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Abstract

A new method for accurately estimating interaction energies involving a large molecule is presented. The

method approximates the electrostatic and induction contributions classically by multipole and polarizability

expansions, but uses explicit quantum-mechanical fragment calculations for the remaining contributions,

mainly dispersion and exchange repulsion. Thus, it represents a limit of how accurate a force field can

ever become for interaction energies if pairwise additivity of the dispersion and repulsion is assumed. The

accuracy is tested by considering protein–ligand model systems for which the true MP2/6-31G* interaction

energies can be computed. The method is shown to be more accurate than related fragmentation approaches.

The remaining error mainly originates from the omission of the three-body contribution to the coupling of

polarization and exchange repulsion.

Keywords: interaction energy, QM/MM, fragmentation, polarization, ligand binding
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1 Introduction

In many applications of theoretical methods in chemistry, one is interested in changes in potential energy.

Although there are many empirical potentials developed for specific types of systems, only quantum-mechanical

(QM) methods are generally applicable. By these methods, one can in principle attain any accuracy by using

a sufficiently large basis set and including electron correlation in a rigorous way. In practice, however, the

applicability of the most accurate methods is limited by computational resources. Therefore, there is a need for

general potential energy methods with low and predictable error compared to the exact QM treatment but still

applicable to large molecular systems.

One solution to this problem is to decompose the system into smaller subsystems, fragments, which are

treated more or less independently. Such fragmentation approaches to QM calculations have a long history [1,

2, 3, 4, 5], but they have experienced a strong revival in the last decade. Most such methods estimate the

desired property (e.g. total energy, interaction energy, or electron density) by the formally exact expansion into

monomer contributions, two-body contributions, three-body contributions, etc., up to n-body contributions,

where n is the number of fragments. For the method to give a significant computational advantage over the

supermolecular calculation of the whole system, the series has to be truncated already after the two- or three-

body term. Besides the choice of how to truncate the series, the various methods differ mainly in the treatment

of fragmentation across covalent bonds, the selection of subsystems, and in the use of embedding to capture

some of the many-body effects that are lost in the truncation.

For the fragmentation, several schemes have been developed. The fragment molecular orbital (FMO)

method [6] defines a set of non-overlapping fragments and assigns a number of electrons to each fragment,

using local molecular orbitals. A simpler approach is to assign a number of nuclei to each fragment and han-

dle empty valencies by capping with hydrogen atoms or other functional groups. By necessity, the fragments

will then overlap. However, based on the approximate atom-wise additivity of interaction energies observed by

Claverie [7], methods for handling the overlaps by adding and subtracting fragment energies have been proposed,

e.g. by Prampolini [8] and by Zhang and Zhang [9, 10, 11]. The latter model, called molecular fractionation

with conjugate caps (MFCC), has later been used with various capping groups, and more sophisticated and

automatic procedures for the fractionation have been developed [12, 13, 14]. There are also related methods

limited to non-covalently bonded clusters, in which the fragmentation is trivial [15, 16, 17, 18].

The selection of subsystems (i.e. the specific supermolecular calculations performed) depends on the quantity

to be computed. The FMO method, which exists as a two-body (FMO2) or a three-body expansion (FMO3) [19],

computes the total energy and thus requires calculation of all fragment pairs. The MFCC method, on the other

hand, is primarily designed for interaction energies with fixed monomer geometries and thus only fragment

pairs belonging to different monomers are computed. The method has also been adapted to calculation of

total energies [20]. More elaborate ways of selecting subsystems has been used for clusters [16], as well as for

covalently bonded fragments [14].

For the embedding, there have also been many proposals. In FMO, each monomer and dimer experiences the

exact electric potential from all other fragments in the system. This requires the computation of two-electron
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repulsion integrals between the fragments, but it has been shown that outside a certain distance, the potential

may be approximated by Mulliken charges without loss of accuracy [21]. A simpler alternative to FMO is

the binary interaction method [15, 22] (or ternary interaction, in analogy to FMO3), in which the potential is

approximated by the potential from fragment-centered dipoles or atom-centered electrostatic potential (ESP)

charges, giving special attention to the basis-set superposition error (BSSE). In the original MFCC method, there

is no embedding; the total interaction energy is simply a sum of pair-wise interaction energies. For calculating

the total energy by MFCC, embedding using unit charges, Mulliken charges, ESP charges, or natural population

analysis (NPA) charges have been used [14, 23].

In principle, all these methods are applicable to any level of theory, although most work has been done

using Hartree–Fock theory (HF), density functional theory (DFT), or second-order Møller–Plesset perturbation

theory (MP2). A fragmentation method may also be combined with a full-system calculation at a lower level

of theory (hybrid approach), e.g. the MP2–HF [24] or CCSD(T)–MP2 [18] combinations.

A consistent series of methods was recently tested by Truhlar et al. [17, 24] for water clusters. These

include the pairwise additive (PA) approximation, which can be seen as a particular case of MFCC with no

covalent bonds between fragments; the electrostatically embedded pairwise additive (EE-PA) approximation,

which is similar to FMO2 except for the use of an approximate potential (generated by Mulliken charges) at

all distances; and the MP2–HF hybrid versions of these methods (denoted by a CE extension for correlation

energy). In addition, PA can be replaced by the three-body (3B) approximation to include another term in the

expansion. We will in the following adopt this notation and reserve the term MFCC for the actual fragmentation

procedure.

An alternative to the fragmentation approach is to decompose the energy into terms with different physical

meaning. If we limit ourselves to non-covalent interactions, the most common description defines four such

terms: electrostatic energy, induction energy, dispersion energy, and repulsion energy [25]. The first two terms

are usually called classical terms, whereas the latter two are non-classical terms, stemming from the quantum-

mechanical nature of the interaction.

Such physical decomposition of the interaction energy is the foundation of molecular mechanics force fields,

in which each term is estimated by a separate expression. Normally, the parameters in the classical terms (e.g.

atomic charges and polarizabilities) as well as those in the non-classical terms (e.g. Lennard–Jones parameters)

are part of the force field itself. They are usually obtained by a major parametrization involving systems of the

type for which the force field is designed.

There are also several examples of methodologies in which only the non-classical parameters are predefined,

whereas the classical parameters are obtained for each considered system, typically by performing QM calcu-

lations and analyzing the obtained electron density [26]. Although very appealing in theory, the accuracy of

this approach is limited by the transferability of the non-classical parameters, which are normally fitted to

reproduce supermolecular energies. Fitting of the exchange-repulsion is a difficult problem, which has been

adressed in many studies [27, 26, 28, 29, 30]. The transferability is improved if the overlap of the wavefunctions

(or densities) is explicitly taken into account [31, 32, 33]. By this approach, good results may be obtained

without fitted parameters [34] or with a small number of element-independent parameters [35]. The dispersion

3



energy has also been subject to many studies (e.g. [36, 37]) with the aim to avoid parameter fitting as much as

possible. Any fitting to supermolecular QM calculations or experimental data will include model errors in the

classical terms (e.g. in the multipole approximation). This will necessarily introduce unphysical effects into the

parameters and restrict their transferability.

To avoid the transferability problem and address the accuracy of the actual physical decomposition, we

will go one step further in this study and estimate the non-classical terms by supermolecular QM calculations,

although for smaller subsystems. The advantage of this is twofold: No fitted parameters are needed, and the

accuracy is expected to be improved. In fact, the pair-potentials are by definition exact (within the given

QM methodology applied), so the only approximation in the method is the assumption of pairwise additivity

of the non-classical term. We call the method Polarizable Multipole Interaction with Supermolecular Pairs

(PMISP) to highlight that it is based on a classical (polarizable multipole) interaction model but enhanced with

supermolecular dimer energies.

At the same time, the PMISP method is directly related to the fragmentation methods. It uses a two-

body expansion and the MFCC procedure for handling covalently bonded fragments. The use of a polarizable

multipole description of the whole system replaces the need of embedding the QM calculations in an electrostatic

field – both approaches captures the most important many-body effects. PMISP may in fact be seen as a hybrid

fragmentation method, using a polarizable multipole description as the lower level of theory and any QM method

as the higher level.

