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ÄBSTRACT

This note gives a su¡mrary a¡rd some illustratlve examples of the role

of different filters in adaptfve control that are needed to make a robust

implementatfon. In adaptive controllers it is important to filter the

signals in order to avoid erroneous results in the estitnation part of the

algorithn. In discrete time adaptive controllers as well as in sampled

data controllers it is important to filter the signals to avoid the

aliasing problem. An attempt is rnade to quantffy and illustrate some of

the "folklore" in this area.
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1. INTRODUCTION

Adaptive controllers are now more and more used in industrial
applications, see the surveys Âsträm (1gg3b) and seborg er aI (1986). The

convergence and stability issues for some classes of adaptive controllers

were solved in the late 197O's for ideal cases such as lorown orders and

delays of the process. The robustness properties of adaptive controllers

have been debated intensively during the last years. The concencus of

these discussions seems to be that adaptive control ca¡r be useful, but

that extreme care must be taken when implenenting the controllers.

Different fixes have been suggested based pa.rtly on e><perience and partly

on analysis.

The implementation and robustness issues are therefore of great

Ímportance. This report discusses some of these aspects. The signal

processing' i.e. the choÍce of different filters, in adaptive controllers

is treated. An attempt is made to quantify some of the "folklore" around

the implementation issues. We will concentrate on dÍscrete time adaptive

controllers. Some of the signal processing issues are then the same as

for implementation of fÍxed parameter sampled data controllers. The

problens are for insta¡rce the choices of the sampling period, the

antialiasing filters and the specifications. These choices are, however,

also influenced by the process, whÍch now is unknown. The estimator part

of the adaptive controller is also of great importance since it must

produce accurate process models in approprÍate frequency ba¡rds. FinaIIy

the interaction between the estimator ar¡d the controller rnay cause

problems. Practical issues have been discussed for instance in Astrom

(1983a,b), Rohrs et al (1984) and wittenmark and Asträn (1984). The

following quotations give some general advices and statements about the

implementation.
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Quote 1.L (Ljung and Sodersrrom (1983), p 13g-14O)

"... even if the true system is more complex than our models, the

identification procedure will pick the best approximation of the system.

The recursive algoirthm converges to that approxÍnntion that is best

under the input sÍgrral used during the e>çeriment."

Quote 1.2 (Ljung and Sodersrrom (1983), p 267)

"It Ís thus good practice to choose an input for the identification
experiment that as far as possible is similar to inputs to be used for the

system at later occasions."

Quote 1.3 (Àstrom (1983a), p 986)

"Do not estimate unless the data is good."

Quote 1.4 (Àsträm (1983a), p 986)

"... beneficial to use a design method which gives a high gain at low

frequencies and use adaptation only to fÍnd the characteristics around the

cross-over frequency. "

Quote 1.5 (Rohrs et al (1984), p 653)

"Keep the adaptation gain of the system srnall and let the adaptation

proceed slowly."

Quote 1.6 (Rohrs et al (19e4), p 653)

"Design the nominal control loop so that it is robust and that approxÍmate

model nratching can be achieved even in the presence of unmodelled

d¡mamics. "
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These quotations a¡¡d references pinpoints some of the fundamental

issues when implementing adaptÍve controllers. In this paper we will try
to quantify these advices a¡rd arrive at an overall view of the

inplementation problem. The adaptive control problem is first defined in
Section 2. The true process is in general more complex than the estirnated

model. To get a good approxination it is important to adapt the estirnator

to the selected class of models. This problem is discussed in Section 3.

The starting poÍnt is a generalization (or rather adaptation) of results

in Wahlberg and Ljung (1986) and Gevers and Ljung (1986). Based on rhese

results some general rules of thumb ca¡r be given. Section 4 gives a

discussion of the implenentation of the recursive estimator, One main

questÍon is how to judge when the received data contains useful

infor¡nation. Sampled data control aspects as the choices of antialiasing
filters, sampling interval and the bandwidth compromise is discussed in
Section 5. The interactÍon between the estirnator and the controller is
finally treated in Section 6. This section also contains an example,

which illustrates the points discussed in the report. Sections Z and B

contain conclusions and references.

a)

b)

c)

The contributions of this paper relative to previous work are:

Ân overall treatment of the implementation problem.

