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Chapter 1: Introduction  

1.1  The shift in therapeutics – from “one size fits 
all” to personalized medicine 
Cancer remains to be the leading cause of death worldwide with an estimated 10 
million deaths and 19.3 million new cases in 20201. Current projection suggests that 
nearly one out of three people during their lifetime would be affected by this 
malignant disease. Thus, developing more effective therapeutic strategies to treat 
cancer is a must.  

Therapeutics in oncology has developed from the previous “one size fits all” 
approach to targeted patient treatment paving way to the era of personalized 
medicine2 (Figure 1). The traditional approach of treatment decision making, relied 
on phenotypic outlook of the disease coupled with clinical experience2. This later 
evolved into Evidence Based Medicine (EBM) which is defined as “conscientious, 
explicit, and judicious use of current best evidence in making decisions about the 
care of individual patients”3. While this process had seen some success with its 
average treatment approach based on population dynamics, it inherently negated 
patient heterogeneity which influences the treatment outcome4. Thus, it has become 
abundantly clear that such an approach was not generally applicable, considering 
the observed variation in patient outcomes. 

Furthermore, the choices for conventional first line therapeutics were initially 
restricted to surgical interventions, radiation therapy and chemotherapy. 
Technological advancements, such as genome sequencing, biomolecule expression 
profiling etc. have expanded the onco-therapeutic options. Now, several new, 
potentially curative approaches are being tested and even replacing first-line cancer 
therapy. Such treatment options include immunotherapy, cell-based therapy, CAR-
T-cell therapy, cancer vaccines and gene therapy. Additionally, new technologies 
have augmented our biological understanding of cancer and the intricate 
mechanisms that lead to pathogenesis and disease progression. Therefore, such 
studies have highlighted patient heterogeneity and provided information on how the 
underlying biological processes can affect the overall disease progression and 
survival. Moreover, the development of new companion diagnostic and prognostic 
tools have helped in identifying subgroups of patients that require alternative 
therapeutic interventions, even though the underlying disease might be classified as 
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same. All-in-all, the need for therapies that are tailor-made to the specific individual 
and focuses on their intrinsic biology, have gradually become the future of onco-
therapeutics. This has paved way to research exploring companion diagnostic and 
prognostic tools that can enable precision medicine efforts. 

Figure 1: The movement from conventional therapy to precision medicine. Patients respond with great 
heterogeneity to conventional cancer treatment with some having beneficial response, some no response and sub-
groups exhibiting adverse reactions to the therapy. Such variation is associated with heterogeneity in tumour biology 
and associated microenvironment. Thus, by using information from clinicopathology, and molecular assays (e.g., 
genetic make-up), patients can be stratified into subgroups with specialized treatment with respect to their respective 
biology. Further subgrouping and even tailored therapeutics for individuals is possible by comprehensively 
understanding patient’s intrinsic make-up and such an approach is called precision or personalized medicine. This is a 
continuous goal for cancer therapeutics to ensure that each patient is positively benefited when treatment regimens are 
optimized. Figure was created using Biorender. 

1.2  The rise of onco-immunology and impact on 
precision medicine 
Originally, cancer research and therapeutics was focused only on cancer cells, and 
malignant growth was considered as a genetic disease5. However, in the last two 
decades, the systemic involvement in cancer development particularly with respect 
to the immune system and the contribution of the microenvironment, has been 
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intensively studied5. In 1950s, the concept of “immune surveillance of tumours” i.e., 
tumour-specific antigens released by the oncogenic cells and generating an immune 
response, was proposed, and validated over the years6,7. As proof of this, the 
presence of immune cells within tumour have shown to be associated with longer 
survival in many cancer subtypes8–10.  

However, cancer immunoediting theory was later proposed in light of the dual role 
of the immune system in both tumour inhibition and promotion11–13. The theory 
proposed a continuous process occurring in the tumour microenvironment, that 
could be highlighted as the three “E’s” of cancer immunoediting; an initial step of 
cancer elimination, followed by immune-mediated equilibrium, and finally, immune 
escape/evasion of the cancer cells11–13. The importance of the immune system can 
be further highlighted by the new additions to the previous “hallmarks” of cancer. 
The original review by Hanahan and Weinberg published in 2000, initially proposed 
six cancer characteristics (evading apoptosis, insensitivity to anti-growth signals, 
self-sufficiency with respect to growth signals, tissue invasion/metastasis, 
angiogenesis, replicative immortality)14. In the 2011 update, four more hallmarks 
were proposed, of which immune evasion and metabolic reprogramming have been 
sufficiently validated by the 2022 update and have now been established as 
hallmarks complementing the original set15,16. The cancer-immunity cycle further 
explains that constant exchange of information and interaction between the tumour 
and surrounding immune cells17. Restoration of anti-tumour immune response by 
priming immune cells, especially the T cells, for cancer cell elimination is of 
particular interest and form the basis of onco-immunology13. Immunotherapy has 
led to tremendous improvement in patient outcome, as is evidenced by the 
implementation of Rituximab, a monoclonal anti-CD20 antibody in non-Hodgkin’s 
lymphoma18. The complex and dynamic interaction of the immune and tumour cells 
contributes to the heterogeneity of the tumour-immune microenvironment (TIME) 
and stratification of patients with different immune compositions is a necessity for 
therapeutic personalization with respect to onco-immunology13.  

1.3  Technological progress that propelled the 
research in onco-immunology 
Precision medicine relies on multi-modal information from various sources such as 
for example patient biometrics, clinical pathology, disease symptoms and 
phenotypes, socio-environmental factors, and multidimensional biological data2. 
The initial development of genomic sequencing was a crucial step in identifying 
genetic aberrations that drive tumorigenesis and progression, providing insights into 
some biological mechanisms and enabling identification of tools for clinical 
implementation19. However, it became clear that genetics alone would not suffice to 
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improve patient stratification and prognostication in all cancer sub-types, and 
therefore, focus on other molecular layers became critical19. Similarly, technologies 
have also moved from one biomolecule measurement to high-throughput high-
dimensional measurements leading to development of “omics” and biomarker 
signatures. The term “omics” is broadly attributed to a “collective study of molecular 
characterization and quantification of biological molecules from various 
subdomains of molecular biology using high-throughput technology”19. Thus, from 
one-molecule single biological layer, we have moved to complex high-dimensional 
multi-layer biological exploration.  

1.3.1  Challenges associated with clinical sampling and 
biological discovery 
The two most common clinical samples collected from patients is solid biopsy tissue 
from sites of cancer presentation and liquid biopsies in the form of whole blood. 
There are advantages and disadvantages with both sampling methods. The disease 
genetics/phenotype and interaction with neighbouring tissue can be studied by using 
solid tumour tissue. Several experimental methodologies have been developed that 
allow tissue-based profiling for insights into the tumour microenvironment (TME). 
A popular method is flow cytometry that enables identification of rare cell types and 
is a widespread technique for immune cell profiling. Furthermore, during the era of 
sequencing, bulk genomics and single-cell sequencing platforms were developed 
that allowed high-throughput omics profiling. Such technologies involve disrupting 
the tissue; thus, the spatial information is lost. To retain the spatial biology, 
immunohistochemistry (IHC) or immunofluorescence (IF) were often used. But 
these techniques were limited in the number of simultaneous measurements that 
could be made. Additional factors to consider was the amount of available biological 
material, which is a limiting step since repeated sampling using invasive biopsy 
procedures is often not feasible or recommended. Now, we have moved into the era 
of spatial-omics wherein omics profiling can be done without disrupting the tissue. 
Such technologies especially enable the study of the TIME with much higher 
resolution than what was previously possible, allowing for investigation of the 
structural organization of the tumour, including immune cells and other 
components.  

Tissue-based sampling is done for diagnostic reasons and is seldom recommended 
upon relapse or progression or in highly aggressive tumour types. Thus, to minimize 
invasive procedures, novel methods for continuous monitoring of the disease during 
and after treatment needs to be developed. In such cases, using liquid biopsies for 
extraction of systemic biological insight have become pivotal as sample collection 
is less invasive, and multiple sampling is a possibility which allows for longitudinal 
treatment monitoring. Additionally, the humoral component plays a major role in 
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the immune response, thus measuring immune-regulatory or tumour-secretory 
biomolecules can provide essential diagnostic or prognostic information20.  

1.3.2  The dawn of “Big Data” in translational cancer research 
Technological innovations in relation to high-throughput profiling via omics using 
different biological samples have expanded the biological data and inference. 
Moreover, combined liquid and solid biopsies can provide more cohesive spatio-
temporal insights into the tumour biology, further guiding precision oncology. The 
breakthroughs in omics technologies for both these sample types enable collection 
of high-dimensional information by using only a fraction of the total clinical sample. 
The quantified expression datasets along with the clinical features, form the basis 
of big data in clinical cohorts. However, to identify relevant features from such 
unstructured, complex, and large volumes of data require new processes for 
analysis. Thus, the application of artificial intelligence (AI), machine- and deep-
learning (ML and DL) approaches for data mining in biology became prevalent21. 
As new modules are implemented for data mining, new biological insights are made, 
that can be further developed into predictive and prognostic models for clinical 
decision making, thus, aiding precision medicine. Hence, studies that focus on large 
datasets or “Big Data” that combine omics with patient metadata, are becoming 
front-runners to identify patterns that could help in demarcating risk groups that 
would be require separate clinical interventions19.  

1.4  Thesis overview 
The field of precision medicine is relatively young and major strides are being made 
globally for evaluation of the TIME to improve the use of immunotherapeutic and 
stratification of patients. This thesis is centralized on a particular subtype of 
haematological malignancy called mantle cell lymphoma (MCL) with the aim of 
enhancing biological understanding and develop methods for patient stratification 
and prognostication. The outcome of treatment in MCL, an aggressive sub-type of 
B-cell lymphoma, is governed by both genetic aberrations, but also MCL immune 
microenvironment. Thus, this thesis and the included five papers are focused on 
exploring the immune microenvironment in MCL with respect to biomarker 
discovery and patient risk stratification (Figure 2). To achieve this, we have used 
technologies for biomolecule profiling in serum (non-cellular component of blood) 
and as well in solid tumour tissue using spatially resolved omics. Downstream 
bioinformatic workflows have guided selection of prognostically relevant 
biomarkers and in providing additional insights into MCL-related immune response 
in the TIME. 
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Paper I-III explore the humoral component of this lymphoproliferative disease, 
specifically serum analysis using targeted proteomics. Whilst paper IV-V explore 
tissue-based spatially-guided proteomics collected from tumour and specific sub-
sets of immune cells (Figure 2). 

In paper I-II, an antibody-based protein microarray technology (IMMRay™) using 
affinity proteomics was used for high through-put serum profiling. This assay 
profiled 371 single-chain variable fragment (scFv) antibodies against 158 unique 
immuno-regulatory and tumour-secretory serum proteins. In paper III, targeted 
serum protein expression was measured using sandwich enzyme-linked 
immunosorbent assay (ELISA). For spatial omics analysis in paper IV-V, GeoMX™ 
(Nanostring Inc) spatial omics platform was used to profile 63 informative proteins 
(plus 3 housekeeping proteins, 3 negative controls) collected from multiple cell 
types as identified by multiplexed immunofluorescence (mIF) staining of MCL 
tissues (section 3.3.2).  

Multiple MCL cohorts with respect diagnosis or at relapse/during treatment, were 
assessed in the five studies. Paper I and II is centred around relapsed/refractory 
(R/R) patients belonging to a clinical trial cohort (MCL6-Philemon trial)22, as 
biopsies are rarely taken from patients with aggressive relapse. These patients were 
homogenously treated with a combination of rituximab, ibrutinib and lenalidomide 
for 12 months, followed by maintenance with ibrutinib and rituximab until disease 
progression. Paper II was a longitudinal follow-up of paper I, wherein the previous 
samples collected at baseline or pre-treatment were compared to samples collected 
after 12 weeks of treatment (on-treatment)23. Paper III explored serum samples 
collected from both diagnostic and relapsed MCL patients from the MCL6-
Philemon cohort as well as heterogenous cohorts collected from biobanks of Vital 
Freezing of Lymphoma Cells (VIOLA), the Uppsala-Umeå Comprehensive Cancer 
Consortium (U-CAN)24. Four patients from U-CAN were at the relapse stage and 
further combined with the Philemon samples for analysis in this paper. Paper IV-V 
is based on diagnostic MCL tissues collected from a population-based cohort of 
lymphomas (B-cell lymphomas in Southern Sweden, BLISS). Cores collected from 
this archival formalin-fixed paraffin-embedded (FFPE) tissues were transferred into 
tissue microarray (TMA) blocks, which was then sectioned, stained, and used for 
spatial omics data collection (elaborated further in section 3.3.2).  