2 Methods

2.1 The PMISP method

We consider the interaction between a large molecule A (typically a model of a protein binding site) and a

small molecule B, in vacuum. These two molecules will be denoted monomers. The geometries of the isolated

monomers are kept fixed as the dimer is formed, a common approximation in ligand-binding calculations [38].

For a given (necessarily size-extensive) method and basis set, the QM (supermolecular) interaction energy

between A and B, corrected for basis set superposition error (BSSE) by the counterpoise procedure, is defined

by

Eref = E
sup
AB = EA+B − EA+(B) − EB+(A) (1)

where EX+(Y ) denotes the energy of monomer X in the dimer basis set. Note that, throughout this study, we

adopt the notation EXY to mean the interaction energy between X and Y , i.e. not the total energy.

In the PMISP method, Eref is estimated by the following expression:

EPMISP
AB = Eele

AB + Eind
AB + Erest

AB (2)

where Eele and Eind are the electrostatic and induction energies, respectively, when both monomers are treated

classically, using multipoles and polarizabilities, and Erest is a rest term, mainly containing the dispersion and

exchange-repulsion energies, but also corrections to the classical terms (e.g. charge penetration), as well as

4



various coupling terms and corrections for the artificial division of the system into monomers (usually denoted

as charge transfer).

Unlike in standard molecular-mechanics force fields, Erest is not estimated by an expression with fitted

parameters. Instead, it is obtained by splitting A into fragments A1, A2, ..., An and evaluating the contribution

to the rest term from each fragment separately, assuming pairwise additivity. In this work, we employ the

MFCC fragmentation procedure [9], which is a rigorous and general way to treat fragmentation over covalent

bonds. In this method, the fragments are capped with chemically suitable functional groups. Moreover, the

capping groups on each side of a bond that is cut are joined to form a concap fragment. An example is shown

in Figure 1. The key feature of this procedure is that by adding the sets of atoms in the normal fragments

and subtracting the sets of atoms in the concap fragments, one recovers the molecule A, and this additivity is

expected to hold approximately for certain properties and energies. Thus, we define Erest by

Erest
AB =

n
∑

i=1

ci

(

E
sup
AiB

− Eele
AiB

− Eind
AiB

)

(3)

where ci is equal to 1 for a normal fragment and −1 for a concap fragment.

The electrostatic and induction energies are calculated by representing each molecule as a collection of

multipoles and dipole polarizabilities, located at each nuclear position and each covalent bond midpoint. These

properties are computed at any QM level by the LoProp method [39, 40]. The multipole expansion is truncated

after quadrupoles. The electrostatic interaction includes all possible terms formed by the multipoles, i.e. up to

and including quadrupole–quadrupole interactions.

In the same spirit as for the calculation of the rest term, the properties of monomer A may be computed

fragment-wise to reduce the computational time. To do this, we again apply the MFCC procedure (in terms of

electron densities [41]) and estimate the properties of A as

PA
k =

n
∑

i=1

ciP
Ai

k (4)

where PAi

k is a multipole moment or polarizability located at center k (which may be either a nucleus or a bond

midpoint), obtained by a QM calculation of fragment Ai (or zero if center k is not within Ai). The properties

of capping hydrogen atoms are almost perfectly cancelled between caps and concaps; the remaining part is

moved to the corresponding real atom. Alternative methods for assembling multipoles have been discussed

previously [42].

The polarizabilities in the LoProp approach are derived using homogenous electric fields. Thus, when they

are used, there should be no explicit coupling between polarizabilities belonging to the same molecule. In fact,

each polarizability is strictly correct only under the assumption that the rest of the molecule is responding to

the same electric field. Thus, there is an implicit coupling that is correct as long as the field is homogenous but

only approximative when the field is inhomogenous. The approximation was recently found to be accurate for

small and medium-sized molecules [43], and the present study will provide a test for larger molecules.

When Eq. 4 is used for estimating properties for A, several subtle issues arise. First, it is obvious that

the polarizabilities in one fragment should respond to the field from static multipoles in other fragments. For

two centers belonging to overlapping fragments, special care is needed. We use the following rule: Each static
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multipole contributes to the field at all other centers, except those centers that have been in the same fragment

in at least one LoProp calculation. This convention can be rigorously motivated. First, we note that no matter

how the fragments are chosen, each center k belongs to an odd number nk of fragments, or specifically to one

more normal fragment than concap fragments. The case with nk = 1 is trivial: The polarizability αk should

not respond to multipoles in the same fragment, because these have already influenced the static multipole at

k. For nk = 3, the multipole at k has, through the sum over three fragments, been effectively influenced by

the union of the two fragments (with the concap fragment removing double-counting) and thus αk should not

respond to multipoles in any of these fragments. The same argument can be used for higher values of nk, thus

giving the simple rule stated above, which can be automatically applied in the calculations. A similar discussion

in the context of flexible molecules can be found in Ref. [44].

When considering intramolecular coupling of the polarization, i.e. the effect of an induced dipole on other

polarizabilities in the same molecule, a similar argument can be applied. Clearly, the polarization response in

one part of a large molecule should affect the response in distant fragments, because in that case all implicit

coupling between the polarizabilities is absent. However, as soon as the two centers are in the same fragment,

the implicit coupling is present (although in an approximate way because of the inhomogeniety of the electric

field). Therefore, we have chosen to use the same rule as for the static field, i.e. that each induced dipole

contributes to the field at all other centers, except those that have been in the same fragment in at least one

LoProp calculation. The importance of the intramolecular coupling will also be specifically tested.

Another issue when applying fragmentation for calculating the properties is the definitions of electrostatic

and induction energy, respectively. The most natural definition of electrostatic energy is the static interaction

between the monomers, each having been internally “pre-polarized” before the interaction starts. The induction

energy is then the energy change (always negative) caused by the polarization of A by B and vice versa. However,

another possible definition uses the functional form of the potential and simply distinguish between on one

hand the multipole–multipole terms and on the other hand the multipole–polarizability and polarizability–

polarizability terms. To avoid confusion with the natural definition, we denote the latter quantities multipole

energy (Emult) and polarization energy (Epol). In the trivial case of having only one fragment representing

monomer A, the two definitions are of course equivalent so that Eele = Emult and Eind = Epol.

The general case with several fragments is illustrated in Fig. 2, where five relevant “states” are depicted, using

a two-fragment description of monomer A. The dashed line in states 1 and 4 indicates that the interaction is

turned off. Polarization of a fragment is indicated with an arrow pointing towards the “source” of the polarizing

field. Thus, in state 2, each Ai fragment is polarized only by the other Ai fragment, whereas in state 3, it is also

polarized by B. The total classical interaction energy is the change from state 1 to 3. The natural definition

of Eele and Eind corresponds to the path in the upper row. To clarify the other definition, we introduce a

non-polarized version of monomer A, denoted O. We now recognize that

Emult
AB = Eele

OB (5)

and

E
pol
AB = Eind

OB − Eind
O (6)
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Also, it is evident from Fig. 2 that

Eele
AB + Eind

AB = Emult
AB + E

pol
AB (7)

although the equality does not hold termwise (except in the trivial case). Thus, as long as the PMISP result

is concerned, it does not matter which pair of quantities we use in Eq. 2. However, to be able to compare

individual terms for several fragmentation schemes, it is essential to use the natural definition. To obtain the

natural quantities one may calculate Eind
O(B), i.e. the internal induction energy of monomer A in the presence of

(but not polarized by) monomer B, and exploit the energy conservation around the cycles 1 − 2 − 5 − 4 and

2 − 3 − 5, as can be seen from Fig. 2.

