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ABSTRACT

For many industrial processes it is of interest to design a
decoupling precompensator. The precompensator makes it possible to design
the controllers based on single-input-single output models of the process.
A model of the process must be known to design the precompensator. This
report shows how the precompensator can be designed adaptively using input
output measurements.

The precompensator design is first done for the case when the
process is known. The adaptive precompensator is then constructed using
the certainty equivalence principle. The convergence properties and the
implementation of the adaptive decoupler are discussed. It is shown that
the adaptive scheme will converge provided the system is persistently

excited and that a suitable model structure is used in the estimation.
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1. INTRODUCTION

Most control systems for industrial processes are designed from a
single-input-single-output (SISO) point of view. This is appropriate only
if the couplings between the different loops are weak. There are,
however, many multivariable processes where there are strong couplings
between the loops. It is then of importance to consider this coupling
when designing the control system. Further it may be desirable to control
the different loops individually. To do this a decoupler must be designed
to separate the different control loops. The design of a decoupler
requires good process models since the decoupler critically depends on the
internal structure and parameters of the system. The problem of
decoupling using linear state feedback has been given large attention. An
overview based on geometric concepts is given in Morse and Wonham (1971)
and using frequency domain methods in Wolovich (1974). The decoupling
problem is also discussed in Pernebo (1981 a, b). The fundamental
questions are the priori knowledge that is needed about the system and
what closed loop systems that are achievable. These problems are
discussed in Desoer and Gl';ndes (1986). They give a parameterization of
all achievable stable decoupled systems using dynamic output feedback.

Our approach is aimed at making adaptive decoupling. This implies
that the design has to be made based on input-output models. Adaptive
controllers for multiple input multiple output (MIMO) are discussed for
instance in Borisson (1979), Koivo (1980), Prager and Wellstead (1981),
Favier and Hassani (1982), Elliott and Wolovich (1984). The adaptive
decoupling problem is solved approximately in McDermott and Mellichamp
(1986). Adaptive decoupling and prior knowledge is discussed in Singh and

Narendra (1984).
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How is decoupling done in the process industry today? The usual
approach 1is to design a precompensator such that the new system
essentially becomes decoupled. A survey of different ways to measure the
interaction in a system is given in Jensen, Fisher and Shah (1986).
Procedures for designing the precompensators are discussed in Wolovich
(1974) and Wolovich (1981). The first reference gives a design procedure
that can be used if the process has a stable inverse. In this paper we
propose a decoupling procedure based on a precompensator. The
precompensator is designed such that no unstable pole-zero cancellations
occur. The decoupling precompensator will separate the controller design
into a number of single input single output design problems. A design
procedure along these lines is hinted at in Johansson (1983, p44).

The paper is organized in the following way: Section 2 contains a
discussion of the design method for known systems. The class of systems
that are considered are MIMO systems with equal number of inputs and
outputs. Further the design should be based on input-output models. The
adaptive version of the decoupling precompensator is discussed in Section
3. The convergence properties of the algorithm are also discussed.
Section 4 gives a discussion of the implementation of the adaptive
algorithm and of the computational problems of the proposed scheme.
Section 5 contains a summary and conclusions.

Our contributions relative to earlier works are:

a) We derive an adaptive decoupling algorithm for a large class of
systems. The decoupling is done without any unstable pole-zero
cancellations.

b) The convergence of the design scheme is established under the

assumption that the input signals are persistently exciting.
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2. A DECOUPLING PRECOMPENSATOR FOR KNOWN SYSTEMS

The Process
The process to be controlled is assumed to be a m-input m-output
linear system. The system is described by the sampled data input output

model :

A@ Hy(t) = B(a Hu(t) (2.1)

where A(q-l) and B(q_l) are polynomial matrices in the backward shift
operator. It is assumed that A(q_l) is diagonal. This is no loss of
generality, but may require that more parameters have to be estimated when
the process is unknown. It is assumed that B(q_l) is invertable. This
implies that det (B(q_l)) is not identical equal to zero. The internal
couplings in the process are of great importance for the design of
multivariable control systems. The interactor matrix is used in Elliott
and Wolovich (1984) and Dugard et al (1984). The internal structure
matrix has been used in Pernebo (1981 a, b) and Johansson (1983). In many
adaptive control schemes it is assumed that the interactor matrix is known
or estimated. The problem of estimating the structure matrix is avoided
in our case since it is assumed that det (B) # O. In this case the B
matrix plays a similar role as the structure matrix.

