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Abstract
We have modified the popular MM/PBSA or MM/GBSA approaches (molecular 

mechanics for a biomolecule, combined with a Poisson–Boltzmann or generalized Born 
electrostatic and surface area non-electrostatic solvation energy) by employing instead the 
statistical-mechanical, three-dimensional molecular theory of solvation (a.k.a. 3D reference 
interaction site model, or 3D-RISM-KH) coupled with molecular mechanics or molecular 
dynamics (N. Blinov et al, Biophys. J., 2010; T. Luchko et al, J. Chem. Theory Comput., 
2010). Unlike the PBSA or GBSA semiempirical approaches, the 3D-RISM-KH theory yields 
a full molecular picture of the solvation structure and thermodynamics from the first 
principles, with proper account of chemical specificities of both solvent and biomolecules, 
such as hydrogen bonding, hydrophobic interactions, salt bridges, etc. We test the method on 
the binding of seven biotin analogues to avidin in aqueous solution and show it to work well 
in predicting the ligand-binding affinities. We have compared the results of 3D-RISM-KH 
with four different generalised Born and two Poisson–Boltzmann methods. They give 
absolute biding energies that differ by up to 208 kJ/mol and mean absolute deviations in the 
relative affinities of 10–43 kJ/mol.

Key Words: ligand-binding affinity, solvation, Poisson–Boltzmann, generalized Born,
MM/GBSA, MM/PBSA, MM/3D-RISM-KH.
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Introduction
One of the major challenges for theoretical calculations is to estimate the affinity of a 

small ligand (L) to a macromolecule (R), i.e. the free energy (Gbind) of the reaction
L + R  LR (1)

Many methods have been developed with this aim, ranging from accurate, but time 
consuming free-energy perturbation (FEP) approaches to fast empirical scoring functions.1 
Much effort has been spent on developing methods in the middle of this scale, i.e. methods 
that are based on molecular simulations, but are less time-consuming than FEP. Examples of 
such approaches are the linear-response approximation (LRA),2 the semi-macroscopic protein-
dipole Langevin-dipole approach (PDLD/S),3,4 the linear interaction energy approach (LIE),5,6 

and the MM/PBSA approach (molecular mechanics combined with Poisson–Boltzmann and 
surface area solvation).7

The latter approach is interesting because it does not contain any empirical parameters 
and it divides the binding energy into a set of separate and physically well-defined terms. The 
binding free energy is calculated as the difference in free energy of the three reactants:

∆Gbind = <GRL > − < GR > − < GL > , (2)

where each free energy is estimated as a sum, according to

G = EMM  G solv − TS MM , (3)

where EMM is the molecular mechanics gas-phase energy of the reactant, consisting of the 
internal energy (from bonds, angles, and dihedral angles), as well as the non-bonded 
electrostatic and van der Waals energies:

EMM = Eint. + Eel. + EvdW , (4)

Gsolv is the solvation energy, which is traditionally calculated by solving the Poisson–
Boltzmann (PB) equation8 to get the polar part of the solvation energy (Gpol), and by a relation
to the solvent accessible surface area (SASA) for the non-polar part (Gnp). The last term TSMM 
is the product of the absolute temperature and the entropy, which is calculated from a normal-
mode analysis of a truncated system at the molecular-mechanics level. The averages in Eqn. 2
are calculated from a set of snapshots taken from a molecular dynamics simulation to include 
the effects of dynamics. Each of the three free energies in Eqn. 2 should in principle be 
calculated from an individual simulation, but it is more common to only simulate the complex
and then calculate all three free energies in Eqn. 2 from this simulation.9,10 Thereby, the 
precision of the method is improved and the internal MM energy (Eint) cancels out.

From Eqn. 3, it is clear that the solvation energy plays an important role in the MM/PBSA
estimate, typically being one of the two largest terms, and to a great extent cancelling the 
electrostatic interactions between the ligand and the receptor. Therefore, several different 
approaches have been used for this term. In particular, it has been tested if the calculations can
be sped up by using the generalized Born (GB) method11 instead, giving a MM/GBSA 
approach.12,13 Alternatively, the polarised continuum model (PCM)14,15 has also been used, 
especially in combination with quantum chemical approaches.16,17

However, implicit solvation models are phenomenological and thus bear fundamental 
drawbacks: Hydrogen bonding and hydrophobic interactions are not transferable to new 
complex systems with features arising from molecular specificities of their constituents, such 
as various association and steric effects due to structural solvent, co-solvent, salt, buffer, etc. 
Moreover, the solvent-accessible surface and volume are not well defined, and the entropic 
term is absent in continuum solvation. It has been demonstrated recently that PB methods are 
capable of faithfully reproducing polar explicit solvent forces for dilute protein systems. 
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However, the popular SASA method cannot accurately describe non-polar solvation forces at 
atomic length scales and may not be accurate or transferable enough for high-resolution 
modelling studies of protein folding and binding.18,19,20 Furthermore, the PB solvation energies 
strongly depend on the atomic radii set chosen.19 A possible way to address these issues is to 
supplement the SASA model with additional volume and dispersion integral terms suggested 
by scaled particle models and Weeks–Chandler–Andersen theory.20,21

An attractive alternative based on first-principles statistical mechanics is the three-
dimensional molecular theory of solvation (also known as the three-dimensional reference 
interaction site model, 3D-RISM), complemented with the Kovalenko-Hirata (KH) closure 
relation.22,23,24 It starts from an explicit solvent model, but operates with 3D distributions of 
species in the statistical ensemble, rather than with molecular trajectories, and predicts the 
solvation structure and thermodynamics of biomolecules. The 3D-RISM-KH theory properly 
accounts for chemical functionalities of both biomolecules and solvent species (including 
ligands) by representing both electrostatic and non-polar features of the solvation structure, 
such as hydrogen bonding, hydrophobicity, salt bridges, structural solvent, etc. Moreover, it 
analytically yields all the solvation thermodynamics, including the solvation free energy, its 
energetic and entropic decomposition, as well as the partial molar volume and 
compressibility. The 3D-RISM-KH theory has been coupled with ab initio quantum chemistry
methods in a self-consistent description of electronic structure, to obtain optimised geometries
and to study chemical reactions in solution.22,25,26 The KS-DFT/3D-RISM-KH method has 
been extensively validated against experimental data for solvation thermochemistry, 
conformational equilibria, tautomerisation energies, and activation barriers for various 
nanosystems in different solvents.25,26 

Among many applications, the 3D-RISM-KH theory has been successfully used to predict
and explain the driving forces of self-assembly pathways and conformational stability of 
synthetic nanotubes in different solvents,27,28,29 solvent-controlled formation and switching of 
supramolecular chirality of nanotubes,30 water channels formed and host atoms held inside 
nanotubes,29 formation and conformational stability of microtubular architectures in aqueous 
solution,31 hydration effects on prions and amyloid aggregates,32 and effects of mutation on the
association thermodynamics and conformational stability of amyloid oligomers.33

