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We prove that there are no three-dimensional bounded travelling gravity waves with con-
stant non-zero vorticity on water of finite depth. The result also holds for gravity-capillary
waves under a certain condition on the pressure at the surface, which is satisfied by suf-
ficiently small waves. The proof relies on unique continuation arguments and Liouville
type results for elliptic equations.

1. Introduction

While most of the theoretical studies of water waves throughout history have assumed
irrotational flow, vorticity is important for describing the interaction of waves with non-
uniform currents (Peregrine 1976). The mathematical theory of rotational water waves
goes back to the beginning of the 19th century, when Gerstner (1809) constructed an
explicit family of periodic travelling waves with non-zero vorticity using Lagrangian co-
ordinates. Dubreil-Jacotin (1934) provided the first existence result for small-amplitude
waves with a general distribution of vorticity. The research activity in this area has
exploded in the last decade following work by Constantin & Strauss (2004), in which
families of large-amplitude periodic gravity waves were constructed for a big class of
vorticity distributions. See the book (Constantin 2011a) for a survey of recent results.

In all of the previous investigations of travelling waves with vorticity, the motion is
assumed to be two-dimensional. In other words, the surface only varies in the direction
of propagation and is homogeneous in the orthogonal direction, while the flow also varies
in the vertical direction. In contrast, there is substantial literature on three-dimensional
irrotational waves. Reeder & Shinbrot (1981) proved the first rigorous existence result for
doubly periodic gravity-capillary waves, describing e.g. the oblique reflection of a two-
dimensional wave at a wall. This was later followed by more general results for doubly
periodic waves by Craig & Nicholls (2000) and Groves & Mielke (2001). By now a plethora
of other types of solutions have been constructed, including waves which are localised
in all horizontal directions, or localised in one-direction and periodic in another; see
(Groves 2007) for an overview. The problem is substantially harder in the case of zero
surface tension due to small-divisor problems. Nevertheless, Iooss & Plotnikov (2009,
2011) have recently succeeded in proving the existence of doubly periodic waves using
Nash-Moser theory. It’s currently unknown if there are other types of travelling gravity
waves, although Craig (2002) proved a non-existence result for fully localised solitary
waves.

In view of the above, it is natural to ask if there are three-dimensional water waves with
non-zero vorticity. In order to understand why this is a difficult question, we note that
the assumption of irrotational flow allows one to reduce Euler’s equations to Laplace’s
equation for the velocity potential. This reduction is not available in the rotational case.
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Nevertheless, the problem simplifies significantly in two dimensions, since there is then
a functional relationship between the vorticity and the stream function. In other words,
ω = γ(ψ) for some function γ, where ω is the scalar vorticity and ψ the stream function.
Using this observation, one can replace Euler’s equations by a semilinear elliptic equation
for the stream function and construct solutions for a large class of functions γ (see
e.g. Constantin & Strauss 2004). In the case of constant vorticity, this elliptic equation
is similar to Laplace’s equation and it is possible to obtain a formulation in terms of
a ‘generalised velocity potential’ which is very close to the irrotational one (see e.g.
Constantin & Varvaruca 2011). The assumption of constant vorticity might seem like a
natural starting point for a three-dimensional theory of rotational water waves, but as we
shall demonstrate here this is not the case. Heuristically, the problem is that the vorticity
has a direction which determines the fluid motion to a great extent. Due to the constancy
of the vorticity, the flow is (locally) homogeneous in the direction of the vorticity vector
(see eq. (2.11) below). We show that only a horizontal vorticity vector is compatible with
a physical wave motion. We also use the fact that the assumption of constant vorticity
implies that the velocity components are harmonic functions. This allows us to turn local
arguments into global arguments using unique continuation principles.