The main objectives for all study were identifying patterns of biological variation in 
relation to clinicopathological features such as patient outcome based on overall 
survival. This enabled identification of novel biomarkers and development of 
patient stratification tools. Specific aims of each paper have been elucidated further 
below, in detail.  
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The aim of paper I, was to investigate whether serum-based biomarkers could be 
identified that were correlated with overall survival in R/R MCL and whether new 
methods of patient stratification in relation to patient outcome and progression could 
be developed25. This was a necessity since, methods of risk stratification such as the 
MCL prognostic index (MIPI), have previously been developed in diagnostic MCL. 
Moreover, MIPI combines information only on clinical features and newer models 
that integrate biological information have also been suggested only in diagnostic 
cohorts (section 2.3.1). Therefore, prognosis at relapse is a lacking in MCL. Thus, 
developing prognostic tools with biological information based on blood/serum is a 
clinical need for R/R MCL. By using bioinformatic workflows, we were able to 
identify serum-based biomarkers in relation to overall survival which led to the 
development of a novel biomarker signature. We further combine it with MIPI to 
create a new prognostic index in R/R MCL that could be used for patient risk 
stratification.  

The aim of paper II was to study how longitudinal profiles based on serum 
proteomics vary with respect to treatment. Thus, we assessed if any serum proteins 
were differentially regulated at the two timepoints collected (stated above) and the 
validity of using serum expression velocity i.e., change in serum protein expression 
between on-treatment and pre-treatment. Such an analysis can be important not just 
for evaluation treatment response, but also the temporal variation in patient biology. 
Our analysis revealed differential response in serum protein in relation to underlying 
genetic aberrations. We also show that using serum expression velocity of change, 
rather than absolute expression values at the two timepoints, can account for inter 
patient heterogeneity at baseline. Additionally, we were able to identify biomarkers 
in relation to minimal residual disease (MRD) and time to progression by 
categorizing patients into early and late progressors.  

The aim of paper III was to evaluate the abundance and prognostic role of soluble 
CD163 (sCD163), a cell surface marker for M2-like macrophages. The presence of 
CD163+ macrophages in tissue has been shown to be correlated with poor outcome 
in primary MCL26,27. Thus, the goal was to assess whether tissue-based information 
is translatable to serum-based measurement, and whether it could be used instead as 
a complementary tool. This would also accelerate clinical implementation of CD163 
as prognostic indicator. Our analysis revealed that the measure of sCD163 in sera 
was concurrent with tissue-based information and can be used as a surrogate 
biomarker for both diagnostic and relapsed MCL. Moreover, the study further 
suggests a robust cut-off for sCD163 levels for tentative clinical use at diagnosis as 
well as relapse.  

While CD163+ macrophage presence is associated to poor outcome, their impact 
and the mechanistic modulation of the TIME is not clear. Thus, the aim of paper IV 
was to explore the role of CD163+ in altering the TIME. Paper IV investigates 
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whether the spatial localization of macrophages close or more distant to tumour cells 
affects the cell type specific phenotype and characteristics. In addition, the impact 
of the presence of macrophages in the MCL microenvironment on tumour and 
CD3+ T-cells was also investigated. Using spatially-guided proteome GeoMX™ 
data collected from CD20+ tumour cells, M2-like CD163+ macrophages, and CD3+ 
bulk T-cells, we show spatial localization in tissues can alter phenotypic 
characteristics of the cell type of interest, which confirms the necessity of using 
spatially resolved omics technologies for tissue-based analysis. Additionally, we 
demonstrate how the presence of a specific immune subset within tumour can alter 
the phenotypic profile of MCL tumour cells and T-cells in the adjoining 
neighbourhood. Thus, this analysis provided some context into the crosstalk 
between CD163 and CD20+ tumour cells and its contribution to 
immunosuppression.  

The aim of paper V was to understand how composition and infiltration levels of 
different T-cells subtypes, are associated with overall survival and phenotypic 
variation in diagnostic MCL. Image analysis was used to extract cell metrics from 
mIF images, for defining infiltration based on cell frequency. Thus, this paper is 
partly technical wherein segmentation models (Cellpose and Stardist) were 
compared with respect to manually annotated data and a workflow for mIF image 
analysis was optimized. For biologically evaluation, we then combined the image 
derived metrics with GeoMx™ proteomics, to investigate modulations of the TIME 
in relation to cell frequency. In this study, four T-cells subsets were analysed by 
combinatorial expression of CD3, CD8 and CD57. The combination of CD8 and 
CD3 differentiates between cytotoxic and helper T-cells and CD57 differentiates 
between active and terminally differentiated T-cells28–32. Thus, following subtypes 
were defined– TC,57- (CD57- cytotoxic T cells), TC,57+ (CD57+ cytotoxic T cells), 
TH,57- (CD57- Helper T cells), TH,57+ (CD57+ Helper T cells). By using such a 
combined analysis, we show that T-cell infiltration is associated with overall 
survival in MCL. Varying infiltration levels can modulate tumour 
microenvironment with respect to T-cells and CD20+ tumour cells and were able to 
characterize immunosuppressive microenvironment with respect to level of T-cell 
infiltration. The complementary use of the two methodologies for investigating the 
TIME reveals that the frequencies and characteristics of single cell types cannot be 
studied as separate units, as the functionality of both tumour and immune cells adapt 
based on the composition of the TIME.  

In conclusion, this thesis is centred around investigation of immune 
microenvironment in MCL via application of high-throughput technologies, using 
both liquid and lymphoid tissue biopsies. The overall aim was development of 
improved companion prognostic/predictive tools, models of risk stratification, and 
exploration of the TIME in MCL. The key findings and the scientific overview of 
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the five papers that comprise this thesis is elaborated in detail chapter five (section 
5.1). 

Chapter two focuses on MCL broadly, introducing the current known biological 
landscape, prognostics, and treatment options available. Chapter three covers the 
development of high-throughput technologies that propelled omics-exploration in 
biological sciences with a focus on liquid proteomics and spatially-guided omics 
and their applicability for biomarker discovery and companion 
diagnostic/prognostic tools. Chapter four describes the bioinformatic modules and 
the challenges associated with data pre-processing and data processing using ML 
and DL algorithms for evaluation of complex big data generated from clinical 
cohorts, with emphasis on methodologies used in the five included papers. Chapter 
five discusses scientific summaries, as stated above. It also provides an outlook 
towards the future use of information from the tissue and serum-based MCL 
microenvironment, based on the novel data generated from paper I-V.  

 

Figure 2: Overview of the five papers included in this thesis. Three of the five papers are based on serum protein 
analysis and the remaining two papers are based on tissue-based exploration using spatial omics. The goal of these 
papers can largely be attributed to exploratory biomarker discovery, outcome-based patient stratification using identified 
biomarkers and potentially translation into application for clinical use. Figure created using Biorender. *B = Baseline/Pre-
treatment samples, C4=Samples collected on-treatment at cycle 4 after 12 weeks of treatment.  
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Chapter 2: Mantle Cell Lymphoma 

2.1 Lymphomas – lymphoproliferative disease 
Lymphomas include a complex group of haematological malignancies characterized 
by malignant growth of B, T and NK lymphocytes. The underlying complex 
mechanisms of lymphomagenesis can primarily be attributed to genetic aberrations 
and dysregulation in cell differentiation, growth, and death. B and T cells are 
particularly susceptible to malignant transformation, as their development includes 
complex genetic rearrangements, required for the development of the diverse 
immune repertoire as well maturation process that require migration to different 
tissue sites33,34. This is especially true for B cells, which undergo somatic 
hypermutation and immunoglobulin class switching and are thus, prone to 
accumulate oncogenic genetic alterations. Consequently, most lymphomas (~90%) 
are of B-cell origin35,36. 

Broadly, lymphoma can be categorized as Hodgkin (HL) and non-Hodgkin B- and 
T-cell lymphoma (NHL)37. However, differences in destabilizing genetic 
alterations, overall genomic landscape, phenotypic characterization, and clinical 
manifestation have further led to the recognition of more than 70 subtypes of 
haematolymphoid tumours, as reported in the recent update by the World Health 
Organization (WHO-HAEM5)38. Lymphomas are systemically treated, even in 
cases with early diagnosis showing localized tissue presentation. 

Approximately, ~10 million deaths as a consequence of cancer were reported by the 
GLOBOCAN (Global cancer observatory) in 2020, and 2.8% of those deaths were 
caused by lymphomas1. This corresponds to 600,000 new cases of lymphomas, 
yearly1. There is also a geographical bias in the distribution of some subtypes which 
indicates that environmental and lifestyle factors, viral and genetic make-up, race, 
family history; may potentially influence lymphomagenesis35,39–42. For example, 
follicular lymphoma (FL) is more common in western countries, in comparison to 
Eastern Asian countries that see higher incidences of diffuse aggressive B-cell, 
peripheral and extra-nodal NK or T cell lymphoma35,43. 

Most B-cell lymphomas manifest as lymphadenopathy44. Subtypes of B-cell 
lymphomas have been initially characterised by phenotypic features corresponding 
to normal B cells in that localization, as MCL. However, technological 
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advancements particularly with sequencing and imaging, have led to sub-
classification and identification of more specific subtypes based on genetical, 
immunological and molecular markers43. These subtypes exhibit a wide range of 
diverse indolent to aggressive behaviour that leads to varying clinical outcomes44. 
Some examples of indolent B-cell lymphoma are follicular lymphoma (FL), 
marginal zone lymphoma, small-cell lymphocytic lymphoma. More aggressive 
subtypes include diffuse-large B-cell lymphoma (DLBCL), mantle cell lymphoma 
and Burkitt lymphoma45. DLBCL is the most common aggressive subtype 
accounting for nearly 30-40% of B-cell lymphomas44,46.  

2.2 Mantle cell lymphoma 
Mantle Cell Lymphoma (MCL) is an aggressive subtype of B-cell lymphoma with 
a median survival of 5-7 years47. It accounts for an average of 6% of lymphomas 
incidences in Western countries with a yearly incidence rate of 1-2/100,000 
people48–51. However, it has been shown that the MCL incidences have been 
increasing with nearly 3,320 new cases reported in the United States in 201652. The 
median age at diagnosis is 70 years with a striking 3:1 male pre-dominance49,50,53.  

The first description of the disease that later would be named MCL, was made in 
1982 by Weisenburger et al.54,55. In 1994, it was confirmed as a separate subtype of 
lymphoma and the term “mantle cell lymphoma” was coined, referring to the 
location of the malignant B-cells in the mantle zone around the germinal centre of a 
lymphoid follicle55,56. The main site of presentation are lymph nodes and bone 
marrow, but secondary sites include Waldayer’s ring, the central nervous system, 
and the gastro-intestinal tract55–58. 

In comparison to other lymphomas, MCL is associated with poor survival, 
historically. However, with developments in therapeutic care, the 5-year overall 
survival has improved from ~68% to ~82%59. Such improvement in survival rates 
was primarily seen due to implementation of immunotherapy, Rituximab, a 
monoclonal anti-CD20 antibody in 199718,60,61. The clinical course is still highly 
heterogenous with several non-responsive cases already seen in front-line treatment. 
Patients that do respond to initial treatment have high-risk of aggressive relapses, 
with no fixed standard of care at this stage62. 

MCL patients most often show disseminated disease even at diagnosis with 
widespread bone marrow involvement, lymphadenopathy, and splenomegaly63. The 
clinical course of MCL is highly variable and depends on several key factors 
including age, as younger and fit patients have a better outcome primarily due to 
less age-related comorbidities and show less treatment-related complications. Even 
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patients who initially benefit from front line treatment, often have aggressive 
relapses with shorter OS and sometimes with chemoresistance64. Therefore, 
continuous efforts have been made to develop new treatment strategies that can 
improve the OS and prognostic factors that can help in monitoring disease 
progression.  

2.2.1  Pathogenesis and mutational landscape 

MCL pathogenesis is primarily characterised by t(11;14)(q13;q32) chromosomal 
translocation during V(D)J recombination of Ig gene in the immature bone marrow 
B-cell65,66. Such translocation can also occur in mature B-cells via activation-
induced cytidine deaminase (AID)67. This translocation is in proximity to the Ig 
heavy chain sequence causing an upregulation in CCND1 gene which subsequently 
leads to an overexpression of cyclin D1, a proto-oncogene involved in the 
dysregulation of various cancers66,68,69. Cyclin D1 is an important player in cell cycle 
transition from G1 to S phase as well as a transcriptional modulator66,68.  

Initially, it was considered that the above-mentioned specific translocation and 
overexpression of cyclin D1 were the primary hallmark of MCL, differentiating it 
from other B-cell NHL. However, a small subset of MCL cases (<1%) lack cyclin 
D1 overexpression but can alternatively have upregulated cyclin D2 and D370. 
Furthermore, overexpression of SOX11, a neural transcription factor, was seen in 
the majority (90%) of MCL cases and especially with respect to cyclin D1-negative 
MCL71–73. Functionally, overexpression of SOX11 causes suppression in BCL6 
transcription and increase in BCR signalling and PAX574–76. However, the 
prognostic impact of SOX11 has been controversial and is dependent on the MCL 
inclusion criteria, as patients with indolent and leukemic MCL often lack 
SOX1173,77–83. 

