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Abstract

Antenna bounds are a useful tool in assessing feasibility or performance
of an antenna design. Microstrip patch antennas are often limited by their
relatively narrow bandwidth, and therefore Q-factor is an important design
parameter, as it is related to the inverse of the fractional bandwidth. This
paper presents the first tight lower Q-factor bounds on microstrip patch anten-
nas supported by an infinite dielectric substrate. The derived lower Q-factor
bounds are orders of magnitude tighter than the Chu limit and introduce a
new scaling rule. These bounds consider all possible geometries on the pre-
defined design region. Moreover, it is shown that well known patch antennas
have Q-factors near the bounds and have thus a near optimal bandwidth. The
computation of the bounds is done using a method of moments formulation.
However, an approximation to these bounds using commonly available simu-
lation tools is provided.

1 Introduction
Microstrip patch antenna technology saw a rapid development in the late 1970s [23,
33] partially driven by their low-cost and ease of fabrication. Modeling of these
antennas soon followed, and reliable models showing good agreement with mea-
surements became available by the early 1980s [31]. These models allowed antenna
designers to improve performance parameters, such as bandwidth. Microstrip patch
antennas are still in wide use today and can be modeled using commercial software
e.g., FEKO or CST [1, 2].

Due to the narrowband nature of microstrip antennas, the Q-factor, that is
inversely proportional to the fractional bandwidth, is an important design param-
eter [7]. Bandwidth and Q-factor can be computed for a given design [43] and are
then generally optimized by varying parameters using, e.g., heuristic methods [20,
35]. While this is a reliable design approach, it is time-consuming and often obtains
local optima rather than a desired global optimum.

Since lower Q-factor bounds of microstrip patch antenna designs are of particular
interest, an approach to compute these bounds (also referred to as limit) is presented
here. This allows designers to assess the feasibility of reaching a required bandwidth
within a specified design region. These bounds also provide benchmarks, in the
design process, and when evaluating designs from literature.

A physical bound on Q-factor was derived by Chu [6] in the late 1940s. This
bound, applicable to small antennas enclosed by a sphere, radiating into free space,
is generally known to be unobtainable for microstrip patch antenna designs due to
the latter’s form factor. Obtaining tight bounds on several parameters for arbitrarily
shaped antennas has successfully been done, using current optimization on antennas
made of conductors having no dielectric substrate [5, 10, 13, 24, 25]. Amongst all
possible currents, the optimal one produces the lowest possible Q-factor.

In order to determine lower Q-factor bounds, all possible design geometries need
to be considered. The performance of these design geometries can be computed
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from their underlying current distribution. To compute Q-factor, this current dis-
tribution is linked to stored energy and radiated power. Thus, a natural method to
compute lower Q-factor bounds is to optimize over all possible current distributions
on the antenna design region. Conveniently, these currents are the unknowns in
the method of moments (MoM) formulation. A similar formulation would be very
difficult in a semi-analytic method e.g., cavity model or numerical methods such
as finite element method (FEM) or finite-difference time-domain (FDTD), where
the natural unknowns are the fields. Using current optimization with MoM, lower
Q-factor bounds are computed by eigenvalue problems.

Microstrip patch antennas can be analyzed numerically, for instance with an
integral equation formulation using MoM [31]. If the ground plane and dielectric
slab are assumed to be infinite, their effect can be accounted for implicitly in the
Green’s function, given by Sommerfeld integrals [38]. In this case, the unknowns of
the problem are only the currents on the patch, providing a computational advan-
tage over methods, where also the ground plane and dielectric regions need to be
discretized [29]. It should be noted that while in reality the ground plane is always
finite, comparative studies [8] have found the assumption of an infinite ground plane
to be a fair approximation of reasonably large ground planes.

Here, the original definition of a microstrip patch antenna is used, in that a
single dielectric layer having all currents horizontally on the patch is assumed. These
antennas are typically fed with a vertical feeding pin. While shorting pins, stacked
patches or miniaturized ground planes [22, 37, 44] can be used to enhance the
bandwidth, they are not considered here. Further, it is also assumed that there
is only one dominant resonance over the bandwidth. Patches similar to the ones
presented here are in wide use due to their simplicity and low cost.

This paper presents a method to determine an upper limit on achievable band-
width for microstrip patch antennas. These bounds account for all possible geome-
tries within a predefined design region, thereby obtaining a performance limit to
compare miniaturized patch designs with. Obtained bounds are shown to be tight
(near) to the performance of some practical antenna designs. As the computation of
the bounds requires a MoM formulation, it is also shown that an approximation of
the bounds can be obtained requiring only the simulation of a half-wavelength patch
antenna. The bounds are formulated in Q-factor which is an accurate estimate of
achievable bandwidth given a single dominant resonance over the bandwidth [43].
These bounds build on [41] by allowing for the addition of a dielectric substrate.
This non-trivial addition makes the bounds more relevant for microstrip antenna
designers, where a dielectric is usually required.

Section 2 presents the microstrip patch antenna formulation that is used to com-
pute bounds. Section 3 validates expressions derived to compute Q-factor. Section 4
shows how to compute lower Q-factor bounds and section 5 provides a method to
predict bounds based on simulating half-wavelength resonant patch antennas. Then,
in section 6, practical examples of the proposed bounds and comparisons with patch
antennas are shown. Section 7 concludes the paper. Finally, the Appendices provide
additional information on Sommerfeld integrals and low-frequency Q-factor scaling.
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Figure 1: Microstrip patch antennas confined to a design region, Ω, with side lengths
`x and `y on top of an infinite dielectric substrate having relative permittivity εr and
thickness h. The dielectric substrate is on top of an infinite PEC ground plane. Some
possible patch geometries fitting within the design region are rectangular patch (a),
slot loaded patch (b), H-shaped patch (c), and U-slot patch (d).