There is another useful interpretation of the PMISP energy. Inserting Eq. 3 into Eq. 2, changing definition

according to Eq. 7, and reordering the terms, gives

EPMISP
AB =

n
∑

i=1

ciE
sup
AiB

+

(

E
pol
AB −

n
∑

i=1

ciE
pol
AiB

)

(8)

where we have used Eq. 4 together with the inherent pairwise additivity of the multipole interactions to cancel

the Emult terms. Note that the cancellation only occurs if the same set of fragments is used for the calculation

of the rest term and the properties. In Eq. 8, we easily recognize the first term as the pairwise additive (PA)

interaction energy and the second term as the many-body contribution to the polarization energy. Thus, one

may regard the PMISP energy as an improvement of the PA energy by approximating the many-body energy

(which is absent in PA) by the many-body energy from a polarizable multipole description.

2.2 Systems

For testing the method, we use a model of the avidin protein interacting with the seven ligands shown in Fig. 3.

This system (with the full protein) has previously been subject to several studies [45, 46, 47, 48]. For each

ligand, we obtain geometries from snapshots of a simulation of the protein–ligand complex in explicit water,

using the Amber 1994 force field. The exact simulation protocol has been described elsewhere [48]. To draw

statistically valid conclusions, the first 10 snapshots (separated by 10 ps simulation time) are used for BTN1.

This set of 10 geometries will be called the geometry set. Some calculations are performed only for the first

snapshot of BTN1. This will be called the main structure. For the remaing ligands, only the first snapshot is

used. The first snapshot of each of the seven ligands will be called the ligand set.

The model of the avidin active site (denoted as monomer A) consists of 216 atoms and is shown schematically

in Figure 4. The residue numbering refers to PDB structure 1AVD [49] The whole model belongs to the same

subunit (labeled B in the original structure), except for Trp-110, which belongs to a neighbouring subunit. The

model includes all atoms within 4 Å of the ligand (using the coordinates of the main structure), but also a

minimal set of additional atoms that are necessary to complete chemically reasonable groups such as aromatic

rings. Bonds that are cut in the process are capped with hydrogen atoms. Because many bonds are broken,

the model is not a single covalently bound molecule, but rather a collection of 15 separate molecules of different

sizes, labeled by A1, A2, ..., A15. All of these are rather small, except for A5, which is a chain of six amino acids.

This irregular distribution of molecule sizes is unintentional, but happens to be advantageous for some of the

tests performed.
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To be able to test the additivity among covalently and non-covalently bound fragments separately, the

cutting of the model into fragments is done in three different ways (cutting schemes).

a. The whole model A is treated as one fragment.

b. Each of the 15 molecules in A is treated as one fragment.

c. The largest molecule A5 is further divided into 6 capped fragments and 5 concap fragments. The cuts

are done through the peptide bonds, as indicated in Figure 4, and each fragment is capped with –COCH3

and –NHCH3 groups at the N and C termini, respectively.

These schemes apply both to the computation of properties for monomer A and the computation of the rest

term, although scheme a makes no sense for the rest term (it would require the quantity E
sup
AB that we are

trying to approximate). In practice, scheme c is the only computationally feasible option for calculating the rest

term at a reasonably high level of theory. For a full protein, it corresponds to letting each amino acid residue

constitute one fragment. Although there are advantages to use the same cutting scheme for the rest term as for

the properties (for example, it is a prerequisite for Eq. 8), we also investigate other possibilities.

2.3 Computational details

The multipoles and polarizabilities were obtained by the LoProp method [39] as implemented in MOLCAS [50,

51, 52]. The default settings were used, except for the largest clusters (with 216 atoms), for which we found

that the constant α in the penalty function for converting the charge flow to polarizabilities (Eq. 17 in [39]) had

to be reduced from 7.1 to 2.0 to avoid numerical instability. For MP2, properties were obtained by using the

linear-response charge density. Calculating this density is similar in effort to a gradient evaluation, and thus

takes significantly more time than an MP2 energy evaluation. For these calculations, the MOLPRO program [53]

was used to generate the density needed by LoProp.

The supermolecular calculations were also performed with MOLCAS. The Cholesky decomposition (CD)

approximation to the two-electron integrals [54, 55] was applied in combination with the local exchange (LK)

algorithm [56]. Based on previous analysis of the accuracy of the CD approximation [56, 57, 58], a decomposition

threshold of 10−4 was used in all calculations. The largest effect of the CD approximation was seen in the

calculations of Eref , in which the error in the interaction energies was ∼2 kJ/mol.

The comparison with other methods was done at the HF level using cutting scheme b. The PA energy is

the first term in Eq. 8 and is thus obtained as a part of the PMISP procedure. For obtaining FMO and EE-PA

energies, we used the FMO procedure in the GAMESS program package [59] to calculate the total energy of

the AB dimer and monomer A, respectively, whereas the energy of monomer B was obtained by a standard

HF calculation. For FMO2, we used the very rigorous settings RESPAP=0, RESPPC=0, and RESDIM=4.0,

and for FMO3, we additionally used RITRIM=2.0. Tests performed for the main structure showed that the

more approximate settings suggested in Ref. [19] (RESPPC=2.0 and RESDIM=2.0) could be used without

influencing the result with more than 0.1 kJ/mol. However, applying the previously proposed RESPAP=1.0

approximation changed the result by several kJ/mol. For the EE-PA energy, we used RESPAP=0, RESPPC=-1,
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and RESDIM=2.0. Thus, the only difference between FMO2 and EE-PA was the use of the exact electrostatic

potential in the former and the potential from Mulliken charges in the latter, independently of distance.

3 Results

3.1 Demonstration of the PMISP method

The accuracy of the PMISP method and various further approximations was tested by performing calculations

of the interaction energy between a model of avidin (216 atoms, denoted A, see Fig. 4) and biotin-like ligands

(12 − 41 atoms, denoted B, see Fig. 3), in various geometries, as explained in the method section. To enable

a comparison with the exact supermolecular results, the 6-31G* basis set was used. Using this basis set, the

supermolecular interaction energies for the main structure are −252 kJ/mol at the HF level and −412 kJ/mol

at the MP2 level. The BSSE is substantial, 105 and 214 kJ/mol, respectively, at the HF and MP2 levels. This

indicates that the supermolecular results are very far from the basis set limit, but they still provide a reference

for testing approximations within the same basis set.

The difference between the MP2 and HF reference energies is mainly due to dispersion, which is entirely

missing in the HF result, but included in the MP2 result. In fact, the dispersion energy (at the MP2 level

of theory) is even larger than the energy difference suggests, because the electron correlation also affects the

electrostatic and induction energies, in this particular system reducing the attraction by about 50 kJ/mol. For

this reason, it is advantageous to use the same level of theory in the supermolecular calculations as in the

calculation of properties. Although we are mainly interested in the MP2 results, a separate set of calculations

is performed at the HF level. In addition to enabling separate tests of the PMISP approximation for exchange-

repulsion and dispersion, the lower cost of the HF property calculations allows us to investigate the influence

of the applied fragmentation scheme.

To help the reader to understand the PMISP procedure, we report some numerical values for the main

structure. The quantities depicted in Fig. 2 are listed in Table 1 for each of the three cutting schemes, using HF

properties. The difference between the naturally defined electrostatic energy (Eele) and the “direct” multipole–

multipole term (Emult) is 18–24 kJ/mol when A is split in the property calculation (this difference is exactly

cancelled by the corresponding Eind − Epol difference). As can be seen, the Emult energy differs significantly

between the various cutting schemes, whereas the Eele energy is almost constant. This demonstrates the

importance of comparing different methodologies in the natural viewpoint and not term-wise according to the

functional form. This is a general conclusion that applies whenever one compares interaction energies computed

with polarizable force fields: The direct difference of polarization terms depends on details in the intramolecular

polarization description and is in general not directly comparable with another force field. To emphasize this

point, the corresponding values for the Amber 2002 polarizable force field are also given in Table 1. Interestingly,

the direct use of the Emult and Epol terms, as obtained from the AMBER program, gives the impression that the

polarization energy almost vanishes (in some cases, it actually becomes positive), but this only tells us that the

rather arbitrarily defined internal polarization of separated monomers is equally favorable as the polarization

of the dimer.
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Let us now consider the non-classical term, Erest. All terms contributing to Erest for the main structure

are reported in Table 2. Both HF and MP2 results are given and the fragment numbering is the same as in

Fig. 4. It can be seen that the contributions vary substantially among the various fragments. This reflects the

difference in size as well as the difference in overlap. With a few small-magnitude exceptions, the rest term at

the HF level is always positive, as can be expected because it contains mainly exchange-repulsion. The presence

of negative terms is a reminder of the approximations involved in the polarizable multipole description of the

interactions (e.g. neglect of charge-penetration effects). At the MP2 level, the sign of each rest term varies,

because of the balance between exchange-repulsion and dispersion. For each fragment interaction, the difference

between the rest terms at the MP2 and HF levels is a good estimate of the dispersion energy. The HF results for

A5 suggests that the rest term calculated for the whole molecule (cutting scheme b) and the rest term calculated

by summing over fragments A5a − A5ef (cutting scheme c) are the same within 1 kJ/mol.

