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Abstract
In this paper, we review our efforts to use quantum mechanical (QM) methods to improve

free-energy estimates of the binding of drug candidates to their receptor proteins. First, we 
have tested the influence of various implicit solvation models on predictions of the ligand-
binding affinity. The accuracy of implicit solvation models strongly depend on the 
parameterisation, but also on the magnitude of the solvation energy (i.e. their accuracy should 
be discussed in relative terms). However, if only relative solvation energies within a series of 
similar drug molecules with the same net charge are considered, nearly all methods tested 
give a comparable accuracy of 2–5 kJ/mol. Second, we have studied the conformational 
dependence of QM charges and their influence on ligand-binding affinities. The 
conformational dependence is significant, but it is to a large extent cancelled by solvation 
energies. Third, we have estimated the effect and range of electrostatic interactions beyond a 
point-charge model. The results show that multipoles up to octupoles and anisotropic 
polarisabilities have a significant influence on energies for residues up to 10–15 Å from the 
active site and that different sets of point-charge models may give strongly varying results. 
However, if only relative energies are considered, the effect is to a large extent cancelled. 
Fourth, we have tried to develop an accurate QM-based molecular mechanics potential, in 
which not only the electrostatic terms are improved, but also the dispersion and repulsion. 
However, even with quite sophisticated expressions, it seems difficult to reduce the average 
error below 2–3 kJ/mol per interaction (e.g. a hydrogen bond), compared to the full QM 
treatment. Finally, we have developed a new method, PMISP (polarised multipole interaction 
with supermolecular pairs), for the calculation of accurate interaction energies. It employs an 
accurate force field for electrostatics and induction, including multipoles up to octupoles and 
anisotropic polarisabilities calculated by QM methods on amino-acid fragments of the protein 
in each conformation observed in snapshots from a molecular dynamics simulation, whereas 
short-range interactions are estimated by high-level QM calculations for all pairs of the ligand
with near-by residues. We show that this approach allows us to go far beyond the current 
accuracy of molecular mechanics methods, down to an error of 5–10 kJ/mol for a full protein–
ligand complex. It can be combined with estimates of solvation, entropy, and dynamic effects 
to give estimates of binding affinities. However, several problems remain to be solved before 
any significant improvement in the accuracy can be seen. 

Key Words: Ligand-binding affinities, MM/PBSA, implicit solvation methods, electrostatics,
polarisation, quantum mechanical methods.
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Introduction
During the latest decades, theoretical methods have become a powerful complement to 

experiments for the study of reactions in biological systems. In particular, it has repeatedly 
been shown that quantum mechanical (QM) calculations can provide structures of protein 
active sites with an accuracy similar or better than X-ray and NMR structures (Neese 2006, 
Ryde 2007). However, accurate energies are much harder to obtain (Ryde 2009), even if it has
been shown that QM activation energies can be used to select the most probable reaction 
mechanisms of enzyme reactions (Siegbahn & Borowski 2006, Himo 2006).

One reaction of particular interest is the binding of a ligand (L) to a receptor (R), forming 
the complex (RL):

L + R → RL (1)
The free energy of this reaction, Gbind, is the binding affinity of the ligand to the receptor. 
Such an energy is interesting because most drugs exert their action by binding to a receptor 
protein or nucleic acid. If it could be accurately calculated, drug development could be 
performed by computers, thereby saving an enormous amount of money.

Therefore, much effort have been devoted to calculate ligand-binding affinities with 
various methods (Gohlke & Klebe 2003). The most accurate results are normally obtained 
with free-energy perturbations (FEP; Beveridge & Dicapua 1989). Unfortunately, these are 
extremely time-consuming, their results typically converge only if the difference in binding 
affinity of similar ligands are considered, and most of the time is spent on simulations of non-
physical states. Therefore, cheaper but more approximate approaches have been developed, 
which typically study only the reactants and products in Eqn. 1. Two examples of such 
approaches are the linear interaction energy (LIE, Åqvist 1994, Hansson 1998) and the 
MM/PBSA methods (molecular mechanics, combined with Poisson–Boltzmann and surface-
area solvation models; Kollman et al. 2000). 

Owing to the size of the receptor, such studies have traditionally been performed with 
molecular mechanical (MM) methods. However, as the computers have become more 
powerful, there has been a growing interest to improve the results of the affinity predictions 
by using quantum mechanical (QM) calculations (Raha et al. 2007). Such approaches range 
from using QM to calculate a few MM parameters of the ligand to treating the entire 
receptor–ligand complex with QM.

In this paper, we will review our efforts in this area, including tests of the accuracy of 
implicit solvation methods, the conformational dependence of MM charges, the importance of
induction and a more accurate description of electrostatics, and the development of an 
accurate and effective way to treat the complete receptor–ligand complex with QM methods. 
It will be seen that the effect of using the more accurate QM calculations is unexpectedly 
small if only relative energies are considered and that the accuracy of ligand-bining estimates 
in general is not limited by the accuracy of the MM force field.

The MM/PBSA approach
We first shortly describe the standard MM/PBSA approach (Kollman et al. 2000), because

it shows what terms are normally considered as important for ligand-binding affinities and it 
provides an appropriate framework for including QM calculations in binding-affinity 
calculations. 

In the MM/PBSA approach, the binding free energy is calculated as the difference in free 
energy of the three reactants in Eqn 1:

∆ Gbind = < GRL > − <GR > − < GL > (2),
where each free energy is estimated as a sum, according to

G = EMM + Gsolv + Gnp – TSMM (3),
where EMM is the molecular mechanics gas-phase energy of the reactant, consisting of the 
internal energy (from bonds, angles, and dihedral angles), as well as the non-bonded 
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electrostatic and van der Waals energies:
EMM = Eint. + Eel. + EvdW (4)

Gsolv is the polar part of the solvation energy, which is traditionally calculated by solving the 
Poisson–Boltzmann (PB) equation (Sharp & Honig 1990). Gnp is the non-polar part of the 
solvation energy (the cavitation energy, as well as the dispersion and exchange repulsion 
between the solute and the solvent), which normally is calculated by a relation to the solvent 
accessible surface area (SASA; Hermann 1972). The last term TSMM is the product of the 
absolute temperature and the entropy, which is calculated from a normal-mode analysis of a 
truncated system at the molecular-mechanics level (Kollman et al. 2000). The averages in 
Eqn. 2 are calculated from a set of snapshots extracted from a molecular dynamics simulation 
to include the effects of dynamics. Each of the three free energies in Eqn. (2) should in 
principle be calculated from an individual simulation, but it is more common to simulate only 
the complex and then calculate all three free energies in Eqn. 2 from this simulation (Kollman
et al. 2000, Swanson et al. 2004). Thereby, the precision of the method is improved and the 
internal MM energy (Eint) cancels. 

