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Abstract
The molecular mechanics/generalized Born surface area (MM/GBSA) method has been 

investigated with the aim of achieving a statistical precision for the results of 1 kJ/mol. We 
studied the binding of seven biotin analogues to the avidin, taking advantage of the fact that 
the protein is a tetramer with four independent binding sites, which should give the same 
estimated binding affinities. We show that it is not enough to use a single long simulation 
(10 ns), because the standard error of such a calculation underestimates the difference 
between the four binding sites. Instead, it is better to run several independent simulations and 
average the results. With such an approach, we obtain the same results for the four binding 
sites, and any desired precision can be obtained by running a proper number of simulations. 
We discuss how the simulations should be performed to optimise the use of computer time. 
The correlation time between the MM/GBSA energies is ~5 ps and an equilibration time of 
100 ps is needed. For MM/GBSA, we recommend a sampling time of 20–200 ps for each 
separate simulation, depending on the protein. With 200 ps production time, 10–80 separate 
simulations are required to reach a statistical precision of 1 kJ/mol (1600–12800 energy 
calculations or 3–24 ns total simulation time per ligand) for the seven avidin ligands. This is 
an order of magnitude more than what is normally used, but such a number of simulations is 
needed to obtain statistically valid results for MM/GBSA method. 

Key Words: MM/PBSA, ligand-binding affinities, generalised Born, avidin, biotin, galectin
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Introduction
In biochemistry, most small molecules exert their action by binding to a macromolecule. 

Therefore, it is of great importance to understand the reaction 

L + R  LR (1),

where L is the ligand, R is the macromolecular target (the receptor) and LR is the complex. In 
particular, a main goal of computational medicinal chemistry is to develop methods that 
accurately can estimate the free energy of this reaction, ∆Gbind, as this would allow us predict 
the binding strength of any drug candidate without synthesising it. Indeed, this has been 
described as the Holy Grail of structure-based drug design [1]. 

The most accurate and rigorous methods for ligand binding are free energy perturbation 
(FEP) [2] and thermodynamic integration (TI) [3]. They are founded on statistical mechanics, 
and are well-established and in theory exact [4], In these methods, the difference in binding 
free energy between two ligands is calculated by slowly changing one ligand into another, via 
a number of unphysical, intermediate states, using molecular dynamics (MD) or Monte Carlo 
simulations. Despite initial success and promising results, FEP or TI has found relatively little
use in drug design [5], because they converge only for rather similar ligands and are very 
computational expensive. As such, they are usually only applicable to congeneric series of 
inhibitors [1,4].

Therefore, more simplified and faster methods have been developed, such as the linear 
interaction energy [6] and the molecular mechanics/Poisson–Boltzmann surface area 
(MM/PBSA) [7] methods. These two methods only simulate the end-points of the reaction, 
i.e. only physical states. There are also other methods that do not require any simulation at all 
and relay on statistical relationships [1], but such methods do not give accurate and uniform 
results for all types of complexes [1,8].

In this work we have concentrated on MM/PBSA and the related MM/GBSA method [7]. 
They are promising methods that have been widely used and have given good results 
[9,10,11], although there are also cases reported for which they have worked less satisfactorily
[12,13,14]. In both approaches, the binding free energy is approximated by the difference in 
free energy of the three reactants:

∆ Gbind = < GRL > − <GR > − < GL > (2),

where each free energy is estimated as a sum, according to

G = EMM  G solv − TSMM (3),

where GMM is the molecular mechanics gas-phase energy of the reactant, consisting of the 
internal energy (from bonds, angles, and dihedral angles), as well as the non-bonded 
electrostatic and van der Waals energies:

EMM = Eint. + Eel. + EvdW (4)

Gsolv is the solvation energy, and is calculated with a continuum representation of the solvent 
for the polar part, and by a relation to the solvent accessible surface area for the non-polar 
part. The polar part can either be calculated by solving the Poisson–Boltzmann equation [15] 
(giving MM/PBSA [7]) or by using the generalized Born method [16] (MM/GBSA). The last 
term TSMM is the product of the absolute temperature and the entropy, which is calculated from
a normal-mode analysis of a truncated system at the molecular-mechanics level. 