Let us finally comment on the difference between our results and some recent related
investigations. Constantin (2011b) and Constantin & Kartashova (2009) proved the two-
dimensionality of constant-vorticity flow for gravity and capillary waves, respectively,
under the assumption that the surface is a periodic travelling wave with no variation
perpendicular to the direction of propagation, that is, z = η(x− ct); see also (Stuhlmeier
2012) for similar results on solitary waves. In our results we only assume that z =
η(x − c1t, y − c2t) and show that, after a rotation, η does not depend on the second
variable. Moreover, our methods work for all bounded solutions, including both solitary
and periodic waves. On the other hand, Constantin and Kartashova do not assume that
the flow is steady.

2. Preliminaries and main results

Let us recall the governing equations for three-dimensional travelling water waves (see
Johnson 1997). The water is modelled as an incompressible, inviscid fluid of constant
density % > 0, bounded from below by an impermeable flat bottom and above by a free
surface, which is assumed to be the graph of a function. The fluid is assumed to extend
indefinitely in all horizontal directions. In a reference frame moving with the wave, the
motion is described by a free surface η(x, y) and a velocity field u(x, y, z) defined in the
fluid domain

Ω := {(x, y, z) ∈ R3 : 0 < z < η(x, y)}.
The velocity field u = (u, v, w) satisfies the steady Euler equations

uux + vuy + wuz = −1

%
Px, (2.1)

uvx + vvy + wvz = −1

%
Py, (2.2)

uwx + vwy + wwz = −1

%
Pz − g, (2.3)

and the equation of mass conservation

ux + vy + wz = 0 (2.4)
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in Ω. Here P is the pressure. Furthermore, the velocity field satisfies the kinematic bound-
ary condition

w = 0 (2.5)

on the bottom {z = 0} and the kinematic and dynamic boundary conditions

w − uηx − vηy = 0, (2.6)

P = const. (2.7)

on the surface {z = η(x, y)}. By a solution of the water wave problem we mean a 4-
tuple (η, u, v, w), with η ∈ C1(R2), satisfying inf(x,y)∈R2 η(x, y) > 0, and u, v, w ∈ C1(Ω),
which solves the equations (2.1)–(2.7), meaning that there exists a C1 function P such
that the equations hold (see eq. (2.10) below). The pressure P is uniquely determined
up to a constant by u through (2.1)–(2.3). In the presence of surface tension, equation
(2.7) is replaced by

P + σ
(1 + η2y)ηxx − 2ηxηyηxy + (1 + η2x)ηyy

(1 + η2x + η2y)3/2
= const. (2.8)

We then assume that η ∈ C2(R2).
The vorticity vector ω is defined as the curl of u, that is, ω = ∇× u. In component

form, we have that

(ω1, ω2, ω3) = (wy − vz, uz − wx, vx − uy). (2.9)

Taking the curl of the Euler equations, one obtains the vorticity equation

(ω · ∇)u = (u · ∇)ω, (2.10)

which guarantees that the pressure can be recovered from the velocity field through
(2.1)–(2.3). From now on we assume the following.

Assumption 1. ω is a non-zero constant vector and ω1 = 0.

The second assumption can be imposed without loss of generality since the problem is
invariant under rotations around the z-axis. When ω is constant, the vorticity equation
simplifies to

(ω · ∇)u = 0, (2.11)

expressing that u is (locally) constant in the direction ω.
Before stating our main results, we introduce some notation. For a k-times differen-

tiable vector-valued function f defined on the closure of an open subset U of Rn we
denote by ‖f‖k,∞ the expression supx∈U

∑
|α|6k ‖∂αf(x)‖, where ‖ · ‖ is the Euclidean

norm in Rn and we have used multi-index notation. We let ‖ · ‖∞ := ‖ · ‖0,∞.

Theorem 1 (Gravity waves). Let (η,u) be a solution of (2.1)–(2.7) satisfying As-
sumption 1 and ‖u‖∞, ‖η‖∞ < ∞. Then ω3 = 0, v is constant and the solution is
independent of y.