Quantitative rules of thumb are gÍven to help the implementor.

Both analysis a¡rd examples are used to illustrate the different
poÍnts.
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2. TI{E ADAPTI\IE æI'ITROL PROBLEM

An adaptive controller c€ur often be structured as in Figure 2.L.

The system consists of two loops: €¡n irurer loop with a. conventional

regulator and an outer loop which changes the parameters in the regulator.

The regulator parameters are calculated based on the specifications on the

closed loop system and the estimated parameters. Even if the system is

adaptive the user has to specify for instance what the specifications

should be and which design method that should be used. These choices

depend on the physical insight into the process and the disturbances

acting on the process. This impli.es that even an adaptive controller can

not be Ímplemented without knowledge about the process. This larowledge is

used as for the case with a lorown system to determine suitable

specifications and the structure of the controller. The process is also

more complex than the estir¡ated model. ThÍs implies that we have to

decide over which frequencies we want to have a" good approxirnation,

compare Quotes 1.4 and 1.6.

Specification

Regulator
parameters

Command

Sígnal Output

Parameter
estímaËor

Desígn
Calculations

Dísturbances

ProcessRegul-ator
ConÈro1
signal

Figure 2.1. Structure of a¡r Adaptive Control System
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To be more specific we will assume that the process is described by

the single input single output discrete time model

v(r) Go(o)u(t) + Ho(a).(t) + d(t) (2.1)

where

co(o)

uo(a)

cr(o)

no(o)

m
co(o)

m

nr(o)

mir

(2.2)

(2.3)

(2.4)

and y and u are the output a¡rd input of the process. Notice that we

allow possible antialiasing filters to be a part of the process co(o).

The pulse tra¡rsfer operator Co(c) is also a function of the sampling

period h. This dependence is, however, surpressed in the formulas. The

distubance e(t) is assumed to be a sequence of independent random

varÍables with zero mean values and, variances o2. The second disturbance

term d(t) is a purely determinÍstic sigrral of larown form but unlorown

magnitude. It rnay be a level, a ranp or a sinusoidal signal.

It is assumed tbat the desÍred specifications of the closed loop

system is given as the bandwidth or in terms of a desired closed loop

model

A'daptive controllers ca¡r be divided into direct and indirect methods. In

the direct methods the controller para¡neters are estimated directly. This

inplies that the design block in Figure 2.1 Ís very simple. The

specifications are in this case used to rrake a reparameterization of the
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model, see for instance Astrom a¡rd Ìfittenrnark (1980). In the indirect
methods we first estÍmate the parameters in a model such as (2.1). The

estitn¿rted parameters are then used in the design calculations as if they

are the true ones.

Based on the specifications a¡rd the loaowledge of the process we wiII
in the following sections discuss the implementation problem and how to

make an approprÍate f ÍItering of the sigrrals.
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3. AD.ruSTI!{ENT TO TI{E PRE.TLIDICE MoDEL

When determinÍng the structure and complexÍty of a" controller we

always have some more or less well defined "feeling" of how the process

can be described. For instance its complexity, amount of time delay,

tSpes of disturbances. The purpose of the estimator part of the adaptive

controller is to find the parameters of this prejudice ¡nodel. In this

section we will discuss how to adjust the measured data (Sic!) to the

prejudice model.

EIimir¡ation of known tvpes of disturbances

The larown t¡pes of dÍsturbances was represented by d(t) Ín (2.1).

d(t) can be thought of as generated by pulses into la:rown dynamic systems.

It is assumed that it is not known a priori when the pulses occur and the

amplitude of the pulses. Such signals are called piecewise deterministic

signals, see A=ttä* and lfittenn¡ark (1984, Ct 6). This r54pe of dÍsturbance

can be generated by

d(r)
urr(o)

mHu(o)ô"( t) ôs( r)

where ôs(t) is a sequence of pulses and tt.(o) a filter. For instance

if d(t) is an unLarown level then

tuo(o) q
q-1

The sigrrat d(t) can be elininated (except for occatior¡al pulses or

finite length disturbances) by filtering the input a¡rd the output by

no(a).
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The disturbance ar¡rihilatÍon filter OU(O) is of high pass or notch

tlæe. It can then be advisable to use a filter of the form

ou(o)

nj(o)

where nj(O) Ís a stable polynomial and Hf has a high attenuation at

high frequencies. Filtering by Hf will then remove low frequencies in

the sÍgnal and eventually also some other frequencies within a" n€Lrrow

ba¡rd. The filter ttr(O) should thus have an amplitude curve as in Figure

3.1. The lower break frequency ,f¿ depends on the desired cross over

frequency of the closed loop system. Às a rule of thumb ,f¿, should be

at least one decade below the cross over frequency.