The averages in Eqn. 1 are calculated from a set of snapshots taken from a molecular 
dynamics simulation to include the effects of dynamics. Each of the three free energies in 
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Eqn. (2) should in principle be calculated from an individual simulation. However, it is more 
common to only simulate the complex and then calculate all three free energies in Eqn. 2 from
this simulation [17,18]. In that case, the internal MM energy (Eint) cancels out.

A major problem with the MM/PBSA approach is the large standard deviation of the 
estimate of the binding free energy, coming from a large variation in the individual terms in 
Eqns. 3–4 among the snapshots from the MD simulation. Unfortunately, this estimate is often 
not reported, but it is typically 20–150 kJ/mol (and 120–210 kJ/mol if separate trajectories are
used for the three reactants) [13,19,20,21]. Considering that drug candidates often differ in 
their affinity by less than order of magnitude in the binding constant, corresponding to 
6 kJ/mol, this is a major problem. Of course, it can be cured by performing more energy 
calculations, but if you aim at an accuracy of half of that (close to the experimental accuracy) 
and want to draw statistically significant conclusions (the t distribution value is ~2 at 95 % 
confidence), the desired standard error should to be close to 1 kJ/mol. Hence, 400–22500 
energy calculations are needed. This is much more than what is traditionally used (10–200), 
but a few recent studies have used up to 10 ns simulation time and 1000 energy calculations 
(but only up to 50 for the demanding entropy calculations) [13,19,20]. However, these 
investigations have also pinpointed another problem, namely the occurrence of several 
substates that are only seldom sampled during the simulations, but may give binding energies 
that differ by an amount larger than what is expected from the standard error [20], indicating 
that even 10 ns are too short time to obtain truly equilibrated results.

In this paper we thoroughly investigate these issues, examining what is needed to obtain 
MM/GBSA results that have a true statistical accuracy of ~1 kJ/mol. To examine whether the 
results are statistically valid, we have selected a test case for which there are four equivalent 
binding sites in the same protein, viz. the binding of seven biotin analogues (Figure 1) to 
avidin. This protein is well-characterized by X-ray crystallography [22,23,24,25] and 
experimental binding affinities are available [26,27,28]. This system has been the subject of 
several studies with FEP [29,30], LIE [30] and MM/PB(GB)SA [12,21,31,32]. For this 
protein, we can calculate four independent binding constants from each simulation. If the 
results are converged, all four estimates should be identical, within the statistical uncertainty.

Methods

Preparation of complexes
We have studied the binding of the seven biotin analogues in Figure 1 to avidin. The 

preparation of the avidin protein and the inhibitors has been describe before [21]. The Amber 
99-SB force field [33] was used for the protein atoms and the inhibitors were described with 
the Amber 99 force field [34] with charges [21] derived from RESP (restrained electronic 
potential) calculations [35]. Each protein–ligand system was immersed in an octahedral box 
of TIP4P-Ewald [36] water molecules that extended at least 10 Å outside the protein. The 
Amber 99-SB force field, especially in combination with TI4P-Ewald water, has in several 
investigations been shown to give improved structures and dynamic properties compared to 
experiments [33,37,38,39].

The preparation of galectin-3 with a substituted benzamido-lactosamine inhibitor (ligand 3 
in [40], shown in Figure S1 in the supplementary material) has not been described before. The
calculations were based upon a crystal structure of galectin-3 in complex with this ligand 
(PDB code 1kjr) [40]. The ligand was described with the generalized Amber force field 41 
and charges were derived from RESP calculations [34], based on electrostatic potentials 
calculated at the HF/6-31G* level according to the Merz–Kollman scheme [42], but using a 
higher than default density of points (10 concentric layers with 17 points/Å2). The protein was
described with the Amber 99-SB force field [33]. Protons were added to galectin-3 assuming 
standard protonation states at pH 7 for all residues. The protonation state of the histidine 
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residues was decided from the local surroundings and hydrogen-bond networks: residue 158 
was protonated on Nδ1 and the residues 208, 217 and 223 were protonated on Nε2. This gives a
total charge of +4 on the system. The protein–ligand complex was solvated in an octahedral 
box of TIP4P-Ewald water molecules extending at least 8 Å from the protein. 

