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ABSTRACT

For many industrial processes it is of interest to desÍgn a"

decoupling precompensator. The precompensator makes it possible to design

the controllers based on single-input-single output models of the process.

A model of the process must be }crown to design the precompensator. This

report shows how the precompensator can be designed adaptively using input

output measurements.

The precompensator design is first done for the case when the

process is lcrown. The adaptive precompensator is then constructed using

the certainty equivalence principle. The convergence properties and the

implementatÍon of the adaptive decoupler are discussed. It is shown that

the adaptive scheme will converge provided the system is persistently

excited and that a suitable model structure is used. in the estination.
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1. INTRODUCTION

Most control systems for industrial processes are designed from a

single-input-single-output (SISO) point of view. This is appropriate only

if the coupllngs between the different loops are weak. There are,

however' many multivariable processes where there are strong couplings

between the loops. It is then of importance to consider this coupling

when designing the control system. Further it may be desirable to control

the different loops individually. To do this a decoupler must be designed

to separate the different control loops. The design of a decoupler

requires good process models sÍnce the decoupler critically depends on the

interr¡al structure and parameters of the system. The problem of

decoupling using lÍnear state feedback has been given large attention. An

overview based on geometric concepts is given in Morse and Wonham (1971)

and usÍng frequency domaÍn methods in Wolovlch (1,974). The decoupling

problem is also discussed in Pernebo (1981 a.. b). The fundamental

questions are the priori knowledge that is needed about the system and

what closed loop systems that are achlevable. These problems are

discussed in Desoer rrr¿ crr.ra.s (1g86). They give a parameterization of

all achievable stable decoupled systems using d5mamÍc output feedback.

Our approach is aimed at rnaking adaptive decoupling. This implies

that the design has to be ¡nade based on input-output nodels. Àdaptive

controllers for multiple input multiple output (MIMO) are discussed for

instance Ín BorÍsson (1979), Koivo (1980), Prager and Wellstead (1g8l),

Favier and Hassani (1982), Elliott and WolovÍch (1984). The adaprive

decoupling problem Ís solved approxinntely in McDermott and Mellichamp

(1986). Adaptive decoupling and prior knowledge is discussed in Singh and

Narendra (1984).
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How is decoupling done 1n the process industry today? The usual

approach is to design a precompensator such that the new system

essentially becomes decoupled. À survey of different ways to measure the

Ínteraction in a system is given in Jensen, Fisher and shah (1986).

Procedures for designing the precompensators are discussed in Wolovich

(L974) and Wolovich (1981). The first reference gives a design proced.ure

that can be used if the process has a stable inverse. In this paper we

propose a decoupling procedure based on a precompensator. The

precompensator is desÍgned such that no unstable pole-zero cancellations

occur. The decoupling precompensator will separate the controller design

Ínto a number of sÍngle input single output design problems. A design

procedure along these lines is hinted at in Johansson (Lg83, p44).

The paper is organized in the followÍng way: Section 2 contains a

discussion of the design method for lmown systems. The class of systems

that are considered are MIMO systems wÍth equal number of inputs a¡rd

outputs. Further the design should be based on Ínput-output models. The

adaptive version of the decoupling precompensator is discussed in Section

3. The convergence properties of the algorithm are also discussed.

Section 4 gives a discussion of the implementation of the adaptive

algorithm and of the computational problens of the proposed scheme.

Section 5 contains a summary and conclusions.

Our cont,rÍbutlons relative to earlier works are:

a) We derive an adaptive decoupling algorithm for a Iarge class of

systems. The decoupling is done without any unstable pole-zero

cancel lations.

b) The convergence of the desÍgn scheme is establÍshed under the

assumption that the input signals are persistently exciting.
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2. A DEæUPLING PREæMPENSATOR FOR KNOTVN SYSTEMS

The Process

The process to be controlled is assumed to be a m-input m-output

Iinear system. The system Ís described by the sarnpled data Ínput output

model:

t(q-1)v(t) B(q-1
)u( t) (2.1)

-1 -lwhere A(q ^) and B(q-^) are pol¡momial matrices in the backward shift

operator. It Ís assumed that l(q-l) is diagonal. This is no loss of

generalÍty, but may require that more par¿tmeters have to be estimated when

the process is unlorown. It is assumed that g(q-l) is invertable. This

implies that det (g(q-l)) is not identical equal to zero. The internal

couplings in the process are of great Ímportance for the design of

multÍvariable control systems. The interactor matrix is used Ín Elliott
and lYolovich (1984) a¡rd Dugard et al (1984). The interr¡al strucrure

natrix has been used in Pernebo (1981 a, b) a¡rd Joha¡rsson (1983). In rnany

adaptive control schemes it is assumed that the interactor rnatrix is known

or estimated. The problem of estfmating the structure mat,rix is avoided

in our case since it fs assumed that det (B) f a. rn this case the B

matrix plays a similar role as the structure matrÍx.