Traditionally, only rather few snapshots have been used in the energy calculations, ~20, 
taken from a single molecular dynamics (MD) simulation. However, recent studies in our 
group have shown that this gives high statistical uncertainties in the prediction (Genheden & 
Ryde 2009a). The precision of the method can be improved by a factor of ~3 if a buffer of 
fixed atoms is used in the calculation of the entropy term (Kongsted & Ryde 2009). Moreover,
it is more favourable to run several short independent simulations than a single long MD 
simulation (Genheden & Ryde 2009a). However, to obtain a standard error (i.e. the standard 
deviation of the mean value) of 1 kJ/mol for the final affinity estimates (which is needed to 
compare different methods with a statistical confidence), typically 1600–12800 energy 
calculations or 3–24 ns total simulation time is needed. Interestingly, it seems to be enough to 
obtain the independent simulations by simply varying the initial velocities of the simulations 
– changing the solvation, the conformation of residues not clearly discernible in crystal 
structures, the geometry of rotable groups, the protonation state of histidine residues, or even 
the net charge of the protein did not change the results significantly (Genheden & Ryde 
2009b). Likewise, different simulation protocols (spherical, octahedral, or truncated 
simulation boxes) give similar results, but implicit solvation methods during the MD 
simulations typically give poor results (Weiss et al. 2006). On the other hand, several studies 
have indicated that dynamical effects are less important – in fact, minimised structures often 
give as good (and much cheaper) results as MD simulations (Kuhn et al. 2005, Rastelli et al. 
2009).

Implicit solvation methods
We have studied the effect of various solvation models on the ligand-binding affinities. 

For example, it is possible that the binding-affinity estimates could be improved by 
calculating the solvation energy of the ligand by a QM method. To a first approximation, the 
net solvation contribution to the ligand-binding affinities comes mainly from the solvation 
energy of the ligand (because that of the complex and the free receptor nearly cancel, at least 
for a buried binding site). Therefore, we first concentrated on the solvation energy of the 
isolated ligand and calculated it with four different types of solvation models (Kongsted et al. 
2009): 

● The polarised continuum method (PCM), in which the interface between the solvent 
and the solute is described by a surface formed by small area elements and the 
reaction field from the solvent is described as a charge on each area element (Tomasi 
et al. 1999). 

● The Langevin dipole method (LD), in which the solvent is described by an array of 
explicit dipoles on a grid, which is affected by the electrostatic field of the solute and 
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all the other dipoles according to the Langevin equation (Warshel 1979, Florián & 
Warshel 1999).

● The Poisson–Boltzmann (PB) method, in which the solute and solvent are assigned 
different dielectric constants, and the solute is described by a set of atomic charges. 
The potential in any point of the system can then be obtained by solving the Poisson–
Boltzmann equation, possibly in the presence of ions (Sharp & Honig 1990).

● The generalised Born (GB) method, which approximates the solvation energy by a 
pair-potential between each charge, employing a specific screening function between 
each pair, which depends on the geometry of the solute (Still et al. 1990).

Each of these methods give only the polar solvation energy, so they need to be combined 
with a method to calculate also the non-polar part of the solvation energy. For the PCM 
methods, which typically are connected with QM calculations, sophisticated expressions for 
cavitation, dispersion, and exchange repulsion are used (Tomasi et al. 1999), whereas the PB 
and GB methods have traditionally been combined by a simple linear relation to the SASA 
(Hermann 1972). However, this has started to change (Tan et al. 2007). Moreover, all methods
require a set of charges for each atom. These can either be MM point charges, e.g. from some 
of the Amber force fields, they can be calculated by QM methods, or the solvation energy can 
be calculated directly from the electronic distribution, within the QM calculation. Finally, all 
methods also require a set of radii, defining the extent of the solute. These are normally 
obtained by a more or less thorough parametrisation. Typically, the more parameters that are 
included in the model, the better can the results be (Nicholls et al. 2008). In total, we tested 24
variants of implicit solvation models, in which the four solvation models mentioned above 
were combined with different sets of charges, radii, and non-polar solvation expressions 
(Kongsted et al. 2009).

First, we studied a set of 20 neutral and 20 singly charged ions for which experimental 
data are available, to test the general performance of the methods. For the neutral molecules, 
the PCM methods performed best with MADs (mean absolute deviations) down to 1.3 kJ/mol.
The LD and the best GB methods gave twice as large errors, 3.5 kJ/mol, whereas the best PB 
method had a MAD of 5.6 kJ/mol. Maximum errors ranged from 5 to 22 kJ/mol. For the ions, 
the results were appreciably worse with error ranging from 16 to 25 kJ/mol, with again PCM 
best, but GB worst. The reason for this large quantitative difference is simply that the 
solvation energies of the ions are much larger; in relative terms the errors of the ions are 
actually smaller (0.05–0.07) than for the neutral molecules (0.09–0.34). 

This becomes even more apparent if neutral drug-like molecules are considered. For 
these, the experimental solvation energies are not known, so instead the spread among the 
various methods was studied. It turned out to be ~4 times larger for the drug-like molecules 
than for the small neutral molecules. However, the size of the solvation energy was also ~4 
times larger and there was a good correlation between the size of the solvation energy and the 
spread among the various methods as can be seen in Figure 1. Thus, the accuracy of implicit 
solvation methods should be discussed in relative, rather than absolute terms.

Further details can be obtained if we use a weighted average of the results of all methods 
as a measure of the true solvation energy (Kongsted et al. 2009). Naturally, the details of the 
results depend on the weighting of the average, but the general result is stable, viz. that the 
absolute solvation energies vary quite extensively, but if only drug candidates within 
analogous series and with the same net charge are compared, all 24 methods except two gave 
the same relative solvation energies within 2–5 kJ/mol. Even if this corresponds to a factor of 
2–7 in the binding constant, it shows that there is little gain of using QM-based methods to 
calculate solvation energies of the ligand, especially as this may reduce the cancellation of 
errors if the receptor and the complex are treated with other (MM-based) methods. This study 
also shows that implicit solvation methods are far from quantitative and that there is little 
hope that they will give accurate binding affinities for diverse sets of drug candidates.

Further studies have shown that if several conformations of the ligands are considered, 
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e.g. in the sampling of the MM/PBSA method, the difference among the various methods 
increase somewhat (to 5–8 kJ/mol for the neutral ligands; Genheden et al. 2009b). Moreover, 
there are also significant effects from the surrounding protein, even for a buried ligand site. 
Different implicit solvation methods give widely different absolute binding affinities with 
MM/PBSA-like approaches, as can be seen in Figure 2, and as has also been shown before 
(Gohlke & Case 2004, Rastelli et al. 2009). Unfortunately, it is not a matter of a simple 
translation of the curves, because the various methods give MADs of 12–43 kJ/mol (with a 
standard error of ±1 kJ/mol) even after such a translation. In fact, the slope varies among the 
methods, so that those that give a poor MAD have a good correlation coefficient (r2 = 0.59–
0.91; standard error ±0.03) and vice versa. Again, there is no indication that more advanced 
and computationally expensive methods give better results. 

