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Abstract

Large Eddy Simulations (LES) of flow around a square cylinder at �����
	�	
������� are

performed employing a dynamic one-equation subgrid model. An implicit fractional step

method finite-volume code with second-order accuracy in space and time is used. By using

a periodic boundary condition the spanwise dimension is four times the side length of the

cylinder. Some global quantities, such as the dominating wake frequency (Strouhal number)

and the mean and RMS values of lift and drag, are computed. Also, a series of time- and

spanwise-averaged resolved velocities and turbulent stresses are provided for comparison

with experiments. The influence of a finer grid on the results is investigated. Present results

are in general agreement with experiments and by using a finer spatial resolution an even

better agreement is found. The dynamic one-equation subgrid model is found to be stable

and no sign of the numerical problems usually encountered with the standard dynamic

SGS-model is observed.

1 Introduction

Turbulence is present in a very wide variety of flows of engineering problems involving trans-

portation, energy conversion systems and wind engineering area, e.g flow past bluff bodies. In

other words, turbulence in nature is the rule and not the exception.

Thus, the issue of how to handle the influence of the turbulence, where diffusion of momen-

tum and heat are much stronger than laminar flows, is of great importance. Many turbulence

models have been developed, ranging from the most simple, eddy viscosity models to high

resolution Large Eddy Simulation (LES). When using LES in the context of the volume aver-

age approach (box filter), the time-dependent, three-dimensional Navier-Stokes equations are

solved. In this method, the largest scales are resolved numerically, while the unresolved scales

must be modeled with a subgrid scale model (SGS).

The subject of flow past bluff bodies, such as circular and square cylinders, is of relevance

to technical problems associated with energy conversion, structural design and acoustic emis-

sions. In recent years, researchers attention has turned to the use of LES for studying turbulent
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flow around bluff bodies. Also recently, this flow case was studied experimentally by Lyn and

Rodi [14] and Lyn et al. [14, 13].

A LES Workshop was held in June 1995 in Germany, and the results of this workshop

were published in a recent paper by Rodi et al. [22]. The same flow was considered as test

case LES2 at the First ERCOFTAC Workshop on Direct and Large Eddy Simulation in March

1994. Seven groups took part in LES2 exercise and the results of this exercise were reported

by Voke [30]. The reason for the focus on LES for the study of flow around bluff bodies has

to do with poor results when using statistical turbulence models. Most probably this has to

do with complicating factors such as massive flow separation, streamline curvature, transition

from laminar to turbulent flow, recirculation, vortex shedding and perhaps most important, the

existence of inherent three-dimensional flow structures [20, 21, 31].

2 Configuration and Numerical Details

The flow is described in a Cartesian coordinate system ���������	��
 , in which the � -axis is aligned

with inlet flow direction, the � -axis is parallel with the cylinder axis and the � -axis is perpen-

dicular to both directions, as shown in Fig. 1. A fixed two-dimensional square cylinder with a

side � is exposed to a constant free stream velocity 
�� . An incompressible flow with constant

fluid properties is assumed. The Reynolds number is defined as ������
�������� . All geometrical

lengths are scaled with � . Scaling with � also applies to the Strouhal number, ����� ��!"�#�$
%� ,

where �&! is the shedding frequency, and for all forces. Velocities are also scaled with 
�� , and

physical times with ���'
%� . In � -direction, the vertical distance between the upper and lower

walls, ( , defines the solid blockage of the confined flow (blockage parameter, )*�,+-��( ).

The main objective of the present study was the examination of a new dynamic one-equation

subgrid-scale model, for Large Eddy Simulation of flow around a square cylinder at ���.�/�/10 +32 � . Also, the influence of finer grid on the results is investigated. A short review on LES

mathematical formulation and dynamic one-equation subgrid scale model that is used in this

work is presented in the next section.

An incompressible finite volume code [5], which is based on a fractional-step technique, is

used employing a non-staggered grid arrangement. The scheme is implicit in time, and a second

order Crank-Nicolson scheme is used. All terms are discretized using the second-order central

differencing scheme. The time-marching calculations are started with the fluid at rest, and a

constant time step 45�6�7+-�&8$29�:2#;<2 /"= is used for all simulations.