Recently, the 3D-RISM-KH method has been coupled with MD simulation of 
biomolecules in the Amber molecular dynamics package.34 This included a number of 
accelerating schemes with several cut-offs for the interaction potentials and correlation 
functions, an iterative guess for the 3D-RISM solutions, as well as extrapolating solvent-
induced forces and applying them in large multi-time steps (up to 20 fs) to enable simulation 
of large biomolecules. The coupled MD/3D-RISM-KH method makes feasible modelling of 
biomolecular structures of practical interest and thus has tremendous potential for computer-
aided drug design. It allows one to study processes on long time-scales, as the solvent 
dynamics is accounted for statistical-mechanically. It could replace the MM/GBSA or 
MM/PBSA post-processing, suffering from the empirical treatment of non-polar 
contributions.33 The MM/3D-RISM-KH method gives at once 3D maps of binding affinity of 
relatively small ligand molecules to a biomolecule without any phenomenological 
approximations.35 It quickly and accurately yields the solvation structure for biomolecular 
systems as large and complex as chaperones36 and predicts binding maps of prion proteins for 
development of novel inhibitors of prion protein conversion.37 In this paper, we employ and 
test the recently introduced MM/3D-RISM-KH method,36 in which the PBSA solvation model 
in MM/PBSA analysis of the thermodynamics of the MD trajectories is replaced by the 
solvation free energies calculated with the 3D-RISM-KH theory. The results are compared to 
standard MM/PBSA and MM/GBSA calculations. As a test case, we have chosen the binding 
of seven biotin analogues to protein avidin. This protein is well-characterized by X-ray 
crystallography38,39,40,41 and experimental binding affinities are available.42,43,44 This system has 
been the subject of several studies with FEP,45,46 LIE,46 and MM/PB(GB)SA.47.47,48,63,49,50,51 
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Methods

Preparation of complexes
We have studied the binding of the seven biotin analogues in Figure 1 to avidin. The 

preparation of the avidin protein (PDB ID 1AVD40) and the inhibitors has been described 
before.49 The Amber99SB force field52 was used for the protein atoms and the inhibitors were 
described with the Amber99 force field53 with charges49 calculated with the RESP (restrained 
electronic potential) method.54 Each protein–ligand system was immersed in an octahedral 
box of TIP4P-Ewald55 water molecules that extended at least 10 Å outside the protein. The 
Amber99SB force field, especially in combination with TIP4P-Ewald water, has in several 
investigations been shown to better reproduce experimental structures and dynamic properties
than other Amber force fields.52,56,57,58

Simulation protocol
The molecular dynamics (MD) simulations were run by the SANDER module in Amber 

10.59 The temperature was kept at 300 K using Langevin dynamics60 with a collision 
frequency of 2.0 ps–1. The pressure was kept at 1 atm using a weak-coupling approach,61 with 
isotropic position rescaling and a relaxation time of 1 ps. Particle-mesh Ewald (PME)62 with a 
fourth-order B-spline interpolation and a tolerance of 10–5 was used to treat long-range 
electrostatics. The non-bonded cut-off was 8 Å and the non-bonded pair list was updated 
every 50 fs. The MD time step was 2 fs. The SHAKE algorithm63 was used to constrain bond 
lengths involving hydrogen atoms. 

The complex was first optimised by 500 steps of steepest descent minimisation, keeping 
all atoms, except water molecules and hydrogen atoms, restrained to their start position with a
force constant of 418 kJ/mol/Å2. The minimisation was followed by 20 ps MD equilibration 
with a constant pressure and the restraining force constant reduced to 214 kJ/mol/Å2. Finally, 
we started 20 different 300 ps simulations at a constant pressure, but without any restraints, 
using different random seed numbers for the generation of starting velocities and the final 
structure was used for the energy calculations (for the ligand Btn2, 25 simulations were run to
obtain a precision similar to that of the other ligands). We have recently shown that such an 
approach with many short independent simulations is more effective than a single long 
simulation to yield statistically valid and converged results.51

Avidin is a tetramer with four binding sites. The full tetramer was treated explicitly in the 
calculations and the binding energy was calculated for each ligand separately, treating the 
other three ligands as a part of the protein. Thus, the results are based on 4  20 = 80 energy 
calculations (100 for Btn2). Prior to the MM/PB(GB)SA calculations, the ligand in the 
subunit of interest was centred in the octahedral box. 

MM/PB(GB)SA calculations
∆Gbind was calculated according to Eqns. 2–4. All terms in Eqn. 4 were calculated with 

Amber 864 with all water molecules stripped off and without any periodic boundary 
conditions, but with an infinite cut-off. We tested all four GB methods available in Amber, 
viz. the GBHCT method,65,66 the GBOBC method, either with the model I or model II parameter 
sets (i.e. the , , and  parameters are either set to 0.8, 0, and 2.91, or to 1.0, 0.8, and 
4.85),67 and the GBn method.68 The four methods employ different atomic radii as is detailed 
in the Amber manual:59 the modified Bondi radii69 for GBHCT, a second modified Bondi radii 
set (mbondi2)67 for the two GBOBC methods, and unmodified Bondi radii for GBn.70 Default 
parameters were used for all methods. 

In addition, we also tested the Poisson–Boltzmann method.8 These calculations were 
performed either by the SANDER routine implemented in Amber 10,59 or by the stand-alone 
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software Delphi II.71 Both calculations employed the Parse radii72 for all atoms and a grid 
spacing of 0.5 Å. The dielectric constants in the solute and the solvent were 1 and 80, 
respectively, and the probe radius was 1.4 Å. In the Delphi calculations, the solute filled 90% 
of the solvent box, whereas in Amber, the box was three times larger than the solute. 

 Both the PB and GB methods provide only the polar part of the solvation energy. The 
non-polar part of the solvation energy was estimated from the solvent-accessible surface area 
(SASA), according to 

Gnp =  SASA + b (5)

with  = 0.0227 kJ/mol/Å2 and b = 3.85 kJ/mol.64 In the Amber implementation of 
MM/PBSA, the SASA is always calculated with the Bondi atomic radii. However, if Parse 
radii72 are used instead, the SASA contribution to the net binding energy changes by only 0.1–
0.3 kJ/mol. 

The entropy was estimated by a normal-mode analysis of the harmonic frequencies 
calculated at the MM level. For this calculation, we used our recently described modification 
to improve the precision:73 All residues more than 12 Å from any atom in the ligand were 
deleted and the remaining atoms were minimised, keeping all residues more than 8 Å from the
ligand (including all water molecules) fixed, to ensure that the geometry is as close as 
possible to the original structure. Thereby, the questionable use of a distance-dependent 
dielectric constant in the standard MM/PBSA approach7 is avoided. In the frequency 
calculations, the fixed buffer region was omitted. 

3D-RISM-KH calculations
The solvation structure is represented by the probability density rggg(r) of finding 

interaction site g of solvent molecules at 3D space position r around the solute 
macromolecule/supramolecule, which is determined by the average number density rg in the  

solvent bulk times the 3D distribution function (normalized density distribution) gg(r) of 

solvent site g. The latter indicates site density enhancement when gg > 1 or depletion when gg <

1, relative to the average density at a distance from the solute molecule in the  solvent bulk 
where gg → 1.