The priorÍ lcrowledge about the process that is needed for the design

of the precompensator is the "delay structure" of the process. This is

important for the design a¡rd to be able to determine the achievable closed

Ioop system. See Pernebo (1981 a, b) and Desoer and Gundes (1986). The

importance of the delay structure is also discussed in HoIt and Morari

(1985). fn this paper it is assumed that the delay between each of the
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inputs and the outputs are larown. For the adaptive implementation it
suffices to assume that the shortest delay in each row of the B-matrÍx is

Imown. To be able to n¡ale the estimation of the unknown system it is also

necessary to have an upper bound on the orders of the pol¡momials in the A

and B rratrices.

The assumptions about the process are summarized as

Assumtion 2.1: The process is described by the m-fnput m-output system

(2.L) with A diagonal and B Ínvertable, i.e. det(B) Ís not idenrical zero.

Assumption 2.2: upper bounds of the orders of the pol¡momials in À(

and B(q-1) are known.

Design of the precompensator

fntroduce a precompensator of the form

q-l)

u(r) P(q- )v(t)1 (2.2)

_1
where P(q ^) is a causal, stable transfer operator matrÍx. The

precompensator will now be derived using the results Ín Desoer a¡rd Gundes

(1986). They give a characterÍzatÍon of all decoupled systems that are

achievable by a stabilÍzing controller.

The purpose of the precompensator is to diagonalize the system i.e.

it should be chosen such that



-2.3-

1 -1 )"( t) B(q 1A(q )v( t) B(q )v(t)

is a diagonal system. The diagonalizatfon should be done wÍthout any

unstable pole-zero cancellations. Further it must be possÍbte to make a

causal implementation of P(q-l).

The achievable closed loop systems are determined by the time delays

and the unstable zeros of the open loop system. We first extract the

common factors of each row of B. We thus define the diagonal matrix

t)t(o

-1B¿(q ^) dÍag [8,' o B¿ro (2.3)

are the greatest conmon factors that are not

each row of g(q-l). This implies that

-k1 -ktl

" -k.
B;i(q-r)q t u.". the common nonminimum phase zeros and delays for the

i: th row.

Remark 2.1

rt is convenient to consider g(q-l) as a pol¡momial matrix in q-1.

Both nonminimum phase zeros a¡rd tÍne delays can then be treated

analogously. The "unstable" region in q-l is the Ínterior of the unit

circle. Compare Pernebo (1981 a) and Desoer and Gundes(1986). Since we

will not discuss the system theoretic questions in this paper extent we

will not introduce any new notatÍon for q-l.

where

aI lowed

-k.
Bãiq I

to be

i = 1,...,m

ca¡rcel led f n

The matrix B(q- 1 ) .*t now be written as

vvv

B(q- ) B¿(q
1e-1')B(q ^)L (2.4)
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Since det (B) I O it follows that rhe inverse of B exists

B ^(q
(q

1.e

diag[Dj

-1(q ^)

)

I -1 _1^(q ^)8"(o ^)J*tB-

-1(q')l-1B"(t ^)

N

D

t) I

iJ

where N,./D.. is the (i,J)th element of ;-1. Further it is assumedlJ lJ

that trj a¡rd Orj are coprime, i.e. atl common factors are removed.

Without loss of generality we car¡ normalize ñ-1 such that the first
non-zero coefficfent of DiJ(q-1) is equal to one.

rf the denominator polSmomials in ã-1 don't contain any pure time

-1delays (i.e. that q-1 is not a factor of Drj(q-t) and no unsrable roots

we c¿ut use ñ-1 as the precompensator. In the general case to nrake the

precompensator causal a¡rd stable we first have to extract the unstable

parts (and pure time delays) of each column of ã-1. This gives a stable

a¡rd causal precompensator which ca¡r be written

(2.6)-1P(q ^)

(2.5)

(2.7)

where the notation ['J* denotes that all common unstable poles and zeros

are elimÍnated in each element.

The polynomials D;(q-l) contains pure time delays and all unstable poles
J

in each column of ñ-1. DJ(q-l) J = 1, ... ,m are thus a leasr common

multiple of the j:th column of ñ-1.

Through the construction it follows that P(q-l) is stable and

causal. Combining (2.1), (2.2), (2.4) and (2.6) gives
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1A(q )v( t) s(q-1)p(q

-1N-1ry-1nr(o ^)B(q ^)B(q ^)

1 )v(t)

1g
r

1(q )v(t)

B
1 1 )v(t) (2.8)a ¡n.(o

where A, Bo and B- are diagonal pol¡momial matrices. This implies¿,r
that the precompensator P decouples the MIMO system into m SISO systems.

It is now possible to use SISO design methods to determine the m

controllers for (2.8).