Theorem 2 (Gravity-capillary waves). Let (η,u) be a solution of (2.1)–(2.6),
(2.8) satisfying Assumption 1, supPz|z=η < 0 and ‖u‖1,∞, ‖η‖2,∞ <∞. Then the same
conclusions as in Theorem 1 hold.

Remark 1. When the surface is flat, η = η0, where η0 is a constant, the dynamic
boundary condition (2.8) reduces to (2.7), meaning that there’s no difference between the
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gravity and gravity-capillary problems. Using Theorem 1, we find that ω = (0, ω2, 0), v is
constant and u, w independent of y. Moreover, uz−wx = ω2, ux+wz = 0. The kinematic
boundary condition at the surface shows that w|z=η0 = 0. Since w is also harmonic and
vanishes at the bottom, it must be identically 0. It then follows that u = ω2z + u0, where
u0 is an arbitrary constant.

Remark 2. Note that Pz = −%g for the flat surface flow in the previous remark.
If (η,u) is sufficiently close to a solution with a flat surface in the C1-norm it follows
that the pressure condition supPz|z=η < 0 is satisfied. In order to compare the two
solutions, we can extend the flat surface flow to the region {z > η0} using the formula
u = (ω2z + u0, v0, 0).

3. Proofs of the main results

Combining (2.9) with (2.4) we find that that u, v and w are harmonic functions. In
particular, they are real analytic, meaning that they can be expanded in (uniformly)
convergent power series in a neighbourhood of any point in Ω (see Axler et al. 2001). It
follows that the left hand sides of equations (2.1)–(2.3) also define real analytic functions.
It is then easy to see by integrating equations (2.1)–(2.3) that the pressure can be locally
expressed in the form of a power series, that is, it is real analytic.

The reader is reminded that Assumption 1 holds throughout this section. This implies
that the vorticity vector has one of the following three forms, where ω2, ω3 6= 0:

(a) ω = (0, 0, ω3),
(b) ω = (0, ω2, ω3),
(c) ω = (0, ω2, 0).

The proofs consist of eliminating cases (a) and (b) and showing that (c) implies that the
solution is independent of y.

3.1. Proof of Theorem 1

Lemma 1. There is no solution of (2.1)–(2.7) with ω = (0, 0, ω3) and ‖u‖∞ <∞.

Proof. If ω = (0, 0, ω3), equation (2.11) yields that uz = vz = wz = 0 and (2.9) then
shows that wy = wx = 0, so that ∇w = 0. We also find that u = u(x, y), v = v(x, y) with
ux+ vy = 0 and vx−uy = ω3. It follows that u and v are bounded harmonic functions in
R2. Hence they are constant by Liouville’s theorem for harmonic functions (Axler et al.
2001). But this contradicts the fact that ω3 6= 0.

Lemma 2. If ω = (0, ω2, ω3), the solutions of (2.1)–(2.7) have the explicit form u =
(−ω3y + ω2z + u0, 0, 0), η = η0 and P = −%gz + P0 where u0, η0 > 0, P0 are arbitrary
real numbers. In particular, there are no solutions with ‖u‖∞ <∞.

Proof. We have from (2.11) that

ω2wy + ω3wz = 0,

which in conjunction with (2.5) gives w = 0 in a neighbourhood of the bottom. Hence
w vanishes identically since it is real analytic and Ω is connected. It follows that vz = 0
and uz = ω2. We moreover have that ω2uy + ω3uz = 0, ω2vy + ω3vz = 0, vx − uy = ω3

and ux + vy = 0, so that uy = −ω3 and ux = vx = vy = 0. But this implies that ∇v = 0
and ∇u = (0,−ω3, ω2), that is, u = −ω3y + ω2z + u0, while v = v0. From the Euler
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equations, we see that

Px = %ω3v0, Py = 0 and Pz = −%g,

whence

P = %ω3v0x− %gz + P0.

The dynamic boundary condition thus takes the form

%ω3v0x− %gη = const., (3.1)

showing that η is independent of y and that ηx = ω3v0/g. The kinematic boundary
condition now reduces to

0 = uηx + vηy =
(−ω3y + ω2η + u0)ω3v0

g
.

