
(16) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. NI.; Weissig, H.; Shindyalov, I. NI.; Bourne, PI. E. Nucleic Acids Research, 2000, 28, 235-242.
(17) Shin, W.; Sundaram, U. M.; Cole, J. L.; Zhang, H. H.; Hedman, B; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 1996, 118, 3202-3215.
(18) Palmer, A. E.; Lee, S.-K.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 6591-6599.
(19) Palmer, A. E.; Quintanar, L.; Severance, S.; Wang, T.-PI.; Kosman, D. J.; Solomon, E. I. Biochemistry 2002, 41, 6438-6448.
(20) Lee, S.-K.; George, S. D.; Antholine, W. E.; Hedman, B; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2002, 124, 6180-6193.
(21) Torres, J.; Svistunenko, D.; Karlsson, B.; Cooper, C. E.; Wilson, M. T. J. Am. Chem. Soc. 2002, 124, 963-967.
(22) Solomon, E. I.; Chen, PI.; Metz, M.; Lee, S.-K.; Palmer, A E. Angew. Chem. Int. Ed. 2001, 40, 4570-4590.
(23) Olsson, M. H. M.; Ryde, U. J. Am. Chem. Soc. 2001, 123, 7866-7876.
(24) Metz, M.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 4938-4950.
(25) Siegbahn, PI. E. M. J. Biol. Inorg. Chem. 2003, 8, 567-576.
(26) Henson, M. J.; Vance, M. A.; Zhang, C. X.; Liang, H. C.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 2003, 125, 5186-5192.
(27) Ryde, U. J. Comput.-Aided Mol. Design 1996, 10, 153-164.
(28) Ryde, U.; Olsson, M. H. M. Int. J. Quantum Chem. 2001, 81, 335-347.
(29) Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346-354.
(30) Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham III, T. E.; Wang, J.; Ross, W. S.; Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J. J.; Crowley, M.; Tsui, V.; Gohlke, H.; Radmer, R. J.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G. L.; Singh, U. C.; Werner, PI. K.; Kolman, PI.. A. AMBER 7, University of California, San Francisco, 2002.
(31) Cornell, W. D.; Cieplak, PI.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kolman, PI.. A. J. Am. Chem. Soc. 1995, 117, 51795197.
(32) Reuter, NI.; Dejaegere, A.; Maigret, B.; Karplus, M. J. Phys. Chem. 2000, 104, 1720-1735.
(33) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357-19363.
(34) Ryde, U.; Olsen, L.; Nilsson, K. J. Comput. Chem. 2002, 23, 1058-1070.
(35) Titmuss, S. J.; Cummins, PI. L.; Bliznyuk A. A.; Rendell, A. PI.; Gready, J. E. Chem. Phys. Lett. 2000, 320, 169-176.
(36) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (b) Perdew, J. PI. Phys. Rev. B 1986, 33, 8822-8824.
(37) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 283290.
(38) Eichkorn, K.; Weigen, F.; Treutler, O.; Ahlrichs, R. Theor. Chim. Acta 1997, 97, 119-124.
(39) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829-5835.
(40) Hehre, W. J.; Radom, L.; Schleyer, PI. v. R.; Pople, J. A. Ab initio molecular orbital theory; Wiley-Interscience: New York, 1986.
(41) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(42) Hertwig, R. H.; Koch W. Chem. Phys. Lett. 1997, 268, 345.
(43) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (b) Clark, T.; Chandrasekhar, J.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294.
(44) Because we have used the unrestricted Kohn-Sham (KS) formalism, the resulting KS determinants are not eigenfunctions of the \hat{S}^{2} operator. While the deviation from the pure $S=3 / 2$ (or $S=1$ for peroxy) states is negligible for the ferromagnetically coupled states, the antiferromagnetically coupled states deviate significantly from pure $S=1 / 2$ (or $S=0$) states, which can only be described by multireference wave functions. Nevertheless, this approach is routinely used in the studies of antiferromagnetically coupled model complexes representing metal sites in proteins. The reported values are unrestricted DFT energies without spin projection. The brokensymmetry technique can be used to correct the energies of the antiferromagnetically coupled (AF) states, viz. $E_{\mathrm{AF}}=E_{\mathrm{F}}-3 / 2\left(E_{\mathrm{F}}-E_{\mathrm{BS}}\right)$ for all three coppers coupled and $E_{\mathrm{AF}}=E_{\mathrm{F}}-2\left(E_{\mathrm{F}}-E_{\mathrm{BS}}\right)$ for two coppers coupled (e.g., peroxy intermediate), where E_{F} and E_{BS} are the energies of the feromagnetically coupled state and the broken symmetry solution of the AF state, respectively, whereas E_{AF} is the corrected energy of the AF state.
(45) Noodleman, L.; Peng, C. Y.; Case, D. A.; Mouesca, J.-M. Coord. Chem. Rev. 1995, 144, 199244.
(46) Klamt, A.; Schuurmann, G. J. Chem. Soc.-Perkin Trans. 2 1993, 799-805.
(47) Schäfer, A.; Klamt, A.; Sattel, D.; Lohrenz, J. C. W.; Eckert, F. Phys. Chem. Chem. Phys. 2000, 2, 2187-2193.
(48) Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W. J. Phys. Chem. A 1998, 102, 5074-5085.
(49) Cole, J. L.; Clark, P. A.; Solomon, E. I. J. Am. Chem. Soc. 1990, 112, 9534-9548.
(50) Quintanar, L.; Solomon, E. I., to be published.
(51) Barone, V.; Bencini, A.; Ciofini, I.; Daul, C. A.; Totti, F. J. Am. Chem. Soc. 1998, 120, 8357.
(52) Andersson, K.; Malmqvist, P.-Å.; Roos, B. O. J. Chem. Phys. 1992, 96, 1218.
(53) Rulišek, L.; Neese, F.; Solomon, E. I.; Ryde U. manuscript in preparation.
(54) Sundaram, U. M.; Zhang, H. H.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 1997, 119, 12525-12540.
(55) Lippard, S. J.; Berg, J. M. Principles of bioinorganic chemistry, University Science Books, Mill Valley, USA, 1994.
(56) Siegbahn, P. E. M.; Blomberg, M. R. A. Chem. Rev. 2000, 100, 421-437.
(57) Ryde, U. Eur. Biophys. J. 1996, 24, 213-221.
(58) Dudev, T; Lim, C. J. Am. Chem. Soc. 2002, 124, 6759-6766.
(59) Sigfridsson, E.; Olsson, M. H. M.; Ryde, U. Inorg. Chem. 2001, 40, 2509-2519.
(60) Adman, E. T.; Watenpaugh, K. D.; Jensen, L. H. Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 48544858.
(61) Gajhede, M. 2001 in Handbook of metalloproteins (Messerschmidt, A; Huber, R.; Poulos, T.; Wieghart, K., eds), Whiley, Chichester, pp. 233-244.
(62) Gruber, K.; Kratky, C. 2001 in Handbook of metalloproteins (Messerschmidt, A; Huber, R.; Poulos, T.; Wieghart, K., eds), Whiley, Chichester, pp. 995-1009.
(63) Lindskog, S. Pharmacol. Ther. 1997, 74, 1-20.
(64) Olsson, M. H. M; Ryde, U. J. Am. Chem. Soc. 2001, 123, 7866-7876.
(65) Ryde, U.; Olsson, M. H. M. Int. J. Quanum Chem. 2001, 81, 335-347.
(66) Ryde, U.; Nilsson, K. J. Mol. Struct. (THEOCHEM) 2003, 632, 259-275.
(67) Ryde, U.; Nilsson, K. J. Am. Chem. Soc. 2003, 125, 14232-14233.
(68) Curtiss, L. A.; Raghavachari, K.; Redrern, P. C.; Pople, J.A. J. Chem. Phys. 1997, 106, 10631079.
(69) Curtiss, L. A.; Raghavachari, K.; Redrern, P. C.; Pople, J.A. J. Chem. Phys. 2000, 112, 73747383.