3.2 Accuracy of the PMISP method

To obtain statistics regarding the accuracy of PMISP, we use ten different geometries of the BTN1 interaction

(geometry set), and seven different ligands (Fig. 3), each in a different geometry (ligand set). In all these

calculations, the avidin model remains identical, but its geometry changes significantly.

The results at both HF and MP2 level are given for the geometry set in Table 3 and for the ligand set

in Table 4. As previously discussed, each of the three terms Eele, Eind, and Erest can be computed using

several cutting schemes. Thus, several estimates of each term are reported in Tables 3–4, although not for MP2

because of computational limitations. The results confirm that the three cutting schemes give almost identical

electrostatic energy. The most reliable value should be with properties obtained using scheme a, i.e. in a single

QM calculation. Using these results as a reference, the mean absolute errors in Eele are ∼1 kJ/mol for the use

of either scheme b or c. This is a remarkably accuracy, considering that the b and c calculations involve 15 and

25 fragments, respectively, and that errors from each cut could accumulate. Moreover, the electrostatic energy

in schemes b and c depends not only on the multipoles, but also on the polarizabilities and the definition of

excluded multipoles as discussed in the method section. The fact that the errors are not higher with scheme c

than with scheme b indicates that cutting a covalent bond does not introduce a higher error than fragmenting

across e.g. a hydrogen bond. The explanation for this is probably that the quantum-mechanical error of confining

each wavefunction to one fragment is to a large extent eliminated by the rigorous MFCC procedure, so that

the remaining error comes from imperfect description of the intermolecular polarization, which is prominent in

hydrogen bonds.

The situation is slightly different for the induction energy. Although the difference between schemes b and

c is still small, both results deviate significantly from scheme a with mean absolute errors of 7–14 kJ/mol.

At first sight, one might assume that this discrepancy is due to the error introduced by fragmentation of

monomer A. However, there is another effect that also contributes to the difference. The intramolecular

coupling of polarizabilities within a fragment is only treated implicitly, and the error of this approximation

usually increases with the size of the molecule [43]. The magnitude of this effect can be tested by using

properties derived by scheme b (or c) but ignoring the polarizability coupling within monomer A, as in scheme
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a. The multipole–polarizability interaction within monomer A, on the other hand, is kept because that part is

exactly modeled (by QM) in scheme a. With this treatment of intramolecular polarization, the mean absolute

difference between schemes a and b goes down to 1.5 and 0.8 kJ/mol for the geometry and ligand set, respectively,

and the corresponding differences between schemes a and c are 1.6 and 1.0 kJ/mol. Thus, when intramolecular

polarization is treated consistently, the influence of the fragmentation of monomer A on the induction energy

is negligible for all practical purposes.

The rest term is also similar for cutting schemes b and c, with a mean absolute difference of 3.1 kJ/mol for the

geometry set and 1.6 kJ/mol for the ligand set. This indicates that the MFCC fragmentation procedure succeeds

in cancelling the non-classical contributions from capping atoms. Interestingly, if the supermolecular energies

are combined directly (as in the PA approach), the differences are about twice as high (5.2 and 3.7 kJ/mol,

respectively), showing that the additivity assumption employed in the fragmentation is a better approximation

for the rest term than for the supermolecular energy

The total PMISP energy is an approximation to the supermolecular interaction energy (Eref ). Therefore,

we report the error ∆EPMISP in Tables 3 and 4, and we also consider the mean absolute error (MAE). Because

of the choice of cutting schemes for the individual terms, several combinations are computed, labeled by two

letters, indicating the cutting scheme used for the computation of the classical terms (Eele and Eind) and Erest,

respectively. For computational reasons, the cc combination is most interesting, but within HF theory, we also

test the use of larger fragments for the property calculations (ac and bc combinations), as well as the more

consistent bb combination to investigate possible error cancellation.

If we fix scheme c for the rest term and vary the scheme for the classical terms, we see that the MAE becomes

lower as the fragments are made smaller. Using the full monomer A to compute the properties (ac) gives a MAE

of 25 kJ/mol for the geometry set, which is clearly unacceptable. Using the separate molecules (bc) reduces the

MAE to 14 kJ/mol, and cutting A5 into fragments (cc) reduces the MAE even more to 10 kJ/mol. Thus, we

may conclude that the neglect of explicit intramolecular polarizability coupling in large molecules (as in scheme

a) is a more severe approximation than the actual fragmentation procedure.

The bb combination gives approximately the same MAE as the cc combination (i.e. lower than the bc

combination). This is not a coincidence. A closer examination of the energies shows that the mean absolute

difference between the two estimates is only 1 kJ/mol (maximum difference 2 kJ/mol), which is less than the

differences in the individual terms. Thus, a systematic error cancellation occurs when using the same cutting

scheme for all terms. We cannot directly conclude which of the schemes bb and cc is the best one; the more

efficient approach (cc) is therefore preferred.

The MAEs for the ligand set follow the same trends. It is not directly comparable to the MAE for the

geometry set, because the magnitude of the error roughly follows the magnitude of the interaction energy itself,

which in turn depends on the charge of the ligand (−1 for ligands BTN1–BTN3 but 0 for ligands BTN4–BTN7).

Interestingly, the errors do not increase at the MP2 level, despite that the dispersion could make an additional

contribution to the non-additivity. This suggests that the main mechanisms responsible for the error are present

already at the HF level. To show this in a quantitative way, one only has to note the similarity between the

errors at HF and MP2 level, with a mean absolute difference of only 1 kJ/mol for the geometry set and 3 kJ/mol
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for the ligand set (with a maximum of 6 kJ/mol for BTN4). The difference does not seem to depend on the

charge of the ligand or the magnitude of the total interaction energy. One could assume that it rather depends

on the magnitude of the dispersion energy, but our test set is not diverse enough to investigate this assumption.

In fact, the observed similarity between the PMISP errors at the HF and MP2 levels immediately suggests

a MP2–HF hybrid method for estimating MP2 interaction energies, namely by the expression

EPMISP-CE = EHF
ref − EPMISP,HF + EPMISP,MP2 (9)

In analogy with earlier notation [24], we call this approach PMISP-CE (where CE stands for correlation energy),

and it is also reported in Tables 3 and 4. This appears to be an excellent approximation, useful in cases for

which the HF energy can be obtained in a supermolecular calculation but not the MP2 energy. This method is

similar in spirit to the PA-CE method [24], which simply adds the sum of the correlation energy for each pair

to the HF energy of the complex. In fact, apart from our extension to cutting covalent bonds, the two energies

differ only by a term describing the change of the many-body polarization when correlation is included, i.e.

EPMISP-CE = EPA-CE + ∆E
pol,mb
HF→MP2 (10)

As can be seen in Tables 3 and 4, the neglect of this term does not affect the result significantly. An advantage

of the PA-CE method is that no property calculations are needed.