Two calculations are carried out for the resolution of +3> =%0 +?2 =%0�/"= (Case I) and
/�@$=%0 + @ + 0/�=

(Case II) grid points in the ( �������	� ) direction. Outside a region from the body which extends

two units upstream, downstream and sideways (in the � - and � -directions), the grid distribution

is uniform with a constant cell size, 4 . Downstream of the body, 4 was set to 0.16 and 0.10
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Figure 1: Flow configuration.

for Cases I and II, respectively. In other parts, 4 � 2#; /"= for Case I and 4 � 2#; + @ for Case II.

The distance from the cylinder surface to the nearest grid point defines
�
. For all calculations

in this study,
��� 2�; 2"2�> . The hyperbolic tangent function was used for stretching the cell sizes

between these limits (
�

and 4 ). A uniform grid with a distance of 4�� between nodes was used

in the spanwise direction ( � -direction, (computational) spanwise dimension � ). In this study,

4����72#; + @	� . The number of nodes distributed over one unit length of the cylinder surface was

set equal to 25 and 33 for all sides of the body in Cases I and II, respectively.

The following boundary conditions were used. A uniform flow was prescribed at the inlet,

which is located 
�� units upstream of the cylinder. At the outlet, located 
�
 units down-

stream of the cylinder, the convective boundary condition was used for all velocity components.

No-slip conditions were prescribed at the body surfaces. Symmetry conditions simulating a

frictionless wall were used at the upper and lower boundaries. A periodic boundary condition

was used in the spanwise direction. The normal derivative for the pressure was set to zero

at all boundaries. In the present study, 
�� , 
�
 , ( and � were set to 7.4, 15.8, 15.7 and 4,

respectively, see Fig. 1.

3 The Dynamic One-Equation Model

The success of LES depends on how accurately the SGS stresses are modeled. The Smagorinsky

model [23] is a traditional and relatively simple model. In this model, the proportionality factor

in the definition of the subgrid eddy viscosity, � or ��! ( �7�����! ), is a constant value that must

be specified prior to a simulation. The weak point of this model has to do with the fact that it

is not suitable to use a constant that is not really a single universal constant. In other words,

the Smagorinsky coefficient is flow-dependent. It is not a constant, and it varies in time and

space. This model has some limitations and some attempts have thus been performed to improve

it [16, 19]. In addition, the Smagorinsky model is absolutely dissipative and cannot account
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for backscatter, energy is always transfered from the large to small scales. Dynamic models,

which are capable of removing some of the drawbacks of the Smagorinsky model, are a suitable

alternative. In these models, � in the subgrid eddy viscosity is not an arbitrarily constant

specified a priori, but is calculated during the computation process. One of the drawbacks of

the dynamic model is the numerical instability associated with the negative values and large

variation of the � coefficient.

Recently a new dynamic one-equation subgrid model was presented [3]. For convenience,

the model is briefly described below. The modeled ������� equation can be written� �����	�� � 
 �� ��� ��
� ��������� 
%� �� ��� ��� ��������� � 4��������	� � �������� ���! 
 / �"����� 
�$#%� 
�$#&�(' ���) �+*������4 (1)

In the production term, the dynamic coefficient � �, ��-/.0- �1'32 �#&� 
� #54 �-� 
�$#&� � +/ � � 
� #� ��� 
 � 
� �� �6#  �72 �#&� �8' / � � 49� ������� 
�$#&� �8' / �:����� 
�$#%� (2)

is computed in a way similar to that used in the standard dynamic model [7, 8, 10, 9], i.e.

��� �8'<; #&��=>#&�/ =>#%��=>#%� � ; #&� �@? A
� #	
� �('B?CA
� #D?CA
� �E � ?CA�3����� 
 +/ ; #F# �G=>#&� � ?CA4 E �� ?CA
��#&�H' 4 ? A� ������� 
�$#%� (3)

where ; #%� denotes the dynamic Leonard stresses, and where
E I J

�LK #D# is the subgrid kinetic

energy on the test level [10, 9, 4].