Table 1. A summary of all three-dimensional structures of multicopper oxidases (containing the full complement of copper ions) deposited in the PDB. All distances are in \AA. The distances r_{23}, r_{23}, and r_{33}, are between the three copper ions, the $r_{2 L}$ distance is between Cu2 and its coordinated solvent molecule, whereas $r_{3 \mathrm{~B}}$ and $r_{3^{\prime} \mathrm{B}}$ are the distances between Cu 3 or $\mathrm{Cu} 3^{\prime}$ and the bridging solvent molecule (or peroxide, $\mathrm{O}_{2}, \mathrm{~N}_{3}{ }^{-}, \mathrm{Cl}^{-}$). $\alpha_{3 \mathrm{~B} 3}{ }^{\prime}$ is the angle between Cu3, bridging ligand (if present) and Cu3'.

PDB code	Resol. (A)	Redox State	Enzyme	Source	r_{23}	r_{23},	$r_{33}{ }^{\text {, }}$	$r_{2 L}$	$r_{3 \mathrm{~B}} ; \boldsymbol{r}_{3}{ }^{\prime}{ }_{B}$	Ref	$\alpha_{3 \text { B3 }}{ }^{\prime}$	Comments
1GYC	1.9	oxidized	laccase	Trametes versicolor	3.81	3.81	3.91	2.35	2.08; 2.19	9	152	
1KYA	2.4	oxidized	Laccase with 2,5xylidine	Trametes versicolor	3.89	3.85	3.91	2.40	1.90; 2.07	10	162	
1AOZ	1.9	oxidized	AO	Zucchini	3.79	3.84	3.71	2.03	2.03; 2.00	11	135	
1 ASO	2.2	reduced	AO	Zucchini	4.08	4.44	5.11	2.18	-	12	-	
1ASP	2.59	oxidized	AO with peroxide	Zucchini	3.77	4.45	4.80	2.06	1.94; 3.95	12	-	$\mathrm{HO}_{2}{ }^{-}$bound to Cu3
1ASQ	2.32	reduced	AO with azide	Zucchini	3.61	4.64	5.10	2.08	1.97; 3.14	12	-	$\mathrm{N}_{3}{ }^{-}$bound to Cu 3
1GW0	2.4	partially reduced	Laccase	Melanocarpus albomyces	3.89	4.05	4.83	2.48	2.45; 2.54	13	-	$L=\mathrm{Cl}^{-}$and $B=\mathrm{O}_{2}$
1GSK	1.7	partially reduced	$\operatorname{Cot} A$	Bacillus subtilis	4.64	4.67	4.28	2.07	2.11; 2.19	14	168	Cu 2 trigonal
1KV7	1.4	partially reduced	CueO	Escherichia coli	3.54	3.98	4.70	2.96	2.29; 2.43	15a	170	
1N68	1.7	partially reduced	CueO with regulatory Cu ion	Escherichia coli	3.62	4.09	4.80	2.94	$2.31 ; 2.50$	15b	176	
1PF3	1.5	partially reduced	CueO M441L mutant	Escherichia coli	3.75	4.17	4.84	2.79	2.39; 2.46	15b	171	

Table 2. The optimized $\mathrm{QM} / \mathrm{MM}$ geometries of the oxidized and reduced states of CueO. The distances r_{23}, r_{23}, and r_{33}, are between the copper ions, the $r_{2 \mathrm{~L}}$ distance is between Cu 2 and its coordinated solvent molecule, whereas $r_{3 \mathrm{~B}}, r_{3}{ }^{\prime} \mathrm{B}$ and $r_{2 \mathrm{~B}}$ are the distances between $\mathrm{Cu} 3, \mathrm{Cu}{ }^{\prime}$, or Cu 2 and the bridging solvent molecule (the $\mathrm{r}_{2 B}$ distance is included only if B is in the center of Cu_{3} triangle, $B: \mathrm{C}$). All distances are in \AA. Finally, $\alpha_{3 B 3}{ }^{\prime}$ is the $\mathrm{Cu} 3-B-\mathrm{Cu} 3^{\prime}$ angle (in degrees). It has a positive (negative) value, if bridging oxygen atom is located outside (inside) Cu_{3} triangle.