2 Microstrip patch antenna model
In this paper, microstrip patch antennas are modeled by assuming an infinite PEC
ground plane and an infinite lossless dielectric substrate. On top of the substrate
is a PEC patch confined to a design region Ω, e.g., a rectangle with side lengths `x
and `y, see Fig. 1. The presence of the dielectric layer affects the microstrip patch
antenna performance in several ways leading to a non-trivial relationship between
dielectric permittivity and Q-factor. The combination of these effects with the
widespread applications emphasizes the importance of adding a dielectric to the Q-
factor formulations developed in the past [27, 41] that use image theory to account
for an infinite ground plane but do not consider the dielectric substrate.

Some classical patch antenna geometries constructed within a rectangular design
region Ω are shown in Fig. 1. The rectangular patch (a) is resonant around half-
a-wavelength [23] in the dielectric. A lower resonance frequency is obtained by slot
loading (b) effectively lengthening the current path and miniaturizing the patch [32].
For further miniaturization the H-shaped patch (c) can be used [32]. Dual resonances
can be obtained with the U-slot patch (d) [21]. These patches can be constructed
by removing metal from the rectangular design region and then the radiated field is
determined by the current density J(r) on the remaining metal part. This enables
modeling of antenna parameters such as Q-factor and gain from all patch geometries
within the design region Ω by identifying non-metal regions with current density
J(r) = 0.

In this paper, lower bounds on the Q-factor for microstrip patch antennas are
determined by optimizing over current densities J(r) in Ω for given height (h),
relative permittivity (εr), and frequency (f), see Fig. 1. These bounds implicitly
account for all possible patch geometries within the design region (Ω), such as (a)-
(d) in Fig. 1. Since the bounds are tailored to microstrip patch antennas, they can
be tight to designs.

Here, it is important to emphasize the key difference between a method to com-
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pute the performance of a given structure, as opposed to the bounds for a given
design region. For a given structure and excitation, analyzing microstrip patch an-
tennas is well understood [31]. For instance using a commercial solver. In contrast,
bounds for a given design region rather computes a performance limit for all anten-
nas fitting within the design region using e.g., MoM as a tool in current optimization.
The latter is not understood as well, but may provide simple, yet valuable, results
to antenna designers.

MoM [17, 31] is used to compute microstrip patch antenna bounds, where the
surface current density on the design region Ω is expanded in a set of basis functions
ψm(r) as

J(r) =
M∑
m=1

Imψm(r). (2.1)

The expansion coefficients Im are collected in I ∈ CM×1 and related to the excitation
voltages V ∈ CM×1 as

ZI = V. (2.2)

The MoM impedance matrix, Z ∈ CM×M , is decomposed in its real and imaginary
parts

Z = R + jX (2.3)

defining the resistance R ∈ RM×M and reactance X ∈ RM×M matrices. This MoM
impedance matrix describes the interaction between all basis functions on the patch.
The interaction between the patch basis functions and the external environment
(e.g., dielectric and ground plane) is implicitly accounted for through the Green’s
functions derived using e.g., Sommerfeld integrals [31].

3 Calculating and validating Q-factor
The Q-factor of a single resonant antenna is inversely proportional to its fractional
bandwidth [43]. However, unlike bandwidth, Q-factor can be computed at a single
frequency. This is exploited here to approximate bandwidth, which is an important
microstrip patch antenna design parameter. It should be noted that this formulation
can be extended to multiband antennas, as long as there is one dominant resonance
within each band.

The Q-factor of an antenna is related to its fractional bandwidth by [43]

BΓ0 ≈
2

Q

Γ0√
1− Γ 2

0

, (3.1)

where Γ0 is the threshold for the reflection coefficient. An approximate Q-factor can
be determined from inverting (3.1) as

QΓ0 =
2

BΓ0

Γ0√
1− Γ 2

0

. (3.2)
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In this paper, the threshold is set to Γ0 = −10 dB to calculate approximate Q-factor
values from simulated bandwidths.

The Q-factor (3.1) is linked to the quotient of stored energy and dissipated power
(Pd) as

Q =
2ωmax {We,Wm}

Pd

, (3.3)

where angular frequency is denoted by ω = 2πf , electric stored energy by We, and
magnetic stored energy by Wm.

Surface waves [22] result in some dissipated power in (3.3) not being radiated
into free space even for an infinite lossless dielectric, PEC patch, and infinite PEC
ground plane. When the substrate is thin, the surface wave that propagates in the
dielectric layer only contains the first transverse magnetic surface-wave mode. This
mode has no cutoff frequency and the first transverse electric surface-wave mode is
launched when the free-space wavelength is, λ < 4h

√
εr − 1, [31].

The dissipated power can then be divided into power radiated into free space
(Pr) and power lost in the surface wave (Psw) as Pd = Pr + Psw. Then radiation
efficiency due to losses in the surface wave is expressed as

η =
Pr

Pr + Psw

. (3.4)

Power lost in surface waves is undesirable even for a finite ground plane where
they lead to diffraction on the edges [31]. Therefore rather than using the Q-factor
in (3.3), a radiated Q-factor is determined as

Qrad =
Q

η
=

2ωmax {We,Wm}
Pr

. (3.5)

Before the Q-factors (3.3) and (3.5) can be computed, expressions for dissipated
power and stored energy are required. These quantities are determined from the
current density J(r) in the design region Ω contained in the column matrix I, e.g.,
computed for a given geometry and excitation using (2.1). The dissipated power
in (3.3) is evaluated from the MoM resistance matrix R in (2.3) as [17]

Pd =
1

2
IHRI, (3.6)

where the Hermitian transpose is denoted by superscript H. The radiated power (3.4)
is similarly determined from the radiation resistance matrix Rr ∈ RM×M as

Pr =
1

2
IHRrI. (3.7)

For a lossless dielectric, the radiation resistance matrix can be computed from the
far field (Appendix A) or by splitting up the Sommerfeld integral as shown in [31].