The subgrid turbulent kinetic energy, �M����� , is essentially a local quantity. Indeed, the Smagorin-

sky model is based on the assumption of local equilibrium of �6����� , i.e.
, � -/.0- 'ON � -/.P- � 2 . A

slightly better assumption to estimate � �) in the dissipation term would be to assume that the

filtered right-hand side of the ������� equation is equal to that of the
E

equation, i.e.

?CA, � -/.P- ' +
4 ? A� �) � * ������ � ,+Q ' � �) E * �?CA
4 R � �)"SLT J �VU ,+Q ' ?CA, � -/.P- 
 +4 � ? A� �) 
 S � * ����	�XW ?CA
4E * �
(4)

The dissipation cannot be negative, which requires that we limit � � �) 
 S to positive values, i.e.

� �)@Y 2 . To ensure numerical stability, a constant value of � � in space (

�
� � �Z��� � ) is used in

the momentum equations. This is determined by requiring that the production in the whole

computational domain should remain the same, i.e.� / �[� 49� ������� 
�$#&� 
�$#&���Z��� � � / � ���L����� � � 49� ������� 
�$#%� 
�$#&������� � (5)
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The idea is to include all local dynamic information through the source terms of the transport

equation for ������� . This is probably physically more sound since large local variations in � �
appear only in the source term, and the effect of the large fluctuations in the dynamic coefficients

will be smoothed out in a natural way. In this way, it turns out that the need to restrict or limit

the dynamic coefficient is eliminated altogether.

4 Results and Discussion

Calculations are carried out for two resolutions of +3> = 0 +?2 = 0 /"= (Case I) and
/�@"=90 + @ + 0 /�=

(Case II) grid points in the ( �������	� ) direction on one SGI ORIGIN 2000 machine. The transient

period before the fully developed state is achieved, is about 50 time units, which is greater

than 6 shedding periods. The CPU time on one processor per time step and grid point is about/ ; / 0 +32�� � CPU seconds for Case I. The number of iterations per time step is about 2. The

time-averaged quantities are calculated during about 20 shedding cycles.

In the present study, the global results (time- and spanwise-averaged values) of these two

cases are compared with the experimental ones [12, 29, 2, 15, 14, 13, 17] and numerical results

presented at the LES Workshop [22] and LES2 exercise [30]. A summary of the global results

is provided in Table 1. Also, a series of time- and spanwise-averaged resolved velocity and

turbulent stresses are provided for comparison with experiments.

Table 1: Summary of global results for different cases and comparison with experiments. Please

note that different blockages ( ) � / ' ��� ), turbulence intensities ( K ��� /�� ), aspect ratios

( ���:� +32 ' = + ) and end conditions are used in the experiments.

Results ���-��+32 � ��� ��� ' �
	 � ���
� ����� ���
Case I 22 0.129 2.25 1.55 1.50 0.20 1.0

Case II 22 0.131 2.32 1.63 1.49 0.21 1.1

Ref. 22 22 0.066-0.14 1.66-2.77 - 0.38-1.79 0.1-0.27 0.89-2.96

Ref. 30 21.4 0.13-0.161 2.03-2.78 - 1.03-1.68 0.12-0.36 1.02-1.61

EXP.

Ref. 17 13 0.132 2.16 1.43 - - -

Refs. 13,14 21.4 0.13 2.1 - - - 1.38

Ref. 2 22 - 2.0 - 0.5 - -

Ref. 15 23 - - - 1.3 - -

Ref. 29 100 0.118 2.05 1.32 1.32 0.17 -

Ref. 12 176 0.122 2.04 1.3 1.23 0.23 -
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In the case of flow around square cylinders, some of the global quantities for high Reynolds

numbers are approximately independent of the variation in the Reynolds number. For exam-

ple, Bearman & Obasaju [1] reported that the pressure drag and lift forces are independent

of Reynolds numbers above ��� � / 0 +32 � . Within 8 0 +?2 � � ��� � 8$2 0 +32 � and based

on the low-blockage ( ) � = � ) and low-freestream turbulence ( K ��� 2�; =�� ) experiments by