Remark 2.2

In Desoer ana Cäaes (1.986, Theorem 3.2) it fs shown that the sysrem (Z.L)

ca¡r be stabled decoupled if a¡rd only if B¿ and 8", as defined by (2.3)

and (2.7), are factors of the decoupled sysrem as in (2.8)"

The diagonal matrices Bg a¡rd B" thus defÍnes the time delays a¡rd the

nonminimum phase zeros that must be present Ín the decoupled system. The

construction of the precompensator shows that it may be necessary to

introduce extra tÍme delays ar¡d./or nonminimum phase zeros in order to get

a decoupled system. The design of the precompensator given above e>cplains

the heurÍstic discussÍon in HoIt and Morari (1985), who claim thar

"better" MIMO systems can sometimes be constructed by introduction of

extra time delays in the regulator.

vvv

Remark 2.3

It is always possÍble to determfne a P such that BP is triangular

without introducing any extra time delays or nonminimum phase zeros

Pernebo (1986). Both P and P-l are then causal and stable.

vvv

Remark 2.4

Notice that when using the decoupling design given above it is not

necessary to nake any pairing of inputs and outputs. The precompensator

(q
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automatically defines a control signal ri that is used to control the

output yt.

wv
Remark 2.5

It is also possible to let B" consist of the least conmon multfple all
the denominators of each corumn of ñ-1. p(q-l) will then be a
pol¡rnomial rnatrix i.e. p(q-l) is a moving average compensator. This

choice will introduce more stable zeros in the decoupled system. This

will, however, not change the closed loop system if the design method

cancels stable zeros. This is the method that is used in the adaptÍve

version presented in Section 3.

vw
SfSO-pole placement

Each loop in (2.8) Ís now a sÍngle input sfngle output system of the

form

1
(2.s))va, (a ,(t) u, (o-1)v, ( t)

_1 _t _1.where Br(o ^) = B¿i(q ^)Bri(q ')

SlSo-design methods based for instance on pole-placement can now be used,
It

see e.g. Astrôm a¡rd IYittenmark (19g4). since nr(o-1) will conrain

nonminimum phase zeîos it is necessary to use a design method, which does

not cancel any unstable zeros.

The controller is now obtaÍned by solving the Diophantine equation

A.R
I

+ i=I
I

A .A .B:otmrl (2.10)SBI

for R, and s.. Aoi is an arbitrary stable pol¡momfal, whrch can be

interpreted as an observer pol¡momial. Amt Ís the desired closed loop

B]Ipoles is a monÍc pol¡momÍal that defines the zeros of B I that are
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allowed to be ca¡rcelled by the controller i.e. B i The

controller for the i:th loop is

Rtrt = -SiVf*Tiy"i (2.11)

where V-^, is the reference signal for the i: th loop a¡rd'r1

ao, {o-1) n;, {o-l)Ari(1 )/B;(1)B;i(1) (2.12)

-1nit(o ') is used to introduce new zeros Ín the closed loop transfer

function. Equation (2.L2) contaÍns a normalization factor to obtain unit
steady state gain from yri to yi.

Using (2.1,2) and (2.11) in (2.9) give rhe ctosed toop sysrem

BB:I i

_1Tr(u')

Aor (q L 1) Båi( )q
vi(r) vri(r)-1Aor(q ^) Ami(q )Bi (1) B;i(1)

¿
) Bi(q

Ami(1)

B;(1) B;i(1) -1A,nr(o ^)

t) -1Bi(q ^)B;Í(q
vri ( t)

It is also easy to Íntroduce Íntegrators in the design. The pole

placement design and its robustness properties are extensÍvely discussed
tt

in Astrom a¡rd lt¡irtennark (1984).

Examples

Two e><amples wÍll now be gfven to illustrate the construction of the

precompensator. The examples illustrate which decoupled systems that are

possible to achieve. The examples also show the computations that are

needed for the design.
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Consider the system
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-1 v(r)
-1r-q

o

-1q

-2 -3q +q

0

1-q

-q-1

-3 u(r)
q

From (2.4) we get

B(q

B^

This gives

and

P(q-1

q

o

1

-1
t) o

-2q

,.

-11+q ^

-L

q-1 ur(o-1 -1)B(q )

-1B¿(q ^) contains the common tlme delays ln each row and there are no
N-l

nonmlnfmum phase zeros tn Br. det(B) = 1 + 2q-^ fmplies that the system

has a nonmfnimum phase zero fn -2.

-l1*29 ^ t
-1q^ 1

-1(1+q ^) 1

-1B.(o ') drag[1+2q-1 r+eq-1]

)
1

-1q

-1-(1+q ') 1



The decoupled system is thus

v(r)
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-1 -1
)(1+2q

o

q

o

-Ð -1q -(1+2q ^

q--lr-q

o

0

--1r-q
v( r)

)
vvv

rn Example 2.L the same nonmÍnimum phase zero occurs Ín both loops

this is not always the case Ís shown ln the next example.