Stored electromagnetic energies of microstrip patch antennas are interpreted here
as the energy that does not radiate away through the dielectric (surface wave) or into
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free space (space wave). These energies are stored around the patch, for instance in
the dielectric region near the patch (standing wave).

Stored energy of small antennas in free space have been accurately modeled [36,
42] and been generalized to patch antennas above an infinite ground plane [41] and
heterogeneous temporally dispersive media [14]. The total stored energy can be com-
puted by differentiation of the reactance MoM matrix X in (2.3) as proposed in [18]
which together with the reactance define stored electric and magnetic energies [17,
36]

We =
1

8
IH
(
∂X

∂ω
− X

ω

)
I and Wm =

1

8
IH
(
∂X

∂ω
+

X

ω

)
I. (3.8)

Here, stored energy expressions for small antennas in free space are extended to
microstrip patch antennas, allowing for stored energy to be localized in the dielectric
substrate near the patch design region Ω. This procedure is based on (3.8) where
closed form expressions for the angular frequency derivative, ∂X

∂ω
, are presented in

Appendix A based on Sommerfeld integrals. From (3.8) it can be shown that both
the electric and magnetic stored energy have a term associated with the vector and
scalar potential Green’s functions [31] and the angular frequency derivative thereof.

To validate the expressions for stored energies (3.8) for microstrip patch an-
tennas, the Q-factor (3.3) is compared with Q-factors based on fractional band-
width (3.2) and differentiation of the input impedance [36]. In this latter method
the Q-factor for a single resonant antenna tuned with a series capacitor or inductor
is given by [43]

QZ′
in

=

√
(ωR′in)2 + (ωX ′in + |Xin|)2

2Rin

, (3.9)

where ′ denotes angular frequency derivative and Rin and Xin are the real and
imaginary parts of the input impedance, respectively.

A comparison between Q-factors (3.3) based on stored energies (3.8) (solid red
curve) and differentiation of the input impedance (3.9) (dashed green curve) for
H-shaped and rectangular patches are shown in Fig. 2. The H-shaped and rectan-
gular patches are fed with a delta gap excitation and microstrip line, respectively,
with position indicated by the black rectangle. For further validation with (3.9),
commercial software (FEKO) was used with a thin-wire feed over a small cut in the
H-shaped patch instead of a delta gap feed (blue curve). Similarly, to validate the
results for the rectangular patch the microstrip port excitation model in FEKO was
used. For both patches the self resonances (Xin = 0) were matched to Rin, in order
to compute the fractional bandwidth. Then the fractional bandwidth was used to
calculate Q-factor (QΓ0) from (3.2). These Q-factors are shown by black markers in
Fig. 2 and confirm the calculated Q-factor. This example indicates that Q-factor
determined from the quadratic forms (3.8) is an accurate indicator of Q-factor and
fractional bandwidth for microstrip patch antennas. Finally, it should be noted that
when interpreting computed Q-factor (3.3) and (3.9) in terms of bandwidth (3.2) for
non-resonant structures (Xin 6= 0) a series tuning capacitor or inductor is assumed.
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Figure 2: Validation of Q-factors computed using the stored energy in (3.8) (Q),
differentiation of the input impedance (3.9) (QZ′

in
) and fractional bandwidth (3.2)

(QΓ0) for H-shaped and rectangular microstrip patch antennas on a dielectric slab
with relative permittivity, εr = 4, dimensions h = 0.05`x, `y = 0.77`x, `a = 7`x/15,
`b = 5`y/11, `c = 2`x/7, `d = 7`y/22, and `e = 5`x/42. The Q-factors at self
resonances are indicated with markers and are computed from the bandwidth (QΓ0).

4 Lower Q-factor bounds
From the expressions of Q-factor (3.3), dissipated power (3.6), and stored energy (3.8),
an optimization problem to compute lower bounds on Q-factor can be written as

minimize max {We (I) ,Wm (I)}
strubject to Pd (I) = Pin.

(4.1)

Both the objective (related to numerator of (3.3)) and the constraint are quadratic
functions of the current (I), which is the optimization variable. Therefore, this is
a quadratically constrained quadratic program (QCQP) which can be solved using
its dual as a parametrized eigenvalue problem [12]. Note that the input power
(Pin) in (4.1) can be set to any arbitrary positive value. This does not change the
bounds, but rather just scales the optimal currents. For the eigenvalue problem, a
convex combination of We and Wm can be taken [5]. Then the eigenvalue problem
to compute lower Q-factor bounds can be written as [13]

Qlb =
1

2
max
ν

min eig
(
νX + Xω,R

)
, (4.2)

with Lagrange parameter ν ∈ [−1, 1] and Xω = ω ∂X
∂ω

. It should be noted that low-
rank matrices R can be exploited [9, 15] to reduce the computational cost of (4.2).

Once the optimization problem has been solved, it is possible to obtain currents
that satisfy the bound from the eigenvectors. This implies equality in (4.2) and
therefore no dual gap [3]. In some cases it may be necessary to test for degenerate
eigenvalues to recover the currents as shown in [5]. This phenomenon is attributed
to geometrical symmetries in the problem.
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0.2 0.3 0.4 0.5 0.6
100

101

102

103

ℓx/λ

Q

Qlb, εr = 1
Qlb, εr = 2
Qlb, εr = 4

a

QChu

Figure 3: Demonstration of the tightness of lower Q-factor bounds for a rectangular
design region Ω with aspect ratio `y = 0.77`x, substrate thickness h = 0.05`x and
relative permittivity εr ∈ {1, 2, 4} computed using (4.2). FEKO simulation results
for self-resonant antenna types (a-c in Fig. 1) with Q-factors from (3.9) are indicated
with markers. The H-shaped patch (c) has additional dimensions, `a = 0.5`x and
`b = `y/3, see Fig. 2. To place the new bounds into perspective, the Chu limit
(QChu) [6] is included.