If v0 6= 0, we find that

η = −u0
ω2

+
ω3

ω2
y,

contradicting (3.1). It follows that v0 = 0 and that ηx vanishes identically, so that η = η0
is constant. This concludes the proof.

Lemma 3. Assume that ω = (0, ω2, 0). Then η, u and P are independent of y and v
is constant.

Proof. The vorticity equation (2.11) implies that uy = vy = wy = 0, which in combi-
nation with (2.9) yields that vx = vz = 0. Hence, ∇v = 0 and Py = 0. It follows that v
is constant throughout Ω.

We claim that P is independent of y. This is clear locally, but not globally since η might
a priori depend on y. For z sufficiently close to 0, we have that P (x, y1, z) = P (x, y2, z)
since the points (x, y1, z) and (x, y2, z) can be joined by a line segment along which
Py vanishes. But then there is a maximal z = z∗ such that P (x, y1, z) = P (x, y2, z)
as long as 0 6 z 6 z∗. Suppose that z∗ is strictly less than min{η(x, y1), η(x, y2)}. By
real analyticity of the function z 7→ P (x, y1, z)− P (x, y2, z) we obtain that P (x, y1, z) =
P (x, y2, z) for z in a neighbourhood of z∗, resulting in a contradiction. The same argument
shows that u and w are independent of y.

The function P = P (x, z) is defined on the projection

Ω′ = {(x, z) : (x, y, z) ∈ Ω for some y ∈ R}

of Ω on the xz-plane. Note that

Ω′ = {(x, z) : 0 < z < f(x)}

where f(x) = supy∈R η(x, y). Since η is continuous, it follows that f : R → (0,+∞]
is lower semicontinuous (see Rudin 1987). Moreover, Ω′ is an open, connected subset
of R2. We claim that η(x, y) = f(x). Suppose not. Then z0 = η(x0, y0) < f(x0) for
some x0 and y0, and P (x0, η(x0, y0)) = P0. By continuity, there is some y(z) such that
z = η(x0, y(z)) for each z between z0 and f(x0) and thus P (x0, z) = P0 for each such z.
By lower semicontinuity we must also have that η(x, y0) < f(x) for x sufficiently close to
x0, which in combination with the previous argument implies that P (x, z) = P0 on some
open subset of Ω′. Since P is real analytic, this implies that P is constant throughout
Ω′. But this yields a contradiction on the bottom since (2.3) gives 0 = −g there in view
of the fact that w(x, y, 0) = 0.
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Theorem 1 follows by combining Lemmata 1–3.

3.2. Proof of Theorem 2

We next consider gravity-capillary waves, meaning that (2.7) is replaced by (2.8). Note
that (2.7) was not used in the proof of Lemma 1, which therefore automatically holds for
gravity-capillary waves as well.

In Lemma 2 we only used (2.7) to show that η is constant and v = 0. In particular,
it is not needed in order to obtain the explicit form of u. Therefore, the conclusion that
there are no solutions with ‖u‖∞ <∞ remains true.

It remains to consider the case ω = (0, ω2, 0). In order to handle this case, we shall
need a Liouville type theorem for elliptic equations of the form

aij∂i∂jf + bi∂if + cf = 0, (3.2)

where we have used Einstein’s summation convention. The following result is sufficient
for our needs.

Lemma 4. Let aij, bi and c, i, j = 1, . . . , n, be continuous functions on Rn. Assume
that the functions aij and bi are bounded, that the matrix (aij(x)) is symmetric and
nonnegative for any x ∈ Rn and that supx∈Rn c(x) < 0. Let f ∈ C2(Rn) be a bounded
solution of the elliptic equation (3.2). Then f ≡ 0.

Lemma 4 is a special case of (Krylov 1996, Corollary 2.9.3), to which we refer for the
proof.