Example 2.2

Let the system be described by

Tha.t

0Ar '-::q: 
IÃz
.r(t) krZ ( kr

Let

B

where B

parts of
1

and Bt correspond to the minimum phase a¡rd nonminÍmum phase

1 respectively. BfZ ar¡d BZ are factored ar¡alogously. It

is further assumed that B; and Brz don't have any common factors. The

sa.me assumption is also rnade for B; and BiZ. We now get

B¿( t) -1.- ^L2
Cllag Lq q

-ur,

-h

v( t)
o0

1
BB

B

+
1 1

+

q

q
1 Btz

B(q
Bz

-1
)

o

k = kr-k*
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1
Btz

-1 -1B(q )
-kq -kq tBzBr B

1

o Bz

ThÍs gives

and

P(q

The decoupled systen is

-k
diag I q B;

-kt)n"(o Bq

L2
B

1 lBz

4
1

nj
-kq

1

B

I

t)
+
1

ri
B

o

q
ut ri oAt o

Ãz
v( t) v( t)

(1e85).

If we assume that k

'1tr+t<r-krr)
qo

o B; r;

The decoupled has a longer time delay in the second loop than the original

system. Further extra nonminimum pluse zeros are introduced in the second

loop. This is in correspondence wfth the dlscussion in Holt a¡rd Morari

1< kfZ then lt is easily found that



-1

- z.Lt -

) diae [q q
-ur,-k1

nn(a

_ln.(c ') diag [8, BzlBt

1 q-(k12-k1) B

'i'l
72+

B
1

-1P(q ^)

Az

o

Bt
_+
B2

o

and

-k1

o['

0Ar

o

;B

,]

v( t)v( t) -k2
Bq

1

The original system in this case is trlangular with the shortest delay for
each row in the diagonal. For such systems it is easy to design

controllers using feedforward. The price for decoupling is that extra

nonminÍmum phase zeros are Íntroduced in the second loop.

vvv

Sunmarv of the decouplinE desiEn

The design of the decoupling precompensator for a lorown system

consÍsts of the following steps:

1. Find common delays a¡¡d nonmfnimum phase zeros of each row of B to

determine B¿ def ined in (2.3).

2. Determine the lnverse of ã a¡¡d remove all common factors in each

element.
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3. Determlne & least co¡nmon multfple of each column of ã-1 a¡¡d

determine Br.

4. The precompensator P ls defined by (2.6) where all common factors

have been removed.

Each step above lncludes flnding the conmon factors of pol¡momlals.

Thls ca"rl be done usfrrg Euclf.dear¡ algorlthm. It is then also possible ro

fntroduce a bound to detect "near" common factors. The r¡afn computatiornl

burden ls to ffnd the inverse of the polynomlal natrlx ñ fn the second

step. Ftnally it is necessary to factor polynomials lnto stable a¡¡d

unstable parts.
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3. ADAPTIVE DECOUPLING

Parameter estlmation

-1The process is assumed to be descrfbed by (Z.l) where A(q-') is
diagonal. Assumptions 2.1 a¡.d 2.2 gives that each row of (2.1) can be

written as

1 (3.1)
¡n

>B,(t))v ,(t))ur¡ (o
-lAr(c ^

nlt.t

=1j

where the orders of the polynomials Al, trJ are assumed to be lorown (or

at least upper bounds are lorown). rntroduce the regressor vectors

[-v, ( t-1 ) , . . . , ul ( r-ki 
1 ) , . . .r*( t-kr*) , . . . ]

l.im
bn.

1m

ian1

8..
1J

a¡rd the parameter vectors

0 Ia b 1m
L 1

where ri and riJ are the orders of the Af a¡rd

respectively. The system (3.1) can now be writ,ten as

t i1 ,il
Þtir. bI 1

,m

The system ls linear in the parameters arrd the parameter vectors 0t

can be estimated using recursive estimation algorithm. Let the estimation

be defined by

vr(r) r, ( t)Te, i = 1,

polynomÍaIs

(3.2)

(3.3)ô, {.-r )
P, ( t-l )r, ( r)ei ( r)

1 + er(t)
ô, {.) +

T Pi ( r-1 )c, ( t)
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Pi(r)
Pr(t-r)rr(t)er(t)r Pr( t-r)Pi(r-l)-_^ +ei(r-l)-i\- -' 
L * ei(.)Tpi(t-l)er(t)

(3.4)

(3.5)

where

er(t) vr(t) - ri(t¡rôr{t-r)

The nntrix ai(t) ) O a¡rd should ensure that Pf (t) is uniforrnly

bounded. The estÍmation algorithm (3.3) (3.5) is the ordirrary leasr

squares algorithm if Qr(t) = O.

Àn adaptive decoupler cein now be obtaÍned by combinfng the design

procedure fn Section 2 wfth the estimation algorithm given above. A

certaÍnty equivalence controller is obtalned by using the estimated

parameters as if they are equal to the true ones. This implies that the

estÍn¡ated parameters are updated and the design in Sectfon 2 is repeated

at each sampllng interval.