Conformational dependence of charges
Most MM force fields for biological macromolecules treat electrostatic interactions by the

Coulomb interaction between point charges on each atom in the system. The atomic charges 
are normally obtained by QM calculations. For example, the charges in the Amber force fields
are obtained by restrained electrostatic potential (RESP) method (Bayly et al. 1993), 
according to which the electrostatic potential (ESP) is calculated in a large number of points 
around the molecule of interest and atomic charges are fitted to reproduce these potentials 
(Bachrach 1994, Sigfridsson & Ryde 1998). Such ESP fits are unstable in that charges on 
atoms that are buried inside the molecule (mostly carbon atoms) are poorly determined and 
therefore may have large and counter-intuitive values, which may give problems in 
simulations. In the RESP approach, this buried-charge problem is cured by restraining the 
charges towards zero using a hyperbolic restraint.

In all common force fields, the charges on the macromolecules are predetermined and 
available in force-field libraries. This is a potential problem, because it is well-known that 
QM charges depend on the conformation of the molecule (Williams 1990, Reynolds et al. 
1992). For example, it has been shown that the interaction energy between a small molecule 
and water molecules in the first solvation shell may vary by up to 20 kJ/mol for a charged 
molecule (Stouch & Williams 1993) and up to 13 kJ/mol for a neutral molecule (3 kJ/mol on 
average; Sigfridsson & Ryde 2002). Therefore, for accurate results, new QM charges should 
be calculated for each conformation of both the receptor and ligand, which of course would be
extremely time-consuming in a molecular dynamics simulation. 

However, with an MM/PBSA approach, in which the ligand-binding affinity is calculated 
only for a limited number of snapshots, it is possible to recalculate all charges within the RL 
complex. We have done this for a study of the binding affinities of seven biotin analogues 
(shown in Figure 3) to avidin (Weis et al. 2006): The protein was divided into CH3CO– and 
–NHCH3 capped residues, for which QM ESP charges were calculated according to the Merz–
Kollman scheme (Besler et al. 1990) at the HF/6-31G* level of theory, i.e. the same level as 
for the Amber 1994 and 1999 force fields (Cornell et al. 1995, Wang et al. 2000). The 
calculations took 3 minutes per residue on average and were trivially parallel. Charges for all 
residues in this tetrameric protein were calculated for 20 snapshots for each ligand, giving 
1 095 760 distinct charges in total. 

However, when these QM charges were used in a MM/PBSA prediction of the binding 
affinities, no improvement in the affinities was observed (Weis et al. 2006). On the contrary, 
the MAD from the experimental data increased from 14 to 20 kJ/mol and the correlation 
coefficient (r2) decreased from 0.96 to 0.74, compared to calculations with the Amber-94 
force field, which was used for the MD simulations. However, considering that only 20 
snapshots were used, taken from the same simulation, and the standard deviation in the 
individual MM/PBSA estimates among the 20 snapshots was very high, 40–70 kJ/mol, these 
differences are probably not statistically significant (Genheden & Ryde 2009a).
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A detailed study of the differences between the QM and Amber charges in these 
simulations (Söderhjelm & Ryde 2009b) showed that the total electrostatic energies are totally
different for the two charge sets (–103 and –66 MJ/mol), but this is mainly caused by a 
constant offset of the energies. However, even the relative energies in a MD simulation, i.e. 
the conformational energies of the protein, differed by up to 150 kJ/mol or 17 % of the total 
variation in electrostatic energy. The electrostatic ligand-binding energies differed by 43 and 
8 kJ/mol on average for the charged and neutral ligands, respectively (3–4 % of the total 
energy). However, these differences are to a great extent compensated by solvation effects. 
For the sum of the electrostatic and the polar solvation interaction energy, the difference 
between the Amber and QM charges is reduced to 7 and 3 kJ/mol, respectively. This shows 
that the conformational dependence of the charges is highly significant, but it is largely 
cancelled by solvation effects, explaining why fixed MM charges works reasonably well in 
simulations.

The original QM charges could not be used directly in MD simulations, probably because 
the buried-charge problem makes some of the charges unphysically high (Weis et al. 2006, 
Söderhjelm & Ryde 2009b). However, by averaging the charges, either over the 7×20 
snapshots or also over all occurrences of the same residue anywhere in the sequence (giving a 
single charge for each atom in each residue, like the Amber force field, providing an 
alternative way to obtain fixed MM charges), much more stable charges could be obtained, 
which could be used in MD simulations (Söderhjelm & Ryde 2009b). However, no significant
improvement of the results were seen in MM/PBSA estimates of the ligand affinities.

Recently, similar calculations of QM charges have been performed on four other proteins 
(Genheden et al. 2009a). The results show that averaged charges are very similar even if 
obtained for different proteins (r2 > 0.99). The charges are similar to the Amber RESP 
charges, but in general of a slightly higher magnitude, indicating that the arbitrary constraint 
in the RESP method is too strong. Moreover, a few of the Amber charges seem to be 
improper, especially for N atoms in amino terminals. When these averaged QM charges are 
used in MM/GBSA (i.e. MM/PBSA with the PB solvation model replaced by GB) estimates 
of the ligand binding affinities, with a strongly increased sampling, a slight but significant 
improvement of the results is seen for the correlation coefficient (from 0.60±0.01 to 
0.68±0.01; a different solvation model and a much larger number of snapshots were used in 
these estimates, explaining the difference from the estimates mentioned above).