One of the most important prognostic markers in MCL is genetic mutation or 
deletion of TP5384. But the mutational landscape of MCL is heterogenous with 
mutations reported in ATM, NOTCH1, KMT2D, NOTCH2, UBR5, BIRC3, DNAH5, 
SF3B1, CHK2 etc.55,85–88. Additionally, MCL tumour cells typically express B-cell 
antigens (CD19 and CD20) and T-cell associated antigen CD5 as well as FMC7 and 
BCL2 but are commonly negative for CD10 and BCL658. Several signalling 
pathways have been identified that are crucial to pathogenesis of MCL such as 
PI3K/AKT and NF-ĸB signalling pathways89–91. Epigenetic dysregulation may 
enhance proliferation in MCL and are frequently caused by underlying mutations in 
key genes such as KMT2D, NSD2, KMT2C or UBR589. 
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2.2.2  Histological and morphological variants of MCL 

MCL exhibits a spectrum of histological and morphological variants. When 
localized to secondary lymphoid structures such as lymph nodes, MCL grow in 
either a nodular or diffused pattern. Based on the cytology of cells, they can further 
be classified as classical, blastoid or pleomorphic variant. Patients may present with 
non-nodal leukemic disease, although blood involvement is commonly found during 
progression of localized disease. Nodal MCL is defined by SOX11+ and IGHV non- 
or minimally mutated B cells. Indolent non-nodal leukemic variant, seen in 10-20% 
MCL patients, is characterized by IGHV-hypermutated and SOX11-negative 
tumour cells50,55.  

Classical or conventional MCL is a nodal subset and is typically exhibited in the 
lymph node with some extra-nodal presentation55. Accumulation and augmentation 
of secondary mutations, pathway abnormalities and functional dysregulation, give 
rise to even more aggressive blastoid (10%) or pleomorphic (5%) forms92,93. The 
blastoid variant is associated with high-proliferation index (Ki-67), TP53 mutations, 
high c-myc expression and diffuse growth pattern92,94. Although, classical subtype, 
which is the most frequent subtype, can transform into blastoid morphology, most 
patients with blastoid MCL morphology present with the aggressive variant at 
diagnosis56,92. Pleomorphic MCL are composed of larger cells resembling diffuse 
large B-cell lymphomas, and frequently show tetraploidy56,92.  

2.3 Mantle cell lymphoma Prognostics 

2.3.1 Mantle cell lymphoma prognostic index (MIPI) and variants  

The need for prognostic guidance in MCL led to the development of the MCL 
international prognostic index (MIPI), in 2008, consolidating age, ECOG 
performance status, leukocyte count and serum lactate dehydrogenase LDH levels 
in a risk score that stratifies primary MCL patients in low-, intermediate- and high- 
risk groups95. In 2016, a study of several combined MCL cohorts (n=958), the five-
year OS with respect to MIPI was reported as 83%, 63% and 34%, in low-, 
intermediate- and high- risk groups, respectively96. The MIPI-b was later developed 
by addition of Ki-67%, measuring proliferation, to MIPI97.  

MIPI score, and stratification was developed using diagnostic MCL cohorts and has 
since been validated in multiple cohorts, including different treatment regimens. 
However there have been controversial reports of its applicability in different cohorts. 
For example, the study by Shah et al., 2008, reported MIPI being non-prognostic in 
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their homogenously treated cohort with rituximab plus fractionated cyclophosphamide, 
vincristine, doxorubicin, and dexamethasone (R-hyper-CVAD) 98.  

Hence, to address biological heterogeneity, several variations of MIPI have been 
explored by different studies where the original score has been improved by addition 
of biological markers with prognostic value. Some examples are MIPI with p53 and 
SOX11 expression82, MIPI-g with addition of KMT2D and TP53 aberration99, MIPI-
B-miR by adding microRNA-18b-expression100, R-MIPI including bone marrow 
involvement and serum albumin101,102, and MIPI/MIPI-c improved with TP53 and 
WHSC1103, and revised MIPI stratification into five categories by addition of B-
symptoms and ECOG104. These variants however lack cohort validation and have 
thus not been explored in clinical use.  

Moreover, prognostic indices specific for R/R MCL have not been investigated and 
there is a general lack of knowledge for risk stratification in R/R MCL. In paper I, 
we show that MIPI stratification as well as TP53 mutational status and proliferation 
index was not prognostic for R/R cohort and suggested an improved index (MIPI-
relapsed immune signature)25.  

2.3.2 Clinicopathological prognostic features  

Prognostic factors that are currently in clinical use include age, IGHV mutation, 
proliferation rate (Ki67), morphological subtype and TP53 mutational status50. 
Blastoid and pleomorphic variants are associated with worse survival in comparison 
to classical and leukemic non-nodal variants92. Bulky disease and tumour burden 
are also predictive markers for survival64,105. Minimal residual disease (MRD) 
negativity after treatment has shown to be associated with long time to progression. 
A recent meta-analysis, showed that MRD-negative patients have improved 
progression free survival (PFS) and overall survival (OS) in comparison to MRD-
positive patients, indicating that MRD could be a useful factor for predicting 
relapse106. In paper II, we confirm that positive MRD status is associated with 
increased serum levels of TGF-β1 and can be used as a surrogate marker for R/R 
MCL.  

2.3.3 Molecular biomarkers with prognostic impact 

Several mutations have shown to have a mutational impact such as TP53 mutation 
or deletion, NOTCH1 mutation, KMT2D mutation, MYC translocation or 
overexpression, high Ki-67 proliferation index in patients is associated with worse 
survival83,87,99,107–109. Of these, only TP53 and Ki-67 are currently used in clinics.  
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To improve the biological understanding and patient stratification for optimized 
treatment - a plethora of studies have been conducted with the aim to identify 
molecular sub-groups of MCL. Most studies have been focused on oncogenic 
features of the tumour cells themselves, while more recent studies also focus on the 
tissue and blood-based microenvironment.  

2.3.3.1 Blood-based prognostic factors 

Liquid biopsies may hold value for more non-invasive repetitive sampling during 
treatment or at relapse. Although serum-based analysis has been limited in MCL, a 
few studies have identified prognostic factors, tentatively useful for treatment 
monitoring. Such factors include IL-2Rα, IL-8, MIP-1β and Beta-2-
Microglobulin110,111. Recently, it was shown that detectable presence of circulating 
tumour DNA (ctDNA) in serum correlated with poor outcome, and that molecular 
relapse often preceded clinical relapse when circulating tumour (ctDNA) was used 
for monitoring112,113. To address the need of developing serum-based prognostic 
tools, paper I-III explore serum-based soluble proteins in primary (paper III) and 
R/R MCL (paper I-III).  

2.3.3.2 Tissue-based and histology related prognostic factors 

Positivity for p53, SOX11 and Pax5 protein were identified as potential subtypes of 
high-risk MCL and associated with negative PFS and OS82,114,115. Other non-
validated histology markers include Bcl-2 Interacting Mediator of cell death (BIM) 
(higher expression being associated with higher OS)116 and T-cell 
leukemia/lymphoma protein 1 (TCL1) (an oncoprotein with low expression 
associated with short OS)117. 

Patients with complex karyotypes have shown to be associated with inferior 
outcomes118–120. Controversial reports have also been suggested for using image 
derived metrics ([(18)F] fluorodeoxyglucose positron-emission-tomography (FDG-
PET)) as a prognostic tool to assess disease staging and treatment-associated 
response121–125.  

2.3.3.3 Tumour-immune microenvironment related prognostic factors 

Therapeutically, targeting the immune system for tumour clearance has been of 
relevance in the last decade. This was highlighted by a survey conducted between 
2017 and 2019, that reported 91% (2,030 to 3,876) increase of the number of active 
immuno-oncology (IO) drugs in development over two years126. Furthermore, 
immunotherapy, a treatment methodology that deals with enabling the immune 
system to fight cancer has become the frontrunner for therapeutic discovery. As 
elucidated in chapter 1.2, the composition of the TIME and the crosstalk between 
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the tumour and immune cells contribute to the patient’s biological heterogeneity and 
thus, studying the TIME for precision prognostics is essential. 

Immune cell-based studies are also limited in MCL with very few explorations of 
the TIME. However, some studies have reported immune cell counts and ratios 
being prognostic. For example, the presence of CD163+ macrophages in tissues 
were shown to be correlated with inferior outcome by us and others26,27. Nygren et 
al., 2014, reported that total CD3, as well as CD8 and CD4 T-cells were higher in 
indolent MCL in comparison to aggressive histology and that CD4/CD8 T cell ratio 
was independently associated to survival, thus, suggesting its use for prognosis127. 
Similar observations were reported by Zhang et al., 2016, wherein they showed that 
high monocyte count, low level of CD4+ T cells, and low CD4/CD8 T cell ratio 
were associated with unfavourable outcome128. Low absolute NK cell count and 
high ratio of FOXP3+ Treg cells to CD4 were also a predictor of inferior OS129,130. 
Higher absolute monocyte count (AMC) was shown to be correlated with poor 
survival, in contrast to CD68+ and CD163+ expression having no impact in this 
study cohort131. The prognostic impact of elevated AMC was validated with several 
studies132–135. Sahin et al., 2019, also found neutrophil/lymphocyte and 
platelet/lymphocyte ratio associated with increased risk of progression, thus 
suggesting that simple complete blood count (CBC) counts could be used for MCL 
prognosis134. It also important to note that in many models, age has not been 
accounted for and we know that age negatively affects anti-tumour immune 
response136.  

2.3.3.4 Prognostic indices and molecular signatures 

New prognostics indices and signatures have also been developed independent of 
MIPI. In Lv et al., 2022, nomogram and immune-related prognostic signature (IRPI) 
was developed using CD4+ T cell count < 26.7%, CD8+>44.2%, beta-2-
Microglobulin levels, platelet count and B symptoms which were all independent 
predictors of OS137. RNA-sequencing of circular RNAs was used to develop a 40-
plex circSCORE that was prognostically significant to predict time-to-progression 
(TTP) and lymphoma-specific survival (LSS)138. A six gene signature (AKT3, BCL2, 
BTK, CD79B, PIK3CD, and SYK) for B-cell receptor pathway was found to be 
independent predictor in MCL139. The MCL35 gene signature of 17-genes was 
developed using quantification of RNA expression in MCL patients and further 
validated in randomized trails from the European MCL network140,141. This signature 
with or without MIPI/MIPI-c was prognostically significant for both OS and PFS; 
and identified a subset of patients with high-risk after the intensive first line of 
treatment142. The prognostic capability of MCL35 and outperforming simplified 
MIPI in R/R MCL was also recently validated143. 
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2.4 Treatment strategies of MCL  
Research advances and subsequent adaptation of treatment has revolutionized 
outcome for patients afflicted by MCL. Goy, 2021 has summarized three key 
reasons that have led to improved survival and low progression; 1) front line 
treatment as dose-intensive therapy followed by autologous stem cell 
transplantation (ASCT), 2) novel therapies that were developed in the last decade, 
3) identification of prognostic factors that helped in understanding the clinical and 
biological heterogeneity in MCL64. However, response to treatment is highly 
variable and at relapse MCL has a dismal outcome as further described below. 

2.4.1 Current treatment landscape in MCL 

Traditionally, the choice of MCL treatment selection has been based on age, the 
ability to tolerate intensive therapies, and underlying comorbidities. Primary 
treatment was initially based on chemotherapy cocktail CHOP (cyclophosphamide, 
doxorubicin, vincristine, and prednisone). Chemotherapeutic approaches have 
major side effects causing suffering and severe immune suppression for the patients; 
therefore, efforts have been made to move to chemotherapy-free regimens with 
particular focus on immunotherapy. In early 2000s, rituximab, a monoclonal anti-
CD20 antibody, was introduced, which led to major improvement in OS. Thus, 
CHOP was exchanged for R-CHOP (Rituximab combined with CHOP) in frontline 
treatment. The current treatment standard for young and fit primary MCL patients, 
which was defined post the MCL Younger trial, now consists of high-dose 
cytarabine-containing regimen with rituximab followed by consolidation with 
ASCT if necessary, and rituximab maintenance144–146. 

In elderly, unfit patients that are ineligible for intensive cytarabine combination 
therapy, rituximab combined with less intensive chemo regimens are suggested. 
This most commonly includes combinations of rituximab with bendamustine and 
CHOP64,147. The introduction of Bruton’s tyrosine kinase (BTK)-inhibitor ibrutinib 
in 2012 and the subsequent variants such acalabrutinib, zanubrutinib, are also being 
added to standard regimen147,148. Primary results from phase III SHINE trial, which 
investigates the combination of ibrutinib with BR (bendamustine and rituximab) in 
elderly unfit patients showed significant improvement in PFS in comparison to 
standard BR149. Currently, the National Comprehensive Cancer Network (NCCN) 
currently describes 17 possible therapeutic options for diagnostic and relapsed 
MCL64.  
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2.4.1.1 Treatment alternatives of R/R MCL 

BTK inhibitors have shown promising results in R/R patients148. Other options are 
proteosome inhibitor bortezomib, immunomodulator lenalidomide and BCL2 
inhibitor venetoclax150. Rituximab is also a primary choice in combination with 
other mentioned drugs for R/R MCL. The MCL6-Philemon cohort used in paper I-
III is a homogenously treated cohort where R/R patients were given a monthly dose 
combination of rituximab, ibrutinib and lenalidomide for a year, followed by 
maintenance of ibrutinib and rituximab until disease progression. 