The Adaptive Decoupline Aleorithm

Let the true system be

1 1 (3.6)À(q )v(t) B
¿,

q )"( t)

It is assumed that (3.6) fulfils Assumption 2.L. lle wtll also

introduce the following assumptions.

Assumption 3.1

The zeros of O = aet(ã) are distinct.

Assumption 3.2

B¿(q ^) is a known diagonal pol¡momial matrix, such that each element of

Å¿ is a factor of the corresponding element ln B¿ defined through (2.3)

)ñ
1q ((
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Remark 3.L

Assumption 3.1 is nrade for technical reasons a¡¡d does not impose ariy

Iarger restriction since the zeros of aetlã¡ are contÍnuous in the

coefficients of ã.

nr(o ^) is an estimate of the delay structure. lfe also allow that known

common nonminimum phase zeros of the rows of B are included in Êr{o-1).

The structure imposed by î¿ should be used in the esti¡n¿rtion in order to

decrease the number of estiÍrated parameters. This is done by filterÍng
the inputs in the regressor" 9Í by ûrr.

vvv

Define

The monic greatest common divisor of

D a¡rd B4..ÌJ
a¡rd

tJ..
1J

dee C' (3.8)

The integers ,ij are the orders of the co¡nmon factors of
Nfu

D = det(B) ard the elements of Bu. = adJ(B).Finally we introduce rhree

addi tior¡al assumptions

Assumption 3.3

Any cancellations between aa;(ã) and det(ã) for the true system are exact.

All other factors of adJlã¡ *ra aetlã¡ are furrher rha¡r e aparr, where e

is known.

Assumption 3.4

The true system is "diagonatty stabiIizable", i.e. let

ct¡ {n
t)

(3.7)

(3.e)B"iai
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where

Cr A h.c.f. {cti,CZt...Crri}

(the hfghest common factor of column i

then Af a¡rd B¿iB"t should not have any common zeros in the unstable

region.

Assumptlon 3.5

The input sfgnal ur(t) is assumed to be persÍstently exciting.

The estirnated system will rarely have e:<act cancellations. Thls implies

that extra care needs to be taken Ín definfng the estimates of c,,, ô,.IJ IJ
^^a¡rd of D. ., D: ¡. We define D. , to be the largest degree of a monic¡.J tJ - iJ

polynomlat 

^ôr, 
such that ôr, divides D ar¡d the remainder on divfding

t 
rJ 

by atj is "smaller" tha¡r al < €. The slze of a pol¡momial is

defined as the norm of the vector of coefficients. The ô.. a"¡frred aboverJ
rnay be non-unfque arrd we fÍnall ^ to be a Þolynom -1y define 

"rJ 
to be a polynomlal in q ^

with the properties above, which also gÍves the least remainder on
^^^^dividing t.. by arj. Formal definitions of C,, and D,, are given

1J rJ rJ rJ

in Appendix A.

of [ci¡J)

The adaptive algorithm fs now defÍned through the following steps:

Update the estimates usÍng (3.3) - (3.5).

b) Form î and B a¡d let

Compute ô.. and- lJ
common factor of

B. = adJ(B) ar¡d D = det(B)

D..rJ as deffned above a¡rd Cf as the highest

a)

c)

cli " " 'cn-i
ô, be such thatj

B

d) Let

4..
1J

QtJ"ti * n lBaiJ'ttJ)



then

rJ
I

Br

e) Solve the Dfophantfne equatlon

-3.õ-

AtRt + B¿tB"rsr a .r .â*.01 ml 11

c..
1J

cJ
Q1P

dias [D/crJ

I = 1., ... , m

Iû+rfor Rf a¡rd Sf where Aol, Ämt and are stable.

f) Implemont the control law as

Rt 1¡v, 
( t) -ôr{o-1)v1(t) + î*{c-1)v"r{t)q

1
P q )v(t)

where

(

u( r)

tr(c ')

(

lo, {e-1 )n;, {a-1 )lr, { r )
ffi

Bi(1) B;r(1)

Compare (2.L2)

Remark 3.2

If the Dioptrantine equatlon in Step e) ts non-solvable we can usê the

prevlous values of fif a¡¡d ôr. Assumptlon 3.4 and 3.5 guarantee that
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the equation will be solvable at a future tÍme.

vvv

ConverEence and stabÍlitv analvsis

The convergence properties of the algorithm will now be analysed.

The formal proof fs done Ín the following steps:

By assumfng persistently excitation ft is shovm that ô. -.
I

0.. Sufficient conditions are given ln Lemn¡a 3.1.t

"Smoothness" properties of the algorfthm ls used to show that

the estimated precompensator will converge to the desired

value of the compensator (Lemrna 3.2).

Theorem 3.1 shows that the output and inputs as well as the

states of the adaptive controller are bounded.