The Q-factor bounds from (4.2) can be determined once the MoM impedance ma-
trix (2.3) and its angular frequency derivative in Appendix A have been computed.
Q-factor bounds,

Qlb = Qlb(f,Ω, h, εr), (4.3)

obtained in this way are functions of several microstrip patch antenna parameters.
Investigations of the bounds for any of these parameters can lead to useful antenna
design insight. Illustrations in this paper focus on two cases; firstly how the bounds
depend on the frequency f for a fixed design region and dielectric slab, and sec-
ondly how the bounds depend on the design region Ω for a fixed dielectric slab and
frequency.

To demonstrate the bounds for the case with a fixed geometry, a design region
Ω with `y = 0.77`x and dielectric thickness h = 0.05`x, see Fig. 1, is considered
together with a sweep of frequency or equivalently free-space wavelength (λ). For
substrate relative permittivities εr ∈ {1, 2, 4}, lower Q-factor bound, Qlb, are shown
for electrical sizes `x/λ by solid lines in Fig. 3. It should be further emphasized
that although the bounds are computed for a rectangular patch region, they imply
thatany patch geometry fitting within the design region, Ω has Q-factor at or above
the bound.

The Chu bound [6, 39], Q ≥ QChu = 1/(ka)3 + 1/(ka), for any antenna enclosed
in a sphere of radius a circumscribing the patch and its mirror image, is also shown in
Fig. 3. The Chu limit is clearly not tight for microstrip patch antennas and orders of
magnitude off the bounds presented here. This is due to the use of a circumscribing
sphere, where the radius of the volumetric design region is a ≈ 0.632`x instead of
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the actual planar design region.
The bounds are compared with Q-factors from (3.9) of antenna designs (a-c) in

Fig. 1 with input impedance simulated in FEKO. These patches with probe feed,
having placement indicated by markers on their geometry, are shown in Fig. 3.
The two half-wavelength resonant patches (a in Fig. 1) are matched to 50 Ω. The
Q-factors calculated using (3.9) are shown to be approximately on the bounds for
all three relative permittivities. Two other matched antenna designs (slot loaded
(b) and H-shaped (c)) are shown to also be approximately on the bounds. These
examples demonstrate that the computed bounds are tight, in the sense that it is
possible to design antennas with Q-factors close to the bound. The examples also
show that the resonance frequencies scale approximately with the wavelength in the
dielectric λε = λ/

√
εr, as expected.

The optimal currents obtained from (4.2) given a rectangular design region are
generally associated with a polarization along the longer dimension of the patch
for radiation in the normal direction, therefore in Fig. 3, x̂-polarized as `x > `y.
To enforce polarization along the shorter dimension of the patch, the optimization
problem (4.1) is reformulated by adding an affine constraint to ensure no undesired
polarization as

minimize max {We (I) ,Wm (I)}
strubject to Pd (I) = Pin

FoI = 0,

(4.4)

where Fo is the far-field vector (defined in Appendix A) for the undesired polar-
ization. When an x̂-polarization bound is desired but `y > `x, then Fo, defined
here for radiation normal to the patch into free space, should be for ŷ-polarization
in (4.4). Optimization problem (4.4) can be reduced to the form (4.1) by eliminating
the linear equality constraint [4], similar to (4.2), solved as an eigenvalue problem.
It should be noted that by maximizing partial gain over Q-factor, dependence on
polarization can also be investigated [41].

The optimization problems in (4.1) and (4.4) can be reformulated to minimize
the radiated Q-factor (Qrad) in (3.5) by replacing Pd with Pr. This can potentially
yield different optimal currents.

5 Bounds from self-resonant patches
The formulation to obtain lower Q-factor bounds presented in section 4 requires a
MoM implementation as e.g., presented in section 2. However, a simpler approxi-
mate formulation to obtain lower Q-factor bounds may be desired. Therefore, this
section introduces a simple approximate method for obtaining lower Q-factor bounds
over a range of frequencies (4.3), requiring only simulations of half-wavelength res-
onant patch antennas.

Patch antenna resonances are associated with their dielectric wavelengths, as
shown in Fig. 3. Therefore, it is worth comparing bounds at the same dielectric
wavelength λε as shown in Fig. 4. When comparing Fig. 3 and Fig. 4, it is observed
that the order of the curves are swapped. This is simply due to the bounds being
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Figure 4: Lower Q-factor bounds for rectangular design regions Ω with dimensions
`y = 0.77`x and dielectric thickness h = 0.05`x plotted versus `x/λε. Dashed lines
show how (5.1) approximates the lower Q-factor bounds from simulations of half-
wavelength resonant patches. The markers show the Q-factor obtained from simu-
lating a half-wavelength resonant patch antenna as well as the predicted Q-factor
from (5.1) interpreted as for the same geometry at a desired design frequency.

represented with respect to dielectric wavelength in Fig. 4 as opposed to the free-
space wavelength in Fig. 3. Other than the addition of the bounds with relative
permittivity εr = 10 the data is the same.A reason for using the dielectric wavelength
is that resonances of half-wavelength patches are approximately at `x/λε ≈ 0.5.