$\begin{gathered} \mathbf{O x} \\ \text { State } \end{gathered}$	Protonation State	$\mathrm{Cu}-\mathrm{Cu}$			Cu2-L	Cu3-B		$\mathrm{Cu}-\mathrm{N}_{\text {Im }}$ distances		
		r_{23}	r_{23},	$r_{33}{ }^{\prime}$		$r_{3 \mathrm{~B}} ; r_{3}{ }^{\prime} ;{ }^{\text {r }}$; $r_{2 \mathrm{~B}}$	$\alpha_{3 \mathrm{~B} 3}$,	Cu2	Cu3	Cu3'
Oxidized	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}\right\}$	4.26	4.90	5.37	1.87	2.14;3.32	153	1.89;1.94	1.94;1.96;1.97	1.93;1.93;1.99
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$	3.82	4.23	3.83	2.12	1.95;1.99	155	1.90;1.91	1.99;2.02;2.04	2.00;2.01;2.04
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$	3.86	4.11	3.75	1.87	1.94;1.97	147	1.88;1.93	2.00;2.01;2.05	2.01;2.02;2.03
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.22	3.39	3.39	2.57	1.88;1.91(2.00)	-127	1.92;1.93	2.00;2.00;2.13	2.01;2.03;2.03
	$\left\{\mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.15	3.24	3.49	1.87	1.90;1.92(1.90)	-132	1.94;1.93	2.03;2.04;2.11	2.02;2.03;2.08
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}: \mathrm{S}_{23}\right\}$	3.36	4.12	4.78	1.84	2.03;1.92	-116	1.97;1.99	1.95;2.01;2.05	1.91;1.92;1.98
	$\left\{-, \mathrm{OH}^{-}, \mathrm{OH}: \mathrm{S}_{23}{ }^{\prime}\right\}$	3.34	3.75	3.72	-	1.95;1.98	142	1.89;1.91	2.01;2.02;2.05	2.00;2.09;2.22
Reduced	$\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$	4.00	4.34	5.22	2.62	-	-	1.87;1.87	1.94;1.95;1.98	1.93;1.94;2.03
	$\left\{\mathrm{OH}^{-},-\right\}$	4.24	4.57	5.25	1.94	-	-	1.91;1.96	1.93;1.94;1.99	1.93;1.94;2.04
	$\left\{-, \mathrm{H}_{2} \mathrm{O}\right.$ \}	3.57	4.29	5.22	-	2.31;2.99	159	1.87;1.87	1.96;1.97;2.04	1.94;1.94;2.05
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right\}$	3.88	4.21	4.97	2.75	2.32;2.72	161	1.87;1.88	1.96;1.97;2.04	1.95;1.96;2.05
	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}\right\}$	4.00	4.40	5.22	1.96	2.27;3.00	164	1.92;1.95	1.95;1.97;2.03	1.94;1.95;2.04
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}: \mathrm{C}\right\}$	2.75	2.92	4.29	3.94	2.12;2.22(2.05)	161	1.94;1.97	1.98;2.03;2.07	1.96;2.01;2.12
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right.$\}	4.13	4.47	4.01	1.93	2.01;2.06	161	1.93;2.07	1.97;2.08;2.14	1.97;2.05;2.12
	$\left\{-, \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}: \mathrm{S}_{23}{ }^{\prime}\right\}$	3.67	3.97	5.24	2.04;2.13	2.12;3.54	133	1.91;1.93	1.97;1.98;2.08	1.96;2.01;2.09

Table 3. The equilibrium geometries resulting from the $\mathrm{QM} / \mathrm{MM}$ calculations for peroxy (PI), native (NI) intermediate and peroxy adduct (PA) of CueO. All distances are in $\AA \AA$, angles in degrees. For the abbreviations, see the legend of Table 2.