Simulation protocol
All simulations were run by the sander module in Amber 10 [43]. The SHAKE algorithm 

[44] was used to constrain bond lengths involving hydrogen atoms. The temperature was kept 
at 300 K using Langevin dynamics [45] with a collision frequency of 2.0 ps–1. Particle-mesh 
Ewald (PME) [46] with a fourth-order B-spline interpolation and a tolerance of 10–5 was used 
to treat long-range electrostatics. The non-bonded cut-off was 8 Å and the non-bonded pair 
list was updated every 50 fs. The MD time step was 2 fs.

The complex was first optimised by 500 steps of steepest descent minimisation, keeping 
all atoms, except water molecules and hydrogen atoms, restrained to their start position with a
force constant of 418 kJ mol–1 Å–2. The minimisation was followed by 20 ps MD equilibration 
with a constant pressure and the restraining force constant reduced to 214 kJ mol–1 Å–2. 
Finally, a production simulation was run without any restraints, but still with a constant 
pressure. The length of this simulation was varied, as was the length of the initial discarded 
equilibration period.

MM/GBSA calculations
∆G was calculated according to Eqns. 2–4. All terms in Eqn. 4 was calculated with Amber

8 [47] with all water molecules stripped off and with an infinite cut-off. The GBOBC method 
(with , , and  set to 0.8, 0, and 2.91, respectively) and with the default modified Bondi
radii was used to calculate the polar solvation energy [48], and the non-polar solvation energy 
was calculated using the solvent accessible surface area, according to 

Gnp =  SASA + b (5)

with  = 0.0227 kJ/mol/Å2 and b = 3.85 kJ/mol [31]. The entropy was calculated by a 
normal-mode analysis of the harmonic frequencies calculated at the MM level. For this 
calculation, we used our recently described modification to increase the precision [49]: All 
residues more than 12 Å from any atom in the ligand were deleted and the remaining atoms 
were minimised, keeping all residues more than 8 Å from the ligand (including all water 
molecules) fixed, to keep the geometry as close as possible to the original structure. Thereby, 
the questionable use of a distance-dependent dielectric constant can be avoided. In the 
frequency calculations, the fixed buffer region was omitted. The energy was calculated for 
each subunit in avidin, and the inhibitors in the other subunits were treated as a part of the 
protein. Prior to the MM/GBSA calculations, the ligand in the subunit of interest was centred 
in the octahedral box.

Estimation of correlation time
To ensure that all data in our statistical analysis are uncorrelated, we estimated the 

correlation time of the MM/GBSA energy estimates with the statistical inefficiency method 
[50,51]. Thus, we calculated the measure:

 =
⋅2 Y 
 2X 

(6)
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where σ2(X) is the variance of the distribution {X}, i.e. the variance of the MM/GBSA Gbind 
estimates for the various snapshots and σ2(Y) is the variance of the block average of {X}, 
where the block length is τ. This block average is calculated from

Y i =
1

⋅ ∑

j=n−i1

n−i−1 

X j (7)

That is, {X} is divided into a number of segments, each with length τ. Once τ is so large that 
the successive values of Yi are statistical independent, Φ will become a constant and an 
estimate of the correlation time of {X}. 

Error estimates
To quantify the performance of the MM/GBSA method, we use three different estimates: 

the correlation coefficient between the predicted and experimental data (r2), the predictive 
index (PI) [8], and the mean absolute deviation (MAD) from the best correlation line through 
the origin (i.e. after the subtraction of the mean signed difference). These estimates are quite 
meaningless without an estimate of their statistical uncertainty. They were obtained by a 
simple simulation: Each inhibitor was assigned a random number from a normal distribution, 
with the mean and standard deviation obtained in the MM/GBSA calculations. We then 
calculated MAD, r2 and PI, and repeated this procedure 10 000 times. The standard deviations
within these three sets are reported as the standard error of the error estimates. Throughout 
this paper, all reported statistical uncertainties are standard errors of the mean, i.e. the 
standard deviation divided by the square root of the number of estimates.

Result and Discussion

One long simulation
First, we examined whether it is enough to run a single long simulation. We run a MD 

simulation of the avidin tetramer with four bound biotin ligands (Btn1 in Figure 1) for 10 ns 
(after 0.2 ns equilibration), and calculated MM/GBSA Gbind estimates every picosecond. 
Statistical inefficiency calculations indicated that the correlation time for Gbind was ~5 ps, 
giving 2000 energy estimates for each subunit. The results are collected in Table 1. The 
standard deviation of Gbind is ~20 kJ/mol, so the standard errors of the mean values (the 
standard deviation divided by 2000) are 0.5 kJ/mol, indicating that the energies are well 
converged. 