tuu(o) (3.1)

iHr I

'f r, 'fh
rad/ s

Figure 3.1 Amplitude curve for the disturbance

arrrihilation filter ttr(O)

The high frequency break frequency will be discussed later in this

section. In several references it is pointed out that it is adva¡¡tageous
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for the estimation to elimÍnate levels in the sigrrals. This is the case

when d(t) is constant. see for instance Peterka (1994). These

recommendations are thus followed if the filter Hf is used.

lvith the filter H¡ rue will remove d(r) from rhe dara. The

estimator will thus not be confused by low frequency drift or disturbances

at specific frequencies. These disturba¡rces are instead taken into

consideration when the controller is designed by using the internal nodel

principle, see for instance Garcia and Morari (1982). This implies that a

level is removed by having an integrator Ín the controller and so on. See

Section 5. Notice that the regulator is still using the unfiltered

sampled signal.

The bias distribution problem

rn the following ir is assuned rhar d(r) = 0 in (2.1) or rhar rhis

disturbance ha.s been properly elÍmir¡ated by the f ilter H¡ in (3.1).

In the rernaining part of this section we wiII anaLyze how the

as¡rmptotic estÍrnates of the parameters in the process are Ínfluenced by

design variables such as

input signal a¡rd reference signal spectrum

model orders and noise structure

pref i I ters

desired closed loop perform¿tnce

We will follow the lines of thought for open loop estimation given

in l{ahlberg and Ljung (1986). Their results are modÍfied to suit the

adaptive control problem. One result in this section is a lirniting

e>çression for the loss function that is minimized by the estimator. This

result can then be used for a more quantitative discussion in the

frequencv domain of the influence of the design variables. SimÍlar
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aspects are also discussed fn Gevers and Ljung (1986).

The purpose of the estimator is to provide an estinate of the

process and eventually also the noise characteristics. Let the prejudice

model be described by

v( r) G(q,0)u(t) + H(q,0)e(t) (3.2)

where the pulse transfer operators C and H are parameterized by the

unkrrown ¡mrameters 0. The structure such as model orders and time-delays

are parts of the parameterÍzatÍon. The nodel (3.2) includes for insta¡rce

ARIIAX models of different orders.

The estimation is done by comparing the model with observed data. The one

step ahead prediction of y(t + h) ca¡r be written as

-1 -1y(t+hlt, o) +H(q' o)

Notice that the right hand side is a function of data observed up to

and including time t. Define the prediction error

€(r + h, r, O) = y(r + rrl - îtt + rrtt, e)
_1

= lco(o) - G(q,e))u(q,o) ^ u(t + 1)

+ (Ho(a) - H(q,e))u(q,e)

ÅG(q, e)H(q, 0)-1u( t+r )

+ ÅH(q,0)H(q, e)-

1e(t+1) + e(t+l)

G(q,0) u(t+h) (1 H(q,0) )y(t+h)

(3.3)

(t+l) + e(t+1)

(3.4)

1u

a¡rd the filtered predÍction error
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€r(r, t-h,0) Ho(o)e( t, t-h, o)

where ttO(O) is a stable causal prefflter. The estimate is now obtained

by using the criterÍon

1
N

2

(3.5)

(3.6)

(3.7)

0
N

and the estimate is given by

vtt ) ,lrtr(ih' 
(i-l)h' o)(

olt arermin VN(O)

The estirnate ôN Ín (3.7) is influenced in a complex way by nrarry

factors, design variables, such as sampling perÍod, model structure

prefilter and number of observations. To be able to draw arry conclusions

we wÍll fÍrst derive the limiting pulse transfer operator esti¡nate as the

number of data tends to infinity.