The 3D-RISM theory in the so-called hypernetted-chain (HNC) closure approximation 
was sketched by Chandler and co-workers in their derivation of density functional theory for 
site distributions of molecular liquids,74 and then introduced in that way by Beglov and Roux 
for polar molecules in water solvent.75 Kovalenko and Hirata derived the 3D-RISM integral 
equation from the six-dimensional, molecular Ornstein–Zernike integral equation76 by 
averaging out the orientation degrees of freedom of solvent molecules, while keeping the 
orientation of the solute macromolecule described at the three-dimensional level.22,23 They 
also developed an analytical treatment of the electrostatic asymptotics of the 3D site 
correlation functions in solving the 3D-RISM equations.22,24 This enabled description of ionic 
species and polar macromolecules for which distortion of the electrostatic asymptotics of 
either of the correlation functions leads to huge errors in the solvation free energy (even for 
simple ions and ion pairs in water) while the analytical treatment of the asymptotics restores it
to an accuracy of a fraction of a kJ/mol. 

The 3D-RISM integral equation for the 3D site correlation functions has the form

h r =∑

∫ d r ' c r−r '  r '  , (6)

where hg(r) is the 3D total correlation function of solvent site g, which is related to the 3D site
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distribution function by gg(r) = hg(r) + 1, and cg(r) is the 3D direct correlation function, which 

has the asymptotics of the solute–solvent site-interaction potential, cg(r) ~ –ug(r) / (kBT), 

where ug(r) is the 3D interaction potential between the whole solute molecule and solvent site 

g specified by a molecular force field, and kBT is the Boltzmann constant times the solution 
temperature. The site–site susceptibility of pure solvent cag(r) is an input to the 3D-RISM 

theory, and site indices a and g enumerate all sites on all sorts of solvent species (in the case 
of a multicomponent solvent). Another relation between the 3D total and direct correlation 
functions, called a closure, is necessary to complement the 3D-RISM integral equation, Eqn. 
6. The exact closure can be formally expressed as a series in terms of multiple integrals of the 
combinations of the total correlation functions. However, it is extremely cumbersome, and in 
practice is replaced with more amenable approximations. Kovalenko and Hirata proposed the 
closure approximation (3D-KH closure) that automatically applies the 3D-HNC treatment to 
repulsive cores and other regions of density depletion due to repulsive interaction and steric 
constraints, and the 3D mean-spherical approximation (3D-MSA) to distribution peaks due to 
associative forces and other density enhancements, including long-range distribution tales for 
structural and phase transitions in fluids and mixtures,76,22

g  r = {exp d  r  for d   r0
1d  r  for d   r0

, (7)

d   r =−u r /k B T h r −c r  ,

The 3D-KH approximation yields solutions to the 3D-RISM equations for polyionic 
macromolecules, solid–liquid interfaces, and fluid systems near structural and phase 
transitions, for which the 3D-HNC approximation is divergent and the 3D-MSA 
approximation produces non-physical areas of negative density distributions (for the 
conventional RISM theory,76 the corresponding site–site version of the KH closure 
approximation is available and capable of predicting phase and structural transitions in both 
simple and complex associating liquids and mixtures22). The 3D-RISM-KH theory has been 
proven to be appropriate in numerous cases, including complex liquids and electrolyte 
solutions,22,25,26 as well as organic supramolecular27,28,29,30 and biomolecular31,32,33,34,35,36,37 systems
in solution.

The site–site susceptibilities of pure solvent cag(r) in Eqn. 6 consist of intra- and 

intermolecular terms,

 r =  rh r  , (8)

where the intramolecular correlation function
 r =  r1− r−l /4 l

2   represents the geometry of solvent 
molecules with site–site separations lag specified by the molecular force field, and hag(r) is the

radial total correlation function between sites a and g enumerating all sites on all sorts of 
molecules in pure solvent. In advance to the 3D-RISM-KH calculation, hag(r) of pure solvent 

is obtained from the dielectrically consistent RISM theory (DRISM)77 coupled with the KH 
closure (DRISM-KH),22 applied to the bulk solution with counter ions at infinite dilution. The 
bulk solvent susceptibility, Eqn. 8, is then input into the 3D-RISM integral equation, Eqn. 6.

To properly account for electrostatic forces in electrolyte solution with polar solvent and 
ionic species when evaluating the convolution in the 3D-RISM integral equation, Eqn. 6, by 
using 3D Fourier transform, the electrostatic asymptotics of all the correlation functions (both 
the 3D and radial ones) are separated out in the direct and reciprocal space and treated 
analytically.74,22,78 For ionic or polar solutes, simply truncating the electrostatic asymptotics 
leads to catastrophic errors. Bare periodic Ewald treatment of the 3D solute-solvent site 
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interaction potential ug(r) imposes supercell periodicity on the solute molecule, resulting in 

huge artefacts in both the solvation structure and thermodynamics, which can be eliminated 
by using analytical corrections.74,22 Alternatively,78 the 3D solute-solvent site interaction 
potential ug(r) and correlation functions cg(r) and hg(r) are discretized on a 3D linear grid in a 

non-periodic rectangular box, and their non-periodic electrostatic asymptotics specified 
analytically and subtracted before applying the 3D fast Fourier transform to the remaining 
short-range parts and then added back after the transform. The box has to be large enough to 
to have the short-range parts of the potential ug(r) and correlation functions cg(r) and hg(r) 

around the macromolecular solute decay at its boundaries. The asymptotics of the 3D direct 
correlation function is determined by that of the 3D interaction potential,

c
asr =−u

as r / k B T  , and so they cancel out in the closure relation and Eqns. 6-7 are 

in fact being solved for the short-range part of cg(r). The asymptotics is specified as the 

potential of the site charges, gauss-smeared with half-width η for its convenient behaviour 
with the suppressed singularity at r→0 and Gaussian decay at large k,

c
asr =− 1

k BT ∑i

Qi q

∣r−Ri∣
erf  ∣r−Ri∣

  , (9a)

c
ask =− 4

k BT
∑

i

Qi q

k 2
exp−1

4
k 22i k⋅Ri , (9b)

where Qi and qγ are partial charges of solute sites i located at Ri in the solute molecule and of 
solvent sites γ, and the smearing parameter is set about η≈1Ǻ to ensure smoothness of the 
form 9a within a molecular core and quick decay of the form 9b with k. Substitution of the 
long-range c

ask   given by Eqn. 9b the 3D-RISM integral equation 6 yields the 

renormalized, long-range h
ask =∑

c
ask  k   in a rather involved form not 

amenable to analytical transformation to the direct space. However, it suffices to
introduce a simple analytical form with the same asymptotic behaviour. The electrostatic 
asymptotics of the 3D total correlation function hg(r) represents the distribution of solvent site

charges resulting in dielectric screening of the solute charge density by solvent polar 
molecules and Debye screening by solvent ions. Thus, it can be readily introduced in terms of 
the asymptotics of the potential of mean force w r =−k B T log h  r , which is dipole–
dipole for a polar solute in polar solvent, ion–dipole for an ionic solute in polar solvent, and 
Debye-screened ion–ion for an ionic solute in electrolyte solution. The latter cannot be 
neglected in the case of electrolyte solution at medium and especially low ionic concentration,
and the analytical electrostatic asymptotics, which are subtracted from hg(r) before applying 

the backward 3D-FFT and then added back, are thus specified as

h j
ask =− 4

 k BT
∑

i

Qi q j

k2D
2

exp−1
4

k 22i k⋅R i , (10a)

h j
asr =−1

 k B T
∑

i

Qi q j

∣r−R i∣
exp−1

4
D

2 2
×

1
2 {exp −D∣r−Ri∣[1−erf  D

2
−

∣r−Ri∣
  ]

−exp D∣r−Ri∣[ 1−erf  D

2


∣r−Ri∣
 ]}

, (10b)
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where ε is the dielectric constant of the polar solvent (an input parameter in the DRISM 

theory for bulk solvent), and D=∑ j
4  j q j

2/ k B T 1 /2  is the inverse Debye length of 

the electrolyte solution with ionic species j of concentrations ρj. The k=0 singularity in the 
asymptotics 9b and 10a is omitted by specifying c

ask=0=0 ,  and h j
ask=0=0  for 

κD=0; the proper electrostatic asymptotics of hg(r) ae restored when adding the form 10b back

to the short-range part of hg(r) after the backward 3D-FFT. 