Okajima (1982) [18], Igarashi (1984) [11] and Norberg (1993) [17] the Strouhal number is

��� � 2#; + /���� 2#;<2"2 = . At around ����� /"/ 0 +?2 � the above experiments have ��� � 2#; +�� /�� 2#;<2"2#+ .
It is also observed in Table 1 that the variations in the Strouhal number, mean drag and base

pressure coefficients with Reynolds numbers are small in a large range of Reynolds numbers

( +�� 0 +32 � � ��� � + �&@ 0 +32 � ).
Table 1 gives the Strouhal number, mean drag, base pressure, RMS lift and drag coefficients

for different SGS models, together with the experiment and numerical results. The present

Strouhal numbers were calculated from the fluctuating lift signal. The Strouhal number in the

present study is in agreement with the experiments. As can be seen, the Strouhal number is

not very sensitive to different resolutions. This finding is similar to that reported by Rodi et

al. [22] and Sohankar [24], who also found that the Strouhal number is not very sensitive to the

parameters of the simulation.

The experimental results for the mean drag coefficient are reported in the range of � ���/ ; 2�' / ; + @ , for large range of Reynolds numbers, see Table 1. The mean drag for present study

is about 4% and 7% higher than the upper range of the experimental results for the Cases I and

II, respectively. From Table 1, the base suction coefficients ( ' � 	 � ) are: 1.55 and 1.63 for the

Cases I and II , respectively. A higher base suction corresponds to a higher drag because the

pressure on the upstream of body is similar for all cases and experiments, see e.g Ref. [24].

Rodi et al. [22] reported that the simulations that used no-slip boundary conditions for body

produce a higher drag and lower recirculation length, � � , than those that used a wall function

boundary condition. In this study, a no-slip boundary condition is used.

As is seen in Table 1, the experimental results for RMS lift and drag display considerably

variations. The RMS lift and drag coefficients in Table 1, in the present study, are spanwise-

averaged values. For RMS lift the ratio between the spanwise-averaged and the spanwise-mean

sectional value was 0.99 for the two cases. For RMS drag the corresponding ratios were 0.76

and 0.73 for the Cases I and II, respectively. The experimental � �
� and � ��� in Table 1 are all

sectional values. The experimental RMS lift and drag coefficients are reported in the range of

��� ���:2#; = ' +";�� / and �������:2�; + � ' 2#; / � . The results of the LES Workshop and LES2 exercise

also show a large variation in � �
� and ����� , see Table 1. For example, the range of predicted

variations in RMS lift and drag is reported to be � �
� � 2#;��"> '�+"; �	� and ����� � 2#; + ' 2#; / � .
These large variations are dependent on a number of factors, such as different SGS models,

grids, boundary conditions and so on. The present results for RMS lift are higher than exper-

imental ones. The values for the RMS drag of this study are within the scatter of the reported
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experimental results, see Table 1. It is worth mentioning that, using finer grid (Case II) has little

influence on RMS lift and drag. The blockage effect, different turbulence intensities, length

scale of incoming turbulence, end conditions, aspect ratio and Reynolds number dependency

could be reasons for the scatter of the reported experimental results, see e.g. [2, 15]. Previous

works by the present authors [25, 26, 27, 28] have shown that the RMS lift and drag coeffi-

cients are more sensitive than mean values to various numerical and physical parameters. The

experimental and numerical results in Table 1 confirm this finding.

Figs. 2 and 3 compare the time- and spanwise-averaged resolved-velocity and Reynolds

stresses along the centerline of the wake, and along � direction at the position of two diameter

downstream of the body, with experimental results [14, 13]. The streamwise velocity 
� at the

centerline of the wake is shown in Fig. 2. The minimum streamwise velocity and the extent of

the recirculation region of present study are lower than the experimental values. The recovery of

the streamwise velocity levels off at approximately 0.75 and 0.7 for Cases I and II, respectively,

which is higher than the experiments, which is at about 0.6. Of these two cases, the finer

resolution (Case II) has the larger recirculation length, � � , larger negative streamwise velocity in

the recirculation region and lower recovery of the streamwise velocity along centerline which

show better agreement with experiment. This finding shows that a part of difference between

experiment and numerical simulation for the recovery of the centerline velocity and � � , which

was also noted in Refs. [22, 30], is due to using a poor resolution.