The priori knowledge about the process that is needed for the design
of the precompensator is the "delay structure” of the process. This is
important for the design and to be able to determine the achievable closed
loop system. See Pernebo (1981 a, b) and Desocer and G;ndes (1986). The
importance of the delay structure is also discussed in Holt and Morari

(1985). In this paper it is assumed that the delay between each of the
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inputs and the outputs are known. For the adaptive implementation it
suffices to assume that the shortest delay in each row of the B-matrix is
known. To be able to make the estimation of the unknown system it is also
necessary to have an upper bound on the orders of the polynomials in the A
and B matrices.

The assumptions about the process are summarized as

Assumtion 2.1: The process is described by the m-input m-output system

(2.1) with A diagonal and B invertable, i.e. det(B) is not identical zero.

Assumption 2.2: Upper bounds of the orders of the polynomials in A(q_l)

and B(q_l) are known.

Design of the precompensator

Introduce a precompensator of the form
-1
u(t) = P(q )v(t) (2.2)

where P(q_l) is a causal., stable transfer operator matrix. The
precompensator will now be derived using the results in Desoer and GGndes
(1986). They give a characterization of all decoupled systems that are
achievable by a stabilizing controller.

The purpose of the precompensator is to diagonalize the system i.e.

it should be chosen such that
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Al y(e) = Bla@Hu(t) = B HP@ Hv(t)

is a diagonal system. The diagonalization should be done without any
unstable pole-zero cancellations. Further it must be possible to make a
causal implementation of P(q_l).

The achievable closed loop systems are determined by the time delays
and the unstable zeros of the open loop system. We first extract the

common factors of each row of B. We thus define the diagonal matrix

-1 - —kl - K
Be(q ) = diag [Be1 q . w0 Bemq ] (2.3)

-k
where BEiq 1 i=1,...,m are the greatest common factors that are not

allowed to be cancelled in each row of B(q_l). This implies that

-k,
Bei(q 1)q Y are the common nonminimum phase zeros and delays for the

i:th row.

Remark 2.1

It is convenient to consider B(q_l) as a polynomial matrix in q_l.
Both nonminimum phase zeros and time delays can then be treated
analogously. The "unstable"” region in q_1 is the interior of the unit
circle. Compare Pernebo (1981 a) and Desoer and GGndes(lQSG). Since we
will not discuss the system theoretic questions in this paper extent we
will not introduce any new notation for q_l.

vvv

The matrix B(q_l) can now be written as

B(a ') = By(a )B(d ) (2.4)
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Since det (B) # O it follows that the inverse of B exists

~_1. -1 N..(q-l)
B (q ) = [—34——:T-] (2.5)
D@ ™)
where Nij/Dij is the (i,j)th element of E_l. Further it is assumed
that Nij and Dij are coprime, i.e. all common factors are removed.
Without loss of generality we can normalize E_l such that the first
non-zero coefficient of DiJ(q—l) is equal to one.

If the denominator polynomials in E_l don’t contain any pure time
delays (i.e. that q—1 is not a factor of Dij(q_l) and no unstable roots
we can use E_l as the precompensator. In the general case to make the
precompensator causal and stable we first have to extract the unstable

parts (and pure time delays) of each column of B_l. This gives a stable

and causal precompensator which can be written

Pa) = [B(a HB (¢ D)1, (2.6)

B.(¢ ) = diag[D] (¢ 1] (2.7)

where the notation [°]+ denotes that all common unstable poles and zeros
are eliminated in each element.

The polynomials Dg(q—l) contains pure time delays and all unstable poles
in each column of E_l. D}(q_l) J=1, ... ,m are thus a least common
multiple of the j:th column of E_l.