2.4.2 Alternative therapies 

The current standard of care is still dependent on age, comorbidities, and ability to 
cope with intensive regimen. New drug possibilities are mostly tested in high-risk 
or R/R patients where current treatment alternatives have failed. Several new drugs, 
either stand-alone or in combination with previous options, are in different phases 
of clinical development/testing. These include PI3K inhibitors (Idelalisib, 
Copanlisib etc.), mTOR inhibitors (Eg: temsirolimus), CDK 4/6 inhibitors, 
antibody-drug conjugates - a new class of chemo-immunotherapy (wherein tumour-
specific antibody selectively binds to specific antigens which is followed by the 
release of cytotoxic agents, Eg – polatuzumab vedotin), monoclonal bi-specific T-
cell engagers (BiTEs have two binding sites for different antigens), epigenetic 
agents (vorinostat, cladribine, tazemetostat)151. Particularly, checkpoint inhibitors 
against primary MCL are of particular interest as they would be able to contribute 
to the goal of a chemo-free first line treatment91. Additionally, covalent BTKi such 
as ibrutinib and acalabrutinib have adverse events due to off-target inhibitions, 
therefore, non-covalent BTKi are under investigation152. One example is 
Pirtobrutinib, which is being tested against covalent BTKi’s in a phase-III trial for 
heavily pre-treated MCL high-risk patients150. 

Chimeric Antigen Receptor (CAR)-T cell therapy in MCL is of particular interest. 
In a phase-2 ZUMA-2 trial with KTE-X19 (anti-CD19 CAR-T) in R/R MCL with 
previous BTKi intervention showed an outcome of 93% patients achieving ORR 
and 67% receiving complete response. Post one year, 57% of 60 patients were in 
remission153. With such positive outcome, FDA gave fast-track approval for KTE-
X19 for treatment of R/R MCL in US in 2020150. In a comparative study between 
the current standard of care with KTE-X19 in Europe for 288 R/R MCL suggested 
that significant improvement in survival is possible with CAR-T cell therapy154.  
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2.4.3 Risk-adapted therapy - A potential future for MCL 

To move into risk adapted therapy, prognostic factors need to be applied at primary 
diagnostic setting. At this moment several suggestions for possible risk-based 
treatment selection have been suggested mostly based on age, TP53 mutational 
status, and MIPI/MIPI-c risk groups. Although, there are not many trials or clinical 
evidence that suggest that such strategies would be successful, new trials are being 
designed based on certain risk inclusions. For example, the TARMAC trial in which 
R/R patients with TP53 mutations and no response to previous standard therapy, are 
being treated with a combination of CD19 CAR-T (Tisagenlecleucel) and ibrutinib 
(NCT04234061)155. The ECOG-ACRIN EA4151 (NCT03267433), a phase-III 
randomized trial (under recruitment) for untreated MCL patients wherein patients 
are given standard chemo-immunotherapy. Patients who have achieved complete 
remission and tested MRD-negative then undergo ASCT plus rituximab 
maintenance. This is compared with the remaining group that only received 
rituximab maintenance156.  

Although we are still in the early phase to integrate risk-adaptation for clinical 
decision making and far from personalized medicine, the field is moving in the right 
direction. It is certain that high-risk patients, including elderly/frail and mutational 
high-risk, have poor outcome. Therefore, such groups require separate, tailored 
interventions. The efficacy of new treatment options and current trials for R/R that 
are under investigation. Especially CAR-T therapy would provide more solutions 
for high-risk patients. Furthermore, the simultaneous development of superior 
methods for patient stratification using biological information at diagnosis is 
essential. Such companion prognostic tools must be financially feasible and 
clinically applicable.  
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Chapter 3: Biomarker discovery 
using serum proteomics and spatial-
omics  

3.1 Evolution of bio-data science 
The field of life sciences saw a huge revolution when sequencing technologies were 
invented in the 1970s. The technology break-through led to the decoding of the 
human genome by the early 2000s in the Human Genome Project (HGP, 1990-
2003)157. Sequencing the human genome was pivotal for deciphering key functional 
aspects of cell and disease regulation. This was especially true for cancer, which is 
a disease primarily seen as product of genetic aberrations that alter the normal cell 
function. However, it soon became clear that the genetic make-up alone, is not 
sufficient to explain the complex and intricate biological mechanisms that govern 
malignant diseases158,159.  

Therefore, complementary companion tools were developed to study different 
molecular layers, which beyond genetics, include the transcriptome, proteome, and 
the epigenome. Additional advancements in methodologies allowed simultaneous 
measurements of multiple biomolecules from systems of interest. Thus, “omics” 
technologies were created that provide a snapshot of biology through high-
throughput data collection160. As the influence of various molecular layers became 
clear, omics technologies expanded further from genomics (study of genes) into 
transcriptomics (study of gene transcripts i.e., the mRNA), proteomics (study of 
proteins), lipidomics (study of lipids), epigenomics (study of DNA modifications 
that alter gene activity) and metabolomics (study of low molecular weight 
metabolites)160,161. Proteomics can be particularly clinically vital as they represent 
the functional translation of the genome162. Together, these layers provide extensive 
disease-related biological information that have transformed medical science, thus 
becoming essential for the development of precision medicine.  

Omics technologies have reformed clinical discovery wherein a common aim has 
been to correlate high-throughput biological data to clinical metadata of interest 
particularly disease progression and patient outcome160. Such discoveries have been 
essential for developing biomarkers (“biological markers”) that provide critical 
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insights for patients. Additionally, such analysis has led to the development of 
omics-based tests that in many cases have been established for clinical use160. An 
example is the Oncotype DX 21-gene assay (Genomic Health, Inc., Redwood City, 
CA, USA) for prediction of breast cancer recurrence, that in parallel aids in 
treatment stratification by identifying patients likely to benefit from 
chemotherapy163.  

Furthermore, omics-technologies have enabled the capture of large datasets from 
single experiments, thus, catapulting the use of data science for multi-parametric 
analysis of biological complex data, along-with biostatistics. There are several 
challenges that are associated with such analysis, some of which have been explored 
in chapter 4, which is focused on computational strategies for exploring omics data. 
Here, the following sub-chapters will focus on biomarker discovery for clinical 
decision making and newly developed omics technologies particularly for proteome 
exploration of liquid biopsy and tissue-based spatial-omics. 

3.2 Biomarker Discovery 
The National Institutes of Health (NIH) defined the term “biomarker” as “a 
characteristic that is objectively measured and evaluated as an indicator of normal 
biological processes, pathogenic processes, or pharmacologic responses to a 
therapeutic intervention”164. In 2015, a collaborative approach by the FDA and NIH 
helped in establishing an active focused working group – the Biomarkers, 
Endpoints, and other Tools (BEST) resource that provides an updated glossary, to 
ensure clear terminologies are maintained165. In oncology, biomarkers define a large 
category of biomolecules that show altered behaviour in cancer patients in 
comparison to the healthy population. The utilization of such biomarkers enables 
the development of companion diagnostic and prognostic tools and is an essential 
step for translating biological insight to medical technology for improving clinical 
care166.  

3.2.1 Functional classes of biomarkers  

Biomarkers can be broadly grouped into several non-exclusive categories – 
diagnostic/screening, prognostic, predictive, risk/predisposition, response, and 
monitoring161,167. Diagnostic biomarkers refer to biomolecules that distinguish the 
type of patient disease or disorder from similar conditions or healthy individuals. It 
also includes markers that provide additional classification on the cancer sub-
types167. Cancer type was first classified based on the initial detection of affected 
organ. However, when the number of subtypes and their genetic heterogeneity were 
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revealed, molecular and imaging-based classification for clinical diagnosis have 
been further refined167. An example of a diagnostic biomarker would be the use of 
prostate-specific antigen (PSA) for the screening of prostate cancer in elderly men, 
which is implemented in Sweden168,169. 

A predisposition or risk biomarker indicates the risk of developing a disease or 
disorder161,167. For example, the most prevalent example of these are genetic 
mutations such as BReast CAncer genes 1 and 2 (BRCA1/2) mutations that 
predispose carriers to an increased risk of developing breast and ovarian cancer170–

172. Response or surveillance biomarkers relate to factors which change with respect 
to treatment and are used to assess treatment effect. Presently, radiographic imaging 
such as PET or CT have been used to assess tumour burden as response to treatment. 
However, circulating tumour nucleic acids (ctDNA) and circulating microRNAs 
have also been suggested as a measure of tumour burden surveillance173. In general, 
a lot of emphasis has been on identifying liquid biopsy-based detection of 
biomolecules and this is due to that blood collection is an easier, less invasive 
sampling method which allows for sequential sampling during treatment as 
previously mentioned174.  

A prognostic biomarker highlights the possible disease course and likelihood of a 
clinical event (survival, progression etc.)161,167. In comparison, a predictive 
biomarker differentiates patients as responder’s vs non-responders to a treatment. 
For example, Xie et al., 2019, highlighted the need of differentiating the role of PD-
1/PD-L1 in prognosis and prediction for lymphoma175. Several studies have 
highlighted the importance of PD-1/PD-L1 expression in tumour for lymphoma 
patient outcome175. Furthermore, the soluble quantification of PD-L1 was suggested 
as a potential predictive biomarker dissociating patients that might respond 
differently to immune checkpoint therapy in DLBCL, PTCL and NKTL175.  

Measurements that allow monitoring of disease can encompass many of the other 
above-mentioned types of biomarkers. However, the concept uniquely describes the 
possibility to follow patients over time without invasive procedures. The potential 
use of circulating tumour DNA (ctDNA) has been suggested as a useful marker for 
monitoring of disease and progression in various cancers and has been validated in 
a clinical trial recently in MCL176,177. It is important to note that a biomarker can be 
classified in multiple categories. For example, PSA is as an example of diagnostic 
and monitoring biomarker for prostate cancer. BRCA is a risk biomarker, but also 
used as a companion diagnostic/predictive biomarker. As we have advanced in 
technologies, several high throughput omics platforms for targeting diagnostic, 
prognostic or predictive biomarkers have been developed and the use of data-driven 
science is now in spotlight.  
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3.2.2 From bench to bedside – the roadmap of biomarker discovery 

There are several steps in the process of biomarker discovery to clinical application 
which can be broadly labelled as analytic and clinical validity, and clinical utility178. 
The first step of analytical validity involves using experimental evidence from 
clinical cohorts179. Several factors can determine the data quality, including sample-
related features such as consistency in sample collection method, sample 
processing, storage etc., and assay-related factors such as the sensitivity, specificity, 
and robustness of detection. Data reproducibility is a huge challenge, and several 
factors can affect this. For example, if the technological platform has not been 
validated, or the strategy for downstream analysis of the generated data has no 
consensus179. Hence, analytical validation directly refers to performance of the assay 
with respect to reliability and accuracy of the biomarker measurement180,181.  

Clinical validity is directly related to the ability of a potential biomarker to stratify 
patients into different categories that show altered response to an intervention179. 
Additionally, experimental reproducibility is a must and is shown by validating 
initial finding in multiple cohorts of samples. Independent validation in a separate 
sample set is a necessity, so that the discriminatory performance is not 
exaggerated179. Moreover, global validation implies that the baseline cohort 
similarity is maintained in validation cohorts182. The lack of validation and biased 
interpretation is a major reason for failure of many biomarkers that do not reach 
clinical application. Biases seen in any of the features mentioned above must be 
accounted for as they might cause batch effects (section 4.3.1) and influence the 
downstream biomarker discovery workflow. For example, in a follow-up SELDI-
TOF MS study for validation of serum protein profiling for detection of prostate 
cancer, the investigators reported biases in sample collection time, between the 
disease vs normal control samples that affected the initial results183. In 2017, a meta-
analysis review of 200 reports for ovarian cancer biomarkers highlighted that nearly 
70% of publications had misrepresented or overinterpreted the study findings which 
led to exaggerated biomarker performance, thus biasing the overall results184.  