The solvation free energy of the solute molecule in multicomponent solvent is obtained 
from the 3D-RISM-KH integral equations, Eqns. 6–7, by analytically integrating the 
Kirkwood's charging formula for the solvation free energy, given by the closed analytical 
expression75,22

3D−RISM −KH = k B T∑

∫ d r  1

2
h

2 r −h r −
1
2

hr cr −cr  , (11)

where Q(x) is the Heaviside step function: x= {1 for x0
0 for x0

. The solvation free 

energy 11  is actually the potential of mean force between the protein parts in solution 
dependent on protein conformation.

A modification to the form 11  can be obtained in the so-called Gaussian fluctuation (GF) 

approximation suggested by Chandler and co-workers79,80 by dropping the term 
1
2

h
2 r   in 

the solvation free energy, 

3D−RISM −GF = k B T∑

∫ d r −1

2
h rc r −c r , (12)

in which the correlation functions are obtained in the same way, from the 3D-RISM-KH 
equations 6–7 in the present case. This approximation to the solvation free energy will be 
denoted below as 3D-RISM-KH-GF. The GF approximation to the site–site RISM-HNC 
theory showed improvement for the solvation thermodynamics of both non-polar and polar 
molecules in aqueous solution.80,81

Accurate calculation of the integral in the solvation free energy, Eqn. 11, or equally Eqn. 
12, requires analytical treatment of the asymptotics of the 3D correlation functions cg(r) and  

hg(r). In the last term of Eqn 11, the electrostatic asymptotics of cg(r) cancel out upon the 

summation over the site index γ because of the electroneutrality condition. As the short-range 
parts of the 3D correlation functions decay at the 3D box boundaries, by subtracting the 
asymptotics and then adding them back, the integrand in Eqn 11 is split up into short-range 
and long-range parts, the former integrated numerically over the 3D box volume V and the 
latter expressed in terms of the analytical asymptotics integrated over the whole space,

3D−RISM −KH = k B T∑

∫

V

d r  1
2

h
2 r −h r −

1
2

hr cr −cr 

−1
2
h

asr 2Q q j
1
2

h r cr 
k B T∑


∫ d r  1

2
h

asr 2Q q j−
1
2

h rc r 
 , (13)
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where Q=∑i
Qi  is the total charge of the solute molecule, and q j=∑∈ j

q  is the total

charge of solute ionic species j which site g  belongs to. The factor Q q j  switches the 
asymptotics term h

asr 2  on for like charges of the solute and solvent ion Q and qj , and 
off for unlike ones, according to the term h

2 r   in the solvation free energy, Eqn. 11, being
switched on at long range by the depleted long-range tale and off by the enhanced long-range 
tale of hr  . The term h

asr 2Q q j  is dropped for the solvation free energy 
calculated in the 3D-RISM-GF approximation, Eqn. 12. The latter integral of the asymptotics 
over the whole space in Eqn. 13 is analytically reduced to 1D integrals easy to compute (e.g. 
by using the Gaussian quadrature),

k BT∑

∫ d r  1

2
h

asr 2Q q j−
1
2

h r cr 
=

1
∑


2

D
∫
0

1

dx∑
ii'

QiQ i' J 0D l ii' xexp−1
2
D x 2

× x2

 x21−x 22−
1

x21−x 2 
 , (14)

where 
2=4 q q j / k B T   is the partial contribution of site g  of solution ionic species

j  to the Debye length squared, J0(x) is the zero-order Bessel function of the first kind, and lii' 
are the site separations between the solute partial site charges Qi . 

The MM/3D-RISM-KH results are obtained by replacing the PB or GB polar and SASA 
non-polar solvation terms in Eqn. 3 by the solvation free energy from Eqn.  11. The latter is 
obtained by solving the 3D-RISM-KH integral equations 6-7 at the selected arrangements of 
the biomolecule for snapshots taken along the MD trajectory, with water molecules stripped 
off. The ligand of interest was centered in the octahedral box before the MM/3D-RISM-KH 
calculations in the same way as for MM/PB(GB)SA.

The 3D-RISM calculations were performed with a modified version of Amber 10, as 
detailed in Ref. 34, coupled with the Kovalenko-Hirata (KH) closure.22,22 A modified SPC/E82 
water model was used for solvent–solvent and solute–solvent calculations, as detailed in Ref.
34. Specifically, a Lennard-Jones (LJ) potential was added to the hydrogen sites of the SPC/E 
model with two different sets of parameters. The SPC/E model with a small-radius LJ 
potential on the hydrogen sites, σH=0.4000 Å and εH=0.04600 kcal/mol83, is denoted as PR-
SPC/E. A large-radius LJ potential, σH=1.1658 Å and εH=0.01553 kcal/mol,34 applied to SPC/E
is denoted cSPC/E. The cSPC/E parameters were chosen such that

O

2
=
H

2
BOH (15)

where σO and σH are the oxygen and hydrogen site diameters and BOH is the bond length between
the two sites, and 

H=0.1O (16)
where εH and εO are the hydrogen and oxygen well depths. For all calculations, the cSPC/E 
model was set to a physical density 0.997 g/cm3 and dielectric constant 78.38, corresponding 
to the ambient conditions of temperature T=298.15 K and pressure 1 bar.

The 3D-RISM-KH solvent distributions were solved iteratively on a 3D grid. Adjustable 
parameters affecting the accuracy, precision, and computational cost of the calculation include
solvent box size, grid spacing for the solvent box, residual tolerance for the solution, and cut-
off distance used for solute–solvent interactions. The final calculations, compared to 
experiment and PB(GB)SA methods, used a solvation box at least 24 Å larger than the solute 
in any direction (12 Å buffer) with a grid spacing of 0.5 Å and a solute–solvent interaction 
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cut-off of 12 Å. The solvent distribution was self-consistently solved to a residual tolerance of
10–5. Additional calculations to explore sensitivity to these parameters used a 20 Å buffer and 
cut-off, residual tolerances of 10–3, and a grid spacing of 0.25 Å.

As 3D-RISM calculates the total solvation free energy, for direct comparison to PB and 
GB methods it is useful to decompose this into polar and non-polar contributions. This is 
accomplished through calculating the solvation free energy of an otherwise identical solute 
with no partial charges, giving us ΔGnp. It corresponds to the quantity obtained by an SASA 
calculation. The free energy of solvent polarization is then G pol= Gsolv− Gnp . This 
procedure was carried out for both the KH and GF solvation free energies.