$\begin{gathered} \hline \mathbf{O x} \\ \text { State } \end{gathered}$	Protonation State	$\mathrm{Cu}-\mathrm{Cu}$			L	Cu3-B		$\begin{gathered} \hline \mathrm{O}-\mathrm{O} \\ \hline r\left(\mathrm{O}_{1}-\mathrm{O}_{2}\right) \\ \hline \end{gathered}$	$\mathrm{Cu}-\mathrm{O}_{2}$	$\mathrm{Cu}-\mathrm{N}_{\text {Im }}$ distances		
		r_{23}	r_{23},	r_{33},	$r_{2 L}$	$r_{3 \mathrm{~B}} ; r_{3}{ }^{\prime}{ }_{B}$	$\alpha_{3 \text { B } 3}$			Cu2	Cu3	Cu3'
PI	$\left\{-,-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\text {, }}\right\}$	3.52	3.88	4.65	-	-	-	1.34	1.98;1.98;2.19 ${ }^{\text {d }}$	1.88;1.88	1.99;2.00;2.01	1.98;2.01;2.04
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$	3.55	3.76	4.60	3.04	-	-	1.35	2.03;1.94;2.15	1.90;1.91	2.00;2.01;2.01	1.97;1.99;2.04
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right.$, $\}$	3.57	3.93	4.61	3.00	-	-	1.34	1.98;1.98;2.23 ${ }^{\text {d }}$	1.88;1.89	1.99;2.00;2.01	1.98;2.01;2.03
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	3.45	3.95	4.54	1.92	-	-	1.39	2.02;1.99;2.02 ${ }^{\text {d }}$	1.97;1.99	2.00;2.00;2.04	1.99;2.00;2.05
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right.$, $\}$	3.67	4.13	4.58	2.53	2.25;3.55	102	1.38	2.02;2.03;2.12	1.93;1.93	2.03;2.09;2.12	1.98;2.01;2.05
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right.$, \}	3.59	3.94	4.45	3.02	1.90;3.93	92	1.37	1.99;1.98;2.09	1.90;1.91	2.13;2.17;2.26	1.97;2.03;2.04
	$\left\{-,-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3},\right\}$	3.48	3.92	5.11	-	-	-	1.44	1.95;2.31;2.10	1.90;1.91	1.95;1.98;1.99	1.98;1.98;1.99
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}{ }^{-} \cdot \mathrm{C}_{3},\right\}$	3.54	4.05	5.07	2.78	-	-	1.44	2.15;1.96;2.31	1.91;1.92	1.99;1.98;1.96	1.99;1.96;1.99
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$ H_up	4.13	4.31	4.94	2.43	-	-	1.43	2.76;2.29;1.95	1.90;1.92	1.93;1.95;1.98	2.00;2.00;2.01
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}{ }^{-}$	3.52	4.11	4.97	1.91	-	-	1.47	2.13;1.99;2.18	1.95;1.95	1.98;1.99,2.01	1.98;1.99;2.03
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}\right\}$	3.37	2.87	4.12	2.86	2.06;2.10	165	1.34	2.07;2.08 ${ }^{\text {a }}$	1.95;1.95	2.13;2.13;2.15	2.05;2.06;2.14
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	3.42	4.16	3.83	2.49	2.01;2.05	141	1.35	2.00;1.98	1.95;1.98	2.02;2.05;2.13	2.07;2.16;2.27
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}{ }^{-}: \mathrm{S}_{23}\right\}$	3.64	2.76	3.91	3.31	2.06;1.98	151	1.44	1.99;1.94 ${ }^{\text {a }}$	1.98;2.03	2.01;2.10;2.13	2.06;2.06;2.10
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	3.78	4.63	3.53	2.28	1.93;1.97	130	1.45	$\begin{aligned} & 1.95 ; 2.78 \\ & 2.88 ; 2.14^{b} \end{aligned}$	2.00;2.00	2.06;2.06;2.11	2.03;2.10;2.21
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{C}_{\perp}\right\}$ H_up	4.50	4.93	3.34	1.79	1.95;1.95	117	1.46	$\begin{aligned} & 2.08 ; 3.07 \\ & 3.22 ; 2.04^{b} \end{aligned}$	1.94;3.43	2.05;2.13;2.18	2.06;2.18;2.18
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	4.44	4.04	3.64	2.11	1.93;2.02	135	2.69	$\begin{aligned} & 1.81 ; 3.73 ; 101 \\ & 2.09 ; 1.97 ; 168^{c} \\ & \hline \end{aligned}$	1.96;1.97	1.93;1.97;2.69	2.00;2.05;2.13
PA		3.66	3.76	4.56	1.88	-	-	1.35	2.11;1.95;2.03	1.94;1.96	2.00;2.00;2.00	1.97;1.97;2.03
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3},\right\}$	3.52	4.13	4.55	1.88	-	-	1.36	2.05;1.97;2.01	1.93;1.93	2.01;2.01;2.02	1.98;1.99;2.04
	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$	3.88	3.88	4.58	1.87	3.34;2.07	63	1.37	2.23;1.99;1.99	1.95;1.96	1.99;1.99;2.03	2.01;2.05;2.13
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}{ }^{-} \mathrm{S}_{23}{ }^{\prime}\right\}$	3.72	4.03	3.72	1.88	1.94;1.98	144	1.45	2.12;2.01	1.98;2.00	2.02;2.05;2.07	2.06;2.06;2.20
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{C}_{\perp}\right\}$ H_up	3.88	4.65	3.02	1.88	2.02;1.95	99	1.46	2.59;2.03;2.07	1.95;1.97	2.01;2.09;2.25	1.97;2.05;3.55
NI'	$\left\{-,-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	3.28	3.95	4.55	-	-	-	1.42	1.99;1.96;2.07	1.91;1.92	2.01;2.02;2.05	2.00;2.01;2.06
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	3.27	3.90	4.63	3.24	-	-	1.41	1.99;1.96;2.07	1.91;1.91	2.01;2.03;2.04	1.99;2.02;2.05