Improved models of electrostatics
Even when using charges derived from quantum chemistry and considering the 

conformational dependence of charges, the functional form of standard force fields is still 
insufficient to describe all aspects of intermolecular interactions. An important step towards a 
better description of the interaction energy between the ligand and the protein is to improve 
the description of the electrostatic interactions. One way is to recognise that point charges are 
only the first term in a series expansion of the electrostatic interactions, which can be 
continued by dipoles, quadrupoles, and higher multipoles (Stone & Alderton 1985, Engkvist 
et al. 2000). A second way is to include an explicit treatment of polarisation. There has been 
an interest to develop polarisable force fields for proteins for a long time, but still only a few 
general-purpose polarisable force fields are available, and the great majority of protein 
simulations are still performed with non-polarisable force fields (Halgren & Damm 2001, 
Cieplak 2001, Maple et al. 2005, Gresh et al. 2007, Warshel et al. 2007). Although it is well-
known that electronic polarisation typically contributes 10–30% of the total electrostatic 
interaction energy (Söderhjelm & Ryde 2009a), the use of a polarisable force field often does 
not give results that justify the increase in computer load. For example, for the binding of 
seven analogues to avidin, no improvement in the binding affinities was observed for 
MM/PBSA with the polarisable Amber 2002 force field, compared to non-polarisable force 
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fields (Weis et al. 2006).
Non-standard accurate force fields are available that take into account both higher-order 

multipoles and anisotropic polarisabilities, e.g. NEMO, Amoeba, SIBFA, and EFP (Engkvist 
et al. 2000, Ren & Ponder 2002, Gresh et al. 2007, Day et al. 1996). These could in principle 
give very accurate interaction energies, especially if the multipoles and polarisabilities are 
calculated for the correct conformation of each molecule or residue. The SIBFA method has 
been used to calculate ligand-binding affinities (Gresh et al. 2005, Miller Jenkins et al. 2007, 
Roux et al. 2007). 

One of the problems with assessing the importance of higher multipoles and polarisation 
is that there are many different ways to derive them from a QM calculation. In contrast to 
point-charges, multipoles are commonly derived directly from a partitioning of the electron 
density into local contributions, although fitting techniques may also be used. The partitioning
can either be performed in real space (e.g. the atoms-in-molecules approach; Bader 1990) or 
in terms of the basis set (i.e. related to the Mulliken analysis; Mulliken 1955), and a large 
variety of methods have been proposed (Náray-Szabó & Ferenczy 1995). For polarisabilities, 
the methods are even more diverse, because there are also many ways to apply the perturbing 
field (Dehez et al. 2001, Williams & Stone 2003, Gagliardi et al. 2004).

We have compared the multipoles and polarisabilities obtained from two basis-space 
partitioning methods with regard to the ability to reproduce the electrostatic potential from the
corresponding QM calculation, with and without an applied electric field (Söderhjelm et al. 
2007). We found that a method based on an orthogonal but localized basis set (Gagliardi et al. 
2004) gave better results than a Mulliken-like approach, especially when the basis set 
included diffuse functions. We also tested the dependence of the error on the distance from the
molecular surface and found for typical interaction distances that there is no gain in using a 
higher multipole level than octupoles. In fact, the quadrupole level might be a more balanced 
choice when considering the performance of the polarisabilities. Empirically, we have also 
found that ESP-fitted point charges usually give an accuracy that is slightly better than a 
density-based multipole expansion truncated after dipoles.

Next, we investigated how polarisation models perform for realistic intermolecular 
interactions. It is known that the point-polarisability model benefits from error cancellation 
between the lack of Pauli effects and the approximate use of the homogeneous electric field at
each polarisable point (Masia et al. 2005). In perturbational QM calculations, which are 
needed to address these effects separately, the lack of Pauli effects (as in e.g. Kitaura–
Morokuma decomposition; Kitaura & Morokuma 1976) favours over-polarisation, because 
nothing prevents the electrons from floating over to the surrounding molecules. This is also a 
problem in traditional QM/MM methods (Laio et al. 2002). On the other hand, the use of 
homogeneous fields effectively limits the polarization. We performed a systematic study of 
this cancellation for a wide range of interactions (Söderhjelm et al. 2008), primarily dimers 
between amino-acid side-chains and water. Supermolecular calculations at the HF/cc-pVTZ or
HF/ANO-L level were used as a reference, and the same level was used in the approximate 
models. For all considered systems (at the most favourable interaction distance), the error of a
model that included the exact field but no Pauli effects was significantly larger than the error 
of the point polarisability model. In average, the relative errors in the induced electrostatic 
potential were 16%  and 10%, respectively, but the maximum errors (for the formamide 
dimer) were 161% and 94%, respectively. This indicates that the polarisability model works 
well in general, but that it is unsuitable for modeling strong interactions, although the problem
can be reduced by using a damping function (Masia et al. 2005). By using several 
intermediate models, we also found that all other approximations in the polarisability model 
are of less importance, and thus, the only way to significantly improve current polarisation 
models is to simultaneously include field derivatives and coupling between polarisation and 
repulsion. A promising way to achieve this is by employing repulsive pseudopotentials 
(Söderhjelm & Öhrn 2009).
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As a first practical test of the importance, conformation- and distance dependence of the 
improved electrostatics and polarisation, we have studied their influence on the electronic 
spectrum of the retinal chromophore in rhodopsin (Söderhjelm et al. 2009a). Even if this is 
not ligand-binding energies, it is most likely that the results will be closely similar also for 
binding affinities. A full NEMO model was calculated for the whole protein (two different 
crystal structures were tested), by performing QM calculations on each capped amino acid, 
both at the HF/6-31G* and B3LYP/aug-cc-pVDZ levels, which took 17 and 250 CPU days, 
respectively. The multipoles and polarisabilities were obtained by the LoProp method 
(Gagliardi et al. 2004). The results show that the absolute energies strongly depend on the 
electrostatic description. For example, the excitation energies calculated with the non-
polarisable Amber-94 and Amber-03 force fields (Cornell et al. 1995, Duan et al. 2003) could 
differ by up to 16 kJ/mol (and by 8 kJ/mol for the difference in the calculated excitation 
energies between various mutants). Polarisabilities had an even stronger influence of up to 
46 kJ/mol. Anisotropic polarisabilities are important for residues within 6–10 Å of the 
chromophore. The polarisable Amber-02 force field gave errors of up to 10 kJ/mol, indicating 
the conformational dependence, but it can be used as a good approximation for interaction 
more than 10 Å from the chromophore. The quadrupoles contribute by up to 26 kJ/mol, but 
their interactions level off already at 6 Å from the chromophore. Quite unexpectedly, 
multipoles and polarisabilities calculated at the HF/6-31G* level gave energies that differed 
by less than 8 kJ/mol from those obtained at the B3LYP/cc-pVDZ level and the results 
converged within 8 Å from the chromophore. 

Finally, we have compared isotropic polarisabilities obtained by the NEMO approach on 
the correct conformation for two proteins with those used in standard polarisable force fields 
(Söderhjelm et al. 2009d). The results show that the Amber-02 force field uses quite crude 
polarisabilities (only 1–3 values for each element; Cieplak et al. 2001), as can be seen in 
Figure 4. Thus, the performance of polarisable force fields can probably be improved by using
distinct polarisabilities for each atom in the protein, in the same way as for point charges.

Improved models of non-electrostatic terms
When studying ligand binding, it is not sufficient to only improve the electrostatics and 

polarisation, because binding energies also include significant contributions from dispersion 
and repulsion. It is not a good solution to simply take these contributions from a standard 
force field, because the latter is usually parameterised for a certain choice of electrostatics.