Quality descriptors
To quantify the performance of the various methods, we use three different estimates: the 

correlation coefficient between the predicted and experimental data (r2), the predictive index 
(PI),84 and the mean absolute deviation (MAD) from the best correlation line with a unity 
slope (i.e. after the subtraction of the mean signed difference, trMAD). These measures are 
quite meaningless without estimates of their statistical uncertainty. They were obtained by 
simple simulations: Each biotin analogue was assigned a random number from a normal 
distribution, with the mean and standard deviation obtained for the estimates of Gbind.51 We 
then calculated trMAD, r2 and PI, and repeated this procedure 10 000 times. The standard 
deviations within these three sets are reported as the standard error of the quality descriptor. 
Throughout this paper, all reported statistical uncertainties are standard errors of the mean, i.e.
the standard deviation divided by the square root of the number of estimates.

Results and Discussion

Solvation free energy and the other energy terms
We have studied the binding of the seven biotin analogues in Figure 1 to avidin. The three

first ligands have a total charge of –1 e, whereas the other four are neutral. We have used the 
MM/PBSA approach and tested the effect of replacing the PB+SASA solvation method with 
either 3D-RISM-KH, 3D-RISM-KH-GF or the four GB methods available in Amber 10. The 
results of the calculations are collected in Table 1. The results are based on 4  20 = 80 
energy calculations for each ligand (100 for Btn2) and the standard errors of the mean are 
given in Table 2. 

The first three terms in Tables 1 and 2, Eel, EvdW, and TSMM, are common to all 
methods tested here. Among these, Eel > EvdW > TSMM, except for Btn4 (EvdW > 
Eel) and Btn7 (TSMM > EvdW). In particular, Eel is much larger than the other terms 
for the three charged ligands. For the standard errors Eel > TSMM

 > EvdW for all ligands. 
This is much thanks to the new entropy method,73 which reduces the standard error of the 
TSMM estimate by a factor of ~4, thereby ensuring that it no longer limits the precision of 
the method. The standard error of Eel is about twice as big for the charged ligands than for 
the neutral ones (5–6 kJ/mol, compared to 2–3 kJ/mol).

The electrostatic component (Eel) is to a great extent cancelled by the polar part of the 
solvation energy (Gpol), especially for the charged ligands. As specified in the Methods 
section, we have calculated this component with eight different methods, the four GB 
methods available in Amber 10,59 PB calculated both with Amber59 and Delphi,71 and two 
variants of the 3D-RISM-KH approach (with and without the GF correction). Owing to the 
large difference of the solvation energy for the charged and neutral ligands, we need to 
analyse these two groups separately. For the charged ligands, the two RISM methods, as well 
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as GBHCT and GBOBC1 give nearly identical results (within 10 kJ/mol). However, the other 
three methods differ much more (by up to 161 kJ/mol) in a systematic manner, GBn < GBOBC2 
< PBAmber < others < PBDelphi. The correlation coefficients between the results of the various 
methods are lowest for the GBn method (from 0.62 for GBn/GBHCT and GBn/GBOBC1 to 0.80 
for GBn/3D-RISM-KH), whereas they are 0.80–1.00 for 3D-RISM-KH (highest for 3D-
RISM-KH/GBOBC2).

 For the neutral ligands, the variation is slightly smaller (up to 131 kJ/mol) and less 
systematic, but in general GBOBC2 < GBn < GBHCT < GBOBC1 < 3D-RISM-KH < PBAmber < 
PBDelphi. The correlation coefficients are lowest for the PBDelphi method (from 0.91 for 
PBDelphi/GBHCT to 0.96 for PBDelphi/GBn), whereas for 3D-RISM-KH, they are 0.96 for 3D-
RISM-KH/GBn, 0.98 for 3D-RISM-KH/GBOBC2, and 0.99 for the others. The GF correction 
has only a minimal influence on the polar 3D-RISM-KH results (< 4 kJ/mol), giving r2 > 
0.999 for both the neutral and charged ligands compared to 3D-RISM-KH.

On the other hand, for the non-polar solvation energy, there is a qualitative difference 
between the SASA and 3D-RISM-KH estimates. For all ligands, Gnp(SASA) < 0 and 
therefore favourable. In addition the values for the different ligands are very similar, –11 to 
–21 kJ/mol. On the other hand, the 3D-RISM-KH estimates are always positive 
(unfavourable), 3–5 times larger, and with a more pronounced variation among the seven 
ligands, as can be seen in Figure 2. In addition, the GF correction has a rather large influence 
on the results, making the energies 14–42 kJ/mol more positive. The correlation coefficients 
between the two RISM methods is 0.92 and those between SASA and the two 3D-RSIM-KH 
methods are 0.89 and 0.64 with and without the GF correction, respectively (a negative 
correlation).

The standard error of the polar solvation energy estimates are similar for all eight 
solvation methods for the charged ligands, 4–5 kJ/mol for the charged ligands and 1–3 kJ/mol 
for the neutral ligands, i.e. slightly smaller than for the electrostatic contribution (Table 2). 
For the neutral ligands, the standard error is somewhat larger for 3D-RISM-KH and PBDelphi 
than for the other methods, but by less than 1 kJ/mol on average. For the non-polar solvation 
energy, the difference is even larger, because the standard error of the SASA method is ~0.03 
kJ/mol for all ligands, whereas it is 1–2 kJ/mol for the 3D-RISM-KH method.

Binding free energy
The calculated binding free energies of each ligand (Gbind) are also included in Table 1 

and they are graphically compared to the experimental data43 in Figure 3. It can be seen that 
all methods show a fair correlation to the experimental trend, with correlation coefficients  (r2)
ranging from 0.590.03 for GBHCT to 0.930.02 for PBDelphi (Table 3). However, it can also 
be seen that the absolute binding affinities vary quite extensively, with differences of up to 
208 kJ/mol. To a great extent, the differences between are caused by a constant offset, as can 
be seen in Figure 3. Such a constant offset has been observed before when different solvation 
models are used,85,86 and they indicate that relative binding energies should be much more 
accurate than absolute ones. 

This is supported by the results in Table 3: The mean absolute deviations (MAD) of the 
calculated binding affinities from the experimental results for the various methods is poor for 
all methods except PBDelphi (16 kJ/mol), ranging from 37 kJ/mol for 3D-RISM-KH to 93 
kJ/mol for GBn. However, if the results are translated by the average signed error, the MAD 
ranges from 101 kJ/mol for PBDelphi to 431 kJ/mol for GBn (this estimate is called 
trMAD in Table 3 and it corresponds to the best correlation line with a slope of unity). For 
most methods, this is similar to what has been obtained before with MM/PB(GB)SA for this 
system, 8 kJ/mol with PBDelphi,48 5–25 kJ/mol with PBDelphi and various force fields and 
simulation methods,49 19 kJ/mol with GBOBC2,49 and 14.80.3 kJ/mol with GBOBC1,51 
especially considering the low precision of the results in the former two studies,48,49 (the 
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standard error of the trMAD estimate was probably not better than ~6 kJ/mol because only 20 
snapshots were used, taken from a single trajectory).51

The correlation between the binding affinities obtained with the various methods range 
between 0.24 for GBHCT/3D-RISM-KH-GF and 0.99 for GBHCT/GBOBC1. The GF correction for 
3D-RISM-KH has quite a large influence on the results, 15–44 kJ/mol, giving a correlation of 
0.95 (but no correlation for the neutral ligands, r2 = 0.02). However, the two variants give 
similar trMADs of 16 and 17 kJ/mol.