Sufficient conditions for parameter convergence is given by the

following lemma:

Lemma 3.1

Let A. be of order n.II

where

B¿i of order *i and trJ of order

n..rJ

ri * rt¡ ( rr, Vi,i
Then a sufficient condition to guarantee that

vr(t) contafns at least 2; sinewaves

2; where

0(o..(a/2- lJ- s

0.I

(3.10)

-r 0. is thatt

at frequencies

"ti i = 1'

rf (3.11)

(3.12)(r.
rJ ,ke Ð i=k and i=2

n nror {nr}
f = 1r...,m

(3.13)
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f^ ls the samplÍng frequency (Hz) and a block processing approachs

is used.

Proof: lOutline)

The proof is as in for Ínstance Goodwin and Teoh (1985), or Feuer

and Heynran (1986) where in this case we treat each estimator separately.

Condition (3.11) and (3.12) are necessary only to ensure that the outputs

yi(t) are sufficiently excÍted i.e. that the input excitations do not

ca¡rcel each other.

vvv

Lemma 3.2
^ProvÍded 0(t) -r 6, i.e. the parameter estimates converge to thelr

true values we have

Ba

D detB-+D det Ba)

ar¡d

t) +u

adj B -r

and
1J

vi

R+R

Ba adJ B

Vi,J

S-+S a¡rd T-¡T

b)

c)

d)

iJ

i

C..-+C.-rJ IJ
c -+C

P-+P,
f

Proof: See Appendix A.

The proof is quite straight forward but lengthy a¡rd technical.

Lemma 3.2 establlshes the necessary smoothness properties and parameter

convergence for the adaptÍve algorithm. The convergence and stability of

the algorithm is now given by the following theorem.

Theorem 3.1

Consider the adaptive algorithm defined through st,eps a) - f) above

applied to the system (3.1) subJect to Assumptions 2.L-2.2,

3.1. - 3.5, then for any bounded reference stgrral a¡rd a^ny finite
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fnftfal condltlons we hâve

i) y(t), v(t) a¡¡d atl stares of the adaptive controller are

bounded.

if) If lttt ts the ourpur in the tdeal case, i.e. ô1.¡ = 0 Vt,

then y(r) -à l(tl.
Proof:

Consider the (hypothetical) system for the case of larown para¡neters:

Al( t) BrB"v( t)

s7( r) Rv(t)+

R

0

T

o

T v"(t)

i(t)

(3.14)

(3.15)

(3.16)

(3.17)

(3.le)

-B^Bur
s

dx(k) w (k)r

A
or vr( r)

-ld ^ is a stable operator sfnce

det (d) = det (A) det(R + Sl-1û

= der (À n * ârA"S¡

= AAB+omr
is a stable pol¡momfa

arry bounded v (t).

law:

¿8")
^(slnce A,R,B¿,8" and S are dlagonal)

(3.18)

l. Thus, the ldeal response, i'(a), ls bounded, for

Now conslder the equations of the adaptlve control

Av(t) BnBPv(t) o

Tysy( t) + R v(t)
"( 

t) (3.20)
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wdx(t) .( t)or

=X-X, ú

(3.21)

ú-ú a¡rd

From Lemnra 3.2, we have I f m l( t) = ú a¡rd so

^ ^ 
t-'o

lim (J(t+l) - J¡t¡¡ = o. Since d-l Ís an exponenrially stable operaror,

and âtal is bounded, it then follows rhar â-t(a) is an e>,ponenrially

stable operator (see for example Willems(lg7O) p 113). Then since ô is

bounded it follows that x(r) is bounded.

have v(t) and V(t) bounded. Ler Åx

Since u(t) (t) we thenPv

ú d - d. Then from (3.21) and (3.17) we have

Àx(t + 1) dÅx( t) dx( t) w
"(t)

(3.22)

Then since ú -r O and

exponentially stable, we have

Åx(t) -* O

a¡d so y(r) -Ð f(t).

ú -+ 0 (see Lemr¡a 3.2) a¡rd d is

vvv

Lemma 3.2 shows that the precompensator wÍll converge to the desired

precompensator provided the system fs sufficÍently excited. Theorem 3.1

then establishes that the sÍgnals and the states are bounded and that the

output will converge to the output that would be obtained tf the system

was lcrown.

The need for perslstent excftatÍon Ín the above theory is for two

reasons. Firstly, persistant excitation is one method of overcomÍng the

stabilizabilÍty problem, present in all indirect adaptive control schemes.

Secondly, a¡rd more peculiarly to the multivariable decoupling problem, one

needs to ensure smoothness (at least asympt,otÍcally) of the control law



- 3.10 -

wtth respect to the estinated paranneters. Thts fs dffflcult in the

multlvarlable problem because of the procesEes of taklng least common

multfples and hfghest co¡ûnon factors. The algorithm presented ln thls
paper has been structured so the.t these dlfflcultles aro overcome if one

can ensure 0(t) -' 0
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The adaptÍve algorith¡n defined by rhe esrimaror (3.3) (3.5) and

steps a) - f) looks qufte complicated at the first glance. It is divided

into three parts:

Estinration

Design of the precompensator

Design of SISO regulators

The estimation part is well suited for recursive computations. It
is essenttally m dffferent estimators one for each output of the process.