Introduce the weighting function

2

W(o,0) ir¡h (3.8)
H(e ,0)

In Gevers and Ljung (1986) it Ís shown that the limiting estimate as

N+o is

arg min V(0)
e

tto{.i"h)

0*
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where

t/h

-3.6-

ioh -iorhBT e , e)S(o)B(e ,O)W(o,0)dr,r (3.e)(v(e) J
-r/h

ioh (e iarh

B(e ,o) = ioh
eI

,0) - Go(e

,0) - Ho(e

i<,:h

it¡h (3.10)
(

and

0(c,) =

where 0rr(o) is the input spectrum, órru(o) is the cross-spectrum

between the input and the noÍse e and 0.(ar) = o2. The conditions for

the excistence of 0u and 0r" are gÍven in Gevers and Ljung (198O).

In Wahlberg and Liune (1986) it is assumed rhar órrrr(c,) = O, since

the estimatÍon Ís done in open loop. fn the adaptive case we must take

into consideration that the input signal is generated through feedback.

The sÍmplicity of (3.9) is misleading since it is in facr a"

complicated function of 0 a¡rd the design variables. Qualitatively we

c¿ut say that the estimate is weighted in frequency. This implies that the

estimates will depend on the e>rperiment conditions. To be able to draw

further conclusions it is necessary to be more specific with respect to

model structure and feedback.

If the parameterization is such that the true process model

1co(o), tto(o)) is arnons the model set {G(q,0), H(q,0)} then the

fo,r{"

Lr",{

)

ú,

ó,r.

ó"(ar)

(

)

(¡, ,]
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estiÍ¡ate wiII under weak conditions converge to the true parameters

independent of the fÍItering a¡rd the frequency dependence of the weighting

functÍon W(4r,0). However if the model set does not include the true

system then the estÍmate will be biased. The bias distribution will be a

function of the design variables. We refer to lVatrlberg and Ljung (1996)

for a thorough discussion of thÍs important property for open loop

estirnation.

Idannerfelt (1981) discusses estimation of simple parametric models

for high order systems. Equation (3.9) is derived for open loop least

squares esti¡nation. It is for instance shown that if the input spectrum

Öu has a discrete spectrum with n delta functions where n is the

number of parameters in G(q,0) then there exists a unique solution Ox

to the estirnation problem such that

tG)G(e j ,ox ( eG
tG)h

) ¡h)o

where "j are the frequencies of the spectrum of 0u. The Nyquist curves

of the true system and the model will thus coincide at the frequencies of

the input spectrum. This gives €Ln indication of the importance of the

frequency content in the input signal. Too high frequencies in the input

signal will give good models in the "wrong" frequency band. The important

frequency ba¡rd is determined by the design method for the controller a¡rd

the specifications of the closed loop system.

Discussion of the choice of prefilter

To get further insight into the bias distrÍbution problem and

guidance to choose the prefilter we make the following assumptions:
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The true process is described by

Ao(o)v(t) Bo(o)u(t) + co(a) "(t) (3.10)

where e(t) is white Gaussian noise with variance o2.

The least squares (Ls) or ma>cimum lÍkelihood (ML) nethods are used.

for the estÍn¡ation. This implies that the model is

A(q)v(t) B(q)u(t) + e(t) (Ls)

(3.11)
A(q)v(t) B(q)u(t) + c(q) e(t) (}il-)

a¡rd

The input signal to the process is generated by the fÍxed control

larv

R(q)u(t) - s(q)v(t) + r(q)yr(t) (3.12)

Using (3.12) in (3.1O) gives the closed loop system

BT CR

H = '1./^

H = C/4.

v( t)

R
o+

A
m

(Ls)

(}tr )

ã, F+ag Yr(t) + ¡-¡f33 e(t)
oooo

B
m

Ã-
m

c
vr( r) e( r)
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where we have assumed that the controller Ís chosen such that

cr(o) nr(a)Z\(C) Ís the desired pulse transfer operator from yr ro

are thus assumÍng that the control signal has the optinaly. lle

(= desired) properties, compare Quote 1..2. Sinple calculatÍons now give

ts

If we assume that yr is independent of e then the input spectrum

orr(o) I .;t("t"h) cr{"i"h) l2 0""{")

u(r)
ABom
E- Ã-om

+

vr(r) -
cs

o
A

m

e( t)

co{.i"h) s(ui'h)