The log-log plot in Fig. 4 has straight lines, and the bounds scaling can be read
of as approximately (λε/`x)

5 (doubling size reduces Q bounds by a factor 32) up to
the half-wavelength resonances. This scaling is also derived in Appendix B through
a low-frequency expansion assuming no total charge on the patch, given εr = 1, and
can be partially attributed to the ground plane acting as a short for small h/λ. It
should be noted that at low-frequencies given a total charge on the patch, radiation
from the charge difference between patch and ground plane can result in (λε/`x)

3

Q-factor scaling, however this form of monopole radiation is not desired for patch
antennas.

To use the (λε/`x)
5 scaling to approximate bounds, a valid reference Q-factor is

required. For this, simulated half-wavelength resonant patch antennas’ Q-factors,
Qhw, computed using (3.2) or (3.9), are chosen. These are reasonable reference Q-
factors, as these antennas perform close to the bounds, as shown in Fig. 3. The
simple scaling rule that follows from these simulations of half-wavelength resonant
patch antennas with frequency fhw and dielectric wavelength λε,hw, is given by

Q̃lb(f) =
Qhwf

5
hw

f 5
=
Qhwλ

5
ε

λ5ε,hw
. (5.1)

This scaling rule is presented in Fig. 4 (dashed lines) for bounds varying in frequency
for a fixed design region and dielectric slab, i.e., for a fixed ε, h, `x and `y. The results
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show that by only simulating one half-wavelength patch, a good approximation of
Q-factor bounds over a range of frequencies with chosen geometric constraints and
permittivity are obtained. This scaling is observed to be more accurate for higher
relative permittivity. It should be noted that this scaling can also be added as an
extension of the cavity model predicted half-wavelength Q-factors [23], this does not
require a full-wave solver but is less accurate.

For design purposes, it is convenient to know approximate bounds on Q-factor
to obtain a benchmark before beginning the design process. To this aim, consider a
design region Ω with fixed dielectric slab and working frequency of the antenna f .
For the design region the maximum length is `x and the maximum width is `y. The
relative permittivity and height of the dielectric slab are εr and h, respectively. An
approximation of lower Q-factor bounds for the antenna under design consideration
can be obtained using the scaling (5.1) through the following procedure:

1. Determine the half-wavelength resonance frequency, fhw, for the considered
dielectric slab and design region

2. Obtain the Q-factorQhw of the half-wavelength patch using either (3.2) or (3.9)

3. Obtain Q̃lb(f) from Qhw using (5.1)

An example of using the scaling rule (5.1) is to compute an approximation of
lower Q-factor bounds at 2.45 GHz for relative permittivity εr = 4, dimensions
`x = 20 mm, `y = 15.4 mm and h = 1 mm. Then step 1) the half-wavelength
resonance frequency is determined as approximately 3.665 GHz. For the second step
2) the Q-factor is computed as 95.5 at the half-wavelength resonance. Then finally 3)
using the scaling Q̃lb(f) ≈ 95.5(3.665/2.45)5 ≈ 715. This corresponds to a −10 dB
bandwidth of approximately 2.3 MHz. The results from these steps are shown by
markers in Fig. 4.

The scaling of (5.1) is further demonstrated on results presented in Fig. 4, by
factoring out the λ5ε/`5x scaling, as shown in Fig. 5. Additional dielectric thicknesses
are also considered and shown to have similar scaling along with the expected result
that increased dielectric thickness results in a lower Q-factor [23]. Lastly, it should
be noted that the small difference between the predicted scaling and bounds in
Fig. 4 depends on h and λ. By reducing h or increasing λ the proposed scaling (5.1)
becomes a more accurate approximation. This means that scaling comes closer to
the low-frequency expansion of Appendix B, and also that the scaling contribution
of the surface wave is reduced.

6 Practical examples
In this section, practical applications of the lower Q-factor bounds compared with
simulated antenna designs are presented. Subsection 6.1 illustrates how the Q-
factor depends on the patch width for antennas linearly polarized along their length.
Subsection 6.2 examines how the size of the design region impacts Q-factor bounds
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Figure 5: Lower Q-factor bounds for rectangular patch region with dimensions `y =
0.77`x, relative permittivity εr = 4 and varying height. The axis is scaled to show
the (`x/λε)

5 scaling.

for a given frequency and substrate. Subsection 6.3 shows how the bounds can be
applied to dual resonant patch antennas. Finally, subsection 6.4 shows the effect
when bounds are determined on radiated Q-factor (3.5) instead of on Q-factor (3.3).

6.1 Design region width

Improvement in bandwidth can be achieved by altering the width of half-wavelength
patch antennas [23]. This subsection investigates this improvement for arbitrary
shaped antennas, designed within a rectangular design region Ω (see Fig. 1). In
Fig. 6, the patch width (`y) effect on the bounds for polarization along the length (`x)
enforced by (4.4) is shown. However, the slopes of the bounds in Fig. 6 are relatively
unaffected by the change in width. This implies that the scaling rule of (5.1) can be
generalized to other length-to-width ratios than shown in Fig. 4. The bounds are
observed to scale roughly as `x/`y (doubling `y reduces Q bounds by a factor 2) as
shown in Fig. 7 at selected `x/λε. Further, when the width is greater than the length,
the lower Q-factor bounds can be significantly greater than when polarization is
disregarded solving (4.1), especially at lower frequencies. This is due to the dielectric
wavelength of the patch being linked to the polarization direction (`x) and therefore
being the most significant patch dimension regarding Q-factor scaling, especially
before the half-wavelength resonance (as shown in subsection 6.3). Finally, the
bounds of Fig. 1 are shown to have both the H-shaped and half-wavelength patch
antennas near the Q-factor bounds for all presented patch dimensions.