Through the construction it follows that P(q_l) is stable and

causal. Combining (2.1), (2.2), (2.4) and (2.6) gives
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A Hy(t) = B@ P Hv(t)

B,(a )B(a )B(a ) IB_(a yv(t)

B,(a 1)B_(a )v(t) (2-8)

where A, Be and Br are diagonal polynomial matrices. This implies
that the precompensator P decouples the MIMO system into m SISO systems.
It is now possible to use SISO design methods to determine the m
controllers for (2.8).
Remark 2.2
In Desoer and Gandes (1986, Theorem 3.2) it is shown that the system (2.1)
can be stabled decoupled if and only if Be and Br’ as defined by (2.3)
and (2.7), are factors of the decoupled system as in (2.8).
The diagonal matrices Be and Br thus defines the time delays and the
nonminimum phase zeros that must be present in the decoupled system. The
construction of the precompensator shows that it may be necessary to
introduce extra time delays and/or nonminimum phase zeros in order to get
a decoupled system. The design of the precompensator given above explains
the heuristic discussion in Holt and Morari (1985), who claim that
"better” MIMO systems can sometimes be constructed by introduction of
extra time delays in the regulator.

vvv
Remark 2.3
It is always possible to determine a P such that BP is triangular
without introducing any extra time delays or nonminimum phase zeros
Pernebo (1986). Both P and P—1 are then causal and stable.

vvv
Remark 2.4

Notice that when using the decoupling design given above it is not

necessary to make any pairing of inputs and outputs. The precompensator
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automatically defines a control signal v, that is used to control the
output y,.
vvv

Remark 2.5

It is also possible to let Br consist of the least common multiple all
the denominators of each column of E_l. P(q_l) will then be a
polynomial matrix i.e. P(q_l) is a moving average compensator. This
choice will introduce more stable zeros in the decoupled system. This
will, however, not change the closed loop system if the design method
cancels stable zeros. This is the method that is used in the adaptive
version presented in Section 3.

vvv

SISO-pole placement

Each loop in (2.8) is now a single input single output system of the

form
Aa Dy () = B@ v, () (2.9)

where By(q ) = By (a B (a7

SISO-design methods based for instance on pole-placement can now be used,
see e.g. Astr;nl and Wittenmark (1984). Since Bi(q_l) will contain
nonminimum phase zeros it is necessary to use a design method, which does
not cancel any unstable zeros.

The controller is now obtained by solving the Diophantine equation

+
AiRi + Bisi e AoiAmiBi (2.10)
for R, and S.. A . is an arbitrary stable polynomial, which can be

1 1 o1

interpreted as an observer polynomial. Ami is the desired closed loop

poles. B; is a monic polynomial that defines the zeros of Bi that are
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allowed to be cancelled by the controller 1i.e. Bi . B; B;. The
controller for the i:th loop is
Rivi = - Siyi + Tiyri (2.11)

where Vi is the reference signal for the i:th loop and
T ) = ALY B (DA (L/B(LB (1) (2.12)
i oi mi mi i mi :

Béi(q—l) is used to introduce new zeros in the closed loop transfer

function. Equation (2.12) contains a normalization factor to obtain unit
steady state gain from Yri to yi-
Using (2.12) and (2.11) in (2.9) give the closed loop system

Ay () Blo(a B] (DB (@A (1)

y;(t) = (t)
i -1 -1 +, ~1.,— . ri
Aos(a) AL (aT) Bi(a )BT (1) B! (1)
A (1) B' (a1) B](q"))
mi mi i
=i - ' ® -1 yri(t)
B (1) B’ (1) A (a)
It is also easy to introduce integrators in the design. The pole

placement design and its robustness properties are extensively discussed

in Astrom and Wittenmark (1984).

Examples

Two examples will now be given to illustrate the construction of the
precompensator. The examples illustrate which decoupled systems that are

possible to achieve. The examples also show the computations that are

needed for the design.
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Example 2.1

Consider the system

From (2.4) we get

B(q"}) Be(q-l)ﬁ(q_l)

i}
e
= |

[aY
-QI o
N
| SSS———
—
[ =Y
+ -
N
i
—
|
nl -
[Sy
| P — )
]

Be(q_l) contains the common time delays in each row and there are no
nonminimum phase zeros in Be. det(B) = 1 + 2q_1 implies that the system

has a nonminimum phase zero in -2.

-1
~_ q 1
Bl - 1 [ ‘

-1
1+2q-1 -(1+q ) 1

This gives

1

B(q) = diag [1+29 ) 1424

and
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The decoupled system is thus
q t1e2q7h) 0
v(t)

0 q 2(1+2¢71)
vvv

In Example 2.1 the same nonminimum phase zero occurs in both loops. That

this is not always the case is shown in the next example.