Considering the potential usefulness of the PA-CE and PMISP-CE methods, we have investigated whether

it is possible to compute the HF energies with a smaller basis set than that used for the MP2 calculations of

fragment interactions. In this case, the assumed pairwise additive quantity is not the pure correlation energy

but also contains a basis set correction. In practice, one would be interested in approximating a large and

diffuse basis set with a smaller one (e.g. 6-31G*) which could be used for the whole complex. However, to be

able to test the method, we use the MP2/6-31G*–HF/3-21G combination. The results, given in Tables 3 and

4, are in general in good agreement with the non-approximated PA-CE results, but the maximal difference is

11 kJ/mol, indicating that this approximation should be used with some care.

3.3 Analyzing the error

Having shown that the error of PMISP (i.e. the part of the many-body effects that cannot be captured by

our classical model) is rather independent of the fragmentation scheme and present already at the HF level,

it remains to discuss the origin of this effect. To this end, we restrict ourselves to the HF case using cutting

scheme b, and follow three paths. First, we try to improve the PMISP method by understanding what physical

effects are missing. Second, we compare our result with the corresponding result using other methods, which

employ different sets of approximations. Third, we apply a brute force solution to the problem which also gives

useful insights into which effects are important.

For all geometries involving charged ligands, the attraction is overestimated (i.e. the interaction energy is too

negative) by the PMISP method. Thus, the rest term of each fragment interaction is underestimated compared

to the rest term for the whole complex. This error can be considered from two different viewpoints. If one

assumes that the “true” repulsion term is perfectly pairwise additive, there must be an error in the classical
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induction term. Typically, the classical calculations tends to give a slight over-polarization because of the neglect

of Pauli exclusion effects [43]. The sign of the PMISP error would then indicate that this over-polarization is

more prominent in the AB interaction than in the AiB interactions.

On the other hand, if one instead assumes that the induction term is correct, the results suggest that the

repulsion is not perfectly additive and is in fact larger for the whole complex than for the individual pairs. This

means that the surrounding molecules influence the repulsion of a given dimer, either by polarizing the dimer

wavefunction in a way that increases the repulsion (e.g. by increasing the orbital overlap), or by restricting (by

the Pauli exclusion effect) the way in which the dimer density may relax.

The two views are of course inseparable, because the discrimination between induction and repulsion is only

possible at a qualitative level. Nevertheless, to simplify the discussion we adopt the second view and test the

effect of polarization from surrounding molecules on the individual Erest
AiB

terms. This defines a new method,

denoted embedded PMISP, in which Eq. 3 is replaced by

E
rest,EMB
AB =

n
∑

i=1

(

E
sup
AiB

(Āi) − Eele
AiB

(Āi) − Eind
AiB

(Āi)
)

(11)

where a non-covalent cutting scheme (i.e. all ci = 1) is assumed and (Āi) denotes that the calculation is done

in the presence of all fragments Aj satisfying j 6= i. To avoid double-counting of energy terms, it is important

that Āi is “pre-polarized” without including internal energy terms.

Two series of test calculations are made, one using the polarizable multipole representation of the fragments

for constructing Āi (denoted EMB-PMISP), and one in which the polarizabilities of Āi are removed (denoted

EMB(NP)-PMISP). The result is shown in Tables 3 and 4. For all the negatively charged ligands, the embed-

ding gives a significant improvement, indicating that most of the non-additivity in the repulsion is caused by

polarization from surrounding molecules, which can be modeled classically. However, the results for the neutral

ligands are less convincing; the embedding shifts the energy away from the reference. One possible reason for

this could be that there is an error cancellation in the original PMISP energy, which is lost when the rest term

is improved. Another reason could be that the surrounding molecules are modeled only classically, so the effect

of the Pauli exlusion principle is not taken into account. Such procedure can be expected to overestimate the

effect of embedding for certain fragments and could lead to a net effect in the wrong direction when the errors

are small. The effect of embedding is overestimated also for the negatively charged ligands.

By comparing the EMB-PMISP and EMB(NP)-PMISP results, one can see that most of the effect of

embedding (in average ∼9 kJ/mol) comes from the multipoles, whereas only a small part (in average ∼2 kJ/mol)

comes from the polarizabilities. The embedding contribution from each fragment rest term is listed in Table 5.

The largest contributions (∼3 kJ/mol) come from A3, A4, A8, and A9, although the latter two give large

contributions only for the ligands with a carboxylate group. The total effect of embedding is positive for

all considered structures, but the sign of each contribution varies. Thus, in cases where cancellation is less

prominent, the effect of embedding may be larger.

To continue the analysis, we also give the results using some other fragmentation methods in Tables 3 and

4. The pairwise additive (PA) method, in which the supermolecular interaction energies are simply summed,

gives significantly worse results (MAEs 28 and 19 kJ/mol for the geometry and ligand sets, respectively). This
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shows that inclusion of many-body effects is important. We tested two other methods that include many-body

contributions: the EE-PA [17] and FMO2 [6] methods. Both use embedding to model the surrounding molecules,

but in contrast to EMB-PMISP, the embedding is used to calculate all interaction terms, i.e. not only the rest

term. Thus, no classical calculations are needed, but instead calculations have to be done at both the embedded

monomer and embedded dimer level. At the monomer level, an iterative procedure is performed to ensure a

self-consistent treatment of polarization (in the original EE-PA method, this iterative scheme is omitted).

The difference between the EE-PA and FMO2 methods is the type of embedding employed. In the EE-PA

method, each surrounding molecule is modeled by a point-charge representation (obtained through a Mulliken

analysis [60] of the wavefunction), whereas in the FMO2 method, the exact electric field from the charge density

is used (except for long-range approximations that were shown not to influence the result). A drawback with

the current implementation of the EE-PA and FMO2 methods is that there is no method to correct for BSSE.

Therefore, to enable comparison with the PMISP results, the results are shifted by the sum of the counterpoise

corrections for each dimer calculation. This procedure is exact for the PA method, but only approximate for

the EE-PA and FMO2 methods. Therefore, the uncorrected results are also given in Tables 3 and 4 together

with the uncorrected reference energies. All (counterpoise-corrected) methods are compared in Fig. 5.

Regardless of whether the approximate BSSE-correction is applied or not, the results with the EE-PA and

FMO2 methods are worse than those obtained by the PMISP method. This is surprising, considering the

presumably better treatment of the coupling between induction and repulsion in the former two. Note that,

unlike the PMISP method, the accuracy of EE-PA and FMO necessarily increases with the size of the fragments;

thus, the restriction to cutting scheme b does not favour the PMISP method. It is also interesting that the

FMO2 method is not significantly better than the EE-PA method, despite that the latter uses a rather crude

approximation to the electric potential from the surrounding molecules. In fact, for the standard method (i.e.

not counterpoise-corrected), the EE-PA method gives lower MAEs.

A plausible explanation for these observations is that by including the electrostatic effects from the sur-

rounding (whether exactly or approximately) without including the effects of the Pauli exclusion principle, one

introduces an inconsistency that is more severe than the actual approximation of the potential [43]. This has

been noted before and is one of the reasons why FMO does not work for diffuse basis sets [61]. Clearly, such

inconsistency is also introduced in the embedded PMISP method, but in that case, it enters only in a correction

to the rest energy, i.e. not in the computation of the main part of the many-body effect. The main part is

computed using a polarizability model, whose neglect of the local inhomogeneity of the electric field usually

cancels the lack of Pauli effects [43]. It should also be noted that it seems to be more difficult to reproduce the

uncorrected reference results than the counterpoise-corrected ones. This indicates that the uncorrected results

contain artificial (numerical) effects that cannot be modeled by a physically sound method such as PMISP or

FMO2.

The three-body FMO method (FMO3) is expected to reduce the inconsistency problem, because it corrects

the embedded polarization by performing supermolecular calculations (which includes the Pauli effects) for all

trimers. As can be seen, the trimer correction reduces the error dramatically so that essentially exact results are

obtained (MAEs 1 kJ/mol for both the geometry and ligand sets). However, the computational cost is several
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times higher; in fact, the FMO3 calculation takes much longer time than the exact supermolecular calculation

(although this will of course not be true with a larger basis set).