There are two main approaches to construct a consistent intermolecular potential that 
reproduces the QM potential. In the first approach, used by e.g. SIBFA and EFP, one tries to 
reproduce each term of a QM energy decomposition method, such as the restricted variational 
space (RVS) method (Bagus et al. 1984, Stevens & Fink 1987). In the second approach, used 
by e.g. NEMO, one of the force field terms, usually the repulsion, serves as a remainder term, 
which is fitted for a wide range of interactions in such a way that the total interaction energy 
is recovered. The advantage of the first approach is that it has a clearer connection to the 
physics involved and therefore can be expected to be more transferable when applied to new 
systems. The advantage of the second approach is that one can use simpler expressions for the
various terms without necessarily compromising the accuracy. For example, to model the true 
electrostatic energy, it is necessary to go beyond the multipole approximation to capture 
charge-penetration effects. This can be done by using damping functions (Freitag et al. 2000, 
Piquemal et al. 2003) or density fitting techniques (Cisneros et al. 2005). On the other hand, 
in the second approach, one can stay within the multipole approximation and instead absorb 
the charge penetration into the fitted repulsion term, because these terms have approximately 
the same dependence on the molecular overlap.

To separate the problem of choosing a suitable functional form for the repulsion from the 
issue of transferability, we have performed a large fit to Hartree–Fock exchange-repulsion 
energies (i.e. the first approach), in which we employed several expressions based on the 

9



well-known near-proportionality between the exchange repulsion and the squared molecular 
overlap (Söderhjelm et al. 2006). In particular, we compared expressions based on the orbital 
overlap (possibly weighted by the orbital energies), which depends on all the occupied 
orbitals of the interacting molecules, and the much simpler density overlap, which only 
depends on the electron density. A large data set of molecular dimers was used, including all 
types of normal hydrogen bonds in proteins, but also e.g. CH–O and OH– interactions. 
Some key results are given in the Exrep column of Table 1. When using only one parameter 
(i.e. assuming proportionality), there is no significant difference between the various models, 
but we found that it was possible to substantially improve the orbital overlap results by adding
a second parameter modeling the deviation from proportionality (the exact functional form 
was found to be of less importance), whereas much more parameters were needed to get a 
similar improvement in the case of density-overlap expressions. Thus, we concluded that the 
orbital overlap is preferable for describing the exchange repulsion, if one wants a stable 
model with few parameters.

We spent three years trying to develop a NEMO potential for amino acids and drug 
molecules with such high accuracy as has previously been achieved for smaller molecules 
(Engkvist et al. 2000). To illustrate the transferability problems we encountered, we have 
revisited the fitting expressions and data set of the previous work (Söderhjelm et al. 2006), 
but plugged in the remainder terms from NEMO instead of the exchange repulsion. The 
results are shown in Table 1 (note that the errors now reflect the accuracy of the full potential, 
not only the repulsion). As expected, the NEMO errors are much larger than the Exrep errors. 
This reflects that errors from the other terms are included in the fitting error. In particular, the 
errors increase by 33–56% when going from the HF level to the MP2 level, where also the 
dispersion contributes. Interestingly, the advantage of using the orbital overlap has completely
disappeared in the NEMO fits, even when using an additional parameter. The energy-
weighted orbital overlap still provides a reasonable description, but the simpler density 
overlap is equally good. 

The most surprising result of this investigation was obtained when we deliberately made 
the potential worse (see Table 1). When the level of multipoles was reduced, the error 
increased, showing that higher multipoles (in this case quadrupoles) are important. However, 
when the polarisation was completely neglected, the error actually decreased. The reason is 
simply that the reference repulsion energy becomes smaller in magnitude (it does not have to 
counteract the polarisation). Nevertheless, this result indicates that the errors cumulated in the
various NEMO terms are so large that they obscure the more obvious error of neglecting the 
polarisation. This is probably the reason why the use of polarisable force fields sometimes 
does not give as great improvement as one would expect, especially when the remaining 
force-field terms are not simultaneously improved.

In conclusion, we have constructed a general potential where all parameters are derived 
directly from QM calculations, besides one fitted parameter per element for the dispersion and
one universal parameter for the repulsion. However, it seems difficult to reduce the average 
error below 2–3 kJ/mol for each interaction (e.g. a hydrogen bond). Although this accuracy is 
better than that of a standard force field, it is probably not sufficient for useful predictions of 
binding affinities, considering that a protein–ligand complex sometimes includes ~20 contacts
or more.

The PMISP method
Owing to the problems with constructing a full accurate molecular-mechanics potential, 

we decided to follow a different approach. The problems in NEMO were connected to the 
short-range terms, whereas the long-range electrostatics and inductions can be expected to be 
well described by the multipole expansion and the anisotropic polarisation. Therefore, we 
decided to simply calculate the short-range interactions by QM calculations. This would 
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involve QM calculations of the ligand with all protein groups within 4–7 Å. For typical 
protein–ligand complexes, this corresponds to 300–800 atoms. Unfortunately, it is very hard 
to estimate dispersion accurately with theoretical methods – high-level methods, like MP2 or 
CCSD(T), are needed, together with large basis sets (Jurecka et al. 2006). Therefore, these 
calculations need to be performed with some sort of fractionation approach. We decided to 
simply calculate all pairs of the ligand together with a nearby group from the protein.

Thus, the interaction energy of this method, which we call PMISP (polarised multipole 
interaction with supermolecular pairs; Söderhjelm & Ryde 2009a), is calculated from: 

EPMISP( RL) = Eel(RL) + Eind(RL) + Enc(RL) (5),
where Eel and Eind are the electrostatic and induction interaction energies, respectively (note 
that all energies in Eqn. 5 are interaction energies between L and R, not the energies of the RL 
complex). Eel is calculated from a multicentre–multipole expansion up to quadrupoles in all 
atoms and bond centres in the protein and the ligand. Likewise, Eind is calculated from 
anisotropic dipole polarisabilities in the same centres in a self-consistent manner. Enc is the 
non-classical term, containing mainly dispersion and exchange repulsion, but also short-range
corrections to the classical terms, e.g. charge penetration. It is estimated by 

Enc RL=∑
i=1

n

c i  EQM Ri L −E el Ri L−E ind Ri L   (6)

where the receptor has been divided into a number of fragments (Ri), using the molecular 
fractionation with conjugate caps (MFCC) method (Zhang & Zhang 2003). The fragments are
composed of amino acids, capped with CH3CO– and –NHCH3 groups. The caps from 
neighbouring fragments are joined to form one CH3CONHCH3 conjugate cap (concap) for 
each amino acid and the energies of these concaps are subtracted (ci = –1 in Eqn. 3) from the 
energies of the capped amino-acid fragments (ci = 1). EQM(RiL) is the counterpoise-corrected 
QM interaction energy of the Ri–L pair. A similar formula is used to derive properties 
(multipoles and polarisabilities) for the whole protein from fragment calculations (Söderhjelm
& Ryde 2009a). The multipoles and polarisabilities are calculated from monomer calculations
on each capped amino acid in the protein.