Example 2.2

Let the system be described by

Ay 0 q 131 q 12312
y(t) = -k u(t)  kiy <k
0 A 0 q
2 2
Let
+
B1 = B1 B1

where B; and BI correspond to the minimum phase and nonminimum phase

parts of B1 respectively. B12 and B2 are factored analogously. It

is further assumed that BI and BI2 don't have any common factors. The

same assumption is also made for B2 and Bzz. We now get

By(a') = diag [q q “]
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1 By
. -k -k
B(q 1) 1 - q B1 q B1B2
1
| 0 B, |
This gives
-1 -k - -k -
B(q") = diag[q B q B, By ]
and
1 Bio
+ + _+
. By B; By
P(q ) = -
0
0 +
! B, |
The decoupled system is
_kl _
A, 0 a By g
y(t) = _ N v(t)
0 A (kytkg ko) _
2 ) q B] B,

The decoupled has a longer time delay in the second loop than the original
system. Further extra nonminimum pluse zeros are introduced in the second
loop. This is in correspondence with the discussion in Holt and Morari
(1985).

If we assume that k1 < k12 then it is easily found that



X k
-1 . 1 2
B,(q ') = diag [q q 7]
_1 _ — =
Br(q )} = diag [B1 B1 B2]
. o ]
1 ¢ (27*) B
: h +
-1 1 By By
P(q 7)) =
0 gt
+
§ B, _
and
_kl _
A, O a B 8
y(t) = N v(t)
0 A 0 a 2B B

The original system in this case is triangular with the shortest delay for
each row in the diagonal. For such systems it is easy to design
controllers using feedforward. The price for decoupling is that extra
nonminimum phase zeros are introduced in the second loop.

vvv

Summary of the decoupling design

The design of the decoupling precompensator for a known system
consists of the following steps:
1. Find common delays and nonminimum phase zeros of each row of B to
determine B, defined in (2.3).

2. Determine the inverse of B and remove all common factors in each

element.
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o1

3. Determine a least common multiple of each column of B and
determine Br'
4. The precompensator P 1is defined by (2.6) where all common factors

have been removed.

Each step above includes finding the common factors of polynomials.
This can be done using Euclidean algorithm. It is then also possible to
introduce a bound to detect "near" common factors. The main computational
burden is to find the inverse of the polynomial matrix E in the second
step. Finally it is necessary to factor polynomials into stable and

unstable parts.
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3, ADAPTIVE DECOUPLING

Parameter estimation

The process is assumed to be described by (2.1) where A(q_l) is
diagonal. Assumptions 2.1 and 2.2 gives that each row of (2.1) can be

written as
-1 = -1
Aj(a Ny (e) = jlei‘j(q Juy(t) (3.1)

where the orders of the polynomials Ai' Bij are assumed to be known (or

at least upper bounds are known). Introduce the regressor vectors
P (t) = [y (t=1). .o (tky)eenou (tky ). ]
i e i eeealy 110 uy imd

and the parameter vectors

where n, and nij are the orders of the Ai and Bij polynomials

respectively. The system (3.1) can now be written as
v.(t) = o.(t)T0 i=1 m (3.2)
i i i Pt )

The system is linear in the parameters and the parameter vectors Gi

can be estimated using recursive estimation algorithm. Let the estimation

be defined by

P (t-1)0;(t)e, (¢)

1+ 9,(6) Py(e-1)ey ()

A

0,(t) = 8,(t-1) + (3.3)
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Pi(e-1)e (t)py (1) P (t-1)

1+ 9, (€) Py(t=1)p, (€)

Pi(t) = Pi(t—l)— +Qi(t—1) (3.4)

where

ey () = y;(t) - ¢, (£)70, (-1 (3.5)

The matrix Qi(t) 2 0 and should ensure that Pi(t) is uniformly
bounded. The estimation algorithm (3.3) - (3.5) is the ordinary least

squares algorithm if Qi(t) = 0.

An adaptive decoupler can now be obtained by combining the design
procedure in Section 2 with the estimation algorithm given above. A
certainty equivalence controller is obtained by using the estimated
parameters as if they are equal to the true ones. This implies that the
estimated parameters are updated and the design in Section 2 is repeated

at each sampling interval.