However, the binding energies of biotin to each of the four subunits show a rather large 
variation, –110 to –121 kJ/mol. This is much larger than expected from the standard errors – 
all differences larger than 2.3 kJ/mol are 99.9% statistically significant. Of course, this could 
indicate that the true binding strengths of the four ligands are different, but there is no 
experimental support of this. Instead, a more plausible explanation is that the estimated 
standard errors are too low or that the conformational space is not sampled enough to obtain 
converged results. Calculating backwards from the standard deviations of the individual 
simulations, the large difference in Gbind indicates that the number of independent 
observations must be less than ~35 (i.e. a correlation time of 280 ps). This is a too large 
difference to assign the error to the estimate of the correlation time. Instead, the estimate of 
the standard deviation must be too small, which is equivalent of saying that the 
conformational space is not sampled enough. This is a very serious observation, indicating 
that 10 ns simulation time is far to small to obtain a proper sampling of the phase space and to
obtain converged estimates of binding energies with the MM/GBSA method. Again 
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calculating back from the observed difference, the results indicate that a ~30 times longer 
simulation is needed to obtain converged results (i.e. 300 ns), which would seem to be 
prohibitively long.

Several short simulations
If we assume that the problem with the long simulation is that it remains too close to the 

starting structure and does not properly sample the full phase space, a possibly more 
economical solution to the problem could be to run several shorter simulations starting at 
different points in the phase space. A simple way to obtain this is to use the same starting 
structure, but using different starting velocities. This can very easily be obtained by simply 
providing a different seed to the random number generator, because the starting velocities are 
assigned by random to a Maxwell distribution. A similar approach has been used frequently 
before to obtain independent simulations [52,53,54]. 

Therefore, we run 20 independent 400 ps long simulations of biotin in avidin. Again, the 
correlation time for the MM/GBSA energies was ~5 ps and only the last 200 ps of the 
simulation were used (giving 800 energy estimates per subunit). The results are summarised 
in Table 2. The standard errors are now calculated simply from the standard deviation in the 
20 independent simulations. It can be seen that they are larger than for the single simulation, 
1.5–2.9 kJ/mol. On the other hand, the Gbind estimates for the four subunits are more 
similar, 
–111 to –117 kJ/mol. In this case, the largest difference (between subunits B and C) is not 
larger than what can be expected with the observed standard errors (90% significant 
difference, obtained for one of six possible pairs of subunits). Therefore, the total average 
over the four subunits and the 20 simulations, –114 kJ/mol, should be a proper estimate of the 
binding energy for biotin to avidin, using this force field, with a standard error of 1.1 kJ/mol 
(based on 80 observations). Of course, if we increase the number of independent simulations, 
the error will decrease.

Figure 2 shows the individual MM/GBSA estimates for the four subunits in the 20 short 
simulations. It can be seen that there is a large spread of the estimates, up to 55 kJ/mol (–81 to
–135 kJ/mol), even if they are based on an average over 40 snapshots each. This indicates that
we must use a large number of estimates to obtain converged results. It is also clear from the 
plot, that there is not apparent difference between the subunits, which shows that we indeed 
can treat them as independent. Thus, we seem to have solved the problem with sampling of 
the phase space.

Designing an practical procedure
We can now turn to the problem of designing a practical procedure that gives converged 

MM/GBSA results, i.e. to discuss the sampling rate, the length of the short simulations, and 
the equilibration time needed. The goal is to obtain as good results as possible with a 
minimum use of computer time.