	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	3.34	3.97	4.55	1.96	-	-	1.45	2.00;1.97;2.02	1.91;2.01	2.03;2.03;2.05	1.97;2.02;2.10
	$\left\{-,-, \mathrm{HO}_{2}{ }^{-}: \mathrm{C}_{3}\right.$, $\}$	3.36	3.76	4.70	-	-	-	1.46	1.97;2.14;2.20	1.90;1.90	1.99;1.99;2.01	1.97;1.98;2.07
	$\left\{-,-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3},\right\}$ H_up	3.99	4.11	4.94	-	-	-	1.46	2.29;1.93;2.43	1.88;1.89	1.95;1.98;1.99	2.00;2.01;2.02
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}{ }^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	3.39	3.74	4.75	3.28	-	-	1.47	1.97;2.17;2.16	1.90;1.91	1.99;1.99;2.01	1.97;1.98;2.07
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3},\right\} \mathrm{H}_{\text {up }}$	4.01	4.68	4.67	2.26	-	-	1.45	2.12;1.95;3.01	1.92;1.92	1.99;2.00;2.01	1.97;2.01;2.04
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3},\right\}{ }^{-}$	3.50	4.17	4.93	1.92	-	-	1.54	2.01;2.16;2.03	1.96;1.96	1.99;2.00;2.02	1.95;1.96;2.06
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$ H_up	4.07	4.51	4.76	1.91	-	-	1.45	2.10;1.96;2.97	1.94;1.96	1.99;1.99;2.00	1.99;1.99;2,08
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}{ }^{-}\right\}$	3.01	3.79	3.81	2.96	1.98;2.03	145	1.48	2.05;2.00 ${ }^{\text {a }}$	1.97;1.99	2.01;2.10;2.12	2.09;2.10;2.34
NI	$\left\{-, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	3.44	3.26	3.90	-	2.02;2.06	146		1.88;1.95;128	1.99;2.00	1.98;2.14;2.16	1.97;2.17;2.25
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	3.41	3.27	3.93	3.18	2.01;2.08	148		$\begin{aligned} & 1.88 ; 2.05 ; 112^{c} \\ & 1.91 ; 1.94 ; 125 \\ & 1.88 ; 2.03 ; 113^{c} \end{aligned}$	1.99;1.99	2.00;2.14;2.17	1.96;2.17;2.26
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	3.42	3.75	3.62	1.89	1.99;2.03	128		$\begin{aligned} & 1.91 ; 1.99 ; 123 \\ & 1.90 ; 2.20 ; 133^{c} \end{aligned}$	2.07;2.08	1.99;2.17;2.23	2.04;2.18;2.32
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.22	3.39	3.39	2.57	-	-		2.01;1.88;1.90	1.92;1.93	2.00;2.00;2.13	2.01;2.03;2.03
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.15	3.24	3.49	1.87	-	-		1.96;1.89;1.89	1.94;1.93	2.03;2.04;2.11	2.02;2.03;2.08
	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.30	3.40	3.36	1.86	2.15;2.28	99		1.86;1.99;1.99	1.94;1.96	2.04;2.13;2.13	2.07;2.17;2.24
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.32	3.53	3.32	2.25	2.18;2.09	102		1.93;1.98;1.99	1.94;1.95	2.02;2.07;2.16	2.01;2.18;2.21
	$\left\{-, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.26	3.42	3.16	-	1.92;1.99	108		1.90;2.00;1.93 ${ }^{\text {e }}$	1.91;1.93	2.00;2.07;2.25	2.05;2.13;2.21
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.36	3.48	3.15	2.37	1.91;1.97	108		1.92;1.92;2.04 ${ }^{e}$	1.94;1.95	2.02;2.05;2.27	2.03;2.19;2.22
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.25	3.45	3.11	1.89	1.97;1.98	104		1.98;1.96;1.88 ${ }^{e}$	1.98;2.01	2.06;2.09;2.31	2.08;2.19;2.28
	$\left\{-, \mathrm{O}^{2-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.13	3.12	3.00	-	1.84;1.93	105		1.99;1.87;1.99 ${ }^{\text {e }}$	1.95;1.97	1.98;2.06,2.67	2.06;2.09;2.29
	$\left\{\mathrm{OH}^{-}, \mathrm{O}^{2-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	3.27	3.35	2.93	1.91	1.91;1.90	101		1.91;1.94;1.97 ${ }^{\text {e }}$	2.00;2.03	2.08;2.31;2.33	2.12;2.18;2.40

${ }^{a}$ The reported distances are $r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{3}\right), r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{2}\right)$
${ }^{b}$ The reported distances are $r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{3}\right)^{\prime}, r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{2}\right),\left\{r\left(\mathrm{O}_{\mathrm{B}}-\mathrm{Cu}_{3^{\prime}}\right), r\left(\mathrm{O}_{\mathrm{B}}-\mathrm{Cu}_{2}\right)\right.$
${ }^{c}$ The reported distances are $r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{3^{\prime}}\right), r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{2}\right), \alpha_{2 \mathrm{~B} 3},\left\{r\left(\mathrm{O}_{\mathrm{B}}-\mathrm{Cu}_{3^{\prime}}\right), r\left(\mathrm{O}_{\mathrm{B}}-\mathrm{Cu}_{2}\right), \alpha_{2 \mathrm{~B} 3^{\prime}}\right.$
${ }^{d} \mathrm{O}_{\mathrm{A}}$ of O_{2}^{2-} is bridging the $\left(\mathrm{Cu}_{2}, \mathrm{Cu}_{3}\right)$ pair, whereas O_{B} is coordinated to Cu_{3}. The values correspond to $r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{3}\right), r\left(\mathrm{O}_{\mathrm{B}}-\mathrm{Cu}_{3}\right), r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{2}\right)$
${ }^{\prime} \mathrm{O}_{\mathrm{A}}$ of $\mathrm{O}_{2}{ }^{2-}$ is bridging the $\left(\mathrm{Cu}_{2}, \mathrm{Cu}_{3^{\prime}}\right)$ pair, whereas O_{B} is coordinated to Cu_{3}. The values correspond to $r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{3}\right), r\left(\mathrm{O}_{\mathrm{B}}-\mathrm{Cu}_{3}\right)^{\prime}, r\left(\mathrm{O}_{\mathrm{A}}-\mathrm{Cu}_{2}\right)$
${ }^{e}$ The three reported distances are $r\left(\mathrm{O}-\mathrm{Cu}_{3}\right), r\left(\mathrm{O}-\mathrm{Cu}_{3}\right), r\left(\mathrm{O}-\mathrm{Cu}_{2}\right)$

Table 4. Calculated spin densities for copper ions and O-ligands in the QM/MM structures. Both the ferro- and antiferromagnetically coupled states are listed. All values were obtained at the B3LYP/6-311++G(2d,2p) level. The protein environment was represented by point charges. $\Delta E_{\text {spin }}$ is the energy difference between the ferro- and antiferromagnetically coupled states (without any MM term), with a positive sign indicating that the latter state is most stable.