The third and final step is clinical utility which refers to the application of a potential 
biomarker for targeting clinically relevant questions. Prognostic and response 
biomarkers are of particular interest as they directly relate to patient outcome and 
impact the therapeutic decision making. A biomarker must answer a relevant clinical 
question and undergone several experimental validations, demonstrating high 
specificity and sensitivity for classification. Moreover, assays or biomarkers must 
be easily applicable with clear and established guidelines on usage, that is consistent 
globally. Improper reporting can lead to incorrect treatment decisions, which can 
have catastrophic effects on patients, as reviewed previously179.  
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3.2.3 Single vs multi-parametric vs multi-omics biomarker signatures 

Traditional approaches for biomarker discovery have relied on identifying single 
analytes to be used as biomarkers. But multiplexed technologies that simultaneously 
detect multiple biomolecules, have paved way for next generation of 
multiparametric diagnostics185. Biomarker signatures are defined set of 
biomolecules that when measured together allow individual biomarkers to vary, but 
more robustly separate groups of samples based on the question posed186. Therefore, 
the process deriving biologically relevant signatures have a structured workflow, 
wherein multiplexed technologies are applied to clinical cohorts followed by high-
dimensional data analysis for discovery. For this purpose, machine learning 
methods are particularly applicable and can reduce the number of variables to a set 
of essential markers186. In several cases, such signatures have shown to be more 
accurate in explaining the heterogeneity in patient responses and in developing 
better patient stratification methods as they have higher discriminatory power185. In 
2009, the OVA1®, a five protein (CA125, apolipoprotein A1 (ApoA-1), beta-2 
microglobulin (B2M), transferrin (TF), and pre-albumin) serum-based signature 
received approval for clinical use from FDA187. This was followed by the second-
generation Overa® model which replaces B2M and prealbumin with human 
epididymis protein 4 (HE4) and follicle stimulating hormone (FSH)187. The two 
scoring models are often used consecutively along with clinical assessment to detect 
the increasing malignancy risk for ovarian cancer.  

Multiplexed technologies for identifying biomarker signatures for different cancers 
have been developed for several biomolecular layers. Sparano et al., 2015 validated 
the clinical utility of the 21-gene signature OncotypeX for breast cancer188. Several 
publications have uncovered prognostic signatures that are yet to be validated or 
clinically implemented189–191. In MCL, as mentioned above, the MCL35 assay which 
is based on the gene expression panel of 17 informative genes, is a prognostic 
signature panel for MCL which has been validated in several cohorts, but not yet 
clinically established140–143.  

As the shift from single markers to signatures intensifies, methods are being 
developed that allow integration of different molecular layers into the same model 
capturing variation in pathophysiology of complex diseases, thus highlighting the 
importance of multi-omics signatures in precision medicine192–195. Several reports 
have explored the cancer biology with multi-omics approaches that are 
prognostically significant196–199. However, such data integration requires complex 
analysis. To our knowledge, no such combined multi-layer molecular signatures 
have been implemented in the clinic. 
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3.3 High through-put omics technologies  
As stated previously, the two main types of patient samples routinely collected and 
stored in clinics are tissue biopsies and blood/serum/plasma. The technologies used 
for the assessment of these types of clinical samples are distinct, as they take 
advantage of the different tissue properties and the information that can be retrieved. 
In this thesis all papers, except paper III, deal with the use of high throughput assays 
to investigate the immunoproteomics and transcriptomics. The expression datasets 
were acquired along with the associated clinical metadata, which was used to 
identify molecular signatures associated with patient outcome and disease 
progression.  

3.3.1 Immune-regulatory biomarkers using serum proteomics  

Liquid biopsies refer to body effluents such as blood/serum/plasma for biological 
analysis. They have become important due to advantages associated with repeated 
sampling, as acquiring patient tissue implies invasive surgical intervention which 
are costly for the health care system, and cause suffering for the patient. Therefore, 
identifying blood-based biomarkers carries great value to monitor disease 
progression and effect of treatment. Human blood can provide information on 
systemic changes associated with disease, containing information in the form of 
serum proteins, circulating tumour cells (CTCs), cell free nucleic acids, platelets, 
and exosomes, whose investigation can highlight pathophysiological features174. 
Therefore, blood/serum-based analysis are particularly useful for monitoring 
disease progression and treatment response. One of the best and validated examples 
of this, is perhaps the prostate-specific antigen (PSA) and associated kinetics (PSA 
velocity (PSAV)) for monitoring prostate cancer200–203.  

Targeted serum proteomics can additionally provide insights into the cancer 
associated systemic immune-responses and thus be helpful in identifying immune-
related biomarkers as altered expression profile can be a result of heterogenous 
disease states. Particularly in lymphoma, which is a disease that affects the cells of 
the immune system; exploring the serum immunoproteomics can provide novel 
insights not captured by other types of analyses.  

Technological advancements have led to development of technologies for studying 
soluble proteins, such as 2D-PAGE, 2D-DIGE, SELDI-ToF-MS, iTRAQ etc.162. All 
methodologies have advantages and disadvantages, however global proteome 
assays such as mass-spectrometry deal with issues relating to high abundant 
proteins, which often mask lower abundant and rare molecules. On the other hand, 
affinity methods were developed in parallel and use binding reagents against target 
protein antigens, which allow for selective profiling. Typically, these technologies 
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are based on the use of antibodies as selective binders and are referred to as 
immunoassays. One of the earliest methods with high selectivity and specificity for 
protein profiling was ELISA204. In paper III, ELISA was used for evaluating the 
prognostic implication of macrophage associated with soluble CD163 levels in 
serum.  

Traditional immunoassays were limited to single marker analysis, but targeted 
multiplexed assays have been developed as well. Multiplexed ELISA such as 
suspension based Luminex™, Cytometric Bead Arrays, Bio–PlexPro™ and planar 
arrays such as the Mesoscale Discovery Technology Platform (MSD®), Q–Plex™ 
have been developed205. Planar assays further propelled research into development 
of chip-based antibody-based microarrays for proteome detection. One such method 
is called IMMray®, which was used for the evaluation of the sera for profiling 
immune-regulatory and tumour-secretory proteins. This method was used in paper 
I and II and has been explained in detail below. 

3.3.1.1 Antibody-based microarray – IMMray® 

In 2002, an in-house (within the Department of Immunotechnology, Lund 
university) developed affinity-based protein antibody microarray technology was 
first described206. Since then, this technology has been updated both in terms of 
technique as well as its associated bioinformatic processes and is now 
commercialized by Immunovia AB. The technology is based on printing small 
volumes (picolitre scale) of hundreds of recombinant single chain variable fragment 
(scFv) antibodies in a matrix pattern on a slide. The antibodies are specific to target 
serum protein antigens and have been generated from a phage display library and 
are specifically targeting immune-regulatory and tumour-secretory proteins, 
including cytokines, chemokines, complement components, adhesion molecules, 
inflammatory and signalling molecules.  

By comparing the profile in large cohorts of cases and control samples, clinically 
relevant biomarker signatures may be identified. Using this technology, various 
diseases have been explored such as breast cancer207, pancreatic ductal 
adenocarcinoma (PDAC)208–212, prostate cancer213,214, DLBCL215,216, pancreatitis217, 
systemic lupus erythematosus214,218,219. Now, the IMMray® PanCan-D test which 
measures an 8-plex serum protein signature has been commercialized which can 
identify stage I and II PDAC based on serum proteome with high specificity and 
sensitivity208. This demonstrates how multiplex blood protein signatures can be 
condensed, validated, and translated for clinical implementation through combined 
academic and industrial efforts. In paper I and II, 158 unique proteins are quantified 
by measurement of multiple epitopes (total 371 single chain variable fragment 
(scFv)) using the IMMray® assay. The aim was to develop prognostic and 
responsive biomarker signatures.  
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3.3.2 Proteomics using spatial omics  

The tumour microenvironment, with its own compilation of cell populations, is 
changing during tumour evolution and can be resembled to evolving 
ecosystems220,221. The application of ecological principles can often be made with 
respect to species richness, metabolic competition, the presence of cancer ecotones 
at the boundary of the TME220. Therefore, decoding the tumour ecosystem and 
milieu is pivotal for unravelling the biology. While tumour immunotherapy has been 
of pivotal interest in lymphoma treatment, there is still considerable diversity in 
treatment response. It has been suggested that this may be due to the heterogeneity 
seen in the TIME and its associated variation during different stages of the 
disease222,223. The shift in the tumour-immune profile can be indicative of neoplastic 
progression, thus deeper analysis of the complex TIME can reveal biomarkers 
indicative of progression or specific TIME-related patient subgroups. The interplay 
between the tumour and different immune cells, which define the TIME landscape, 
is important in understanding immune response to tumour and how the crosstalk can 
affect tumour progression. 

Previously, the methodologies that could be used to study cellular interactions have 
had major limitations. An established traditional approach is to use flow cytometry 
for immune cell profiling, but this involves disrupting and disintegrating the tissue 
and thereby foregoing the spatial architecture224. Flow cytometry is also limited in 
its multiplex possibilities, which was later overcome by omics methods such as bulk 
or single cell sequencing and mass cytometry etc.225. In contrast, immuno-
histochemistry (IHC) or immunofluorescent imaging retains the spatial information 
but are limited to low-plex analysis. Recent technological development has 
managed to combine several important features of previous platforms. Thus, 
spatially resolved omics-based profiling provides a more global view of the biology 
compared to bulk and single-cell sequencing, while keeping the tissues intact and 
thus retaining the spatial morphology. Such investigations expand the scope of 
onco-immunology by providing key insights with respect to spatial mechanism of 
cancer evolution, sub-clonal formation, metastatic process, cell-cell (tumour-cell 
and tumour-tumour) interactions, immune activation, immune evasion strategies, 
and therapeutic resistance220,226,227. Several platforms now exist for such deep 
profiling of the tissue such as the Visium Spatial Gene Expression by 10X 
Genomics, DBit-seq (deterministic barcoding in tissue for spatial omics 
sequencing), in-situ sequencing, co-detection by indexing (CODEX), Multiplexed 
error‐robust fluorescence in situ hybridization (MERFISH) etc.220,226,227. Spatially 
resolved transcriptomics was awarded the nature method of the year in 2020228. In 
paper IV and V, we explored the immune response in MCL using GeoMx™-digital 
spatial profiler (DSP), an advanced multiplexed-IF based imaging and preparative 
(protein and mRNA probes) platform commercialized by Nanostring Technologies 
Inc.229,230.  
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3.3.2.1 GeoMx™ digital spatial profiler (DSP) 

The GeoMx™ technology is based on in-situ capturing wherein the sequence that 
is profiled is the barcode of antibody/oligo and not the target molecule itself. This 
platform uses up to three (total four with the nuclear marker) fluorescent antibodies 
to identify phenotypic markers that can be used to choose the cells of interest and 
guide the region of interest (ROI) selection. Barcoded antibodies/oligos coupled 
with a photocleavable linker are added and allowed to bind to the target molecules. 
Using millions of programmable micromirrors, UV light is directed to the specific 
segment of interest with high resolution and cleaves off the barcodes corresponding 
to the probes bound in that area. The released barcodes are aspirated and placed in 
a microtiter well. Barcodes from each segment are collected separately and provide 
a quantitative estimate of the amount of target molecules in each selected type of 
segment/cell type. Thus, quantitative information of hundreds of proteins or 
thousands of transcripts can be collected in parallel. This strategy has already proven 
to be successful in several key studies. In non-small cell lung cancer (NSCLC), it 
has been shown that presence of tumour associated CD163+ macrophages was 
associated with resistance to immunotherapy and outcome, wherein GeoMx™ was 
used to define differential tumour profiles in responder’s vs non-responders 231. 
Another GeoMx™ proteomics study on NSCLC identified CD44 expression in the 
tumour compartment as a novel predictor of PFS, specifically associated with the 
sensitivity to PD-1 axis inhibition232. GeoMx™ has also been combined with other 
omics technologies, for example in a study based on single cell sequencing and 
GeoMx™, which explored cell populations in spatial context that were associated 
with tumour progression in basal cell carcinoma233. These exhibit a small selection 
of studied done using one spatial omics technology. However, as stated above 
several spatial omics technologies are available commercially or are under-
development. Thus, spatial omics is becoming as essential tool in the era of 
precision medicine.  

In MCL, the complex interplay of the tumorigenic B-cells with the other immune 
cells (T/NK/macrophages/dendritic cells) remains to be characterized in detail 
which is one of the aims of this thesis. Using GeoMx™, we have studies, CD20+ 
B-cells, CD163+ macrophages, bulk immune CD3+ cells and sub-population of T-
cells by combining CD3, CD8 and CD57 as morphology markers. We have further 
profiled the proteome in these cell subsets to study the effect of spatial localization 
and T-cell composition on phenotypic profile of these cell subsets and modulation 
of the tumour-immune microenvironment.  
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Chapter 4: Computational strategies 
for omics analysis 

To extract patterns and information from large datasets that profile multiple 
biomolecules, advances with respect to computational approaches were necessary to 
deal with the bulk data. Inspiration taken from data science and applying them in life 
sciences has been an integral part to drive data-driven research forward. However, 
biological data are subject to different challenges that need to be accounted for, while 
designing solutions for extracting relevant information. Platform-associated challenges 
must also be considered in planning analytical workflows. In this thesis, two main 
datasets were analysed - the serum protein microarray and the spatial omics data. A 
huge part of the work involved in this thesis was focused on analysing these different 
data structures and dealing with technical challenges. Some of the challenges and the 
measures taken to solve those issues as well as the development of computational 
workflows, specifically used for extracting biologically relevant information, have 
been defined in greater detail in this chapter.  