E t

t22lo

2o

Further

(ui"h) s (.i"h)
orr"(c')

lr{ui"h)

For the least squares case we now have

B(" ioh o

c
o

Ë
)e

G

H
o

wlui"h,e¡ = lHp("it'h) l("i"h) I

2
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The unknown paraneters are the coefficients in the A a¡¡d B

polSmomials. The e>rpression for (3.9) is still quite complex and we will

first consider the noise free case (ø = O). Then

r/h
v(e) (3.13)

-r/h

The pa.rt lc-l crtto l2+", is a frequency dependent weighting, which

determines the frequency band where the estimate should be good.

The desired closed Ioop transfer operator G,n is in general

constant for low frequencies and the gain decreases for frequencies above

the bandwidth. Further Go is in general of low pass character. ThÍs

implies that C:l wiII be of hÍgh pass character.'o
For the design of controllers it is important to have a good model

around the cross over frequency. This implies that the prefilter to

should be chosen such that the weighting is largest around the desired

cross over frequency and low at frequencies above the ba¡rdwidth. Hp

should thus in general be of low pass t]æe or band pass t5pe with the pass

band around the desired cross over frequency. If 
"O 

= 1 then the

estimator will concentrate on too high frequencÍes, which is a well lorown

property of least squares estimation, see Ljung ana Säaersträm (1983).

From (3.9) it is seen that the noise wiII introduce a bias and more

weight on higher frèquencies. This rnakes it even more important that a

proper weighting is introduced through prefiltering of the data before it

is used in the estimator. It is also seen that the desired bandwidth of

the closed loop system r,vill influence the bias through G,n and Àm. A

high desired bandwÍdth implies that the model must be accurate over a

large frequency ba¡rd. It nray then be necessary to Íncrease the order of

J llco - ul2 ¡c;l crl2 lnol20ur{")a"
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the model. Finally increased input power or excitatÍon wiII decrease the

relative influence of the noÍse terms. This again in accorda¡rce with

rules of thumb in Ídentification.

Direct or indirect adaptive alEorithms

In the literature it is sometimes, without arty quantitative results,

argued that direct adaptive controllers are more robust than indirect

methods. One reason why this may be correct is given in Quote 1.1.

Direct methods are essentially based on predÍction of the output and

direct estirnation of the paraneters in the predictor. Prediction error

methods are robust even for low order models. Also numerical difficulties

in the design calculations are avoided in direct methods.

Sone direct methods are, however, based on cancellation of process

zer:os, for Ínstant the basic self-tuning regulator in Ast"ärn and

Wittenmark (1973). These controllers are not suitable for nonminimum

phase systems. A modification of the basic self-tuner is given Ín Asträm

a¡rd Wittenrnark (1985) where moving average controllers a,re obtained by

increasing the prediction horizon. There will not be any zeîo

cancellations if the prediction horizon Ís increased sufficiently.

Examples

A couple of examples wiII illustrate the analysis given above.

Example 3.1. - Influence of desired closed loop bandwidth.

The example is taken from Wittenmark a¡¡d Asträm (1980). The process

is a fourth order system.

c(s) 4(s+1)
1

The process is identified as a" second order sampled data system
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using least squares estination without arry prefiltering of the sigrrals.

The controller is of the form (3.12) a¡rd has the same structure as a

digital PlD-controller. The desired closed loop response is given as the

model

cn(s)
2

(¡)

;t + ,rú,s ;?

wÍth f = 0.7. The system a¡rd the controller was simulated for different

values of o. Figure 3.2 shows the output and the control signal when the

parameters have converged. For 6 < 0.3 the control is good. The

behaviour starts to deteriorate when ú, is increased to O.4 and O.45.