A stochastic noise part could also be included ln the model. i.e., the

model (3.1) is replaced by

where .i is normal distributed whÍte noise. It is no loss of generality

to assume that ui Ís independent of uj when i I j. The desÍgn of the

precompensator artd the design of the regulator wÍll be the same as when

(3.1) is used as ,the model.

The design of the precompensator requires more calculations as

discussed in the end of Section 2. The determinant a¡¡d the adjoint of ñ

have to be determÍned.

In steps c) and d) of the adaptive algorlthm it is necessary to

determine the common factor a¡rd the rernalned of two polynomials. This is

convenÍently done using the Euclidean algorithm. The adaptive algorithm

is set up such that it is not necessary to separate stable and unstable

parts of polynomials. For the design of the precompensator it is

convenient to have good sof tware for nranipulation of pol¡rnomials.

lr(a-1)vr(t)
m

>B -1
i¡(l ^) er(t)ur(t) + cr{c-1)

=1J
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The controller design is the same as for slso systems. rt rs,

however, necessary to mal<e the design such that no unstable zeros are

cancelled. Pole-placement using the Diophantfne equatÍon (2.10) is one

such method. The û- = â"â- must first be separated Ínto the stable a¡¡dL ¿1
unstable parts. The solutlon of (2.10) ts essentially the sa¡ne as solving

a set of linear equations. The order of the problem is

ð(Ri)+ô(Sr)+1.

The computations required for the adaptfve decoupling controller is

more time consuming (but not rnuch more) than for a SISO system of the same

order. With the fncreasing power of microcomputers we consider it

feasable to implement the adaptlve decoupler

In Sfngh and Narendra (1984) tt is shown that necessary and

sufficient conditions for the exÍstence of a decoupling precompensator are

the knowledge of the relative degrees and that the process is invertable.

These condÍtions are in our case captured in Assumptions 2.L and 2.2. The

diagonalization of the A matrix is here done automatically through the

identÍfication whÍle the diagonalization of the B matrix is obtained

using the precompensator P Ín (2.6).
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IONS

The adaptive decoupling problem has been solved for a general class

of systems. It is believed that the design method is the first one that

c¿ut give complete decoupling. Previously published nethods only give

approximate decoupling, see for instance lttcDermott and Mellichamp (1986).

The design procedure of the precompensator also gives good ÍnsÍght into

the problem of decoupling of MIMO systems. The procedure gives a

parameterÍzation of possible closed loop systems. The price for complete

decoupling is determined by the diagonal natrices B¿ and Br.

The computational burden for the design procedure is clearly within

the capa.city of today's microprocessors.

The theoretical analysis of the algorithm shows that convergence and

stability is achieved through persistently excitation of the process.
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ÀPPENDIX A

Proof of Lemma 3.2

To prove the lemma we need to formally deflne

tôU;C c monicij iJ'iJ A tnax"{a(ctt)

,'ulBaij, arJ)il ( €1 < €)

¿r.. a¡rd C-..IJ TJ

and

"tJ A arg min ,,,u{BaiJ' ciJ)ll}

ð(cfJ) = ,rJ

c. .lnrJ'
ôr.ront"

R(x,y) is the unique remainder satisfying

x QY + |R(X,Y)

ð(R(x,Y)) < ô(Y))

and

¡lPll À ll[po pt .. pn]ll

where

-1P(q ') Po + P19 + "' * Pr,Q
-n-1

a¡¡d VIX denotes IR(X,Y) = O, i.e. Y divides X.

(.) The assumption in Lemrna 3.2 that ô -, e is clearly equivalent to
^^assuming A + A a¡¡d B -+ B. Part (a) of the Lemma follows sÍnce both the
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determÍna¡rt and the adJofnt of a matrix are continuous with respect to the

matrix.
^(b) Since ur + a¡¡d D,, are lntegers, we are in essence establishingIJ TJ

that there exÍsrs a T such that Vt > T, îrr{a) = ,tj. lVe firsr

establish that a T exists such that

In view of the definitfon of C

Vr > T, ,i¡(t) ) ,rj.
we have:rJ

(A.1)

Since the remainder is continuous with respect to the divisor and

the dividend, it follows from (a) that

R(8.. .' cii)
1J

Iim IR(B^ (r), Cij) â O
t-po -Í J

o

(A.2)

Since the roots of a polynomial are continuous wÍth respect to the

coefficients of the pol¡momial, ft follows that there exists a ô
^degree ,ij such that

ij of

c lpiJ

15 monlc

and C -rCij ij

It thus follows that

J
V.