For a large protein, only a few fragments Ri are in close contact with the ligand, so the 
direct use of Eqn. 5 would be very inefficient. Therefore, much time can be saved without 
compromising the accuracy by using a QM/MM approach, PMISP/MM (Söderhjelm et al. 
2009b): For residues close to the ligand (M), the full PMISP approach is used, whereas for 
more distant residues, Enc is approximated by the Lennard–Jones term from a classical force 
field, ELJ:

EPMISP/MM (RL) = Eel(RL) + Eind(RL) + Enc(ML) + ELJ (RL) − ELJ(ML) (7)
Thus, we use the same accurate multipole–polarisability model for the whole protein as in 
PMISP. 

The accuracy of the PMISP method has been tested for a 216-atom model of the protein 
avidin, interacting with seven biotin ligands (Figure 3) in ten different conformations, taken 
from snapshots of a MD simulation (Söderhjelm & Ryde 2009a). For this model, full QM 
calculations at the MP2/6-31G* level are possible. The results show that the MFCC 
fragmentation works excellently, with errors of only ~1 kJ/mol. The PMISP approach gave 
errors of ~10 kJ/mol for charged ligands and ~6 kJ/mol for neutral ligands, both at the HF and
MP2 levels. This is much better than MFCC and similar pairwise additive approaches (Zhang 
& Zhang 2003) that only sum up the QM pair energies, without taking any account of many-
body effects (28 kJ/mol error for a charged ligand). In fact, PMISP was even found to be more
accurate than the more advanced fragment molecular orbital (FMO) method (error ~14 
kJ/mol; Kitaura et al. 1999; the evaluation used the same systems, fragmentation scheme, and 
QM level, so that only the treatment of many-body effects differed). The FMO method is in 
fact more computationally demanding (by a factor of ~5) than PMISP for interaction energies 
between rigid molecules, because it requires the computation of all fragment dimers. 
However, the ability of FMO to treat conformational changes at a consistent level is of course 
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a great advantage that is not easily realisable with PMISP.
Interestingly, the PMISP results can be considered as the best possible results obtainable 

with a method that assumes pairwise additivity of all energy terms except induction, e.g. as in 
all normal polarisable or non-polarisable MM force fields. The remaining errors seem to arise 
from the coupling between polarisation and exchange repulsion, and they can be reduced by 
doing also trimer calculations (expensive, but accurate), by including multipoles and 
polarisabilities of all the other fragments in the dimer calculations, or by subtracting the error 
at the HF level from the PMISP result at the MP2 level (Söderhjelm & Ryde 2009a).

Next, we tested the PMISP/MM approach in Eqn. 7 for the full biotin−avidin complex 
(Söderhjelm et al. 2009b). We first showed that it is meaningless to use a level like HF/6-
31G* for protein−ligand interaction energies − the energy difference to a more realistic 
MP2/aug-cc-pVTZ calculation (Riley & Hobza 2007) is ~160 kJ/mol, mainly owing to the 
short-range dispersion. Interestingly, estimates with the polarisable Amber-02 and the non-
polarisable Amber-94 force fields also differ by 91 kJ/mol. We also investigated how the 
PMISP calculations can be sped up by applying approximations either in all calculations or in 
the classical terms outside a certain distance from the ligand (see Table 2; the errors are 
computed using the corresponding calculation without the approximation as a reference). 
Truncation of the multipole expansion at the quadrupole level might cause errors of 7 kJ/mol, 
although the effect is short-ranged.  Even quadrupoles can be omitted outside of 5 Å. 
Polarisabilities are important and the use of isotropic polarisabilities may give an error of 
34 kJ/mol and has a long-range effect. In fact, the result converges faster if anisotropic 
polarisabilities are used, but their coupling are ignored (i.e. the induction is calculated without
iteration). On the other hand, the multipoles and polarisabilities can to a good approximation 
be calculated with density functional theory, rather than at the more expensive MP2 level − 
this gives errors of less than 3 kJ/mol. One can also use a smaller basis set to compute the 
properties outside of ~12 Å. Another possible way to save computer time is to use the 
polarisable Amber-02 force field; if it is used for residues more than 15 Å from the ligand, 
their error is less than 3 kJ/mol. For a neutral ligand, the errors are smaller and more short-
ranged. For example, the error from using the Amber-02 force field for residues more than 
10 Å  from the ligand is less than 2 kJ/mol. 

Of particular interest is the accuracy of the PMISP/MM approximation and how large the 
QM system (M) needs to be, as this directly affects the efficiency of the method. Our results 
indicate that the QM system should involve all groups within 6 Å of the ligand, or 275−421 
atoms, depending on the size of the ligand. Then, the truncation errors are below 3 kJ/mol and
the CPU time for a single-point energy at the MP2/aug-cc-pVTZ level is ~20 days (with the 
calculations being trivially parallelisable). At 4 Å, the error is 16 kJ/mol for a charged ligand, 
but it comes mainly from two groups. If these could be identified beforehand, the calculations
could be sped up by a factor of two.

Finally, we have combined PMISP/MM with the MM/PBSA approach to obtain actual 
ligand-binding affinities with all important effects included (Söderhjelm et al. 2009c). This is 
simply done by replacing EMM in Eqn. 3 with the corresponding PMISP/MM energy, while 
keeping the other terms. EQM was calculated at the MP2/cc-pVTZ level, whereas the 
multipoles and polarisabilities were calculated at the B3LYP/6-31G* level. The ELJ term was 
taken from the Amber 1994 force field (Cornell et al. 1995). The calculations were performed 
on ten snapshots from a MD simulation with the polarisable Amber-02 force field and the 
binding of seven biotin analogues to avidin was studed. Unfortunately, the standard PB 
method cannot take into account multipoles and polarisabilities. Therefore, we instead 
calculated Gsolv + Gnp with the PCM method implemented for EFP and FMO in the GAMESS 
software (Li et al. 2003).