The time- and spanwise-averaged of the different components of resolved Reynolds normal� ���D��� ��� � , � ������� ��� � and shear

� �����	� �
� � ) stresses are shown in Fig. 2. Please note that the resolved

time- and spanwise-averaged shear stress,

� ������� ��� � , should be zero along the centerline due to

symmetry. The predictions of normal stresses (

� ���F��� ��� � and

�
������� ��� � ) along the centerline have

relatively good agreement with experiment, especially for the finer resolution (Case II). The

peak of the simulated normal stresses take places slightly closer to the body and with lower

values than experiment for Case I, while better agreement with experiment is seen for Case II.

Fig. 3 shows profiles of velocity and stresses at position of two diameter downstream of the

body. As is seen, there are good agreement with experiment for the shape and values of velocity

and stresses especially for the finer resolution (Case II). In general, by referring to Figs. 2 and 3

and other results which are not shown in this paper (see Ref. [24]), a relatively good agreement

with experiment for different components of velocity and stresses is found. This agreement is

very good for the finer resolution (Case II).

As explained in the previous section, the local dynamic coefficient, � , for the standard dy-

namic model has a large variation in space and time. This large oscillation of � enters directly

in the momentum equations via the subgrid eddy viscosity, which can enhance numerical in-

stability problems, see Ref. [24]. For example, in Ref. [24], the largest negative value for � in

the order of 7 was reported. In the one-equation model, on the other hand the local dynamic

coefficient, � � , enters in the source terms of the turbulent kinetic subgrid energy equation. To
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ensure numerical stability, a constant value of � � in space (

�
� � �Z��� � ) is used in the momentum

equations, which is determined by Eq. 5. This procedure increases the numerical stability by

preventing a large oscillation in solution of the momentum equations. The time history of � �
for two chosen points at midspan of the body ( � � 2 ) on the centerline, one upstream of the

body ( � � ' 2#; @ 8 ) and the second one downstream of the body ( � � @ ;�� = ), are shown in Fig.

4(left). The range of variation of � � with time is much smaller upstream than downstream of

the body. Interestingly, the � � has a negative value for all times at point � � '�2�; @ 8 with the

time-averaged value of -0.07. The negative values of � � make the production term in the tur-

bulent kinetic subgrid energy become negative, see Eq. 3. The negative production term means

that backscattering occurs. The time history of

�
� � �Z��� � is shown in Fig. 4(right). The range of

variation of

�
� � ����� � with time is between about 0.075 and 0.10 with a time-averaged value of

0.085 (dashed line). This time-averaged value is different for different flow configurations. For

example, the value for recirculating flow is reported to be 0.04 [3]. For transitional flow behind

a backward-facing step, a value of 0.07 was found [6]. Due to the relatively small variation

of the homogeneous time-dependent dynamic coefficient, no sign of numerical problems was

observed.

5 Conclusions

Large Eddy Simulations (LES) of the flow around a square cylinder at ��� � /"/ 0 +32 � are

performed employing a dynamic one-equation subgrid model. By comparing computed global

quantities, mean flow with experiments, this simulation shows that the one-equation subgrid

scale model gives relatively good agreement with experiments. This agreement is very good for

the finer resolution.

Due to the relatively small variation of the homogeneous time-dependent dynamic coeffi-

cient in this model, no sign of numerical problems, which is seen for standard dynamic model,

was observed.

The local dynamic coefficient of this model ( � � ) becomes negative at some point close to

the upstream of the body at all the time. The negative values of � � make the production term

in the turbulent kinetic subgrid energy become negative. The negative production term means

that backscattering occurs.
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