6.2 Patch design for a given substrate and frequency

A classical problem is to design patch antennas for a given frequency and dielectric
substrate. In this subsection, a design scenario is used to investigate how the design
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Figure 6: Effect of width `y on the lower Q-factor bounds, Qlb,x, for polariza-
tion along `x enforced through (4.4), relative permittivity εr = 4 and thickness
h = 0.05`x. The bounds are compared to the performances of H-shaped and half-
wavelength resonant patch antennas using (3.2).

region (Ω) affects the Q-factor bounds for a given dielectric substrate and frequency.
The chosen substrate has thickness, h = 1.57 mm, and relative permittivity, εr =
2.33, as for RTDuroid 5870 by Rogers Corporation, but it is considered lossless.
Then, for a frequency of f = 2.45 GHz, the length and width of the patch design
region are varied. The lower Q-factor bounds, constrained to x̂-polarization in the
normal direction by solving optimization problem (4.4), are shown in Fig. 8. This
contour plot for a range of design region dimensions provides lower Q-factor bounds.
Given a design region, the bounds indicate whether it is possible to obtain a required
Q-factor. For a desired Q-factor, the bounds also provide a range of possible design
regions that can aid patch miniaturization.

The regular spacing of the contours in log scale show that for this scenario a
relatively simple bounds scaling can be derived. The contour lines are all spaced
by 100.2, therefore, the first line less than Qlb,x = 1000 is Qlb,x ≈ 631. Going
between these two lines, it can clearly be read off that a change in `x (polarization
dimension) results in greater bounds scaling compared with an equal change in `y
(width dimension), as shown in subsection 6.1. Thus, doubling `x results in moving
across 4 contour lines while doubling `y results in only moving across 2 contour lines.

To further demonstrate the relevance of the bounds, FEKO is used to simulate
patch antennas. This is first done for three half-wavelength patches by using a probe
feed and then obtaining Q-factors from (3.9). These results are shown to be near
the bounds and are indicated by their geometry in the contour plot. Further, slot
loaded patches (b) and an H-shaped patch (c), are simulated. All patches shown in
Fig. 8 are within a margin of 10% from the lower Q-factor bounds, see Table 6.2.
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permittivity εr = 4 and thickness h = 0.05`x.

Patch type `x/mm `y/mm Qlb,x QZ′
in

Half-wavelength 38.5 50 45 45
Half-wavelength 38.9 30 66 67
Half-wavelength 39.4 20 90 91

Slot loaded 35.2 28 90 94
Slot loaded 36.7 18 118 121
H-shaped 25.9 20 274 297

Table 1: Numerical Q-factors of Patches Shown in Fig. 8

6.3 Dual resonance

Some patch antennas are designed for dual resonance [22]. In the first example,
Q-factors for dual resonant antennas are compared with the lower Q-factor bounds
allowing for different polarization for the two resonances. In the second example, a
design with the same polarization for both resonances is considered.

For the first example, Fig. 9 shows a comparison between x̂ and ŷ-polarized
lower Q-factor bounds (4.4) for a patch with dimensions `y = 0.77`x, h = 0.05`x
and relative permittivity εr = 4. Firstly, it shows that at lower frequencies, a
significant reduction in Q-factor can be achieved by having polarization along the
longer dimension of the design region. Further, it indicates that at higher frequencies
(around the half-wavelength resonance of the shorter (y) dimension) there is little
difference between the bounds. This result also shows that for dual resonant patch
antennas, two orthogonal modes tight to the bounds can be obtained. This patch
is shown with feed placement indicated with a black dot. Further, a reduction in
Q-factor is not possible by using circular polarization [16, 34] with these design
parameters since x̂-polarization is essentially on the bounds, calculated using (4.1),
which allows for arbitrary polarization.
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Figure 8: Lower Q-factor bounds, Qlb,x, for relative permittivity εr = 2.33, frequency
f = 2.45 GHz, dielectric thickness h = 1.57 mm and a rectangular design region
Ω with side lengths `x and `y for x̂-polarized antennas in the normal direction.
The shown antenna geometries have interior colors corresponding to their Q-factors
computed using (3.9), see Table 6.2.

For the second example, a dual resonant antenna with the same polarization
for both bands can be obtained from the U-slot patch (d) in Fig. 1. In this case,
efficiently utilizing the patch design region for both resonances is challenging. This
is because a larger portion of the design region is effectively used for the first reso-
nance than for the second resonance. The results in Fig. 10 show this for a chosen
U-slot patch (with dimensions h = 4.5 mm, `x = 21.5 mm and `y = 26.5 mm). From
simulations Q-factor is computed using (3.2), the resonances are located at approx-
imately 3.64 GHz (`x/λε ≈ 0.39) and 5.23 GHz (`x/λε ≈ 0.56). The first resonance
is near the bounds, while the second is significantly off. This may be seen as a fair
trade-off, as it results in a similar fractional bandwidth of approximately 0.05 for
both resonances. This fractional bandwidth is similar to what is reported in [19]
from CST simulations with a finite ground plane that is double the size of the design
region.

6.4 Surface-wave losses

To investigate the contribution of surface-wave losses on Q-factor bounds (4.1),
the latter are computed with (Qlb) and without surface-wave losses (Qrad

lb ). For
both Qlb and Qrad

lb the optimal currents are then used to compute the radiation
efficiency for relative permittivities εr ∈ {2, 4} as shown in Fig. 11. Observe that in
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and relative permittivity εr = 4 obtained from (4.1) and (4.4). The duel resonant
antenna geometry is shown with feed location and two simulated resonance Q-factors
obtained using (3.9) are indicated by markers.