Recently, there has been a great interest of developing ligand-binding methods that are 
based on quantum mechanical (QM) methods (Raha et al. 2007). Such methods are typically 
based either on semiempirical calculations (Raha & Merz 2004, 2005) or on fractionation 
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approaches, e.g. FMO (Fukuzawa et al. 2006, Nakanishi et al. 2007) or MFCC and related 
methods (Zhang et al. 2003, 2004, Zhang & Zhang 2005, Mei et al. 2005, He et al. 2005, Wu 
et al. 2007, Bettens et al. 2007). However, as was discussed above, it is well-known that 
theoretical calculations of dispersion effects require a very high level of theory (Jurecka et al. 
2006). Likewise, accurate predictions of polarisation effects require a large basis set (Giese & 
York 2004). Only one of these studies (Bettens et al. 2007) has been performed at a level 
(MP2/6-311(+)G(2d,p) at which there is a hope that dispersion and polarisation effects are 
satisfactorily treated. On the other hand, that study calculates only interaction energies, and 
ignores solvation, entropy, and dynamical effects. Therefore, our study seems to be the first 
one that include all important effects and perform the QM calculations at a proper level of 
theory.

Unfortunately, the results of the full PMISP+PCM+TS were rather poor (Söderhjelm et
al. 2009c): As can be seen in Figure 5, it gave predicted binding affinities that were positive 
for all ligands, with a correlation coefficient (r2) of only 0.27 and a MAD of 19 kJ/mol (after 
translation by the average signed error). This is appreciably worse than for the MM/PBSA 
performed with the Amber-02 force field, which gave an MAD of 13 kJ/mol without any 
systematic error and with r2 = 0.65. The poor result of PMISP+PCM+TS seems to be 
mainly caused by the non-polar part of the solvation energy from the PCM model: The net 
SASA term in standard MM/PBSA is always negative and rather small –11 to –20 kJ/mol, 
whereas the corresponding PCM term is much larger and positive, 52–155 kJ/mol. This may 
be related to the fact that PCM uses a van der Waals surface for the cavitation energy (Cossi et
al. 1996), whereas the other terms are based on the SASA or the related solvent-excluded 
surface area. For small molecules, for which PCM was calibrated (Barone et al. 1997), there 
is little difference between these two surface definitions, but for a protein, the former will give
rise to a large number of small cavities within the protein, giving differences in the area of 
more than a factor of two (Söderhjelm et al. 2009c). These effects were already seen for the 
largest drug-like molecules (Kongsted et al. 2009). Interestingly, the 3D-RISM solvation 
method give non-polar energies similar to that of the PCM model (Genheden et al. 2009b; 
3D-RISM is the three-dimensional reference interaction site model and it uses statistical 
mechanical methods to yield the radial pair correlation functions between atomic sites 
constituting the molecules of liquid; Chandler & Andersen 1972, Kovalenko & Hirata 2000). 
If we instead use the non-polar SASA estimate for the binding affinity, the absolute PMISP 
energies are appreciably improved, as can be seen in Figure 5; the MAD is 19 kJ/mol and r2= 
0.52, even if standard  MM/PBSA is still better. 

Moreover, the non-classical PMISP estimate may be somewhat too large, owing to the 
limited basis set used in the calculation of EQM. However, if this term is replaced by the 
corresponding Amber van der Waals term, the MAD increases to 30 kJ/mol. In conclusion, 
this investigation illustrates that it is hard to improve calculated ligand-binding affinities and 
that a more physical method not necessarily gives improved results. 

Concluding Remarks
In this paper we have reviewed our efforts to improve calculated ligand-binding affinities 

using QM methods, involving all important terms according to the MM/PBSA approach. The 
basic conclusion for these studies is that it is difficult to improve the accuracy of ligand-
binding affinities from the level obtained with standard MM methods. There are many reasons
for this.

● First, it is hard to detect unambiguous differences: The results must be converged to a 
high precision (~1 kJ/mol) to discern in a statistically valid way the small differences 
among different methods (Genheden & Ryde 2009a). Moreover, a large number of 
ligands and targets need to be studied before any conclusive results can be obtained. 
Unfortunately, QM-based methods are so expensive that neither of these requirements 
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typically can be fulfilled.
● Ligand-binding affinities depend on a large number of factors, including electrostatics,

van der Waals interactions, polar- and non-polar solvation, entropy, dynamics, strain, 
ionic strength, protonation, displacement of water molecules from the binding site, etc.
(Gohlke & Klebe 2002). All these terms contribute to the binding affinity and they are 
probably treated in a rather crude way, so it is not enough to improve a single term to 
get a significant improvement. Furthermore, many of these terms are correlated, so it 
is often possible to get a reasonable correlation to experimental results even when 
omitting physically important terms.

● Many of the terms are large and cancel to a large extent. Therefore, calculated binding 
affinities are typically too large (often by a factor of 10; Gilson & Zhou 2007) and it is
hard to get results that are significantly better than the null-hypothesis that all ligands 
have the same affinity.

● In particular, there is a major cancellation between electrostatics and solvation. 
Therefore, details of the method of calculating electrostatic interactions become of less
importance. For example, even if the conformational dependence of point charges is 
significant, giving differences in the electrostatic interaction energy of over 40 kJ/mol 
for a charged ligand, these differences are reduced to 7 kJ/mol in a solvent 
(Söderhjelm & Ryde 2009b).

● Likewise, if only relative binding energies are studied, many errors and differences 
cancel. For example, absolute solvation energies for drug-like molecules may differ by
over 200 kJ/mol, but if only relative energies are considered for similar ligands with 
the same charge, essentially all implicit solvation methods predict the solvation energy
within 2–5 kJ/mol (Kongsted et al. 2009).

● QM calculations are typically performed as single-point energy calculations on 
structures obtained by MM. It is likely that this may deteriorate the results if the MM 
potentials are different, because MM may sample structures that are high up on the 
repulsive side of the QM potential (Weis et al. 2006). This may be solved by QM 
dynamics or minimisations.

Unfortunately, this leads to the rather sad conclusion that currently there seems to be little
gain of using advanced methods to calculate ligand-binding affinities. On the contrary, even 
the cheapest MM-based methods give results of a similar quality as advanced QM-based 
methods. Of course, that does not mean that we should stop trying more advanced methods, it 
only means that larger and better validations are needed and that we do not know yet what 
currently limits binding-affinity estimates.
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Abbreviations
Amoeba: An accurate polarisable force field (Ren & Ponder 2002)
Amber: Program package and force field for molecular mechanics simulations
ANO-L: A large QM basis set
aug-cc-pVDZ: A medium-sized, diffuse QM basis set 
aug-cc-pVTZ: A large, diffuse QM basis set 
B3LYP: A density-functional theory QM method 
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cc-pVDZ: A medium-sized QM basis set
cc-pVTZ: A large QM basis set
EFP: Empirical fragment potential, an accurate polarisable force field from QM calculations 