Considering the low uncertainties in the quality estimates in Table 3, we can conclude 
with good confidence that for this system, the PBDelphi method gives the best result: It is the 
only method that gives reasonable absolute affinities (MAD = 16 kJ/mol). Moreover, it gives 
the smallest trMAD (101 kJ/mol) and the largest correlation coefficient (r2 = 0.93 0.02). 
Finally, it gives an excellent predictive index84 of 0.99, although four other methods (3D-
RISM-KH, PBAmber, GBOBC2, and GBn) also give similar PI. The other methods give worse and
more varying results: GBOBC1 , GBHCT and both 3D-RISM-KH methods give trMADs of 12–17
kJ/mol, whereas PBAmber, GBOBC2, and GBn methods give very poor trMADs (>30 kJ/mol). On 
the other hand, PBAmber, 3D-RISM-KH, GBOBC2, and GBn gave correlation coefficients of 
0.85–0.91.

The poor trMADs of the GBOBC2 and GBn methods are quite unexpected, because these 
two methods are newer developments of the GBHCT method, and therefore could be expected 
to be better.67,68 Moreover, the GBn method gave appreciably better solvation energies than the
other three GB methods, when compared to a set of 20 neutral molecules,87 although it was 
never calibrated towards such data.68 The reason for this unexpected behaviour is most likely 
that our test set involves both charged and neutral molecules. Improved results and 
correlations can be expected if the net charge of the ligands is the same. With our restricted 
test set, we obtain excellent results for the three charged ligands for all methods, trMAD = 3–
9 kJ/mol (PBAmber best, GBn worst), but somewhat worse results for the four neutral ligands, 
4–22 kJ/mol (3D-RISM-KH best, GBHCT worst). 

Still, this difference is larger than expected. A recent systematic study of various solvation
methods indicated that if only similar ligands with the same charge are compared, nearly all 
implicit solvation models yielded the same relative solvation energies within 2–5 kJ/mol for 
three series of drug-like molecules (including the present set of biotin analogues).87 
Examination of the present results shows that the variation of the average solvation energies 
of the isolated ligands among the five PB and GB solvation models in this study is only 
slightly larger, 2–5 kJ/mol for the charged ligands, but 5–8 kJ/mol for the neutral ligands. 
However, it is clear that the large variation of Gbind among the various methods is not 
primarily caused by differences for the ligand, but rather by differences for the protein 
binding pocket (which do not cancel between the complex and the free protein).

Likewise, the large difference between the results obtained with the PB method 
implemented in Delphi and in Amber is surprising. The former gave excellent results even for 
the absolute binding energies, whereas both the absolute and relative results for PBAmber are 
poor. A similar difference has been observed recently for another system, but in that case 
Amber gave the better results.86 The difference in the PB energies is ~100 kJ/mol for the 
charged ligands and 14–64 kJ/mol for the neutral ones. Thus, there is a perfect correlation for 
the charged ligands (r2 = 1.00), whereas r2 = 0.95 for the neutral ones. The differences are 
mainly caused by the proteins, whereas the isolated ligands give more similar results with the 
two methods. 

Variations of the 3D-RISM method
The 3D-RISM method provides a first-principles, statistical-mechanics approach to 

solvation calculations. However, it  involves a number of approximations. The basic 
assumption of RISM is the decomposition of the direct correlation function into partial site 

13



contributions.88 This is inherent in  RISM theory and is beyond the scope of this study. The 
quality of the results from RISM then depends on the explicit solvent model and the form of 
the closure used to solve the equations.

In this study we have used the KH closure, which is a combination of the HNC and MSA 
closures and inherits much of their behaviours. The properties of HNC and KH closures with 
respect to polar and non-polar solutes in liquid water has received much attention.54,58,59,60,22,24 
While HNC and KH closures compare very well to explicit calculations for polar and charged 
solutes, they have generally had difficulty with non-polar solutes. For example, HNC provides
the wrong qualitative behaviour for increasing solvent size. However, the high quality of the 
solvent polarization free energy and the analytic expression for the solvation free energy make
the KH closure the best choice at this time.

Finally, the pair-potential (force field) for the solvent (and solute) determines the 
thermodynamic properties of the solvent and the quality of the result, and any shortcomings in
the solvent model (e.g. SPC/E water) will affect the accuracy of the results.  Furthermore, not 
all pair-potentials can be used directly for 3D-RISM. In the case of SPC/E, an LJ potential is 
required for the hydrogen site. As demonstrated in Ref.54 and in Table 4, variations in the 
hydrogen LJ parameters have a pronounced effect on the polar component of the solvation 
free energy, although they have little impact on the non-polar component.

The sensitivity of the 3D-RISM results was tested by varying parameters from those 
given in the Methods section. These parameters are known work well for molecular dynamics 
simulations54 and were used as an initial set to test the sensitivity to changes in grid spacing, 
solvent cut-off and box size, residual tolerance and solvent potential. Table 4 shows a subset 
of the parameters tested. 

Notably, almost all of the binding energies were identical within the estimated error 
limits, except those involving the PR-SPC/E water model. Even in the latter case, the non-
polar contribution was nearly identical to that with cSPC/E water, showing that all significant 
differences come from the polar contribution. Differences in the polar component were 
expected, because this was the motivation in creating the cSPC/E variant.

Minor differences in non-polar solvation free energy were observed when the solvation 
cut-off and box size were changed. Calculations with a 20-Å solvent buffer were generally in 
good agreement with calculations with a 12-Å buffer, but the former gave slightly higher non-
polar contribution to the binding free energy. however, the polar contributions were identical. 
Given that the total binding free energies are in good agreement, the extra calculation time 
required for the larger box is not justified.

Decreasing the grid spacing to 0.25 Å was not extensively tested owing to the 
computational burden involved. As the number of grid point increases by a factor of eight, 
calculating the bind free energy of a single complex at 0.25 Å grid spacing requires more time
than computing all seven pairs at 0.5 Å grid spacing. For the one example tested, this increase
in resolution gave no observable difference in the binding free energy.

Increasing the residual tolerance by a factor of 100 (10–3) had no significant impact on the
results. Differences in binding energies are no more than 1 kJ/mol when compared to the 
default tolerance of 10–5 and are well within the statistical uncertainty. A nearly 40% reduction
in computational effort was also observed. While a higher tolerance produces acceptable 
results in this case, a larger study with a corresponding lower standard error may require a low
residual tolerance.

Results for the GF correction are given in Table 1. The use of the GF correction was 
intended to modify the non-polar component of the solvation free energy to bring it into better
agreement with results from experiment and explicit models. The correction is applied to the 
calculation of the solvation free energy using the solvent distributions calculated from a 
standard closure (KH in this case). Generally, the GF correction lowers the non-polar 
contribution to the solvation energy for a solute. This is the case here (data not shown) with 
the solvation free energy being lower for each of the ligand, receptor and complex. However, 
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using Eqn. 2, the differences in solvation free energy due to the GF correction increases the 
calculated total binding free energy, making this correction unsuitable for the MM/3D-RISM 
approach to binding.