Owing to the excellent performance of FMO3, it is evident that the magnitude of each trimer correction

gives useful information on where the major errors in the FMO2 method come from. Analogously, trimer

corrections to PMISP would give the corresponding information about the PMISP error. Therefore, we define

the three-body PMISP method as

EPMISP3 = EPMISP +

N
∑

i<j

([

E
sup

[AiAj ]B
− E

sup
AiB

− E
sup
AjB

]

−
[

E
pol

[AiAj ]B
− E

pol
AiB

− E
pol
AjB

])

(12)

where the expression in the first bracket (denoted Esup3) is the three-body contribution to the supermolecular

interaction energy between the AiAj pair and B, and the expression in the second bracket (denoted Epol3)

is the corresponding three-body contribution to the polarization energy. Note that the three-body multipole

energy vanishes because of the additivity of multipole interactions (cf. Eq. 8). The largest trimer contributions

to Eq. 12 for the main structure are listed in Table 6. With only three exceptions, the Epol3 term for a given

trimer has the same sign as the corresponding Esup3 term but is smaller in magnitude. Thus, the many-body

classical polarization, through which PMISP approximates the total many-body effects, contains qualitatively

the correct effect but systematically underestimates it for each trimer. This observation provides a perfect

test case for future improvement of the description of polarization (e.g. by including explicit coupling to the

repulsion).

The difference between Esup3 and Epol3, which is the contribution to PMISP3 for a given trimer, is at

most 5 kJ/mol. The detailed results give the same picture as those using the embedded PMISP method: The

fragments that contributed most to the embedded correction are in general those present in the most important

trimers. However, the trimer results give more detailed information. For example, it can be seen that the rather

small embedded correction for A5 is a result of cancellation of its interactions with A3 (-5), A9 (+4), A8 (+4),

and others. Moreover, a geometrical analysis of the results (see Table 6) shows that all fragment pairs that

give large contributions (> 1 kJ/mol) are directly interacting except for the A5–A9 pair, which is linked by the

carboxylate group of B.

For comparison, the corresponding contributions to FMO3 are also reported in Table 6. Interestingly, they

seem to be completely uncorrelated to the PMISP3 contributions. In contrast to the latter, the FMO3 contribu-

tions are almost consistently positive. Therefore they add up to a larger sum than the PMISP3 contributions,

despite that the individual contributions are in general smaller in magnitude. Thus, the lower error for PMISP

than for FMO2 is partially caused by error cancellation. However, the fact that this cancellation occurs in all

considered systems suggests that it is in fact advantageous to have a more random error (as in PMISP) com-

pared to a systematic error (as in FMO2). It is also interesting to note that the FMO3 contributions are even

more strongly related to the distance: only neighbouring pairs give any significant contribution. This indicates

that the neglect of Pauli effects (which are known to be very short-range) is the only major approximation

in FMO2, whereas the error from assuming perfect pairwise additivity of the rest term (as in PMISP) can be

slightly more long-range.

Finally, it can be noted that, just as the FMO3 method, the PMISP3 method gives essentially the exact result.
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Thus, it may be a useful method when one needs very high accuracy and can afford the increased computational

cost. Moreover, because of the geometrical dependence, it may be possible to select the important trimers a

priori. The extension to cutting covalent bonds is straight-forward with the MFCC approach. The simple

three-body expansion (i.e. PA extended with three-body terms) gives an error of 3 kJ/mol, indicating that

higher-order many-body effects are rather small for this system.

4 Conclusions

We have developed and tested a computationally efficient method (PMISP) to estimate the quantum-mechanical

interaction energy between a large and a small molecule in vacuum. The method, which is based on a polarizable

multipole description supplemented by a set of supermolecular calculations, can be used for benchmarking

simpler potentials but also applied directly in the calculation of interaction energies.

Tests on model complexes with ∼250 atoms using HF theory show that, for charged ligands, the error of

the PMISP model is ∼10 kJ/mol, whereas the corresponding error of the pairwise additive (PA) model is ∼30

kJ/mol. For the neutral ligands, the corresponding errors are significantly lower but show the same trend, being

∼2 and ∼10 kJ/mol, respectively. Thus, in this case, inclusion of polarization improves the performance of

the potential by a factor 3-5, using a consistent treatment of the remaining terms. Because the PMISP model

can be considered as a perfectly fitted polarizable potential and the PA model similarly as the perfectly fitted

pair potential, this is the best accuracy one can ever expect from a polarizable and non-polarizable force field,

respectively, for this type of problem. The reason why such large effects of polarization are seldom reported in

other published tests of force fields is probably that these errors are hidden behind the large parametrization

errors.

The error from the MFCC fragmentation procedure is negligible. Thus, the only way to systematically

obtain more accurate results is by improving the polarization model, in particular by including coupling between

polarization and repulsion. However, our test indicates that two of the previously proposed methods that include

this coupling, FMO and EE-PA, do not give better results; in fact, they give slightly higher errors than PMISP

to a higher computational cost. Although our attempt to include embedding in the PMISP method does indeed

decrease the error for charged ligands, this is still an area where more development is needed.

The error does not increase significantly when going from the HF to the MP2 level. This indicates that the

MP2 dispersion is nearly pairwise additive, as assumed by the method. Of course, some many-body contributions

to the dispersion are not captured by the MP2 method, so these may still be significant. The dispersion part of

interaction energies is known to converge very slowly with basis set. Therefore, to obtain quantitative results,

a large basis set including diffuse functions must be used – the modest 6-31G* basis set was used in this study

only to enable an exact reference calculation.

The PMISP method does not put any restriction on the size of the large molecule, and the size of the

small molecule is only limited by the applied QM method. Thus, the method can in principle be used for a

full protein–ligand complex. However, the method, as presented here, wastes computational power by treating

residues far from the ligand in the same way as the nearest ones. In a future publication, we will show how the
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method can be adapted for this type of application.
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Table 1: Electrostatic and induction energies for the model complex in the main structure, calculated by PMISP

with HF properties obtained by cutting schemes a, b, and c, as well as by the Amber 2002 force field. Various

other quantities discussed in the method section (e.g. Fig. 2) are also given. For cutting scheme a, molecule O

equals A. Energies are in kJ/mol.

PMISP Amber

a b c ff02

Eele
AB -419.4 -420.5 -419.1 -403.4

Eind
AB -164.6 -154.5 -153.4 -98.7

Emult
AB -419.4 -438.6 -442.7 -499.9

E
pol
AB -164.6 -136.3 -129.8 -2.2

Eind
O -27.1 -32.3 -200.7∗

Eind
O(B) -9.0 -8.7 -104.2∗

Eind
OB -163.4 -162.1 -202.9∗

∗ In the Amber polarization model, any molecule is “pre-polarized”, i.e. even molecule B. Defining U to be the

non-polarized version of B, the values given are Eind
O + Eind

U , Eind
O(U) + Eind

U(O), and Eind
OU , respectively.
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Table 2: Classical energies (Eele
XB + Eind

XB) and rest terms (Esup
XB − Eele

XB − Eind
XB) listed for each fragment X for

the main structure, at the HF and MP2 level, respectively. Energies are in kJ/mol.