Redox state	State	Total Spin	Cu 2	Cu3	Cu3 ${ }^{\text {' }}$	O_{L}	O_{B}	$\mathrm{O}\left(\mathrm{O}_{2}\right)$	$\begin{gathered} \Delta E_{\text {spin }} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$
Ox	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}\right\}$	1/2	0.54	0.72	-0.76	0.42	0.02		0.5
		3/2	0.54	0.72	0.77	0.43	0.02		
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$	1/2	-0.63	0.80	0.77	-0.03	0.15		0.8
		3/2	0.65	0.76	0.77	0.03	0.14		
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right.$\}	1/2	0.50	0.70	-0.68	0.40	0.00		11.3
		3/2	0.51	0.78	0.78	0.40	0.16		
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}\right.$ \}	1/2	0.61	0.65	-0.70	0.01	0.34		9.2
		3/2	0.60	0.71	0.75	0.01	0.50		
	$\left\{\mathrm{OH}^{-}, \mathrm{O}^{2-}\right\}$	1/2	-0.39	0.54	0.54	-0.13	0.34		-22.6
		3/2	0.59	0.72	0.63	0.18	0.51		
PI	$\left\{-,-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$	0	-0.04	-0.32	0.31	-	-	0.06	-17.9
		1	0.04	0.28	0.32	-	-	1.22	
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$	0	-0.08	-0.14	0.32	0.00	-	-0.09	-20.5
		1	0.06	0.27	0.31	0.00	-	1.24	
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	0.02	0.20	-0.38	0.00	-	0.17	-17.2
		1	0.10	0.27	0.30	0.00	-	1.16	
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	0.54	-0.10	-0.21	0.13	-	-0.46	-6.2
		1	0.50	0.14	0.20	0.13	-	0.83	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	0.00	0.50	-0.20	0.00	0.20	-0.57	-12.9
		1	0.04	0.54	0.21	0.00	0.18	0.90	
	$\left\{-,-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	-0.03	-0.61	0.69	-	-	0.11	-4.7
		1	0.18	0.65	0.61	-	-	0.27	
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}{ }^{-}: \mathrm{C}_{3}\right.$, $\}$	0	-0.40	-0.01	0.45	0.00	-	-0.12	-20.0
		1	0.32	0.52	0.53	0.00	-	0.37	
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}^{-}\right.$: C_{3}, $\}$ H_up	0	-0.05	-0.69	0.56	0.00	-	0.31	4.6
		1	0.05	0.69	0.56	0.00	-	0.35	
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}{ }^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	-0.57	0.46	0.13	-0.20	-	0.21	-0.5
		1	0.57	0.49	0.16	0.21	-	0.32	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}\right\}$	0	0.07	-0.51	-0.11	0.00	-0.09	0.72	-9.3
		1	0.08	0.48	0.11	0.00	0.09	1.16	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	0	0.20	-0.11	-0.45	0.00	-0.14	0.48	-10.3
		1	0.14	0.04	0.53	0.00	0.10	1.09	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$	0	-0.07	0.58	-0.54	0.00	-0.08	0.08	0.2
		1	0.25	0.62	0.43	0.00	0.16	0.28	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}{ }^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	0	0.01	-0.60	0.54	0.00	-0.02	0.09	9.2
		1	0.02	0.71	0.58	0.00	0.25	0.19	
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}{ }^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	0	-0.04	0.58	-0.51	-0.02	0.01	-0.03	6.8
		1	0.17	0.55	0.50	0.06	0.22	0.29	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	0	0.57	0.00	-0.62	0.03	-0.08	0.08	-0.2
		1	0.61	-0.01	0.70	0.03	0.09	0.22	
PA	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-} \cdot \mathrm{C}_{3}\right\}$	1/2	-0.50	0.33	0.41	-0.21	-	0.79	-5.1
		3/2	0.57	0.31	0.48	0.25	-	1.07	
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	1/2	-0.49	0.37	0.42	-0.20	-	0.85	-1.7
		3/2	0.57	0.47	0.37	0.25	-	1.07	

	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$	1/2	-0.53	0.34	0.59	-0.18	0.07	0.69	-7.1
		3/2	0.56	0.32	0.65	0.20	0.09	0.83	
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$	1/2	0.54	0.69	-0.55	0.24	0.03	-0.03	16.5
		3/2	0.56	0.81	0.65	0.26	0.17	0.18	
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-} \cdot \mathrm{C}_{\perp}\right\}$	1/2	0.56	0.61	-0.54	0.21	0.00	0.03	-2.7
		$3 / 2$	0.57	0.65	0.59	0.22	0.21	0.32	
NI'	$\left\{-,-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{2}\right\}$	1/2	0.04	0.10	0.17	-	-	0.63	-
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3},\right\}$	1/2	0.07	0.07	0.12	0.00	-	0.69	-
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	1/2	0.44	0.01	0.02	0.07	-	0.34	-
	$\left\{-,-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	1/2	0.02	0.41	0.17	-	-	0.31	-
	$\left\{-,-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}\right.$ \} H_{-}up	1/2	0.00	0.03	0.53	-	-	0.30	-
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}{ }^{-}\right.$: $\left.\mathrm{C}_{3},\right\}$	1/2	0.06	0.41	0.13	0.00	-	0.31	-
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}{ }^{-}\right.$: $\left.\mathrm{C}_{3},\right\}$ H_up	1/2	0.00	0.07	0.48	0.00	-	0.33	-
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	1/2	0.57	0.04	0.00	0.16	-	0.09	-
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}{ }^{\text {, }}\right.$, H_{-}up	1/2	0.02	0.09	0.40	0.01	-	0.39	-
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right.$, $\}$	1/2	0.03	0.09	0.46	0.00	0.13	0.15	-
NI	$\left\{-, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23},\right\}$	1/2	0.65	-0.54	0.61	-	-0.03	0.29	3.2
		3/2	0.66	0.70	0.70		0.19	0.43	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	1/2	0.65	-0.55	0.62	0.00	-0.02	0.26	3.0
		3/2	0.65	0.71	0.71	0.00	0.16	0.41	
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{\text {}}\right.$ \}	1/2	0.63	-0.58	0.57	0.16	-0.01	0.09	6.3
		3/2	0.64	0.64	0.64	0.17	0.23	0.32	
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	0.61	0.65	-0.70	0.01	-	0.34	9.2
		3/2	0.60	0.71	0.75	0.01		0.50	
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	-0.39	0.54	0.54	-0.13	-	0.34	-22.6
		3/2	0.59	0.72	0.63	0.18		0.51	
	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	-0.44	0.59	0.53	-0.12	0.00	0.30	-7.3
		3/2	0.60	0.66	0.58	0.16	0.05	0.50	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	0.52	0.63	-0.58	0.00	0.00	0.26	9.8
		3/2	0.59	0.70	0.65	0.00	0.09	0.54	
	$\left\{-, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	0.37	-0.52	0.55	-	0.08	0.45	2.5
		3/2	0.38	0.58	0.66		0.32	0.73	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	0.47	-0.53	0.55	0.00	0.03	0.35	9.9
		3/2	0.49	0.57	0.66	0.00	0.29	0.65	
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	-0.55	0.54	0.57	-0.11	0.26	0.26	6.6
		3/2	0.60	0.56	0.61	0.12	0.25	0.52	
	$\left\{-, \mathrm{O}^{2-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	0.02	-0.41	0.54	-	0.45	0.38	18.9
		3/2	0.08	0.55	0.61	-	0.97	0.61	
	$\left\{\mathrm{OH}^{-}, \mathrm{O}^{2-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	1/2	-0.56	0.44	0.51	-0.10	0.54	0.17	3.1
		$3 / 2$	0.60	0.45	0.51	0.10	0.55	0.47	