The reason is the dÍfficulty for the estimator to find a good second order

nodel of the process in the desired frequency band. The example shows

that too sÍrnple models can restrict the perforrnance of the system, due to

modelling errors.

vvv
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u=0 3 üJ=01. UJ=0 1.5

5

0 0

5 -5
50s 50s 0

Fígure 3.2: The output and the control signals for a fourth order

system when t¡ = 0.3, 0.4 and 0.45. For o = 0.3 the

cont.rol ís good but the performanee starts to deteriorat,e

when oJ is increased.

Summarv

The aim of the signal processing is to guarantee that the true

process ca¡r be well approximated by the prejudice model such as (3.11)

within the desired bandwidth of the closed loop system.

To summarize we carr draw the following conclusÍons from the

discussion above,

I

5

0

0 50s
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Eliminate lorown t]æes of dlsturba¡¡ces such as d(t) in (2.1) using

high pass or notch filters. The effect of the disturbance d(t) is

then elÍminated through the choice of the regulator structure.

Compa.re MÍddleton et al (1985).

use a prefilter 
"o 

such that the process ceur be well described by

the model withÍn the desired frequency ba¡¡d.

pass or band pass type.

Hp should be of low

Increase in the desired closed loop perfornì€utce in general implies

that higher order models should be used.

Estimate only when there is useful infornation in the system i.e.

when the system is excited, compare Asträm (1983a). This poinr is

further discussed in Section 4.
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4. TI{E ESTIUÀTOR ÄLGORITHM

The previous section discussed the shaping of the data to adjust it
to the prejudice model. In this section we will discuss implementation of

recursive estÍnation algorithms. IYe will prirnarily discuss prediction

error methods for the least squares or maximum likelihood models (3.11).

The process nodel is now written as

v( r) TI (t)0 + e(t) (4.1)

where

[-v(t-l),çr(t) . 

^, 
-"(.-tt") u( t-d) ,

, e1 t-n") I

, u(t-d-n')

T

e(t-l),

fa- ... a b-I n oa

The variables .i, bi a¡rd

C pol¡momials respectively.

"1 "' "r, ]

.i are the coefficients of the A,

Further

0 b
c%

B and

€( r) y(r) - *r(.)ô(.)

rf c- and ê are omitred from 0 a¡rd q(t) respectivery we gerI

the least squares model.

The most widespread way to estimate 0 is defined by the least

squares estimate

e( r) ô1.-r) + r((t)(v(t) - er(t¡â1t-r¡¡ (4.2)
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K( t) P(t-l)ç(t)(l * pr(t)p(r-1)ç(t))-1 (4.3)

P( t) [P(r-1) - p(t-l)ç(t)(À + *t(.)r(t-l)ç(t))-1çr(t)p(t-t)].â.

(I - K(t)çr(r))P(r-1)./À (4.4)

We have also introduced the exponential forgetting factor À. It Ís

assumed that o < À ( 1. If À < 1 then there will be ¿m e>(ponentÍal

weighting of old data and the estimator will minÍmize the loss function

N

l=I
r,N-i eli¡

If À = I' then P(t) + 0 as the number of data poÍnts is increased.

This is not a" desirable feature in an adaptive regulator since the

estinator will then not be able to follow changes Ín the process.

The drawback with a constant forgetting factor as in (4.3) and (a.a)

is that the estimator has a fading memory. As a rule of thumb we can say

that the memory window is

1--Ñ

IÞ"tapoints further away are weighted by less than 0.1.

E:çonential forgetting works well only if the process is properly

excited alI the time. There are several problems with exponential

forgetting when the excÍtation of the process changes. A tlæical

sÍtuation is when the n¡ain source of excÍtation is changes in the set

point. There rnay then be long periods with no excÍtatÍon a¡rd the P

na.trix will grow. This c€ut be called estimator wÍndup (compare with

2
N

mem
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integrator windup Ín conventional integral control). The problem can be

understood from (4.4). The negative term on the right hand side

represents the reduction in uncertainty due to the last measurement. If
there is no inforrnatÍon in the last measurement then P(t-l)g(t) will be

zero and (4.4) reduces to

P( t+1) P( t),rÀ

P(t) will thus grow exponentially until 9 changes if À < 1. rf there

Ís no excitation for a long period of time then p(t) may be very large.

since P(t) also influences rhe gain in (4.3) rhen rhere rnay be Iarge

changes in the estimated parameters when new information is coming into

the system, for instance when the reference value changes. The estimator

windup r¡ay then cause a burst in the output of the process.