We start with considering the sampling frequency. Therefore, the correlation time of the 
MM/GBSA energy was estimated using the statistical inefficiency method for all the four 
subunits in the 20 short simulation of the biotin–avidin complex. The results are shown in 
Figure 3, both for the whole simulated time (400 ps) and for only the last 200 ps of the 
simulation. It can be seen that the correlation time is 1–16 ps if all data is included and 1–7 ps 
if 100 ps equilibration time is excluded. Thus, the data indicates that it is favourable to 
exclude the first part of the simulation. In both cases, the most common correlation time is 2 
ps. Based on these data, we decided to use a sampling frequency of 5 ps, for which 98 % of 
the data are uncorrelated if the equilibration period is excluded. Of course, this selection is 
somewhat arbitrary; we could have selected 7 ps, for which all 80 samples are uncorrelated, 
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but this would have been a waste of computer time by a factor of two for 94% of the 
simulations and for other ligands it is likely that larger correlation times can be observed. A 
correlation time of 3 or 4 ps could also be considered, for which 94 and 96% of the samples 
are uncorrelated, but we decided to use the more conservative measure of 5 ps to be on the 
safe side also for other systems. 

The next step is to establish how long equilibration time that needs to be excluded to get 
converged results. Figure 4 shows how the MM/GBSA Gbind energy varies with the 
equilibration time. Several different lengths of the production simulation was tested, but it can
be clearly seen that the energies in all cases are converged (within 0.6 and 0.2 kJ/mol for 50 
and 200 ps production time, respectively) when the equilibration time is 100 ps or longer. 

Finally, we should establish how long production simulation is needed. Figure 5 shows 
the MM/GBSA Gbind energy as a function of the length of the production simulation, for a 
number of different equilibration times. Again, we see that an equilibration time of 100 ps is 
needed for stable results. With this equilibration time, it can be seen that the results are 
converged to within 0.2 kJ/mol already after 75 ps. However, the curve for 200 ps 
equilibration shows that this is somewhat fortuitous – in that simulation, convergence (within 
0.3 kJ/mol) is not reached until 175 ps. Therefore, we suggest a production simulation time of 
200 ps. 

Of course, it is possible that the suggested times strongly depend on the simulated system 
(both ligand and receptor). To check this, we have repeated the calculations also for another 
ligand of avidin, Btn2 in Figure 1. The results of these calculations are shown in Figures S2–
S4 in the supplementary material. It can be seen that there are some variations, e.g. a slightly 
longer correlation time for the unequilibrated data, a somewhat longer equilibration time, and 
a slower convergence with respect to the length of the production time. However, the 
suggested values (5 ps sampling frequency, 100 ps equilibration time, and 200 ps production 
time) are still appropriate.

Moreover, to test the transferability of this procedure also to other systems, we carried out
similar calculations on galectin-3 in complex with a substituted benzamido-lactosamine 
inhibitor (Figure S1) [40]. The results of these calculations are show in Figures S5–S7. For 
this protein, we had initially large problem to obtain equilibrated results. In all simulations, 
we obtained large changes in the MM/GBSA energies even after 300 ps equilibration. 
However, if we first run one long simulation (10 ns), and then started all independent 
simulations with different starting velocities from the end of that simulation, we actually 
obtained equilibrated data already after ~40 ps. This is probably a proper approach for any 
protein to save simulation time, i.e. to first run one long equilibration, before starting the 
independent simulations (with shorter equilibration times). It is likely that it is enough to run 
the initial equilibration for only ~1 ns, which would lead to a net gain in computer time. 
Besides this, the same simulation protocol is appropriate also for this protein.

Efficiency
Figure 6 shows the standard error of the MM/GBSA Gbind energy as a function of the 

length of the production simulation for the biotin–avidin system. It can be seen that for 100 ps
equilibration time, the standard error has not fully stabilised even after 200–300 ps of 
production time. The reason for this is that the reported standard deviation is calculated only 
for the 80 independent results for the four subunits in the 20 short simulations. However, each
Gbind estimate from the short simulations is also an average over a number of snapshots, 
determined by the length of the production simulations (divided by the sampling frequency of 
5 ps). Therefore, the effective standard error is reduced as the length of the production 
simulations are increased, but not fully by n (where n is the number of energy calculations),
because the results are not fully uncorrelated. This is illustrated in Table 3, which shows how 
much the standard deviation is reduced when the number of energy calculations (i.e. the 
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length of the production simulation) is increased in the short simulations, compared to the 
expected dependence of n–½. It can be seen that already after two energy calculations, only 
71% of the expected decrease is obtained, and after 41 energy calculations (200 ps production 
simulation), only 16% of the expected efficiency is obtained. 