4.1  Biological data exploration using concepts of 
data science 
In the last decade, the sheer volume of biological data generated globally have 
expanded with a reported 60 petabytes of genomics data generated in 2020 alone234. 
In a projection for the year of 2025, it has been estimated that between 100 million 
to 2 billion human genomes would be sequenced, exceeding the data acquired by 
three other main generators namely astronomy, YouTube and Twitter235. Biological 
data is growing at an exponential rate, therefore updating methodologies to analyse, 
store and manage such information is critical. Several databases already exist that 
have been specifically made to storage information for future assessments. Some 
examples in relation to cancer is The Cancer Genome Atlas (TCGA) (multi-omics 
data from 33 cancer subtypes), the Gene Expression Omnibus (GEO), International 
Cancer Genome Consortium (ICGC), Catalogue of Somatic Mutations in Cancer 
(COSMIC) etc.236–239. 
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Clinical metadata can be defined as a compilation of information from several 
sources such as disease-related clinical data of patients (disease, treatment, outcome 
etc.), demographic information (gender, age etc.), family history, phenotypic 
symptoms, comorbidities, experimental analysis such as histopathology, 
DNA/RNA sequencing, images (PET, MRI etc)240. Such data can be both structured 
(organized in tabular format) which is a combination of categorical, continuous, and 
ordinal values or unstructured (non-tabular format like free text, narrative notes, 
images etc.)240. Data from clinical trials can be particularly more varied in terms of 
disease stage, multiple field sites, different clinical settings, time of medication, 
drug dosage, longitudinal assessment etc., can further add to the heterogeneity234. 
Therefore, it becomes critical to find new ways to analyse such data, but also 
manage, store, and share sensitive information.  

Data science is a term used for extracting relevant features and predictions from big 
data by using principles of data mining, predictive analysis, and statistics241. The 
use of artificial Intelligence, based on ML, NLP (natural language processing) and 
DL have been pivotal for pattern recognition and have led to identification of 
clinically relevant biomarkers and development of intricate patient stratification 
models for several diseases. In omics analysis, methodologies developed for data 
science have been applied for identifying patterns and extracting clinically or 
biologically relevant features.  

In our investigations with microarray proteome data collected from clinical trial 
cohort (paper I-II) and spatial-omics data generated from population-based cohort 
(paper VI-V), various technical challenges associated with data structures and 
bioinformatic workflows have been addressed and solved and have been highlighted 
in the sections below. 
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Figure 3: Basic workflow of exploratory data analysis. Samples collected are prepared as per the requirement of 
the experiment assay wherein features of interest are measured. Collected data is then initially pre-processed to assess 
for unwanted variations and batch effects as well as data normalization. Removal of redundant features through 
dimensionality reduction and imputation of missing information is also be performed at this step. Normalized data 
undergoes exploratory analysis based on the question and objective of the study. For example, applying regression 
models for extracting relevant features associated with clinical label. The final output or model as generated from this 
step is inferred to check for biological relevance. Validation of the output is required to determine the robustness of the 
generated model. Figure created using Biorender. 

4.2  Challenges associated with pre-processing in 
complex biological big data 

A typical workflow for exploration of omics datasets consists of several steps 
(Figure 3). Prior to data analysis, this includes sample collection and selection, 
sample pre-processing (if required) and the specific technical workflow. Once data 
is collected, the data analysis phase starts with data pre-processing which includes 
measuring unwanted variation, identify batch effects, imputing missing data, 
filtering of redundant or poor-quality data to reduce the dimensions, scaling, and 
normalization. This is followed by exploratory data mining for discovery and model 
development. The analytical strategies that define the overall computational 
pipeline is heavily dependent on factors including replicates, data/patient 
dependencies, technical factors, and data format/size. 

Due to the large variability in biological data, it is essential to ensure that the data 
set is curated so down-stream analyses are free from batch-effects related to 
material/reagents, operator related variation, site-of collection/hospital etc.242. Data 
pre-processing refers to the application of a set of techniques to prepare the data 
prior to data exploration243. In the following chapters we have addressed problems 
that were tackled during the pre-processing of the data with particular emphasis on 
rationale that motivated our selection.  

Most often, the analyses aim to identify variation in relation to a clinical feature, 
such as patient outcome. However, technical variation due to a variety of factors 
cause challenges with data handling. It is thus of importance that the same technical 
variation is found throughout the study cohort, without association to the parameter 
of interest. Clustering and classification visualization methods such as principal 
component analysis (PCA), principal variance component analysis (PVCA), OPLS 
(supervised orthogonal partial least square), density plots, box plots, relative log 
expression (RLE) plots were used to identify statistically relevant sources of 
unwanted variation. Large categorical distribution of unwanted variation caused by 
non-biological factors, that is statistically significant is called as “batch effects” 
(BE). 
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4.2.1 Unwanted variation caused by differences in sample collection, 
handling, and processing 

All biological assays, including high-throughput methods can generate unwanted 
variation in out-put data. For example, a study showed variable sample temperature, 
multiple experimental batches, and instruments as a source of bias in metabolomics 
data244. In our large multi-centre studies, where samples were collected at different 
hospitals across time, could have been a source of error. We investigated all 
potential sources and especially, multiple field sites in paper I-II and archival tissue 
age collected during 2000-2014 in paper IV-V. However, when exploring for batch 
effects, no biases were seen in the output datasets after pre-processing and 
normalization, indicating that the developed pipelines can compensate for such 
technical biases.  

Large effects based on assays being run on multiple days or different instruments 
being used etc., are major sources of batch effects (BE). In paper I-II, the 
experiments were spread over three days, and we identified it as a source of BE in 
our datasets. In paper VI-V, with respect to spatial-omics, the three different tissue 
microarray slides and multiple scans did not seem to cause batch effects in the 
expression datasets. The method to compensate for the BE is discussed in section 
4.2.2.  

Minute effects such as pipetting errors or handling issues, might be difficult to 
tackle. However, different batches of reagents could be a major source of error. In 
our studies, reagents batches were maintained such that no statistically relevant 
unwanted variation could be seen, expect in paper I-II, wherein two different batches 
of microarray slides were used. However, since the distribution of the batches was 
biased with respect to distribution of scan days, that unwanted variation that led to 
a BE caused by slide batch was eventually compensated when corrections on scan 
days was performed.  

4.2.2 Compensating for batch effects and data normalization 

Batch effects are inevitable in high-/low- throughput biological assays245. Batch 
effects generate biases in downstream data analysis by masking biological variation 
and can lead to over-or under-estimated model developments. Therefore, removal 
of BE is essential, and this is performed using normalization or BE-correction 
algorithms (BECA)245.  

Several BECA methodologies are available, but they can be dependent on the data 
type used to design these algorithms246. The use of mean scaling and zero-centering 
in linear models is type of batch correction245. Some examples are surrogate variable 
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analysis (SVA)247 and batch mean-centering (BMC)248 both initially developed for 
gene expression datasets, removed unwanted variation (RUV) for sequencing 
dataset249.  

ComBat, which was particularly developed for BE correction in small sample sizes, 
remains to be one of most popular BECA for microarray analysis due to observed 
higher performance245,250. Similarly, ComBat-seq was developed for BE removal in 
RNA-sequencing studies251. In paper I-II, the experiments were spread over three 
days, and we identified it as a source of BE in our datasets. Also, the slide batch was 
identified as a BE. Therefore, ComBat normalization was used. In paper VI-V, with 
respect to spatial-omics expression datasets, no major contributor to batch effect 
could be identified in all datasets, in-spite of multiple tissue microarrays and 
different scans sets. However, since the signal for each cell type was collected over 
heterogenous number of cells in an area for each core, it was imperative that the 
data was scaled prior to normalization. Therefore, the measured spatial area was 
used a scaling factor. Furthermore, after much assessment of linear (scaling by 
positive of negative controls) and non-linear normalization methods (assessed by 
NormalyzerDE), the non-linear normalization method of cyclic-loess (locally 
weighted smoothing) was selected252. 

4.2.3 Dealing with missing data 

Missing data could imply lack of information on two fronts - clinical metadata or 
omics-acquired expression data. Missing data in high-throughput assays is frequent, 
therefore imputation methods have been developed253,254. Imputation is an artificial 
substitution of missing information based on a reasonable simulated estimate. One 
of the most basic methods is by using central statistics (mean, median and mode) 
for imputation for numerical parameters along with fixed value approach (where a 
constant value substitutes the missing datapoints). However, frequentist approach 
can also be used for nominal and ordinal parameters.  

In paper I-II, missing data was caused by removal of expression datapoints that 
failed quality control. For example, each scFv antibody was measured in triplicates. 
Thus, outliers with more than 15% coefficient of variance (CV) were removed, 
which generated a few missing datapoints. This was dealt with by using bagged trees 
imputation method, a method often used for this platform255. No missing datapoints 
were imputed in the remaining studies with respect to ELISA or DSP-generated 
spatial-omics datasets. 
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4.2.4 Curse of dimensionality - The classic “n” vs “p” problem 

In ML, “n” refers population size, and “p” refers to number of variables/features. In 
medical omics data, “n” would refer to the sample size of the cohort being tested, 
and “p” would refer to the number of molecular features (protein/transcripts etc.) 
being targeted. As the number of features grow, the projection into high dimensional 
space increases in volume which implies that data labels become sparse, thus 
causing a statistical issue256. Zhang et al., 2019, have shown that increasing the 
sample size greatly affects the robustness of identified biomarkers257,258. The small 
“n” and large “p” is known as the curse of dimensionality, which can be an issue in 
clinical-omics datasets259. Additionally, biological data deal with a high degree of 
multicollinearity which refers to independent “p” features being functionally 
correlated. A small sample size with high multicollinearity can lead to overfitting 
biases and lead to over-optimistic model performance260–263. 

The ratio of “n” vs “p” determines the type of analytical method that is further 
selected. Increasing sample sizes in clinical cohorts such that “p” <<< “n” is a way 
of mitigating such statistical issues, but this is not always feasible. The amount of 
“p” features is technologically dependent. For example, protein microarray data or 
multiplexed ELISA usually deal with features in the range of hundreds, in contrast 
to bulk or single-cell sequencing data would deal with feature numberings in the 
range of thousands. Thus, the required “n” would be different for these technologies. 
Additionally, there are limitations on “n” itself, which can be disease dependent. 
For example, MCL is rare disease with an annual incidence of one case per 
200,000264. Hence, reaching a cohort size in the range hundreds is difficult, 
especially for relapsed MCL. High dimensional issues are often seen in bioimaging 
datasets265. There are now ML methods that specifically target such issues 
pertaining to small sample sizes and multicollinearity (discussed below). While, 
increasing “n” may not be a feasible solution in several clinical scenarios, reducing 
“p” dimension is possible, which is usually performed through dimensionality 
reduction or feature selection, or by condensing highly correlated values to a simpler 
design259,263,266. The proteomic dataset generated (n=44, p=356) in paper I and II, 
suffer from the curse of dimensionality. To compensate for this effect, false-
discovery rate adjusted q-values as well as parallel independent analysis pipelines 
were used for biomarker discovery. 
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4.3 Data mining in biomarker discovery 

4.3.1 The basics of machine learning in exploring tabular and 
structured data 

Data-driven life sciences approach has now become a frontrunner for biological 
exploration particularly with respect to accelerating healthcare research. The power 
of ML and DL applied to pattern recognition challenges have transformed 
exploratory research in biology. It is hypothesized that AI will accelerate 
development of tools for improved clinical diagnosis, prediction, and prognosis. For 
example, McKinney et al., 2020, used an AI-tool based on DL to accurately measure 
breast cancer in its early stages using images267. In terminology, ML is a subgroup 
of AI that focuses on using mathematical algorithms for pattern prediction and 
discovery260,268. DL is subgroup of ML that uses multi-layered neural networks and 
is often used for image-based analysis models268. Although these fields are vast and 
highly multidisciplinary, this sub-chapter will focus on the methodologies applied 
in papers included in this thesis.  

A typical ML-workflow deals with both labelled and unlabelled data formats which 
lead to the two main branches of learning that are often used in medical data - 
supervised and unsupervised269. Supervised methods are used to uncover features 
associated with target outcome269. They can broadly be divided into classification 
algorithms such as support vector machines (SVM), decision trees, random forests 
etc.; and regression algorithms like linear, logistic, and elastic net etc.269. 
Unsupervised methods can be categorized in dimensional reduction methods like 
principal component analysis (PCA) and clustering methods such as hierarchical 
clustering, k-means clustering etc.269. Unsupervised methods allow to identify 
natural grouping in datasets based on included features. These methodologies are 
used in tandem both for pre-processing when identifying batch effects and data 
processing for exploratory analyses. In paper I, the identification of different 
experimental days as batch effect was done by using both PCA combined with 
variance filtering followed by multi-group comparison and OPLS (supervised 
orthogonal partial least squares) and further adjusted using ComBat.  