The Adaptive Decoupling, Algorithm

Let the true system be
-1 s, -1.5, =1
A(q T)y(t) = By(a ")B(q ")u(t) (3.6)

It is assumed that (3.6) fulfils Assumption 2.1. We will also
introduce the following assumptions.

Assumption 3.1

The zeros of D = det(B) are distinct.
Assumption 3.2
ﬁe(q—l) is a known diagonal polynomial matrix, such that each element of

Be is a factor of the corresponding element in Be defined through (2.3)
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Remark 3.1

Assumption 3.1 is made for technical reasons and does not impose any
larger restriction since the zeros of det(g) are continuous in the
coefficients of E.

ﬁe(q—l) is an estimate of the delay structure. We also allow that known
common nonminimum phase zeros of the rows of B are included in ﬁe(q—l).

The structure imposed by B, should be used in the estimation in order to

2

decrease the number of estimated parameters. This is done by filtering

~

the inputs in the regressors ?4 by B

i’
vvv

Define

Cij(q_l) = The monic greatest common divisor of

D and Ba (3.7)
ij

and

vy = deg Cij (3.8)

The integers Dij are the orders of the common factors of

D = det(B) and the elements of Ba = adj(B).Finally we introduce three
additional assumptions

Assumption 3.3

Any cancellations between adj(B) and det(B) for the true system are exact.
All other factors of adj(B) and det(B) are further than e apart, where e
is known.

Assumption 3.4

The true system is "diagonally stabilizable™, i.e. let

D
B, A o (3.9)



- 3.4 -

where
Ci A h.c.f. {Cli' C2i ce Cni}
(the highest common factor of column i of [Cij])
then Ai and BEiBri should not have any common zeros in the unstable
region.

Assumption 3.5

The input signal ui(t) is assumed to be persistently exciting.

The estimated system will rarely have exact cancellations. This implies

that extra care needs to be taken in defining the estimates of Cij' Cij
and of vij’ Dij' We define vij to be the largest degree of a monic
polynomial Cij such that Cij divides D and the remainder on dividing

Ba by Cij is "smaller" than 61 < €. The size of a polynomial is
ij .
defined as the norm of the vector of coefficients. The Cij defined above
may be non-unique and we finally define Cij to be a polynomial in q_1
with the properties above, which also gives the least remainder on
dividing Ba by Ci" Formal definitions of Cij and vij are given
ij

in Appendix A.
The adaptive algorithm is now defined through the following steps:

a) Update the estimates using (3.3) - (3.5).

~ A

adj(g) and B = det(g)

b) Form A and B and let Ba

c) Compute Cij and vij as defined above and Ci as the highest
common factor of Cli""'cn—i‘
d) Let QiJ be such that
B 6. C .+ R (ﬁ .6 )
aij ijij aij ij
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then

) . C
P, = Q. i
17 Mg
i
B, = diag [D/C,]

e) Solve the Diophantine equation

A

S, = A A B i=1, ... .m

AgRy + ByyB Sy oi’mi°ri

for Ri and S1 where Aoi' Ami and B:i are stable.
f) Implement the control law as
R, (q v, (t) = -§,(a Dy, (t) + T, (a Dy (¢)
i i i i i ri
S |
u(t) = P(q ")V(t)

where

AL A @ hE @ ha (1)
B,(1) B, (1)

Compare (2.12)

Remark 3.2

If the Diophantine equation in Step e) is non-solvable we can use the

~

previous values of Ri and Si' Assumption 3.4 and 3.5 guarantee that
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the equation will be solvable at a future time.
vvv
Convergence and stability analysis
The convergence properties of the algorithm will now be analysed.
The formal proof is done in the following steps:
- By assuming persistently excitation it is shown that Ei -
91. Sufficient conditions are given in Lemma 3.1.
- "Smoothness" properties of the algorithm is used to show that
the estimated precompensator will converge to the desired
value of the compensator (Lemma 3.2).
- Theorem 3.1 shows that the output and inputs as well as the
states of the adaptive controller are bounded.
Sufficient conditions for parameter convergence is given by the

following lemma:

Lemma 3.1

Let A, be of order n,, B,, of order m, and B, of order

i i éi i ij
nij where

m, + nij < n, Vi,j (3.10)
Then a sufficient condition to guarantee that 9i - Gi is that
vi(t) contains at least 2n sinewaves at frequencies
wij J=1, ... , 2n where

0« mij < ws/2 = T fS (3.11)

1] = Yke > i=k and j=¢ (3.12)
n = max {ni} (3.13)
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fs is the sampling frequency (Hz) and a block processing approach
is used.