To decide the optimum procedure, we need to consider the relative cost of the molecular 
dynamics simulation and the MM/GBSA energy calculations. With the present simulation 
protocol and 3.0 GHz Intel Xenon 5160 processors, a single energy calculation takes ~2 CPU 
hours, whereas a 100 ps MD simulation takes 16 h. Thus, for our tetrameric protein, for which
we can calculate four independent energies for each snapshot, the first energy calculation 
(after 100 ps equilibration) costs 16 (MD) + 8 (energy) = 24 CPU h. Each successive set of 
four energy calculations costs 0.8 (5 ps MD) + 8 = 8.8 CPU h. Given these estimates, we can 
now for any given total CPU time (CPUtotal) calculate the estimated standard error of the final 
Gbinf estimates (sav) based on the actual standard deviations in Table 3 (ssimu) and the CPU 
cost of each individual simulation (CPUsimu = 24 + 8.8(n – 1)), according to

 s av=
ssimu

CPU tot /CPU simu

=
ssimu CPU simu

CPU tot

(7)

 Thus a minimum of ssimuCPUsimu  will indicate the most effective method. This estimate 
is also shown in Table 3. It can be seen that the optimum use of computer time is obtained 
after six energy calculations (25 ps production time). 

However, for the more typical case of a single ligand site per receptor (in which case, the 
first energy calculation costs 18 CPU h and the successive cost 2.8 CPU h), it is more 
favourable to have a production simulation time of 40 ps (9 energy calculations). For very 
large proteins, for which the MD simulation cost is much higher than that of the energy 
calculation, a larger number of energy calculations per simulation is more favourable. On the 
other hand, if the energy calculations are much more expensive, e.g. quantum chemical 
calculations of the whole or part of the protein, which recently have started to emerge 
[55,56,57], it is clearly more favourable to use only a single energy calculation per simulation.

This reasoning clearly shows that the optimum length of the production simulation 
depends on details of the simulated system and should be recalculated for each system. 
However, it seems clear that typically it should be quite short (20–40 ps), at least for 
efficiency reasons (but of course, then a larger number of independent simulations need to be 
run in order to get a low standard error).

Seven biotin analogues
To illustrate our approach, we have estimated the binding affinities of all seven biotin 

analogues in Figure 1 to avidin. We used the protocol designed above, with a sampling 
frequency of 5 ps, an equilibration time of 100 ps, and a production time of 200 ps (which 
even if it is not the most efficient choice, gives converged results, according to Figure 5). The 
results are collected in Table 4. 

When using 20 independent simulation, three of the inhibitors had a standard error of less 
than 1 kJ/mol (in fact, only 5–14 separate simulation would have been needed to converge 
these calculations), whereas it was slightly more for the other four. Therefore, we run some 
additional simulations to decrease the standard error below 1 kJ/mol for all seven ligands. 
From Table 4, it can be seen that up to 50 simulations were needed. 

Figure 7 shows the correlation between the calculated and the experimental binding 
energy. It can be seen that the calculated affinities are systematically too negative by 
~39 kJ/mol. This most likely comes from the continuum solvation model, which is quite crude
and often gives systematic errors of this size [19,58]. In fact, we have previously shown that 
for the biotin–avidin system, the Poisson–Boltzmann method gives more accurate absolute 
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estimates [21], although for other systems, the opposite is true [49]. We have here selected to 
use the GB model, because it is much cheaper than the Poisson–Boltzmann method and gives 
more stable [49] and often even more accurate solvation energies [58]. In addition, a 3RT term
is missing in the standard MM/PB(GB)SA estimate [19], making the absolute values dubious. 
Therefore, the relative results are much more interesting than the absolute ones, and then most
solvation methods are expected to give similar results (within ~4 kJ/mol) [58]. 

However, from Figure 7, we can see that also the relative values are not very accurate: 
The mean absolute deviation from the relative correlation line (i.e. after the subtraction of the 
mean signed difference; MAD) is 15 kJ/mol. Likewise, the correlation coefficient r2 is 0.59 
and the predictive index is 0.85. This is caused by limitations in the MM/GBSA method and 
in the force field used. However, this is no problem in this investigation, because our aim is 
only to provide results that are statistically converged to 1 kJ/mol, i.e. precise results – we do 
not attempt to reduced the systematic (non-statistical) errors and also obtain accurate results.