Lemma 5. Assume that ω = (0, ω2, 0), with ω2 6= 0, and supPz|z=η < 0. Assume
furthermore that ‖u‖1,∞ and ‖η‖2,∞ are finite. Then η, u and P are independent of y.

Proof. The proof is identical to the proof of Lemma 3 up to the point where the
dynamic boundary condition is used. The boundary condition is now of the form

P (x, η(x, y)) + σ
(1 + η2y)ηxx − 2ηxηyηxy + (1 + η2x)ηyy

(1 + η2x + η2y)3/2
= const.

Differentiation with respect to y results in an equation of the form (3.2) for f = ηy,
where ∂1 = ∂x, ∂2 = ∂y and

(aij) =
σ

(1 + η2x + η2y)3/2

(
1 + η2y −ηxηy
−ηxηy 1 + η2x

)
.

It is easily verified that this matrix is nonnegative. The coefficient c is given by c(x, y) =
Pz(x, η(x, y)). By assumption, all the coefficients are bounded and sup(x,y)∈R2 c(x, y) < 0.
An application of Lemma 4 therefore shows that ηy vanishes identically.

Acknowledgements

This work was supported by the Swedish Research Council (grant no. 621-2012-3753).
The author is grateful to the referees for several helpful suggestions.

REFERENCES

Axler, S., Bourdon, P. & Ramey, W. 2001 Harmonic function theory , 2nd edn., Graduate
Texts in Mathematics, vol. 137. New York: Springer-Verlag.



Non-existence of three-dimensional travelling water waves 7

Constantin, A. 2011a Nonlinear water waves with applications to wave-current interactions
and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81.
Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

Constantin, A. 2011b Two-dimensionality of gravity water flows of constant nonzero vorticity
beneath a surface wave train. Eur. J. Mech. B Fluids 30 (1), 12–16.

Constantin, A. & Kartashova, E. 2009 Effect of non-zero constant vorticity on the nonlinear
resonances of capillary water waves. EPL 86 (2).

Constantin, A. & Strauss, W. 2004 Exact steady periodic water waves with vorticity. Comm.
Pure Appl. Math. 57 (4), 481–527.

Constantin, A. & Varvaruca, E. 2011 Steady periodic water waves with constant vorticity:
regularity and local bifurcation. Arch. Ration. Mech. Anal. 199 (1), 33–67.

Craig, W. 2002 Non-existence of solitary water waves in three dimensions. R. Soc. Lond. Philos.
Trans. Ser. A Math. Phys. Eng. Sci. 360 (1799), 2127–2135, recent developments in the
mathematical theory of water waves (Oberwolfach, 2001).

Craig, W. & Nicholls, D. P. 2000 Travelling two and three dimensional capillary gravity
water waves. SIAM J. Math. Anal. 32 (2), 323–359.

Dubreil-Jacotin, M. L. 1934 Sur la détermination rigoureuse des ondes permanentes
périodiques d’ampleur finite. J. Math. Pures Appl. 13, 217–291.

Gerstner, F. 1809 Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile.
Ann. Phys. 32, 412–445.

Groves, M. D. 2007 Three-dimensional travelling gravity-capillary water waves. GAMM-Mitt.
30 (1), 8–43.

Groves, M. D. & Mielke, A. 2001 A spatial dynamics approach to three-dimensional gravity-
capillary steady water waves. Proc. Roy. Soc. Edinburgh Sect. A 131 (1), 83–136.

Iooss, G. & Plotnikov, P. 2011 Asymmetrical three-dimensional travelling gravity waves.
Arch. Ration. Mech. Anal. 200 (3), 789–880.

Iooss, G. & Plotnikov, P. I. 2009 Small divisor problem in the theory of three-dimensional
water gravity waves. Mem. Amer. Math. Soc. 200 (940), viii+128.

Johnson, R. S. 1997 A modern introduction to the mathematical theory of water waves. Cam-
bridge: Cambridge University Press.

Krylov, N. V. 1996 Lectures on elliptic and parabolic equations in Hölder spaces, Graduate
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