Proof: (Outline)

The proof is as in for instance Goodwin and Teoh (1985), or Feuer
and Heyman (1986) where in this case we treat each estimator separately.
Condition (3.11) and (3.12) are necessary only to ensure that the outputs
yi(t) are sufficiently excited i.e. that the input excitations do not
cancel each other.

vvv
Lemma 3.2
Provided a(t) - 08, 1i.e. the parameter estimates converge to their

true values we have

a) D = detB-D = detB
and
B = adjB-B = adjB
a a
b) Dij'e vij and Cij-e Cij vi,j
c) Ci—>Ci Vi
d) P-P, R->R S-S and TH>T

Proof: See Appendix A.

The proof is quite straight forward but lengthy and technical.
Lemma 3.2 establishes the necessary smoothness properties and parameter
convergence for the adaptive algorithm. The convergence and stability of
the algorithm is now given by the following theorem.

Theorem 3.1

Consider the adaptive algorithm defined through steps a) - f) above

applied to the system (3.1) subject to Assumptions 2.1-2.2,

3.1 - 3.5, then for any bounded reference signal and any finite
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initial conditions we have

i) y(t). v(t) and all states of the adaptive controller are
bounded.

ii) If y(t) is the output in the ideal case, i.e. a(t) =0 Vt,
then y(t) = y(t).

Proof:

Consider the (hypothetical) system for the case of known parameters:

A5(t) - BB (t) = O (3.14)
Sy(t) + Rv(t) = T y.(t) (3.15)
A BB 1 _ 0
or x(t) = y.(t) (3.16)
S T
dx(k) = dy (k) (3.17)
d_l is a stable operator since
det (d) = det (A) det(R + SA™'B,B )
= det (AR + ﬁeBrS) (since A,R,ﬁe,Br and S are diagonal)
= AAB (3.18)
omr

is a stable polynomial. Thus, the ideal response, §(t). is bounded, for
any bounded yr(t). Now consider the equations of the adaptive control

law:
Ay(t) - BBBv(t) = O (3.19)

Sy(t) + R v(t) = Ty _(t) (3.20)
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A

or dx(t) = PByr(t) (3.21)
From Lemma 3.2, we have lim  o(t) = o and so
£

lim (&(t+1) - &(t)) 0. Since d_l is an exponentially stable operator,
and Q(t) is bounded, it then follows that ;—l(t) is an exponentially
stable operator (See for example Willems(1970) p 113). Then since & is
bounded it follows that x(t) is bounded. Since u(t) = ﬁv(t) we then
have v(t) and y(t) bounded. Let Ax = x - x, 3 = % - % and

d = o - . Then from (3.21) and (3.17) we have

Ax(t + 1) = dix(t) - sx(t) - %yr(t) (3.22)
Then since Q >0 and % - 0O (see Lemma 3.2) and o is
exponentially stable, we have
Ax(t) » O
and so y(t) - y(t).

vvv

Lemma 3.2 shows that the precompensator will converge to the desired
precompensator provided the system is sufficiently excited. Theorem 3.1
then establishes that the signals and the states are bounded and that the
output will converge to the output that would be obtained if the system
was known.

The need for persistent excitation in the above theory is for two
reasons. Firstly, persistant excitation is one method of overcoming the
stabilizability problem, present in all indirect adaptive control schemes.
Secondly, and more peculiarly to the multivariable decoupling problem, one

needs to ensure smoothness (at least asymptotically) of the control law
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with respect to the estimated parameters. This is difficult in the
multivariable problem because of the processes of taking least common
multiples and highest common factors. The algorithm presented in this
paper has been structured so that these difficulties are overcome if one

can ensure 6(t) - 6.
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4. DISCUSSION OF THE ALGORITHM

The adaptive algorithm defined by the estimator (3.3) - (3.5) and
steps a) - f) looks quite complicated at the first glance. It is divided
into three parts:

~ Estimation

- Design of the precompensator

— Design of SISO regulators

The estimation part is well suited for recursive computations. It
is essentially m different estimators one for each output of the process.
A stochastic noise part could also be included in the model. i.e., the

model (3.1) is replaced by

Aa Yy (0) =

Y

-1 -1
AN CRENORCCI NG

where e is normal distributed white noise. It is no loss of generality
to assume that e, is independent of ej when 1 # j. The design of the
precompensator and the design of the regulator will be the same as when
(3.1) is used as the model.