Table 5. Calculated relative energies of the various complexes. Energies are given for structures optimized in vacuum (ΔE_{vac}), in a dielectric continuum ($\Delta E_{\text {cosmo }}$), and with QM/MM methods. For the latter, energies are given for the isolated quantum system, studied in gas phase at the BP86/6-311+G(2d,2p) level $\left(\Delta E_{\mathrm{gas}}\right)$, the change in the energy when the effect of the surrounding protein is included by an array of point charges ($\Delta \Delta E_{\text {ptch }}$), when the method is changed to B3LYP ($\Delta \Delta E_{\mathrm{B} 31 \mathrm{lyp}}$), and when the MM energy of system 2 is included ($\Delta \Delta E_{\mathrm{MM}}$). Finally, two sets of total energies are given, with or without the $\Delta \Delta E_{\mathrm{MM}}$ term. Thus, $\Delta E_{\text {tot }}=\Delta E_{\text {gas }}+\Delta \Delta E_{\mathrm{ptch}}+\Delta \Delta E_{\mathrm{B} 3 \mathrm{lyp}}$, and $\Delta E_{\text {totMM }}=\Delta E_{\text {tot }}+\Delta \Delta E_{\mathrm{MMM}}$.

$\begin{aligned} & \hline \mathrm{Ox} \\ & \text { state } \end{aligned}$	Protonation state	Relative Energies (kJ/mol)								
		$\Delta E_{\text {gas }}$	$\Delta \Delta E_{\text {ptch }}$	$\Delta \Delta E_{\mathrm{B} 31 \mathrm{lyp}}$	$\Delta \Delta E_{\mathrm{MM}}$	$\Delta E_{\text {tot }}$	$\Delta E_{\text {totMM }}$	ΔE_{vac}	$\Delta E_{\text {cosmo }}$	
Ox	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$	0	0	0	0	0	0	0	0	
	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}\right\}$	33.5	51.0	-32.2	-12.1	52.2	40.2			
Ox	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}\right\}$	65.5	15.3	-14.4	-0.9	66.3	65.5	$21.9{ }^{\text {a }}$	51.10	
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}\right\}$	0	0	0	0	0	0	0		
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}\right\}$	-5.4	97.4	47.4	21.3	139.4	160.7			
	$\left\{-, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	-3.1	171.9	-19.8	13.6	188.5	202.2			
Red	$\left\{\mathrm{H}_{2} \mathrm{O},-\right\}$	0	0	0	0	0	0			
	$\left\{-, \mathrm{H}_{2} \mathrm{O}\right\}$	-11.0	106.8	8.1	-44.9	103.9	59.0			
Red	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}\right\}$	0	0	0	0	0	0	0	$\begin{array}{r} 0 \\ 37.7 \end{array}$	
	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}\right\}$	-11.0	106.8	8.1	-44.9	103.9	59.0	$29.9{ }^{\text {a }}$		
	$\left\{-, \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}: \mathrm{S}_{23}\right\}$	-5.9	305.6	18.2	60.1	317.9	224.1			
Red	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right\}$	0	0	0	0	0	0			
	$\left\{-, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}: \mathrm{S}_{23}\right\}$	5.1	198.8	10.1	-48.9	214.0	165.1			
PI	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$	0	0	0	0	0	0	0	0	
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right.$, $\}$	-4.3	12.5	0.5	-4.5	8.7	4.2	0	0	
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}{ }^{-} \mathrm{C}_{3}\right\}$	49.7	79.1	-30.8	-40.5	98.0	57.5	72.1	25.9	
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$							39.5	64.5	
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}{ }^{\prime}\right\}$							diss.	57.1	
PI	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}\right\}$	2.4	92.0	2.2	-52.4	96.7	44.2			