Timing
Each 3D-RISM-KH calculation (six calculations for a single ligand in one snapshot) took 

on average 5.4 CPU hours, using a single core of a dual-core AMD Opteron 2.8 GHz 
machine. Of these, 2.3 h comes from the calculation of the non-polar part and 3.0 h from the 
total binding free energy. Of course, calculating the non-polar contribution is only required if 
one is interested in decomposing the total solvation free energy into polar and non-polar 
contributions. Calculating only the total binding free energy reduces the computational burden
by ~40%. As the GF solvation free-energy correction requires the solvent distribution 
calculated with the KH closure, both the KH solvation free energy and the GF correction were
calculated from the same solvent distribution. The GF correction required approximately 1% 
of the total computation time. The PB solvation calculation took 3 minutes on a Intel Core 2 
Due 2.4 GHz machine, whereas the GB calculation took less than a minute and the SASA 
calculation took only a few seconds. Thus, the 3D-RISM calculations are much more time 
consuming than the other methods, but the total time is not prohibitively high (in total 73 
CPU days for this project) and the calculations are both trivially parallel (3  7  4  20–
25 independent calculations) and the 3D-RISM-KH code implemented in Amber is 
parallelised.

Conclusions
In this paper, we have applied the MM/3D-RISM-KH method, with the 3D molecular 

theory of solvation replacing the PB(GB)SA continuum solvation in evaluating the solvation 
thermodynamics along a set of MD trajectories. Test calculations on the binding of seven 
biotin analogues to avidin indicate that the MM/3D-RISM-KH approach gives results of a 
comparable accuracy to those of the more traditional MM/PBSA and MM/GBSA approaches: 
It gives a predictive index that is as good as for the best methods, being equal to 1. The 
correlation coefficient, 0.90±0.02, is similar to that of the best MM/PBSA method (with 
PBDelphi), 0.93±0.02. Likewise, the trMAD is only slightly worse (17±1 kJ/mol compared to 
10±1 kJ/mol), whereas the absolute MAD is appreciably worse (37±1 kJ/mol compared to 
16±1). We have ensured the calculations are converged with respect to the parameters of the 
method, in particular, the box size. It is too preliminary, however, to draw final conclusions 
regarding the relative accuracy of these solvation approaches, as the comparison to 
experiment we made involved several approximations in the present calculations, including 
the treatment of conformational entropy and the use of the same conformation for the protein 
and ligand apart and for those in the complex.

Interestingly, there is a qualitative discrepancy for the non-polar solvation calculated by 
the 3D-RISM-KH and SASA methods. Whereas the latter is always small and favourable for 
the binding, the 3D-RISM-KH prediction is 3–5 times larger and always unfavourable. This 
difference might be attributed to a possible failure of SASA to correctly predict the non-polar 
contributions, as has been documented recently.18,19,20,21 On the other hand, the HNC closure, 
and therefore the KH one, does have known problems,76 which constitutes a motivation for 
new closure developments, some of the attempts introducing empiric bridge corrections for 
small organic molecules in water (see citations in Ref. 22). A behaviour similar to that of 3D-
RISM has been observed for also for the non-polar energies obtained with the polarised 
continuum method.17,89 

We also show that the polar solvation energies, and therefore also the calculated absolute 
binding affinities strongly depend on the implicit solvation model used. We have compared 
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the 3D-RISM-KH results with those of the Poisson–Boltzmann model calculated by Amber 
and Delphi and the four generalized Born models available in the Amber 10 software. We 
show that the absolute binding affinities differ by up to 208 kJ/mol, although most of this 
variation comes from a simple translation of the affinities. However, even if only relative 
affinities are considered, the trMADs vary from 10 to 43 kJ/mol. To reduce this variation 
further, it is necessary to consider only ligands with the same net charge. If this is done for our
test set, we obtain trMADs of 3–8 kJ/mol for the charged ligands and 4–22 kJ/mol for the 
neutral ones. Interestingly, the best GB results are obtained with the old GBHCT and GBOBC1 
methods, and not by the newer GBn method, which gave better results for absolute hydration 
energies of small neutral molecules.87 It is likely that other slower and more accurate GB 
methods, e.g. GBMV and GBR6 (not available in Amber), will give results that are closer to 
those of PB.90,91,92 Apparently, the MM/P(G)BSA approach is very sensitive to the continuum-
solvation model and that there is no consensus in the predictions of different method, which 
of course is a serious problem with the approach. It should also be noted the calculated 
trMADs are not very impressive: The null hypothesis that all the seven ligands have the same 
affinity gives trMADs of 20 kJ/mol for the full set, and 12 and 8 kJ/mol for the charged and 
neutral ligands, respectively. 

In conclusion, we have shown that the MM/3D-RISM-KH method is a promising method 
to calculate ligand-binding affinities from first-principles statistical mechanics, without the 
fundamental drawbacks of continuum solvation approaches involving empirical 
parametrisation of interactions. The popular PB(GB)SA models poorly define the dielectric 
cavity shape, inadequately treat non-polar interactions, miss the solvent entropic term, and are
not transferable to new complex systems with features arising from molecular specificities of 
their constituents. This includes hydrogen bonding and hydrophobic interactions, association 
and steric effects due to structural solvent, co-solvent, salt, buffer, and other solution species 
like ligands.
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Table 1. Results of the various solvation models for the binding of the seven biotin analogues 
to avidin. All energies are in kJ/mol. For comparison, the experimental binding energies are 
also given.18 

Btn1 Btn2 Btn3 Btn4 Btn5 Btn6 Btn7

Eel -1273.0 -1271.6 -1249.3 -163.4 -106.8 -74.2 -105.3

EvdW -155.7 -155.3 -142.8 -205.0 -136.0 -136.3 -57.6

TSMM -97.7 -104.6 -99.5 -98.2 -81.3 -74.9 -65.8

Gnp(3D-RISM-KH-
GF)

83.3 80.4 81.8 130.1 91.4 95.8 46.7

Gnp(3D-RISM-KH) 47.7 44.4 46.8 88.5 62.1 67.6 32.5

Gnp(SASA) -16.8 -16.8 -16.8 -21.1 -16.3 -16.1 -10.5

Gpol(3D-RISM-KH-
GF)

1226.3 1233.9 1202.9 199.2 124.3 103.6 91.0

Gpol(3D-RISM-KH) 1223.0 1230.1 1199.6 196.5 122.2 102.0 90.0

Gpol(PBAmber) 1175.5 1185.8 1159.4 217.3 134.9 114.4 85.3

Gpol(PBDelphi) 1274.2 1283.7 1260.3 281.3 149.0 157.4 118.2

Gpol(GBHCT) 1224.6 1239.9 1203.3 171.9 107.6 83.5 84.3

Gpol(GBOBC1) 1223.0 1237.3 1203.3 181.8 107.4 88.3 85.6

Gpol(GBOBC2) 1151.3 1157.3 1135.7 150.0 78.1 67.1 64.2

Gpol(GBn) 1125.8 1122.6 1112.9 174.7 79.8 72.5 68.8

Gbind(3D-RISM-KH-
GF)

-21.4 -8.1 -7.8 59.1 54.2 63.7 40.6

Gbind(3D-RISM-KH) -60.3 -47.9 -46.3 14.8 22.9 34.0 25.4

Gbind(PBAmber) -172.2 -153.4 -150.1 -74.0 -42.8 -37.4 -22.3

Gbind(PBDelphi) -73.5 -55.4 -49.2 -10.0 -28.7 5.6 10.7

Gbind(GBHCT) -123.2 -99.3 -106.1 -119.4 -70.1 -68.3 -23.2

Gbind(GBOBC1) -124.8 -101.8 -106.3 -109.6 -70.4 -63.5 -21.8

Gbind(GBOBC2) -196.5 -181.7 -173.9 -141.5 -99.6 -84.6 -43.2

Gbind(GBn) -222.0 -216.4 -196.7 -116.7 -97.9 -79.3 -38.6

Gbind(Exp) -85.4 -59.8 -58.6 -36.8 -34.3 -20.9 -18.8
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Table 2. Standard error of the mean over the 80 snapshots (100 for Btn2) for the various 
energy terms in the binding energy of the seven biotin analogues to avidin. All energies are in 
kJ/mol. 