HF level MP2 level

X ci Classical Rest Classical Rest

A1 1 -18.7 0.8 -17.3 -1.9

A2 1 -0.3 -0.1 -0.4 -1.5

A3 1 -42.2 27.0 -37.3 18.6

A4 1 -63.9 38.1 -56.6 24.0

A5 1 -230.9 65.8 , 65.2∗ 11.0∗

A5a 1 -20.8 21.1 -18.6 6.9

A5b 1 -14.4 -0.4 -12.6 -3.4

A5c 1 -22.4 12.1 -21.0 -3.4

A5d 1 -123.8 31.1 -115.0 7.7

A5e 1 -167.7 33.2 -154.6 12.7

A5f 1 -92.5 4.4 -83.3 -6.3

A5ab -1 -7.3 -0.2 -5.8 -1.8

A5bc -1 -6.6 -0.2 -6.4 -1.8

A5cd -1 -15.3 4.8 -13.4 -4.7

A5de -1 -98.8 28.4 -93.2 15.6

A5ef -1 -77.8 3.5 -70.6 -3.9

A6 1 -1.3 26.4 -0.6 -6.2

A7 1 -1.1 6.7 -1.3 -1.7

A8 1 -123.2 72.4 -114.4 59.8

A9 1 -58.3 5.7 -54.4 -1.9

A10 1 -8.4 27.8 -8.2 16.1

A11 1 -3.6 3.2 -3.5 -3.3

A12 1 -0.4 8.5 0.9 -7.2

A13 1 -3.5 3.3 -3.5 -5.4

A14 1 -22.2 7.3 -17.7 1.2

A15 1 -9.7 19.8 -8.0 -0.9
∗Summed result using cutting scheme c.
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Table 3: Results for the geometry set. The letters in brackets indicate the cutting scheme used for each term.

For ∆EPMISP, the two letters indicate the cutting scheme used for the classical (Eele, Eind) and Erest terms,

respectively. The mean absolute error (MAE) compared to Eref is also reported. Energies are in kJ/mol.

Geometry MAE

1 2 3 4 5 6 7 8 9 10

HF level:

Eref -252.2 -292.1 -264.6 -260.2 -266.1 -271.4 -244.9 -277.9 -304.1 -230.6

Eele(a) -419.4 -414.4 -407.6 -442.4 -397.0 -400.4 -374.2 -415.2 -436.8 -335.8

Eele(b) -420.5 -414.5 -409.6 -444.4 -396.5 -398.6 -373.7 -417.0 -438.4 -338.6 1.4∗

Eele(c) -419.1 -412.3 -407.9 -442.5 -395.3 -397.0 -372.8 -414.9 -435.4 -337.4 1.2∗

Eind(a) -164.6 -173.2 -170.7 -190.4 -162.6 -161.9 -152.9 -172.4 -187.9 -127.6

Eind(b) -154.5 -160.0 -157.4 -178.6 -151.7 -148.7 -140.4 -160.2 -175.8 -119.9 11.7†

Eind(c) -153.4 -156.4 -155.1 -176.7 -149.3 -147.5 -138.2 -157.5 -172.2 -117.4 14.0†

Erest(b) 312.7 271.3 294.8 347.8 273.4 265.0 260.0 285.0 296.0 219.5

Erest(c) 312.1 266.1 291.7 346.2 271.1 263.2 256.5 281.0 290.3 216.3

∆EPMISP(ac) -19.6 -29.4 -21.9 -26.4 -22.4 -27.5 -25.6 -28.8 -30.3 -16.5 24.9

∆EPMISP(bc) -10.6 -16.4 -10.6 -16.6 -11.0 -12.6 -12.7 -18.3 -19.9 -11.7 14.0

∆EPMISP(cc) -8.1 -10.6 -6.7 -12.8 -7.4 -9.8 -9.5 -13.5 -13.2 -8.0 10.0

∆EPMISP(bb) -10.0 -11.1 -7.6 -15.0 -8.6 -10.8 -9.2 -14.3 -14.2 -8.5 10.9

∆EEMB-PMISP(bb) 0.2 1.6 4.6 4.2 4.1 2.3 4.9 -0.1 1.2 -3.2 2.6

∆EEMB(NP)-PMISP(bb) 0.1 0.5 1.9 0.8 2.3 0.9 3.0 -2.8 -2.4 -3.1 1.8

∆EPA(b) -22.8 -31.9 -26.5 -36.5 -26.6 -36.3 -20.6 -37.3 -27.3 -17.6 28.3

∆EFMO2(b) 9.7 16.2 13.2 17.9 11.9 12.6 14.7 14.2 13.0 12.4 13.6

∆EEE-PA(b) 12.0 19.2 15.1 18.2 13.8 16.8 16.0 16.4 15.3 13.5 15.6

HF level (no CP):

Eref -358.9 -401.9 -369.5 -368.8 -368.0 -377.7 -347.8 -386.2 -412.9 -329.8

∆EPA(b) -47.3 -62.3 -53.5 -68.6 -51.2 -68.5 -50.0 -68.3 -55.4 -42.9 56.8

∆EFMO2(b) -14.9 -14.2 -13.7 -14.2 -12.7 -19.7 -14.8 -16.7 -15.0 -12.9 14.9

∆EFMO3(b) 0.4 0.5 0.4 0.3 0.4 1.2 0.5 0.3 0.6 0.0 0.5

∆EEE-PA(b) -12.6 -11.3 -11.9 -13.9 -10.8 -15.4 -13.5 -14.6 -12.7 -11.7 12.8

MP2 level:

Eref -411.9 -446.1 -419.8 -419.6 -418.7 -430.0 -395.4 -436.7 -452.1 -386.8

Eele(c) -372.6 -368.0 -364.3 -392.5 -354.0 -354.4 -329.4 -370.7 -386.8 -301.8

Eind(c) -146.6 -149.2 -148.6 -168.4 -142.0 -140.9 -131.9 -150.2 -163.9 -112.2

Erest(c) 100.6 61.7 87.0 129.2 71.6 56.8 57.9 69.8 85.0 21.7

∆EPMISP(cc) -6.7 -9.4 -6.1 -12.1 -5.7 -8.4 -8.0 -14.4 -13.7 -5.6 9.0

∆EPMISP-CE(cc) 1.5 1.2 0.6 0.7 1.8 1.4 1.5 -0.9 -0.5 2.4 1.2

∆EPA-CE(c) 2.8 3.0 2.3 2.8 2.6 3.1 3.1 0.3 0.9 2.3 2.3

∆EPA-CE[3-21G](c) -0.2 5.6 3.5 2.1 3.2 2.0 0.8 3.3 3.8 -0.4 2.5
∗Relative to Eele(a). †Relative to Eind(a). 22



Table 4: Results for the ligand set. The letter in brackets indicates the cutting scheme used for that particular

term. For ∆EPMISP, the two letters indicate the cutting scheme used for the classical (Eele, Eind) and Erest

terms, respectively. The mean absolute error (MAE) compared to Eref is also reported. Energies are in kJ/mol.

Ligand MAE

BTN1 BTN2 BTN3 BTN4 BTN5 BTN6 BTN7

HF level:

Eref -252.2 -269.0 -227.0 -31.6 -3.4 -47.4 -63.2

Eele(a) -419.4 -427.3 -401.8 -185.1 -107.1 -119.4 -125.3

Eele(b) -420.5 -427.8 -401.2 -185.3 -106.9 -119.0 -124.6 0.5∗

Eele(c) -419.1 -425.4 -399.1 -185.3 -107.0 -119.4 -125.1 0.8∗

Eind(a) -164.6 -190.0 -181.3 -55.8 -50.6 -40.7 -37.1

Eind(b) -154.5 -176.7 -165.8 -54.1 -46.3 -39.0 -35.5 6.9†

Eind(c) -153.4 -173.2 -162.7 -54.2 -46.3 -39.0 -35.6 8.0†

Erest(b) 312.7 322.4 330.3 209.3 154.7 110.1 96.1

Erest(c) 312.1 318.3 324.7 209.1 154.8 110.1 95.8

∆EPMISP(ac) -19.6 -29.9 -31.5 -0.2 0.5 -2.7 -3.3 12.5

∆EPMISP(bc) -10.6 -17.2 -15.4 1.4 5.1 -0.5 -1.1 7.3

∆EPMISP(cc) -8.1 -11.3 -10.2 1.3 4.9 -1.0 -1.6 5.5

∆EPMISP(bb) -10.0 -13.1 -9.7 1.6 5.0 -0.5 -0.9 5.8

∆EEMB-PMISP(bb) 0.2 5.9 6.5 2.9 9.0 5.0 5.3 5.0

∆EEMB(NP)-PMISP(bb) 0.1 1.6 5.1 2.5 8.8 3.9 4.9 3.8

∆EPA(b) -22.8 -27.2 -42.0 9.9 18.2 8.6 7.1 19.4

∆EFMO2(b) 9.7 8.9 0.0 7.9 4.9 6.0 7.6 6.4

∆EEE-PA(b) 12.0 11.4 3.0 9.1 5.1 7.4 8.0 8.0

HF level (no CP):