	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}{ }^{\text {3 }}\right.$ \}	21.7	38.3	0.0	0.8	60.0	60.8		
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\text {, }}\right\}$	0	0	0	0	0	0	0	0
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{C}_{\perp}\right\}$	66.5	-12.7	11.5	56.8	65.3	122.0	10.1	2.2
PI	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}\right\}$	0	0	0	0	0	0		
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}{ }^{-}: \mathrm{C}_{3}\right\}$ H_up	86.8	-22.4	-42.5	5.0	22.0	26.9		
PI	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}\right\}$	138.2	-79.1	14.9	55.5	74.0	129.5		
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{HO}_{2}{ }^{-}: \mathrm{S}_{23}{ }^{\prime}\right\}$	154.6	-119.2	-10.9	62.0	24.4	86.4		
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\text {}}\right.$ \}	0	0	0	0	0	0		
PI	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$							0	0
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{S}_{23}{ }^{\text {3 }}\right\}$							38.0	52.9
PA	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$	4.3	5.2	-0.9	3.0	8.6	11.6		
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	0	0	0	0	0		
PA	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}\right\}$	0	0	0	0	0	0		
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{S}_{23}{ }^{3}\right\}$	131.2	70.9	-23.3	-30.1	178.8	148.7		
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{HO}_{2}^{-}: \mathrm{C}_{\perp}\right\}$	86.6	8.1	-41.6	-18.5	53.1	34.7		
NI'	$\left\{-,-, \mathrm{HO}_{2}^{-}\right.$\}	0	0	0	0	0	0		
	$\left\{-,-, \mathrm{HO}_{2}^{-}\right\}$H_up	23.8	20.5	-12.2	20.0	32.2	52.2		
NI'	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}^{-}\right\}$	0	0	0	0	0	0		
	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}^{-}\right\} \mathrm{H}_{\text {-up }}$	11.9	14.2	-7.0	20.8	19.1	39.9		
NI'	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}\right\}$	0	0	0	0	0	0		
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}\right\}$H_up	43.8	-10.0	39.1	18.2	72.8	91.0		
NI	$\left\{-, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	44.3	9.2	-15.5	13.7	38.1	51.7		
	$\left\{\mathrm{OH}^{-},-, \mathrm{O}^{2-}: \mathrm{C}\right\}$	0	0	0	0	0	0		
NI'	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}: \mathrm{A}_{3}, \mathrm{HO}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	0	0	0	0	0		
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HO}_{2}{ }^{2-}: \mathrm{S}_{23}{ }^{2}\right\}$	17.9	6.0	15.1	53.5	39.0	92.6		
NI'	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2}{ }^{2}: \mathrm{C}_{3}{ }^{\prime}\right.$ \}	0	0	0	0	0	0		
	$\left\{\mathrm{OH}^{-},-, \mathrm{HO}_{2}^{-}: \mathrm{C}_{3}{ }^{\text {, }}\right\}$	25.6	62.1	-22.2	-15.5	65.5	50.0		
NI	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{HO}_{2}^{-}\right.$\}	89.6	-93.9	27.8	2.6	23.4	26.0		
	$\left\{-, \mathrm{OH}^{-}, \mathrm{OH}^{-}: \mathrm{S}_{23}, \mathrm{OH}^{-}: \mathrm{S}_{23}{ }^{3}\right\}$	84.6	29.9	1.4	27.6	115.8	143.4	41.6	5.9
	$\left\{\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	40.7	31.9	29.2	-14.4	101.8	87.4		
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	0	0	0	0	0	0	0	0

NI	$\left\{-,-, \mathrm{O}_{2} \mathrm{H}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	0	0	0	0	$\mathbf{0}$
	ts1	58.0	-3.0	23.0	4.0	78.0	$\mathbf{8 2 . 0}$
	$\left\{-, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	-56.4	-6.1	-5.5	30.0	-68.0	$\mathbf{- 3 8 . 0}$
$\mathbf{N I}$	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2} \mathrm{H}^{-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	0	0	0	0	$\mathbf{0}$
	ts2	71.0	-4.0	30.0	-3.0	97.0	$\mathbf{9 4 . 0}$
	$\left\{\mathrm{OH}^{-}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	-96.2	-4.9	-16.5	13.9	-117.6	$\mathbf{- 1 0 3 . 7}$
$\mathbf{N I}$	$\left\{-,-, \mathrm{O}_{2}{ }^{2-}: \mathrm{C}_{3}{ }^{\prime}\right\}$	0	0	0	0	0	$\mathbf{0}$
	ts3	84.0	32.0	8.5	-22.0	124.5	$\mathbf{1 0 2 . 5}$
	$\left\{-, \mathrm{O}^{2-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	6.5	46.6	11.9	-14.9	65.0	$\mathbf{5 0 . 1}$
$\mathbf{N I}$	$\left\{\mathrm{OH}^{-},-, \mathrm{O}_{2}^{2-}: \mathrm{C}_{3}{ }^{3}\right\}$	0	0	0	0	0	$\mathbf{0}$
	ts4	90.0	27.0	8.0	-22.0	125.0	$\mathbf{1 0 3 . 0}$
	$\left\{\mathrm{OH}^{-}, \mathrm{O}^{2-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	-33.3	61.0	-28.7	-30.2	-1.1	$\mathbf{- 3 1 . 3}$
$\mathbf{N I}$	$\left\{\mathrm{H}_{2} \mathrm{O},-, \mathrm{O}_{2} \mathrm{H}^{-}: \mathrm{C}_{3}\right\}$	0	0	0	0	0	$\mathbf{0}$
	ts5	0	48.8	25.0	-24.0	112.0	$\mathbf{8 8 . 0}$
	$\left\{\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}: \mathrm{C}\right\}$	38.8	48.2	23.6	93.9	-27.8	-2.6
-23.4	$\mathbf{- 2 6 . 0}$						

${ }^{\text {a }}$ Obtained with the three $\mathrm{Cu}-\mathrm{Cu}$ distances fixed to $3.9 \AA(\mathrm{Ox})$ or to the $\mathrm{QM} / \mathrm{MM}$ (Red) values in Table 2.

TABLE OF CONTENTS GRAPHIC

Structures of the various intermediates in the catalytic cycle of multi-copper oxidases (MCO) have been studied and characterized by QM/MM calculations. Together with the accompanying energetic data, it allowed us to propose a plausible reaction mechanism for the whole class of MCOs that is consistent with the experimental spectroscopic and structural data.

[^0]: ${ }^{\S}$ IOCB AS CR, Prague
 ${ }^{1}$ most of the work was done during the postdoctoral stay at Lund University
 \# Department of Chemistry, Stanford University
 ${ }^{\dagger}$ Department of Chemistry, Lund University

 * Corresponding author. Tel. (Fax): +46-46-2224502(4543).