Other ways have therefore been suggested to tackle this problem:

CovarÍa¡rce resetting, see Goodwin and Sin (1994)

TÍme variable forgetting factors, see Fortescue et aI

Wellstead a¡rd Sanoff (1981)

Constant trace algorithm, see Irving (1979)

(1e81),

Directional forgetting, see llagglund (1985)

The nain Ídea with these modifications is to ensure ttrat P stays

bounded-

Following the advice in Quote 1.3 it has in practice g4g! theory been

shown that Ít is advantageous to introduce a deadzone in the estirnator and

turn it off when the residual € is sufficiently small. See Egardt

(1979) Kreisselmeier and Narendra (1982) and Middl.eton er al (1995).
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One version of the regularized constant trace algorithm that has

shown good properties in e>çeriments is

e( r) â1.-r) + .(r)K(r)(v(t) - çr(.)â(t-t)) (4.5)

r(( r)

P( t)

P( r) t1

Flt-t) - a(t)

P(t) +
trlF1t) )

1 + e(t)

P(t-l)e(t)(1 + elt¡rrlt-l)ç(t) + ã ç(t)rç(r))-1 (4.6)

Tr-1 t t P r-1
P(t-l)e(t) + c a(t) e( r)

T (4.7)

(4.8)
"27

= 
{;

lv(t) - rt(t¡ô1t-r¡l > z¡
a( r)

where 
"1

the noise.

(4.e)
otherwise

> O, c, ) O, c ) O a¡rd 
^ 

is a¡r estÍmate of the nagnitude of

Typical values for the parameters can be, Middleton (1986).

ã e ¡0.1,0.51

"L/"2 x 10
4

T
99'C

1

T-99c I

for t¡rpical values of çTç.

If "2 is used in (a.8) then it is not necessary to use õ.

A new approach to the problem of estimator windup is given in

Ilagglund (1985). The main idea Ís to forget infornation only in the

directions in which new information is gathered. The followÍng estimator

is then obtained.
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P( t-t )e( t)
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Tv(t) + e(t) P(t-l) e(t)(1-ø(t)v(t))

r-1. T
P(t-1) - t t P t-1

-1
P( t-l )e( t)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

K( t)

P(t)
[v( t) - cü(t)l + ç(t)

o( t)

1

*'P*

< v-l
1

o

od

ø. ( Oct-

1

;Ç
1

ç'Pg
ø. )d

0 ( c¿. (d-

(od

-1v+

+ 1

,tP,
o

*Tt,

ç( tlrP(!-1 )P( r-1 )P( t-l )ç( t)
TI ( t)P(t-1 )P( t-l)e( r)

a

ôd( r)
s( t)T

P( t-l )2p( t)

a.-d ( t) v( t) -1 (4.15)

The estimates will then converge to values such that P(t) = â.I
where a should be chosen as a small value. Finally v(t) should be an

estinate of the variance of € Ín (a.1).

The covariance matrix P in (4.4), (4.7) or (4.L2) should be a

s¡rmmetric positive definite matrix. A straight forward implementation of

the equations nay lead to numerical problems in the same way as when

implementing l(alman ff lters. The algorÍthrn will become more numerical

robust if U-D factorízation or squ¿Ìre root algorithms are used for the

updating of the P-rnatrix, see Bieman (t977).

ôd( r)

ôd(r) s(t)tP(r-1)ç(t) - 1
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E:<ampIe

The following example from Wittenmark a¡rd Àsträm (1984) illusrrares

the problem with estinator windup.