0.3 0.4 0.5 0.6
100

101

102

ℓx/λε

Q

2 3 4 5 6

100

101

102

f(GHz)

Q

Qlb,x

Qlb

QΓ0

ℓx

ℓy

Figure 10: Lower Q-factor bounds for a design region with dimensions `x = 21.5 mm
and `y = 26.5 mm compared with a dual resonant U-slot patch antenna design
adapted from [19], where the relative permittivity is εr = 2.2 and substrate thickness
is h = 4.5 mm.
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Figure 11: Radiation efficiency due to surface-wave losses of lower Q-factor bounds
currents for the lossless case given a patch with dimensions `y = 0.77`x and dielectric
thickness h = 0.05`x. Two relative permittivities εr ∈ {2, 4} are used and for half-
wavelength resonant patches radiation efficiency calculated with FEKO are shown
with markers. The approximate radiation efficiency for a HED (6.1) is also shown
for both relative permittivities.

the presented range of `x/λε for both relative permittivities there is no significant
noticeable difference in radiation efficiency between Qlb and Qrad. Additionally,
the quotient Qlb/Q

rad
lb (see, (3.5)), indicating similar radiation efficiency, correctly

suggests that the optimal currents effectively produce the same Q-factor. At the
half-wavelength resonance FEKO simulations are used to compute the radiation
efficiency as indicated with markers in Fig. 11. The FEKO simulations’ radiation
efficiency was determined by integrating over the far-field above the patch (radiated
power) and comparing this with the input power. The small difference between
FEKO and the bounds come from a combination of factors e.g., a different feed
model. Furthermore, it can clearly be seen that a greater relative permittivity and
`x/λε results in greater surface-wave losses when computing Q-factor bounds.

For a horizontal electric (Hertzian) dipole (HED) on the patch region, given
a thin substrate, an approximate ratio between surface-wave power and radiated
power is [30]

Psw

Pr

=
3π2

2

(εr − 1)3 h/λ

ε2r (εr − 1) + 2
5
εr
. (6.1)

From this expression, radiation efficiency can, in a lossless case, be approximated as
ηHED = 1/ (1 + Psw/Pr). This has been shown to be accurate up to h ≤ 0.05λ [30].

In Fig. 11, the radiation efficiency obtained for an HED is shown with two
black lines. These lines suggest that it can be sufficient to use (6.1) in determining
radiation efficiency once bounds have been computed with (4.1).
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7 Conclusion
In this paper, a formulation to compute lower Q-factor bounds for microstrip patch
antennas is presented. The results are numerically validated against expressions
available in literature for computing Q-factor from fractional bandwidth and input
impedance. Current optimization is used to compute the lower Q-factor bounds.
These bounds are shown to be tight for classic patch antenna designs. This further
emphasizes the versatility of current optimization as a method of determining lower
Q-factor bounds, previously generally only applied to antennas in free space. Fur-
ther, the microstrip patch antennas under investigation serve as a canonical case for
introducing the method.

It is shown that lower Q-factor bounds can be approximated by a simple method
that only requires the simulation of half-wavelength resonant patch antennas. The
low-frequency lower Q-factor bounds scale differently from those of antennas in free
space, due to the ground plane. Further, this bound is orders of magnitude tighter
than the Chu bound. Moreover, it shows that circular polarization cannot enhance
bandwidth for the patch antennas considered here.

Some practical applications of the bounds are also considered, such as how the de-
sign frequency and design region impact the bounds for a given dielectric substrate.
Obtained Q-factor for dual resonant antennas are also compared to the bounds for
both orthogonal, and parallel polarization, of the two resonances. The bounds are
computed with and without surface-wave losses, showing that for electrically thin
substrates, the surface-wave contribution to the bounds is relatively small and can
be accurately approximated by a closed form expression.

Among potential extensions of the proposed method are the addition of shorting
pins, stacked patches and considering other design region shapes e.g., circular. A
further extension is using two resonances to widen the bandwidth.
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Appendix A MoM impedance angular frequency
derivative

The MoM impedance matrix in (2.3), assuming no ohmic losses, can be expressed
as

Z = jωµ0L +
Ci

jωε0
, (A.1)

where L and Ci are broadly linked to the inductance and inverse of the capacitance,
respectively. The permeability of free space is denoted µ0, the permittivity of free
space is denoted ε0, and the speed of light in free space is given by c0 = 1/

√
ε0µ0.
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Matrix L has elements

Lmn =

∫
Ω

∫
Ω

ψm(r1) ·GA ·ψn(r2) dS1 dS2 (A.2)

and matrix Ci has elements

Cimn =

∫
Ω

∫
Ω

∇1 ·ψm(r1)∇2 ·ψn(r2)GV dS1 dS2, (A.3)

where the basis functions are denoted ψm and ψn. Since all basis functions are
assumed to be on the patch region, the distances between basis functions are equal
to their radial distances, given by ρ12 = |r1 − r2|. The vector Green dyadic,
GA = GA(x̂x̂ + ŷŷ) can be calculated from the scalar, GA, since no z-directed
basis functions are assumed. Along with the scalar Green’s function, GV, are ex-
pressed in radial coordinates as

GA (ρ12) =
1

4π
S0

(
1

DTE

)
GV (ρ12) =

1

4π
S0

(
N

DTEDTM

)
, (A.4)

where the Sommerfeld integral, S0 is [31]

S0(g) = 2

∫ ∞
0

J0 (kρρ12) kρg (kρ, ω) dkρ, (A.5)

where J0 is the Bessel function of order 0 and kρ is the radial spectral coordinate.
Further, DTE, DTM, and N are defined as [31]

DTE = u1 + u2 cothu2h

DTM = εru1 + u2 tanhu2h

N = u1 + u2 tanhu2h,

(A.6)

with
u1 =

√
k2ρ − ω2c−20 and u2 =

√
k2ρ − ω2εrc

−2
0 . (A.7)

The following derivation is used to compute stored energies (3.8). Firstly, the
angular frequency derivative of the MoM impedance matrix is computed as

∂Z

∂ω
= jµ0L + jCi

1

ω2ε0
+ jωµ0

∂L

∂ω
+

1

jωε0

∂Ci

∂ω
, (A.8)

and the imaginary part can easily be separated for computations of (3.8). The
angular frequency derivative of L is