The design of the precompensator requires more calculations as
discussed in the end of Section 2. The determinant and the adjoint of E
have to be determined.

In steps c) and d) of the adaptive algorithm it is necessary to
determine the common factor and the remained of two polynomials. This is
conveniently done using the Euclidean algorithm. The adaptive algorithm
is set up such that it is not necessary to separate stable and unstable

parts of polynomials. For the design of the precompensator it is

convenient to have good software for manipulation of polynomials.
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The controller design is the same as for SISO systems. It is,
however, necessary to make the design such that no unstable zeros are
cancelled. Pole-placement using the Diophantine equation (2.10) is one
such method. The ﬁi e ﬁeﬁr must first be separated into the stable and
unstable parts. The solution of (2.10) is essentially the same as solving
a set of linear equations. The order of the problem is
a(Ri) + a(si) + 1.

The computations required for the adaptive decoupling controller is
more time consuming (but not much more) than for a SISO system of the same
order. With the increasing power of microcomputers we consider it
feasable to implement the adaptive decoupler.

In Singh and Narendra (1984) it 1is shown that necessary and
sufficient conditions for the existence of a decoupling precompensator are
the knowledge of the relative degrees and that the process is invertable.
These conditions are in our case captured in Assumptions 2.1 and 2.2. The
diagonalization of the A matrix is here done automatically through the
identification while the diagonalization of the B matrix is obtained

using the precompensator P in (2.6).
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5. CONCLUSIONS

The adaptive decoupling problem has been solved for a general class
of systems. It is believed that the design method is the first one that
can give complete decoupling. Previously published methods only give
approximate decoupling, see for instance McDermott and Mellichamp (1986).
The design procedure of the precompensator also gives good insight into
the problem of decoupling of MIMO systems. The procedure gives a
parameterization of possible closed loop systems. The price for complete
decoupling is determined by the diagonal matrices Be and Br'

The computational burden for the design procedure is clearly within
the capacity of today’'s microprocessors.

The theoretical analysis of the algorithm shows that convergence and

stability is achieved through persistently excitation of the process.
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APPENDIX A

~

To prove the lemma we need to formally define Dij and Cij'
byj A max+{6(CiJ) = b; CijID‘ Cij monic
VeZ
and WR(B, , C; )Il < € <€)
1]
cij A arg min {HR(Baij, Cij)"}
6(CiJ) = Dij
Cile
C, .monic
ij
R(x,y) is the unique remainder satisfying
X = QY + R(X.Y)
Id(R(X,Y)) < a(Y))
and
Pl A H[po Py --- pn]H
where
-1 -1 -n
Pla ') = p,*+pja + ... +pgq
and Y|X denotes R(X,Y) = 0, i.e. Y divides X.
(a) The assumption in Lemma 3.2 that 6 = 0 1is clearly equivalent to

assuming A - A and B -» B. Part (a) of the Lemma follows since both the
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determinant and the adjoint of a matrix are continuous with respect to the

matrix.
(b) Since ;ij and vij are integers, we are in essence establishing
that there exists a T such that Vt > T, ;ij(t) = Dij' We first
establish that a T exists such that Vt > T, ;ij(t) 2 by
In view of the definition of Cij we have:
R(Baij, Cij) = 0 (A.1)

Since the remainder is continuous with respect to the divisor and

the dividend, it follows from (a) that

lim R(B. (t), C..) = O (A.2)
t  Pij ) G

Since the roots of a polynomial are continuous with respect to the

coefficients of the polynomial, it follows that there exists a Cij of

A

degree vij such that

cijln Vij vt (A.3)
6. is monic
ij
and Cij - Cij (A.4)