1
Vt (A.3)

(A.4)

c..
1J

(r), ôij(r))lim
t+

R(Br..
1J

o (A.5)



In view of (4.3)

algorithm, Ít is clear that
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and part (") of

such that Vt ) T

'i¡ ( t)

Suppose

the adaptive control

1

(A.6)

carinot be greater tha¡r

îrr{t) 
' 'rJ at the

(A.5)

3T
1

) ,rJ

We now show (by contradiction) that

,tj more than a finfte number of times.

infinite sequence of times,

îr, { t)

t= {k1, kr kÏ )

From part (c) of the control algorithm, ft follows that

ilR(Ba (k¿ ),ôiJ(k¿)n (€r v0,

(À.7)

(A.8)
ij

a¡rd

rJ v2 (A.e)

Since ô*.(.) divides ôt.l for alt r a¡rd ô - o ir thenrJ'
follows that must exist at least one inf inite subsequence, {Ft,%, .....}
of {kt,kz ....} such that

ô(cfj(k¿)) l)

åî {.rr(F¿)} exists.

Let

åli {t'r(r:¿)} F..
1J

(A.10)



Sfnce D -r 0, f t follows that

of degree greater than ,tj, so F'

,tj. (4.8) then lmplies that

follows that A TZ such that

irr{.) I urj vt ) Tz

Using (4.12) and (4.6) we see that for T

^FiJÆ. Also, ci¡(F¿) is monic and

is monic and of degree greater than

(A.12)

nrac {T, ,TZ},

(A.13)

ilR(B ( €r <€ (A.11)
j

This contradlcts Assumption 3.3 regarding the true plant a¡rd so it

F..lu1J'a.
1

-^.4-

Vr)T

)) exlsts.

hereafter assume that

C. . -t C, ,. Arguing asIJ lJ

for all t. it ca¡¡ be seen

(A.14)

ir, {.) l) ji

IYi thout loss of general i ty, we

D,, = u, .. We now wish to establishrJ lJ
before, i.e. D-+D and crJ(t) dtvides

that there exists ar¡ fnfinite subsequence,

{k1, k2, k3 ) cN

such tha.t

shal I

that

D( t)

lim
2+

(k¿{ cfj

Suppose

jï {.rr(k¿)} õ..IJ ijct

G..
1J

AIso, let denote the sequence defÍned by:

(A.15)
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crJ (A.16)

fs monfc

R(D, o (4.17)

Clearly, slnce D -+ D and R(D, arj) O the above sequence

exfsts. Note also from the adaptive control algorithm, (c),

G..
1J

lfm {G..(t)}
t-il ¡J

)¡t , ,,n{BarJ

fim R(B^ (t),
t-Ð oiJ Rllim û.r-* ,tJ

and

Now

ttJ)

,,618a1J, arJ ôrr)rr (A.18)

crj(r)) (t), lrm ô
t-*

(r))fJ

IRIB'a.I "rJ)J

o

From (4.18) and (4.19) we then see that

(A.le)

(A.20)lrm R(B- (t),
t.* oiJ crr(t)) o

and so

å* 
u(r"r¡(k¿), .rJ(k¿)) 0
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IRIB (À.21)
iJ

(^.21) attd (4.15) contradict the Assumption 3.3 regarding the true

plant since the highest common multiple of ôr, and 
"rJ 

nust divlde

t 
rj 

It thus follows thå,t the only'terms'which nay occur in ôrr{a)

an infinite number of times are the terms â..(a). Since there are only a
^ 

tJ' 
^finite number of possible choices for Cij(t) which divide D(t), lt carr

be shown rhar 3 T such that Vr > T, ôrr{.) = ôrr{.) and thus

c c (^.22)iJ

(") Normally, the process of taking the highest common factor (h.c.f.)

of several pol¡momÍals is a discontinuous operation. In this case,

however, we note that

R(D, = O Vt, Vi, VJ (À.23)

Thus the h.c.f. requlred reduces to the problem of finding the

following set:

tr¡)

ji-+G..rJ

z

ôrr)

Sn1ô2st

{}'ô..
Jr

crr(z)

n i

s { 0 crt(z) " crrt (z) o) (A.24)0I

n n (A.25)f

where:

c,, (z) o) (A.26)



and the only values of
^sets are z such that D(z)

s
J1

(where tJ, ls the set of zeros of

hence CJr) are dlstfnct a¡rd ô - O

perforned fn (4.25) ls continuous and

-^.7-

whlch need to be checked tn any of the above

= O. Then, as shown fn (b) we have

6.n)

z

tJt -å

C¡f). Slnce the zeros of D (and

tt follows that the lntersection

s.I
..r St (A.28)

i.e c.
1

-rC t

(d) It now follows that Ê" - B" and ñ + p. By assumprton, B¿8.

ar¡d A are coprfme and so the solution to the Dlophanttne equatfon is (at

least for all t ) some T) contfnuous.

wv