∂Lmn

∂ω
=

∫
Ω

∫
Ω

ψm(r1) ·ψn(r2)
∂GA

∂ω
dS1 dS2 (A.9)

and the angular frequency derivative of Ci is

∂Cimn

∂ω
=

∫
Ω

∫
Ω

∇1 ·ψm(r1)∇2 ·ψn(r2)
∂GV

∂ω
dS1 dS2. (A.10)
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To calculate angular frequency derivatives of the vector and scalar Green’s func-
tions in (A.4), differentiation is moved inside the integral in the Sommerfeld integral
under conditions given by Lebesgue’s dominated convergence theorem [40]. The
angular frequency derivative of the vector Green’s function can then be written as

∂

∂ω
GA (ρ12) =

1

4π
S0

(
∂

∂ω

1

DTE

)
. (A.11)

The final expressions follow from basic differentiation rules and explicit differentia-
tion of terms in (A.4). The angular frequency derivative of D−1TE is given by

∂

∂ω

1

DTE

= −
∂
∂ω
DTE

D2
TE

, (A.12)

where
∂DTE

∂ω
=
ω

c20

(
εrh csch2 hu2 −

1

u1
− εr cothhu2

u2

)
. (A.13)

The angular frequency derivative of the scalar Green’s function (A.4) is expressed
as

∂

∂ω
GV (ρ12) =

1

4π
S0

(
∂

∂ω

N

DTEDTM

)
, (A.14)

which is further computed using

∂

∂ω

N

DTEDTM

=
DTEDTM

(
∂N
∂ω

)
−N

(
∂DTEDTM

∂ω

)
(DTEDTM)2

, (A.15)

where
∂

∂ω
DTEDTM = DTM

∂

∂ω
DTE +DTE

∂

∂ω
DTM, (A.16)

with
∂DTM

∂ω
=
ωεr
c20

(
− 1

u1
− tanhhu2

u2
− h sech2 hu2

)
(A.17)

and
∂N

∂ω
=
ω

c20

(
− 1

u1
− εr tanhhu2

u2
− εrh sech2 hu2

)
. (A.18)

The Sommerfeld integrals of (A.11) and (A.14) can be solved in the spectral-
domain by going out into the complex plane to avoid the singularity and disconti-
nuity at u1 = 0. For (A.14) the singularity of the first transverse magnetic surface
wave mode at DTM = 0 should also be avoided. It is assumed there is only one
surface wave mode. Note, there is no singularity or discontinuity at u2 = 0 [31]. To
integrate the tail, partition-extrapolation using the Mosig–Michalski algorithm [28]
can be used, except when ρ12 = 0, where the integrals are non-oscillatory as a result
of J0(0) = 1 in (A.6). These integrals are also finite and relatively easy to solve.

From Sommerfeld integrals an asymptotic expression for the radiated far field
can be derived [31]. Given radiation in the z-direction from an HED at the origin,
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the far-field can be rewritten assuming for instance an x-directed current producing
an x̂-polarized far-field at x = 0, y = 0 and z →∞.

Using the far-field relation [10], Eê(r̂) = e−jkrF ê(r̂)/r as r →∞, and the current
density expanded in local basis functions as (2.1), the far-field vector can then be
expressed as

F ê(ẑ) ≈ FI =
M∑
m=1

−jωµ0Im

2π
(
1− j

√
εr cot(kh

√
εr)
) ∫

Ω

ê∗ ·ψm(r)ejkẑ·r dS, (A.19)

where ê is the unit polarization vector and superscript ∗ denotes the complex con-
jugate.

Appendix B Low-frequency expansion
Mirror currents are used to determine the low-frequency expansion for horizontal
current densities in a region Ω at height h above an infinite PEC ground plane. The
electric far-field F in a direction r̂ from a current density J in free space can be
expressed as

F (r̂) =
−jkη0

4π

(
r̂ ×

∫
R3

ejkr̂·r1J(r1) dV1

)
× r̂ (B.1)

which for the patch geometry with surface currents and surface mirror currents
reduces to∫

R3

ejkr̂·r1J(r1) dV1 =

∫
Ω

ejkr̂·r1J s(r1)− ejkr̂·(r1−2ẑr1·ẑ)J s(r1) dS1

=

∫
Ω

(
ejkr̂·r1 − ejkr̂·(r1−2hẑ)

)
J s(r1) dS1 =

(
1− e−j2hkr̂·ẑ

) ∫
Ω

ejkr̂·r1J s(r1) dS1 (B.2)

The low-frequency expansion [26] is expressed in the electric p and magnetic m
dipole moments determined from the surface charge %s and surface current J s den-
sities in Ω, i.e.

F (r̂) ≈ j2hkr̂ · ẑ k2

4πε0

(
r̂ × (p× r̂) + c−10 m× r̂

)
(B.3)

as k → 0, where

p =

∫
Ω

r%s(r) dS and m =
1

2

∫
Ω

r × J s(r) dS (B.4)

and it is assumed that the total charge in region Ω is zero. The radiated power for
the patch geometry scales as k6 in the electrically small limit in contrast to k4 for an
electrically small antenna in free space [6, 11]. The corresponding stored energy is
independent of k in the limit k → 0 and approaches the static energy. This produces
a Q-factor scaling from (3.3)

Q ∼ k−5 ∼ λ5 (B.5)
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in contrast to Q ≥ (ka)−3 for a spherical region with radius a in free space [6]
and Q ≥ 6π/(γk3) for electric dipole radiators in an arbitrary shaped region with
high-contrast polarizability γ [11].

If the height (h) is made proportional to the wavelength in free space h ∼ λ, this
from (B.3) produces radiated power scaling of k4.
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