In fact, we claim that we for the first time have obtained a statistically valid estimate of 
the true accuracy of a MM/GBSA estimate. With a simple random simulation (see the 
Methods section), we can obtain error estimates of the predicted MAD, 150.3 kJ/mol, as 
well as for the correlation coefficient and the predictive index: r2 = 0.590.01 and PI = 
0.850.03. 

The advantage with the present approach is that we now can compare these results with 
results obtained with other methods or with other force fields in a statistically valid way, and 
therefore discuss which method gives the more accurate results. This has hardly been possible
before. For example, in our previous MM/PBSA study of the same biotin–avidin system with 
different simulation methods and force fields [21], we had a standard error for the calculated 
binding affinities of 10–14 kJ/mol (averages over 20 snapshots). Therefore, the standard 
deviations of the estimated MADs was ~3 kJ/mol, indicating that the MADs must differ by 
more than ~6 kJ/mol to be statistically significant to 95 % (this was also realised in a 
qualitative way in the article). Likewise, the simulated standard deviation of r2 estimates is 
~0.12, indicating that r2 must differ by 0.24 to indicate a significant difference. This made 
MM/PBSA a very blunt method to compare different force fields. The situation was somewhat
improved by our introduction of a more precise estimate of the entropy, which reduced the 
standard deviation of the Gbind estimates from ~50 to ~25 kJ/mol [49], but the standard 
deviation of the MAD estimate is still 2 kJ/mol if only 20 snapshots are used. Moreover, the 
present results indicate that these error estimates are too low, because only a single simulation 
was used. With the present methods, we can obtain statistically converged results with a 
precision that allow statistically valid comparisons between various methods and force fields. 

Conclusions
In this work we have investigated how to obtain converged results with the MM/GBSA 

method. First, we have shown, taking advantage of the fact that there are four independent 
binding sites in avidin, that a single long simulation does not give converged results even after
10 ns. Instead, several short and independent simulations are needed. This is a very important 
finding, indicating that MD results are correlated, even after 10 ns. 

Second, we have devised a MM/GBSA procedure to obtain a statistical precision of 
1 kJ/mol. We suggest that a proper number of independent MD simulations should run, using 
different starting velocities. The final Gbind estimates and standard errors should be 
calculated from these series alone and the number of simulations is chosen to obtain the 
desired final accuracy (standard error of the mean value of Gbind, which is inversely 
proportional to the square root of the number of simulations). An equilibration of ~100 ps 
needs to be run before any data is collected. Moreover, time can often be saved if several 
energy estimates are calculated for each short simulation (because of the equilibration time). 
The correlation time of the MM/GBSA estimates are typically 1~7 ps and we suggest a 
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sampling frequency of 5 ps, to ensure that the individual data are uncorrelated. The optimum 
distribution between the number of short simulations and the number of energy calculations in
each short simulation depends on the details of the system. In our test calculations, we obtain 
converged results with 5–50 independent simulations and 40 energy calculations (for each 
subunit) in each. However, efficiency calculations indicate that it would be more favourable in
terms of CPU time to perform only six energy calculations in each independent simulation 
and instead run ~4 times more independent simulations. For monomeric proteins, more energy
calculations (~9) are probably better, whereas for very time-consuming energy methods (e.g. 
quantum chemical calculation) a single energy calculation per independent simulation is more
economic.

Using this approach, we have obtain binding affinities for the seven biotin analogues in 
Figure 1 to avidin, with standard errors of less than 1 kJ/mol. This required 1.5–15 ns 
simulation time and 800–8000 MM/GBSA energy calculations, depending on the ligand. This 
is more than what is normally used in MM/PB(GB)SA, but it is what is needed to obtain 
converged results.