Btn1 Btn2 Btn3 Btn4 Btn5 Btn6 Btn7

Eel 5.6 5.0 6.2 2.8 2.8 2.1 2.0

EvdW 1.4 1.2 1.6 1.3 1.2 1.1 0.9

TSMM 1.9 1.8 1.9 2.2 1.5 1.7 1.1

Gnp(3D-RISM-KH-GF) 1.3 1.2 1.4 1.4 1.5 1.3 0.8

Gnp(3D-RISM-KH) 1.4 1.3 1.5 1.5 1.7 1.4 0.9

Gnp(SASA) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gpol(3D-RISM-KH-
GF)

4.6 4.6 5.4 2.4 2.1 2.4 1.6

Gpol(3D-RISM-KH) 4.6 4.6 5.4 2.4 2.1 2.3 1.6

Gpol(PBAmber) 4.4 3.8 4.8 2.3 1.4 1.6 1.1

Gpol(PBDelphi) 5.0 4.1 5.2 2.7 1.8 2.2 1.9

Gpol(GBHCT) 4.7 4.4 5.4 2.3 1.5 1.6 1.2

Gpol(GBOBC1) 4.7 4.4 5.3 2.3 1.4 1.7 1.2

Gpol(GBOBC2) 4.2 4.1 4.9 1.9 1.0 1.3 0.8

Gpol(GBn) 4.4 4.2 5.1 2.2 1.1 1.6 0.8

Gbind(3D-RISM-KH-
GF)

3.1 2.8 2.8 2.9 2.6 2.5 1.7

Gbind(3D-RISM-KH) 3.2 2.9 2.9 3.0 2.7 2.6 1.7

Gbind(PBAmber) 3.3 3.1 2.9 3.0 2.7 2.3 1.8

Gbind(PBDelphi) 3.3 2.8 2.7 3.1 2.9 2.8 2.1

Gbind(GBHCT) 2.4 2.3 2.3 2.9 2.1 2.0 1.6

Gbind(GBOBC1) 2.5 2.5 2.4 2.9 2.3 2.0 1.7

Gbind(GBOBC2) 3.0 2.9 2.8 2.8 2.7 2.2 1.7

Gbind(GBn) 3.8 3.4 3.2 2.7 3.2 2.2 1.8
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Table 3. Quality descriptors ofGbind, compared to experiments, calculated with the various
solvation methods. The four descriptors are MAD (mean absolute difference), trMAD (MAD,
after subtraction of the mean signed difference), the correlation coefficient (r2), and the
predictive index.84 For each descriptor, except MAD, the standard error is also given in the
second column. 

MAD trMAD r2 PI

Gbind(3D-RISM-KH-
GF)

70.7 1.0 16.3 1.0
0.80

0.02
0.87

0.02

Gbind(3D-RISM-KH) 36.8 1.0 17.4 1.1 0.90 0.02 0.99 0.02

Gbind(PBAmber) 48.2 1.0 36.4 1.0 0.91 0.01 1.00 0.01

Gbind(PBDelphi) 16.3 1.0 9.7 1.0 0.93 0.02 0.99 0.00

Gbind(GBHCT) 42.1 0.8 14.6 0.9 0.59 0.03 0.85 0.06

Gbind(GBOBC1) 40.5 0.9 12.3 0.9 0.69 0.03 0.85 0.03

Gbind(GBOBC2) 86.8 1.0 30.4 0.6 0.85 0.01 1.00 0.00

Gbind(GBn) 93.3 1.1 43.3 1.1 0.89 0.01 0.99 0.03
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Table 4. The sensitivity of the 3D-RISM-KH results with respect to some parameters. The 
default parameter set consists of 0.5 Å grid spacing, 12 Å solvent buffer cut-off and a 10–5 
residual tolerance with cSPC/E water. Parameter sets indicate differences from the default 
parameters. Binding energies are given in kJ/mol and total CPU time in hours. Standard errors
in the least significant digit are given brackets.
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Btn1 Btn2 Btn3 Btn4 Btn5 Btn6 Btn7

PR-SPC/E 1310 (5) 1319 (5) 1285 (6) 305 (3) 203 (3) 179 (2) 133 (2) 2934
Default 1271 (5) 1275 (5) 1246 (5) 285 (3) 184 (3) 170 (2) 122 (2) 1754

1270 (5) 1274 (5) 1246 (5) 284 (3) 184 (3) 170 (2) 122 (2) 1097
20 Å Solvent Buffer 1275 (5) 1278 (5) 1250 (5) 290 (3) 188 (3) 173 (2) 124 (2) 2322

1271 (5) - - - - - - - - - - - - 1991

PR-SPC/E 1265 (5) 1277 (5) 1240 (6) 219 (3) 141 (2) 112 (3) 101 (2) 4754
Default 1223 (5) 1230 (5) 1200 (5) 196 (2) 122 (2) 102 (2) 90 (2) 3110

1222 (5) 1229 (5) 1199 (5) 195 (2) 121 (2) 102 (2) 90 (2) 1928
20 Å Solvent Buffer 1223 (5) 1230 (5) 1200 (5) 196 (2) 122 (2) 102 (2) 90 (2) 4108

PR-SPC/E 46 (1) 42 (1) 45 (2) 86 (2) 61 (2) 67 (1) 32 (1) 1819
Default 48 (1) 44 (1) 47 (2) 89 (2) 62 (2) 68 (1) 32 (1) 1357

Total
Time

ΔG
solv

10-3 Tolerance

0.25 Å Grid Spacing

ΔG
pol

10-3 Tolerance

ΔG
np



Figure 1. The seven biotin analogues used in this study. a) Btn1 (biotin), b) – g) Btn2–Btn7.
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Figure 2. The non-polar solvation energy (Gnp) for the various ligands and methods.
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Figure 3. The calculated binding energies for the various methods, plotted against the 
experimental binding energies.
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TOC graphics. Binding affinities of seven biotin analogues to avidin has been estimated with
the MM/PBSA approach using 3D-RISM-KH, two Poisson–Boltzmann, and four generalised 
Born solvation methods, giving results that differ by up to 208 kJ/mol in absolute terms and 
and mean absolute deviations in the relative affinities of 10–43 kJ/mol.
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