Eref -358.9 -377.8 -334.8 -101.9 -56.4 -98.1 -100.5

∆EPA(b) -47.3 -54.5 -54.5 -7.0 4.2 -4.4 -5.6 25.4

∆EFMO2(b) -14.9 -18.5 -12.5 -9.0 -9.1 -7.1 -5.0 10.8

∆EFMO3(b) 0.4 1.4 4.4 0.6 1.0 0.3 0.1 1.2

∆EEE-PA(b) -12.6 -16.0 -9.5 -7.8 -8.8 -5.6 -4.6 9.3

MP2 level:

Eref -411.9 -432.7 -372.4 -183.8 -124.6 -148.2 -119.0

Eele(c) -372.6 -381.9 -355.2 -155.0 -91.9 -103.3 -112.4

Eind(c) -146.6 -164.6 -156.0 -48.2 -42.4 -36.7 -33.6

Erest(c) 100.6 104.8 126.2 26.6 18.8 -6.0 28.5

∆EPMISP(cc) -6.7 -9.0 -12.6 7.2 9.1 2.4 1.5 6.9

∆EPMISP-CE(cc) 1.5 2.3 -2.5 6.0 4.1 3.4 3.1 3.3

∆EPA-CE(c) 2.8 3.4 -0.3 6.9 2.7 4.9 3.4 3.5

∆EPA-CE[3-21G](c) -0.2 9.2 10.8 1.7 2.6 -0.1 0.4 3.6
∗Relative to Eele(a). †Relative to Eind(a). 23



Table 5: Contributions to the energy difference between the EMB-PMISP and PMISP methods from each

fragment for the main structure (MS), as well as the mean absolute contributions for the geometry set (Gset)

and ligand set (Lset). The contributions from polarizabilities (i.e. the difference between EMB-PMISP and

EMB(NP)-PMISP) are given within brackets. Energies are in kJ/mol.

Fragment MS Gset Lset

A1 1.1 (0.2) 1.7 (0.5) 1.9 (0.4)

A2 0.0 (0.0) 0.1 (0.1) 0.1 (0.1)

A3 2.7 (0.0) 3.4 (0.4) 3.3 (0.3)

A4 3.3 (0.7) 3.3 (0.7) 3.4 (0.7)

A5 1.6 (-0.5) 1.3 (0.5) 0.9 (0.5)

A6 -2.2 (-0.6) 1.3 (0.5) 1.0 (0.2)

A7 -0.6 (-0.3) 0.4 (0.2) 0.3 (0.1)

A8 2.1 (0.4) 3.2 (0.9) 1.1 (0.3)

A9 2.9 (0.2) 3.1 (0.6) 1.2 (0.2)

A10 0.7 (0.2) 0.6 (0.2) 0.3 (0.2)

A11 0.1 (0.0) 0.3 (0.1) 0.1 (0.0)

A12 -0.5 (0.1) 0.6 (0.1) 0.3 (0.1)

A13 0.5 (0.2) 0.5 (0.3) 0.3 (0.1)

A14 -0.5 (-0.4) 0.4 (0.3) 0.7 (0.3)

A15 -1.2 (-0.1) 0.9 (0.1) 0.7 (0.1)

Total 10.2 (0.1) 12.8 (1.9) 8.8 (1.2)
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Table 6: Trimer results for the main structure. Only the fragment pairs X–Y contributing more than 0.5 kJ/mol

to Eq. 12 are explicitly listed, but the sum contains all contributions. Dist is the closest distance between any

atom in X and any atom in Y. The error is given relative to the reference energy (not counterpoise-corrected in

the FMO case) after addition of the corresponding two-body quantity (PA, PMISP, and FMO2, respectively).

Energies are in kJ/mol.

X–Y Dist (Å) Esup3 Epol3 Esup3-Epol3 FMO3

A3–A5 1.9 -8.6 -3.5 -5.1 2.0

A8–A9 2.3 9.1 4.7 4.5 1.3

A5–A9 4.8 11.2 6.9 4.3 0.3

A3–A4 2.4 4.0 -0.3 4.3 1.8

A5–A8 2.6 16.2 12.6 3.6 0.6

A6–A9 2.5 -5.3 -3.1 -2.3 0.3

A1–A3 2.0 3.4 1.1 2.3 0.9

A1–A4 2.7 1.8 0.5 1.2 0.6

A6–A10 1.8 -2.0 -1.0 -1.0 1.9

A3–A14 5.0 -2.5 -1.7 -0.8 -0.1

A5–A15 2.5 -0.5 0.3 -0.8 0.5

A12–A14 2.2 1.6 0.8 0.8 0.5

A4–A14 4.5 -3.1 -2.4 -0.7 -0.1

A5–A6 2.5 -1.9 -1.3 -0.6 0.4

A5–A7 2.5 1.8 2.4 -0.6 0.2

A10–A11 2.1 1.3 0.8 0.5 0.9

Sum 25.4 9.9 15.3

Error 2.7 -0.2 0.4
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Figure captions

Figure 1: Example illustrating the MFCC procedure for cutting molecule A across the peptide bond and capping

with –COCH3 and –NHCH3 groups. The result is two capped fragments A1 and A2 with ci = 1, as well as a

concap fragment A3 with ci = −1.

Figure 2: Schematic picture of the relations between various energy terms described in the text for an example

case where monomer A consists of two fragments.

Figure 3: The seven ligands to avidin used in this study: a) BTN1 (biotin), b) BTN2, c) BTN3, d) BTN4,

e) BTN5, f) BTN6, g) BTN7. The first three have a molecular charge of −1, whereas the other ligands are

neutral.

Figure 4: Two-dimensional cartoon of the avidin model interacting with biotin (BTN1). It should give a

guidance to the location of each fragment; in reality, the fragments surround the ligand completely. For clarity,

hydrogen atoms are omitted. The most prominent hydrogen bonds are indicated by dotted lines. The fragments

of the model (in cutting scheme b) are labeled from A1 to A15, and the additional fragmentation of A5 into

fragments A5a to A5g (in cutting scheme c) is also indicated. The avidin residue from which each fragment is

derived is shown in brackets. The biotin molecule is labeled B.

Figure 5: Correlation between the supermolecular (HF) interaction energies and the energies estimated by

various methods. Note that the axes are broken to accomodate the results of both the charged and neutral

ligands. The line represents perfect correlation.
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Figure 1: Example illustrating the MFCC procedure for cutting molecule A across the peptide bond and capping

with –COCH3 and –NHCH3 groups. The result is two capped fragments A1 and A2 with ci = 1, as well as a

concap fragment A3 with ci = −1.
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Figure 2: Schematic picture of the relations between various energy terms described in the text for an example
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Figure 3: The seven ligands to avidin used in this study: a) BTN1 (biotin), b) BTN2, c) BTN3, d) BTN4,

e) BTN5, f) BTN6, g) BTN7. The first three have a molecular charge of −1, whereas the other ligands are

neutral.
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Figure 4: Two-dimensional cartoon of the avidin model interacting with biotin (BTN1). It should give a

guidance to the location of each fragment; in reality, the fragments surround the ligand completely. For clarity,

hydrogen atoms are omitted. The most prominent hydrogen bonds are indicated by dotted lines. The fragments

of the model (in cutting scheme b) are labeled from A1 to A15, and the additional fragmentation of A5 into

fragments A5a to A5g (in cutting scheme c) is also indicated. The avidin residue from which each fragment is

derived is shown in brackets. The biotin molecule is labeled B.
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Figure 5: Correlation between the supermolecular (HF) interaction energies and the energies estimated by

various methods. Note that the axes are broken to accomodate the results of both the charged and neutral

ligands. The line represents perfect correlation.
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