Using these results, we can also judge how well the calculations reproduce the 
experimental binding energies in a statistically valid way. For the present MM/GBSA 
simulation protocol and the Amber 1999-SB force field with TIP4P-Ewald water molecules, 
we obtain a relative MAD of 150.3 kJ/mol, a correlation coefficient of 0.590.01, and a 
predictive index of 0.850.03. The GBOBC continuum solvation model gives systematically 
too negative absolute binding energies by 391 kJ/mol. Even if we have used the currently 
best Amber force field (at least to reproduce structural properties) [33,36], this is not very 
impressive results. However, the reproduction of experimental data is not the aim of the 
present investigation. Instead, we provide for the first time statistically fully converged 
MM/GBSA results and statistical estimates of how well the method reproduce experimental 
data. Only with such estimates will it be possible to compare various methods and force fields
in a statistically valid way, both in terms of efficiency and accuracy.
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Table 1. MM/GBSA results (in kJ/mol) for the binding of biotin to avidin, using one 10 ns 
long simulation and a sampling frequency of 5 ps. 

Subunit ΔGbind Standard error

A -120.9 0.5
B -110.3 0.5
C -119.5 0.5
D -118.2 0.5
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Table 2. MM/GBSA results (in kJ/mol) for the binding of biotin to avidin, using 20
independent simulations (200 ps long).

Subunit ΔGbind Standard error

A -114.0 2.1
B -111.1 2.9
C -117.2 2.1
D -116.1 1.5
Plain average -114.6 1.1
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Table 3. The efficiency of energy calculations within the short simulations for the biotin–
avidin complex. The number of energy calculations is increased from 1 to 41 (corresponding
to a length of the production calculation of 0 to 200 ps. The actual standard deviation
(calculated for 20 short simulations and four subunits) is compared to that calculated from the
standard deviation of the calculation with only one energy calculation divided by the square
root of the number of energy calculations. Efficiency is the quotient of those two estimates.
Finally, the ssimuCPU simu  estimate of efficiency (see the text), is also given.

# Energy Standard deviation Efficiency ssimu CPUsimu  

calculations Actual Estimated

1 25.6 25.6 1.00 125.3

2 20.5 14.5 0.71 117.4

3 17.4 10.0 0.58 112.2

4 14.6 7.3 0.50 103.9

5 13.3 6.0 0.45 102.5

6 12.3 5.0 0.41 101.2

7 11.6 4.4 0.38 101.7

9 10.7 3.6 0.33 103.7

11 10.5 3.2 0.30 111.4

16 10.5 2.6 0.25 130.7

21 10.0 2.2 0.22 140.7

31 9.8 1.8 0.18 167.0

41 9.6 1.5 0.16 185.8
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Table 4. The estimated binding energy (kJ/mol) for the seven biotin analogues in Figure 1 to
avidin, calculated with the MM/GBSA method and our suggested protocol (the error estimate
is the standard error of the average).

Ligand # ΔGbind Difference

simulations calculated experimental

Btn1 25 -114.4±1.0 -85.4 -29.0

Btn2 30 -102.6±1.0 -59.8 -42.8

Btn3 20 -102.2±0.8 -58.6 -43.6

Btn4 50 -112.2±0.8 -36.8 -75.4

Btn5 40 -67.6±1.0 -34.3 -33.3

Btn6 20 -64.5±0.7 -20.9 -43.6

Btn7 20 -19.7±0.5 -18.8 -0.9
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Figure 1. The seven biotin analogues used in this study. a) Btn1 (biotin), b) – g) Btn2–Btn7.
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Figure 2. The 80 MM/GBSA estimates for the biotin–avidin complex, using 20 independent
simulations.
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Figure 3. Distribution of the correlation time of the MM/GBSA estimates for the biotin–
avidin complex. The cumulative frequency of the correlation times is shown, using either all
the 400 ps simulation or only the last 200 ps. The plots are based on data from four subunits in
20 separate 400 ps simulations.
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Figure 4. The variation of the MM/GBSAGbind energy with the length of the equilibration
time for the biotin–avidin complex. Several different lengths of the production simulation
time were tested. Full means that the rest of the 400 ps simulation was used.
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Figure 5. The variation of the MM/GBSAGbind energy with the length of the production
simulation for the biotin–avidin complex. Several different lengths of the equilibration time
(0–200 ps) were tested. 
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Figure 6. The variation of the standard error of theGbind energy with the length of the
production simulation for the biotin–avidin complex. Several different lengths of the
equilibration time (0–200 ps) were tested. 
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Figure 7. Correlation between experimental and calculated binding energies for the seven 
biotin analogues to avidin. The upper line represents the perfect correlation, whereas the 
lower line represents the former line, translated by the signed average error (–39.4 kJ/mol).
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