It thus follows that

iii R(Baij(t). Cy(t) = 0 (A.5)
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In view of (A.3) - (A.B) and part (c) of the adaptive control
algorithm, it is clear that 3 T1 such that Vt > Tl'

Gij(t) 2 vy (A.6)

We now show (by contradiction) that Dij(t) cannot be greater than
vij more than a finite number of times. Suppose vij(t) > vij at the

infinite sequence of times,

t = {k, ky, kg, o senees } (A.7)

From part (c) of the control algorithm, it follows that

IR(B,, (ke),EiJ(ke)n < e Ve (A.8)
ij
and
a(&ij(ke)) > vy Ve (A.9)

Since Cij(t) divides D(t) for all t and D - D it then

follows that must exist at least one infinite subsequence, {E&,kz, ..... }
of {kl, k2 ....} such that

lim {6..(E )} exists.

oo = 1d £
Let

lim {C, (K,)} = F (A.10)
i (&) = T,
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Since D -0, it follows that f;j/D. Also, Cij(ke) is monic and
of degree greater than Dij’ S0 ?;j is monic and of degree greater than
Vg (A.8) then implies that

HIR(Ba , Fij)" < €1 < € (A.11)

ij

This contradicts Assumption 3.3 regarding the true plant and so it

follows that 3 T2 such that

IHOREIEN Ve > T, (A.12)

Using (A.12) and (A.6) we see that for T = max {TI.T2}.
vyy(8) = vy VED> T (A.13)

Without 1loss of generality, we shall hereafter assume that

vij = vij' We now wish to establish that Cij - Cij' Arguing as

before, i.e. D->D and Cij(t) divides D(t) for all t, it can be seen

that there exists an infinite subsequence,

{kl, k2, k3 ...... } CN (A.14)
such that

lim { 6 (k,)} exists.

&0 15°7¢
Suppose

lim {Cij(ke)} = Cij # Cij (A.15)

&0

Also, let Gi denote the sequence defined by:

J
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In {aij(t)} = C (A.16)
61 j is monic
and R(D. Gij) = 0 (A.17)
Clearly, since ﬁ - D and R(D, Cij) = 0 the above sequence

exists. Note also from the adaptive control algorithm, (c),

IR(B, 613)" < URB, aij)u (A.18)

ij ij

Now

R(lim B_ (t). lim &ij(t))

1im R(Ba.j(t), Eij(t)) linB, t
1 ~300 =0

t=-»0

t-00

- R(Baij. ¢y y)
=0 (A.19)

From (A.18) and (A.19) we then see that
lim R(ﬁaij(t). Gij(t)) = 0 (A.20)

and so

lim R(B

Un BB, (k). Cyy(kp) = 0
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= R(B. .C,,)
aij ij

(A.21)

(A.21) and (A.15) contradict the Assumption 3.3 regarding the true

A

plant since the highest common multiple of Cij and Cij must divide

Ba . It thus follows that the only ‘terms’ which may occur in Ci'(t)
ij J
an infinite number of times are the terms Gij(t). Since there are only a

finite number of possible choices for Cij(t) which divide D(t), it can

be shown that 3 T such that Vt > T, Cij(t) . Gij(t) and thus
C,. » G,, » C (A.22)

(c) Normally. the process of taking the highest common factor (h.c.f.)
of several polynomials is a discontinuous operation. In this case,

however, we note that

~ A

R(D. C, .
ij

) 0 Ve, Vi, Vj (A.23)

Thus the h.c.f. required reduces to the problem of finding the

following set:

s, = {z C,(z) = o Cpe(z) = 0....C_,(z) = 0} (A.29)
=8, NS, N ... n s, (A.25)

where:
S.. = {z: C..(2) = O) (A.26)

ji ) ji
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A~

and the only values of 2z which need to be checked in any of the above

sets are z such that ﬁ(z) = 0. Then, as shown in (b) we have
sji - Sji (A.27)
(where SJi is the set of zeros of Cji)‘ Since the zeros of D (and

hence Cji) are distinct and D -» D it follows that the intersection

performed in (A.25) is continuous and

S, » S (A.28)

(d) It now follows that B >B and P - P. By assumption, BBB;
and A are coprime and so the solution to the Diophantine equation is (at

least for all t > some T) continuous.

vvv