(Day et al. 1996)
ESP: Electrostatic potential or atomic charges fitted to the ESP (Bachrach 1994)
FEP: Free-energy perturbation (Beveridge & Dicapua 1989) 
FMO: Fragment molecular orbital QM method for large systems (Kitaura et al. 1999
GAMESS: A software for QM calculations
GB:  Generalised Born (GB) method for calculation of solvation energies (Still et al. 1990)
HF: The Hartree–Fock QM method
L: A ligand
LD: Langevin-dipole method for calculation of solvation energies (Warshel 1979, Florián & 

Warshel 1999)
LIE:  Linear interaction energy method for binding energies (Åqvist 1994, Hansson 1998)
MAD: Mean absolute difference 
MD: Molecular dynamics
MFCC: Molecular fractionation with conjugate caps QM method for large systems (Zhang & 

Zhang 2003)
MM: Molecular mechanics
MM/GBSA: Same as MM/PBSA, but with the PB solvation model replaced by GB
MM/PBSA: A combination of MM, PB, and SA methods to obtain ligand-binding affinities 

(Kollman et al. 2000)
MP2: Møller–Plesset, second-order perturbation theory, the cheapest correlated QM method
NEMO: An accurate polarisable force field for intermolecular interactions from QM 

calculations  (Engkvist et al. 2000)
PB: Solvation energies obtained by solving the Poisson–Boltzmann equation (Sharp & Honig 

1990)
PCM: Polarised continuum method for calculation of solvation energies (Tomasi et al. 1999)
RESP:  Restrained electrostatic potential method to obtain atomic charges  (Bayly et al. 1993)
PMISP: Polarised multipole interaction with supermolecular pairs, an accurate method to 

obtain ligand interaction energies from a combination of NEMO and QM calculations 
(Söderhjelm & Ryde 2009a)

PMISP/QM: The QM/MM variant of PMISP (Söderhjelm et al. 2009b)
QM: Quantum mechanics
QM/MM: A combination of QM and MM, where QM is used for a small system and MM for 

the rest
R: A macromolecular receptor
RL: A receptor–ligand complex
RVS: Restricted variational space method to obtain QM energy components (Bagus et al. 

1984, Stevens & Fink 1987)
r2: The coefficient of determination (the square of Pearson's correlation coefficient)
SA: Surface area
SASA: Solvent-accessible surface area
SIBFA: An accurate polarisable force field (Gresh et al. 2007)
S: The difference in entropy upon ligand binding
3D-RISM: The three-dimensional reference interaction site model to obtain solvation energies

(Chandler & Andersen 1972, Kovalenko & Hirata 2000)
6-31G*: A medium-sized QM basis set
6-311(+)G(2d,p): A rather large QM basis set
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Table 1. Average errors in kJ/mol when fitting the exchange-repulsion energy using four 
different expressions (Eqns. 12–16 of Söderhjelm et al. 2006). The reference energies are 
either the first-order exchange-repulsion energies from a Kitaura–Morokuma analysis (Exrep)
or the remainder terms (NEMO) defined by EQM – Eel – Eind – Edisp, using a multipole expansion
up to quadrupoles and anisotropic polarisabilities for the electrostatic and induction terms and
a simple r–6 fit for the dispersion. In the NEMO case, results are given at the Hartree–Fock 
(HF; no dispersion) and MP2 levels, as well as for models neglecting quadrupoles and 
polarisation, respectively. The data set included 26 molecular dimers of amino-acid side-
chains and water in 2621 different geometries (Söderhjelm et al. 2006).

Exrep NEMO NEMO NEMO (HF) NEMO (HF)

Expression  (HF)  (MP2) no quadrupoles no polarisation

Orbital overlap 1.2 2.4 3.2 2.4 1.8

Orbital overlap (2 parameters) 0.7  1.9 2.7 2.3 1.6

Energy-weighted orbital overlap 1.1  1.7 2.6 2.2 1.4

Density overlap 1.2  1.8 2.6 2.1 1.5
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Table 2. The effect of various approximations in the PMISP/MM calculation of the avidin–
biotin interaction energy (Söderhjelm et al. 2009b; the total interaction energy is –1419 
kJ/mol). The approximations are applied either for the full system (including also the 
fragment–ligand dimer calculations) or outside a certain distance from the ligand (excluding 
the dimer calculations). The approximate convergence distance (Conv) is the distance outside 
of which the approximation gives an error of less than 4 kJ/mol. The corresponding 
convergence distance for a neutral biotin analogue is given in brackets.

Error (kJ/mol) Conv (Å)

Full system From 4 Å From 10 Å

No octupoles 6.7 0.1 0.3 2  (3)

No quadrupoles 19.3 4.5 1.4 5  (5)

No induction -19.2 -23.7 -25.5 20  (9)

Isotropic polarisabilities 34.4 -6.3 -12.9 20  (3)

Non-iterated induction 16.3 10.7 8.5 15  (8)

B3LYP propertiesa 2.7 2.5 1.6 3       

6-31G* propertiesb 1.1 -3.2 -5.1 12  (3)

Amber 1994 force fieldc 6.5  -27.4 20  (8)

Amber 2002 force fieldd 30.4 -3.9 15  (7)
aversus the MP2 reference
bversus the aug-cc-pVTZ reference
cusing charges
dusing charges and polarisabilities
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Figure 1. The relation between the standard deviation of various implicit solvation methods 
(either all 24 investigated methods of the PCM, LD, PB, or GB types, or only those of PCM 
type) and the average solvation energy (again either over all 24 methods or over only the 
PCM methods) for 20 small molecules and 18 drug-like molecules (Kongsted et al. 2009).
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Figure 2. The calculated binding energies of seven biotin analogues to avidin for MM/PBSA-
like approaches with several different implicit solvation methods (Genheden et al. 2009b), 
viz. 3D-RISM with or without the Gaussian fluctuation correction (Kovalenko & Hirata 
2000), PB, and four variants of GB (Hawkins et al. 1996, Onufriev et al. 2004, Mongan et al. 
2007).
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Figure 3. The seven biotin analogues used extensively in our work as a test case (Genheden
& Ryde 2009a, Genheden et al. 2009ab, Kongsted & Ryde 2009, Söderhjelm & Ryde 2009ab,
Söderhjelm et al. 2009bcd, Weis et al. 2006). a) Btn1 (biotin), b) – g) Btn2–Btn7.
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Figure 4.  Correlation between the NEMO and Amber-02 polarisabilities (in units of Å3), 
coded after the elements (Söderhjelm et al. 2009d). The line marks x = y.
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Figure 5.  The results of the PMISP+PCM+TS, PMISP+SASA+TS, 
PMISP+SASA+TS+EvdW, and MM/PBSA (with the Amber-02 force field) methods for the 
binding of seven biotin analogues to avidin (Söderhjelm et al. 2009c).
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