When dealing with the curse of dimensionality, there are two alternative paradigms 
i.e., either using i) models for feature selection, neglecting the correlation, and ii) 
using penalized models such as Elastic-net/LASSO/ridge regression which account 
for multicollinearity in the data259. Both elastic-net and LASSO can be used for 
feature selection, but ridge can only be used as a prediction tool259. These methods 
have been successfully used in defining prognostic biomarker signatures190,270–273. 
In DLBCL, a 7-plex prognostic signature was developed using Cox- and LASSO-
regression274. In MCL, Lv et al., 2022, developed the nomogram and immune‐
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related prognostic index (IRPI) to predict the overall survival (OS), by using a 
combined strategy of cox regression and LASSO137.  

Survival analysis aims to predict the time to an event (outcome, progression) with 
respect to censored data. Cox proportional hazards model is one of the most 
common approaches designed for small datasets275, which has been used in our 
outcome-based analysis in all studies. Analyses workflows have been developed in 
parallel with the technical workflow for the IMMray™ platform. Their discovery 
pipeline is a combined strategy of backward elimination for feature selection 
followed by support vector machine for model training and the model is further 
validated on the test set using the leave-one-out cross validation207. This method was 
successfully used to identify a 21-protein signature for prediction of distant 
recurrence in primary breast cancer207. In paper I, parallel analytical strategies were 
applied wherein Cox regression was first used to select outcome-associated features 
(Figure 4). This was followed by backward elimination as also previously described 
in Carlsson et al., 2011207. A second, independent and parallel strategy of elastic net 
regression was used to select feature associated with outcome. Such a parallel 
combined strategy was relevant in reducing redundant features, as an independent 
validation cohort was lacking. The strategy partly compensates for the challenges 
associated with the curse of dimensionality. Through this method, eleven proteins 
associated with outcome was identified.  

The analytical challenges with spatial-omics datasets were different compared to the 
datasets generated by the IMMRay™ platform. The first challenge was dealing with 
repeated sampling measures. This was solved by using mixed effect models that 
account for correlations observed between multiple measures276. The total variation 
is partitioned into fixed and random effects. A generalized linear mixed models 
(GLMM) expands linear mixed models (LMM) to accounts for other types of 
response variable277, and was applied in paper IV-V. Other higher order extensions 
of LMM have been made such as the glmmLasso that extends LASSO regression in 
GLMM setting, multi-kernel penalized linear mixed model with adaptive lasso 
(MKpLMM)278–280.  
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Figure 4: Data analysis workflow for paper I and II. Generated serum-based protein microarray data was pre-
processed to evaluate any tentative batch effect, and ComBat was applied for batch correction and normalization. To 
extract survival-associated biomarkers, two parallel pipelines were used in paper I, first cox regression followed by 
backward elimination and secondly, elastic net regression. The final biomarker signature of eleven proteins was 
identified using the consensus from the two parallel strategies and used to develop a new stratification index. Further 
longitudinal profiling was done in paper II, to identify treatment associated biomarkers. The figure was created using 
Biorender. 

4.3.2 Deep Learning for unstructured image analysis–complementary 
method to spatial-omics workflows 

Imaging in terms of radiology, histology, immunofluorescence etc., often collected 
as part routine diagnosis and monitoring, reflect a huge volume of data collected in 
the healthcare industry. Significant improvement in image capture resolution of 
medical imaging methods has created a demand of automated image processing 
design for precise analysis of anatomical data that could refine and accelerate 
discovery of biological features (such as disease diagnosis)281. Traditional 
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computational approaches of analysing medical image include segmentation using 
contour based, watershed, intensity thresholding etc.282. However, AI-driven DL 
segmentation which uses convolutional neural network (CNN) to train the 
segmentation and classification model, have shown to have better performance than 
previous methods. AI based automated image segmentation to extract spatially 
significant features, have shown to outperform clinical estimates for prognosis and 
diagnosis267,283–286.  

The combined analyses of spatial metrics and expression data have the potential to 
advance prognostic models. For example, Zhu et al. 2021, developed the 
SpatioImageOmics (SIO) pipeline that integrates data from imaging mass cytometry 
(IMC), spatial-transcriptomics, and DL287. SIO extracts image features that when 
integrated with transcriptomics data identified features correlated to survival in 
advanced stage high-grade serous ovarian cancer (HGSC)287. McKinney et al., 
2020, an AI system designed to assess mammography images for early detection of 
breast cancer, surpassed predictions made by radiologists267.  

Although multiple imaging formats exist, ranging from histology staining to 
radiography imaging, different pipelines have been developed that are suitable for 
specific formats. For example, available tools include DeepCell288, StarDist289,290, 
Cellpose291, ilastik292, NucleAlzer etc.293,294. In paper V, mIF image analysis was 
explored as one of the outputs of GeoMx™ were the fluorescent images of the tissue 
microarray (TMA) cores and ROI. Therefore, we selected specific models that have 
shown good outputs in fluorescent images and thus StarDist and Cellpose pre-
trained and re-trained models for image segmentation were assessed. They are 
among the top state-of-the art U-NET architectures for such image types291. 

Model performance was measured using metrics in terms of true/false positive and 
negatives which define accuracy, prediction, and recall281. A primary comparison 
was by cell counts between DL segmentation output and manually annotated, since 
cell count was used downstream to define T-cell frequencies. Additionally, 
segmentation mask was compared using the Boundary F1 (BF) score, also called as 
Dice Similarity Coefficient (DSC) and Intersection-Over-Union (IoU). BF score is 
harmonic mean of precision and recall, is often used a measure of matching 
boundaries between predicted and ground truth segmentation281. IoU is the ratio of 
overlapping area to the union of area to compare between two models and in our 
case, this was used to compare the predicted and ground truth segmentation.  

Based on the comparison of multiple workflows using different strategies, we 
selected a retrained Cellpose model, that performed an initial segmentation on 
Syto13 staining, followed by artificial expansion of the mask to the surface marker 
and classification using random forest for identifying different cell subsets. Thus, 
image derived metrics provided true estimations of cell-specific distribution as well 
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as cellular coordinates to measure cell-to-cell distances. In paper V, T-cell 
frequency as derived from image analysis, was further integrated as additional 
features with the spatial expression dataset collected from GeoMx™, to evaluate 
questions such as whether different T-cell cell ratios can impact the expression 
profile of other cell types and/or be correlated to patient survival.  

 

Figure 5: Data analysis workflow for paper IV and V. Spatial proteomics data (~63 informative immune-related 
proteins) were collected from MCL cells, bulk CD3 cells, M2-like macrophages and four T-cell subtypes using GeoMx 
DSP. Data was scaled based on total segmented cell area and normalized using non-linear cyclic loess normalization. 
In paper IV, MCL cells, bulk CD3 cells and M2-like macrophages were assessed with respect to spatial localization and 
variation in phenotypic profile. In paper V, multiple image analyses workflows were evaluated to extract cell-derived 
metrics from multiplexed immunofluorescence images. Sub-type specific cell frequencies were determined and used to 
assess the impact of T-cell infiltration on the tumour microenvironment. The figure was created using Biorender. 
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Chapter 5: Scientific conclusion and 
future outlook  

5.1 Scientific conclusion 
In the era of precision medicine, improvement of MCL patient outcomes is 
dependent on identifying features that can be used for patient stratification. Such 
features should allow identification of patients likely to respond to a particular 
treatment regimen. A major player in this scenario is the immune system, which has 
not been extensively studied in MCL.  

As elaborated in chapter 1, section 1.4, the five papers that are part of this thesis, 
focus on various aspects of the immune system, both with respect to liquid biopsy 
for systemic biomarker discovery and lymphoid-tissue based exploration of the 
tumour-immune microenvironment. Technological advancements and 
complementary bioinformatic processes that allow parallel investigation of high 
dimensional data based on low number of biological samples, have become pivotal 
in driving high-throughput research. This data-driven process has been utilised in 
four out of five papers. Together, these methodologies have provided better 
molecular insights in diagnostic and R/R MCL immune microenvironment. The 
overall aims of each paper have been elucidated previously in section 1.4.  

For the analysis of R/R MCL, serum proteome profiling was performed in paper I-
II primarily because R/R MCL is a systemic disease and biopsies of secondary 
lymphoid organs rarely are taken after diagnosis is set. Thus, liquid biopsy is the 
preferred method of patient sampling. Moreover, very few clinical cohorts exist for 
R/R MCL and therefore biological exploration of R/R MCL has been limited. 
Particularly, studies that focus on determining prognostic features are rare.  

Through high-throughput serum proteomics quantifying 158 immune regulatory 
and tumour-secretory proteins, we identified biomarkers in relation to overall 
survival in this R/R MCL cohort. This was facilitated by the bioinformatic 
methodologies previously elaboration in chapter 4.3.1 (Figure 4). Parallel strategies 
for feature selection were applied to remove redundant and false positive selections, 
since sample size was small, and no validation cohort was available. Although, 
several strategies for feature selection exist, but methodologies were selected based 
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on models popularly used for survival-based association also used to build MIPI 
(Cox model), methods previously applied for this data (backward elimination) and 
models that work well for small dataset with multicollinear features (elastic net 
regression).  

Our results identified eleven prognostic proteins that were mostly chemokines, 
cytokines or signalling adaptor molecules, which were combined to form the 
relapsed-immune signature (RIS) and further integrated with MIPI to develop the 
MIPIris score (Mantle Cell Lymphoma International Prognostic Index – Relapsed 
Immune Signature). This score was significant for both outcome and progression 
prediction and re-stratified the patients into three risk groups. Post the publication 
of this study, the outcome information was updated. The new 5-year follow-up time 
was even more significant for patient stratification using MIPIris (Figure 6). This 
result is critical as it suggests how systemic information can be adapted for 
prognostic indication in MCL, circumventing sampling limitation in aggressive 
cases.  

 

Figure 6: MIPI and MIPIris risk stratification based on updated follow-up times. Kaplan-Meier curves of MIPI (A,B) 
and MIPIris (C,D) distribution for overall survival (OS) (A,C) and progression-free survival (PFS) (B,D) using the 5-year 
follow-up time updated in 2020. 

Paper II explored longitudinal profiling of pre- and on-treatment samples (12 weeks 
of treatment) in the assessment of responsive biomarkers to understand if beneficial 
response can be measured early in the treatment of patients. To our knowledge, this 
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had not previously been performed in MCL. Differential expression profile was 
analysed using paired two-group comparison and three proteins were identified 
(PARP1, APLF, and GOLPH6) that showed decreased expression on-treatment and 
were shown to be associated with genomic alterations of TP53 and ATM. Both these 
mutations have shown to be critical and related to poor outcome in MCL108. This is 
an example of response-associated biomarkers. This result was crucial as it 
elucidated how different genetic makeup can alter systemic responses to treatment, 
thus illuminating the need of adding genetic heterogeneity for further stratification 
in clinical cohorts.  

In paper II, we also showed that using velocity of change (δC4) of individual protein 
levels comparing pre- and on-treatment was critical to account for variation and 
scale the data. We confirm that MRD status can be measured in sera using TGF-β 
as a surrogate and time-to-progression is associated with change in BTK expression. 
The use of MRD-guided treatment selection has been proposed in MCL and in 
general for lymphoma, particularly in relation to rituximab chemotherapy295. MRD 
status has been considered crucial in MCL both as a diagnostic and predictive tool 
and is usually measured by tissue analysis of bone marrow to find tumour 
infiltrates296,297. MRD measurement using current methodologies based on PCR, 
fails to provide information for approximately 15% of the patient’s due technical 
failure298. While high-throughput sequencing has been suggested as alternative to 
provide more accurate readout, such a method can be more expensive and time-
consuming298. Thus, establishing a serum-based monitoring biomarker using TGF-
β, could prove to be useful. A continuous study measuring the expression of TGF-
β and MRD status, from diagnosis, during treatment until relapse, is therefore 
needed to establish such a measure.  

In both paper I-II, the lack of validation is a major drawback. However, the MCL7-
Valeria clinical trial (conducted by the Nordic lymphoma group) is currently 
ongoing wherein R/R MCL patients are being treated with combined venetoclax, 
lenalidomide and rituximab299. Thus, the robustness of MIPIris can be potentially 
tested in future using this group as a validation cohort.  

Serum based discovery can crucial particularly considering clinical usability and 
ease of application. The value of serum-based analysis is further manifested in paper 
III, wherein we show how serum analysis is complementary to tissue-identified 
prognostic biomarkers. We report that high serum expression of sCD163, as 
measured by ELISA, was associated with poor survival at diagnosis and relapse and 
provide a potential clinically relevant cut-off (~2960 ng/ml) which can be used for 
both diagnosis and R/R MCL. The value of sCD163 in relation to outcome was more 
robust at diagnosis compared to time of relapse.  
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In paper IV, the crosstalk between CD163+ M2-like macrophages and surrounding 
tumour and T-cells was evaluated. M2-like macrophages are associated with 
immunosuppressive microenvironment that support tumor development. We show 
that that based on spatial localization (tumor-rich vs tumor-sparse) with respect to 
the CD20+ tumour cells, the proteome profile of CD163+ M2-like macrophages is 
modulated. For example, VISTA and STING were enriched in CD163+ and CD3+ 
segments of tumor-sparse areas. Thus, we conclude that the modulation of the 
immune response by M2 macrophages can be varied based on spatial localization. 
To understand how presence of CD163+ macrophage modulates the profile of tumor 
cells, differential profile of tumor cells with or without macrophage were evaluated. 
Immune checkpoint molecules PDL1 and PDL2 were downregulated in CD163+ 
TMEs. Tumours in CD163+ TME show increased expression of MAPK signalling 
pathways. Increased MAPK is associated with downregulation of T-cell 
proliferation and activation. Profile of T-cells suggested decreased antigen 
presentation due to expression of high IDO1 on tumours and low B2M and HLA-
DR in T-cells in CD163+TME. Moreover, increased angiogenesis and 
neovascularization is observed in CD163+ TME based on high expression of SMA 
and CD34. Based on our analysis, we propose that TMEs with CD163+ 
macrophages can potentially be targeted for MAPK inhibition, for complementary 
treatment. Overall, this study enabled better comprehension of the crosstalk of 
CD163 with the surrounding TIME.  

Paper V exhibits how important information can be derived from images and in this 
case, mIF images collected from GeoMx™. To enable us to extract correct metrics, 
a technical assessment of various combinatorial pipelines using StarDist and 
Cellpose methodologies was performed. These models were primarily selected as 
have been developed and previously used for analysis of IF images. Based on our 
analysis, we show that Cellpose image segmentation is superior for complex tissue 
segmentation. An optimized workflow was developed based retrained Cellpose 
nuclei segmentation followed by a random forest classifier. This workflow can be 
applied to mIF images given that cell circularity is closer to one. 

Optimized workflow was used to extract features of interest from the four T-cell 
subtypes for TMA cores as well smaller ROI in tumour-rich or tumour-sparse 
regions. Our results show that cores containing tumour-sparse must be investigated 
carefully, as they are histologically heterogeneous and thus, evaluation must be 
limited to tumour-infiltrating T-cells particularly for assessing prognosis. Cox 
regression and Kaplan Meier curve analyses applied to T-cell metrics show that 
higher frequency of TH,57- and CD3 T-cells is associated with improved survival. 
Additionally, combined analysis with spatial omics data suggests that highly 
infiltrated tumours are associated with more immunosuppressive environment by 
the dual expression of IDO1 and STING on the T-cells and the negative correlation 
of these markers with GITR expression. In relation, low infiltration is associated 
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with a more immune active status by the enrichment of cytolytic markers on TC,57-. 
Simultaneous modulations can be seen on the adjacent CD20+ tumour cells. We 
additionally observe that increased frequency of CD57+ T-cells is associated with 
distinct proteome profile of CD57- T-cells. These analyses also reveal the 
possibility of other neighbouring cell types such as the presence of myeloid lineage 
cells and memory T-cells in the vicinity of CD57- T-cells in high infiltrated tumours. 
Taken together, this manuscript represents how deep-learning assisted image 
segmentation can be used complementary to spatial omics and provide deeper 
insights in cellular mechanisms of the tumour-microenvironment.  

The infiltration levels of total CD3 T-cells and CD57- helper T-cells was 
prognostically relevant in dichotomizing patients in outcome groups in response to 
immuno-chemotherapy in paper V. We propose that measuring infiltration of T-
cells could be used at diagnosis as an additional measure of risk and suggesting that 
highly infiltrated tumour would benefit more from immunotherapy. We additionally 
propose that the type of immunotherapy would be dependent on neighbouring 
tumour microenvironment modulation as shown by combined spatial image 
analysis. Thus, we recommend further investigation into the interplay of GITR 
(checkpoint), IDO1 and STING (checkpoint) axis, which has been previously 
understudied in MCL and suggest them as additional immunotherapeutic targets 
with dependency on T-cell infiltration. 

The five papers that are part of this thesis are based on evaluation of the immune  
microenvironment in MCL being investigated both in sera and tissue from clinical 
trial cohorts. This work has deepened our understanding of the systemic regulation 
and provided better insights into the MCL tumour-immune microenvironment. On 
a technical level, new and upcoming omics technologies have been used on patient 
cohorts to build this current story. The datasets thus generated from these different 
platforms, led to additional challenges with data processing which propelled 
computational pipeline development that resulted in the biological conclusions as 
elaborated in the papers/manuscripts. Further, complementation with image analysis 
has only highlighted how integration of different technologies can be used parallelly 
to provide a more holistic insight. 

5.2 Future outlook 
The future of MCL research is highly exciting and is moving towards more 
translational and interdisciplinary applications. Technological innovations would be 
paramount in driving this forward, particularly in generating huge amounts of data 
with limited patient material. As shown by our study, serum-based analysis could 
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be crucial for this purpose, especially for biological inferences from aggressive and 
relapsed cases.  

Development of companion diagnostic/prognostic tools based on biological features 
that can stratify patients with high accuracy, but also enable treatment selection, is 
the future of MCL therapy. MCL subtyping based on genomic heterogeneity 
combined with variation in immune response can to some extent can be pivotal for 
the development of such methods. This is evidenced by the fact that longitudinal 
profiling had suggested how the mutational landscape can modulate systemic 
immune microenvironment. While risk stratification is crucial, it is necessary to 
identify indicators for the purpose of treatment selection. As we have shown with 
spatial omics, certain phenotypic profiles could potentially benefit from specialized 
immunotherapy based on T-cell infiltration and tumor profiles, such as for example 
IDO1 and MAPK inhibitors. Thus, more research that drive development of 
indicators that can advance treatment selection, as well as validation of previously 
proposed features is necessary in MCL.  

The importance of spatial localization in tissues is highlighted in our work, and this 
has been shown recently by several other studies300,301. Currently, we have only 
profiled spatial proteins, but quantification of cell intrinsic transcriptome is also 
possible with GeoMx™. We are now exploring a spatial transcriptomic data (~1800 
plex) that will further highlight the functional variation in MCL TIME associated 
with spatial localization and abundance of different cell types.  

Development of comprehensive models is further possible by integrating multi-
modal information. This is particularly necessary for patient stratification as 
integrated models which contains extensive insights into patient biology, would 
drive the development of precision prognostics. This can be achieved by applying 
high-throughput omics-based profiling in multiple molecular layers and further 
consolidating this information using data integration methods. Many bioinformatic 
models for data integration, from early to late-stage consolidation, have been 
developed302, with several published studies highlighting the importance of 
integrated models. For example, a recent report used artificial neural network 
trained on multi-omics signature from breast cancer patients, for outcome 
predictions as well as drug response prediction303. Moreover, a multi-omics-based 
tool specific for cancer subtyping was recently proposed that was superior in 
performance to conventional approaches304. Data integration has been our particular 
interest, and we are now in the process of integrating GeoMx proteomic and 
transcriptomics spatially resolved data to build such models. We believe that this 
will be pivotal for defining patient-specific treatment for optimal response in MCL. 

Furthermore, GeoMx is limited to compounded cell-specific information extracted 
from a spatial area. Currently, the technology only allows profiling of cell-types on 
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three surface markers with nuclei staining. Therefore, the extent of cell type 
deconvolution is limited. Recently, several new methods that perform single-cell 
spatial analysis are being developed, an example being CosMx™ by Nanostring305. 
Such methods would allow for further profiling especially for rare cell subtypes. 
Such an investigation along with clinicopathological information would benefit 
MCL in pin-pointing patient-specific biology and further enable disease subtyping.  

The application of machine/deep learning and artificial intelligence to high-
throughput data, would further enhance our understanding of MCL. Particularly DL 
assisted image analysis can propel our understanding of the MCL tumour, especially 
in relation to high multiplexed images by using IMC can be particularly crucial in 
defining cellular complex compositions. By integrating composition data with 
functional datasets (such the GeoMx™ data), the association between TIME 
composition and microenvironment functionality can be assessed. Moreover, 
research into image segmentation models using patient derived tissues, will 
accelerate development of DL and AI applied digital pathology tools for 
translational into clinical utility306. As we have shown in paper V, image analysis 
can be used as complementary method to extract composition of the time. The 
association of T-cell infiltration as assessed from image derived metrics in relation 
to outcome and its impact on MCL needs to be further validated especially in a 
homogenous treated cohort. We are now in the process of performing such an 
analysis using additional cohorts. 

Conclusion 

Research in MCL has made significant progress in the last decade, particularly in 
understanding the underlying biology and in the development of new treatment 
options. However, there is much to be investigated, especially in relation to the 
immune microenvironment, comprehensive knowledge of which is still lacking. The 
studies included in this thesis were a small step in that direction. Additionally, tools 
to guide treatment selection as well as development of targeted therapeutics and 
immunotherapy is a must, to further improve survival rates and quality of life of 
MCL patients. Precision therapy is now being made possible by application of new 
technologies and interdisciplinary research that integrate several scientific fields. 
This was the focus of this thesis as well and the included research papers have 
unlocked several new potential avenues for MCL research.  
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Popular Science Summary 

In the last three decades, the drastic evolution in cancer care has resulted in major 
improvement in median survival for patients. Despite novel more effective drugs, 
cancer is still one of leading causes of death worldwide. It has become clear that the 
high variability seen in patients’ response to treatment is due to the vast inherent 
biological variation. Society puts hope to precision medicine efforts, where more 
precise ways to target cancer are used by directing treatment towards the individual 
patients’ unique molecular tumour footprint to further improve outcome. 

To aid this process, development of tools that that can measure biological molecules, 
i.e., biomarkers, that is relevant for how patients respond to treatment is needed. 
Biomarkers can be of different molecular origin such as genes, mRNAs, or proteins. 
Variation in biomarkers, often expressed by cancer cells, can be used to measure, 
and define disease status, patient response to treatment or predict/prognosticate 
outcome.  

The immune system plays a critical role in preventing and controlling cancer. 
However, in fully developed cancer, the immune system is often repressed and 
contributes to the aggressiveness of disease. Thus, identifying biomarkers that can 
measure the activity of the immune system is important to fully take advantage of 
immune-directed therapies that recently has been developed.  

In this thesis, I describe our translational studies on immune regulation in an 
aggressive haematological malignancy named mantle cell lymphoma (MCL). MCL 
patients who often are elderly and with a male predominance, have overall short 
survival and high risk of relapse of disease. We investigated tissue biopsies and 
whole blood/serum (non-cellular component of blood), which are the patient 
material often clinically collected. Studying these materials provide different 
insights into tumour-immune regulation. Tissues allows us to define the 
heterogenous cellular landscape and biology that governs the course of the disease. 
Our focus was to understand how spatial composition of tumour-fighting immune 
cells such as macrophages and T-cells impacts MCL biology. For that purpose, we 
used a newly developed high-throughput spatially resolved omics technology that 
retains the spatial architecture and provides higher-resolution biological insights. 
We discovered that spatial localization of macrophages in relation to tumour cells 
and composition/frequency of T cells alters the phenotypic expression of immune-
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related proteins. This in turns impacts the tumour expression thus highlighting the 
biological heterogeneity of MCL caused by factors in the tissue microenvironment. 
The insights into cellular crosstalk, will be further explored to identify potential 
targets for immunotherapy.  

While tissue-based analysis traditionally is the go-to methods for investigations of 
cancer, blood-based evaluation can be pivotal for gaining insights of systemic 
immune regulation. Furthermore, collecting patient blood is a cost effective, less 
invasive method that allows repeated sampling. This is particularly suitable for frail 
patients such as relapsed patients where collection of tissue biopsy may not be 
recommended. Therefore, we investigated the systemic immune regulation by large 
scale profiling of serum proteins, with the objective of identifying clinically relevant 
biomarkers which can predict patient response to treatment, but as well as identify 
patterns of biological variation that can further categorize patient subgroups into 
risk groups that could potentially be used for therapeutic decision making. With this 
goal in mind, we have defined a new prognostic index using immune-related serum 
proteins that additionally allowed us to define molecular subgroups associated with 
relapse. 

Clinical implementation of novel biomarkers is a major need to successfully 
implement precision medicine efforts where companion diagnostic tools are needed 
to identify patients likely to respond to a specific therapy. Thus, the development of 
assays that are feasible to handle and cost effective, is a necessity. In their current 
state, the above-mentioned technologies are great for discovery, but not so much for 
clinical implementation. However, there are ways of circumventing this issue. For 
example, presence of specific macrophages in tissue have shown to be related to 
outcome in this lymphoma. By targeted proteomic quantification, we were able to 
show the soluble form of the surface protein CD163 in sera could easily be used as 
alternative and implemented in clinics. We also defined clinically relevant cut-offs 
that differentiate patients into high and low risk outcome groups based on measured 
protein levels. This is an example of how serum expression could be complementary 
to tissue-based knowledge and how discovery could pave way to clinical 
application. 

All-in-all, this work explores multiple aspects of the disease with particular 
emphasis towards immune responses. In a holistic approach, we advance from 
disease assessment using high-throughput technologies, to complex data analysis 
required for discovery, identify relevant biomarkers, and explore the tumour-
immune microenvironment. This work has contributed and further supplemented 
the biological knowledge on this cancer subtype.  
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