Example 4. L Estimator windup

Let the process to be controlled be descrÍbed by

y(t)-o.sy(r-1) u(t - 1)

It is desired that the pulse transfer operator from the reference

signal to the output has a pole in o.7 and that the gain is unity. This

is achieved with the controller

u( r) 0.3y(r) - 0.35y(t-1) * r"(r) - 0.su.(t-l)

The process is controlled using an direct pole placement algorithrn

where the pa.rarneters in the controller are estimated. Figure 4.1 shows

the diagonal elements of the P-matrix (4.4) or (4.12) when different

estination schemes are used. The reference signal is a square wave with

unit nngnitude and period 1OO up to time 30O. Àfter that the reference

sigrral is constant. In Figure 4.la the estimation algorithn described by

(4.2) (4.4) is used wirh À = 0.99. t{hen rhe reference signal Ís

constant a¡rd the output has settled there is no information in the

measurements. The variance will then start to increase. In Figure 4.1b

the estination routine described by (4.10) (4.15) is used. The

variances of the estimates now settle on constant values and there is no

estimator windup.

vvv
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a) 10

0

b) t

250 5
Time

Figure 4.1: The diagonal elements of the P-r¡atrix when controlling the
process in E:<ample 4.L a)constant e:q)onential forgetting factor À = o.gg.
b)Forgetting accordfng ro Hågglund (19g4).

P(¡.¡)

P I( ¡)
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5. S.À}TPLED DATA OONTROL ASPECTS

Design and

books on digital

Wittenrnark (19e4).

implementation of digital controllers are treated in
control, see for instance Chapter 15 of Asträm a¡rd

The following points are discussed in this section

Antialiasing filters

CtroÍce of sampling period

Antireset windup

AntialiasinE filters

In all dÍgital control applications it Ís important to have a proper

filtering of the sigrrals before they are sampled. Ihe to the aliasing

problem cor¡rected with the samplÍng procedure it is necessary to elininate

all frequencies above the Nyquist freguency before sampling the signals.

High frequencies rnay otherwise be interpreted as low frequencies and

introduce disturbances in the controller. This implies that the signal

conditioning is related to the choice of the sampling interval. Suitable

choices of antialiasing filters are second or fourth order Butterworth,

ITAE (Integral Time Absolute Error) or Bessel filters. They consist of

one or two cascaded filters of the form

cf(s)
2

úJruæ
Let "B be the desired bandwidth of the filter. The damping f

and the frequency û, should then be chosen according to Table 5.1.
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Danping and natural frequency of second and fourth order

Butterworth, ITAE, and Bessel filters. The filters have the

bandwidth 
"B

Order
Butterworth ITAEú'B r ú'B r

Besselú'B r

2

4

1 o.7L

0.38

0.92

1

L.48

0.83

o.7L

o.32

o.83

L.27 0.87

1.59 o.62

o.96

1

1 421

Figure 5.1 shows the Bode diagrams for fourth order Butterworth,

ITAE and Bessel filters and Figure 5.2 shows the step responses for the

same filters.

The antialiasing filter with then naturally low pass filter the

outputs of the process. The filter wiII also make if possíble for the

estinator to get good models in correct frequency bounds. Compare the

discussion of tO in SectÍon 3. This feature of discrete time systems

may be one reason why the t5rpe of diffÍcutties discussed by Rohrs et al

(1982) were first noticed in continuous tÍme adaptive controllers. The

natural filtering obtained through the sampling helps the estimator to get

better models.

How will the a¡rtialiasing fÍlter influence the sampled data model?

The Besel filter is a good approximation of a tine delay to frequencies up

to around oB. For instance the fourth order filter can be well

approximated by a time delay of

T 2Tr

fr"d ["]
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Fisure 5.1 Bode diagrams for fourth order Butterworth, ITAE, and Bessel

filters. All filters have the bandwidth "B = 1 rad/s.
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Fieure 5.2 Step responses for fourth order Butterworth, ITAE, a¡rd Bessel

f ilters. AII f ilters have the bandwidth ,B = 1 rad../s-
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This implies that the sampled data model can be assumed to contain

additional time delay compared to the process. .Assume that the bandwidth

of the filter is chosen as

lcur{i'r) I
p

where 
"N = ttlh is the Nyquist frequency and Cu.(s) is the transfer

function of the fÍlter. The attenuation p may be in the range 0.1.

o.5.

Table 5.2 gives some values of Ta as a function of p.

Table 5.2: The time delay T¿ as a function of the desired attenuation

P at the Nyquist frequency for a fourth order antÍaliason

Bessel filter.

o*./ar" TÞ d

0.05

o.1

o.2

o.5

o.7

3.1

2.5

2.O

1.4

1.0

2.1 h

L.7 h

1.3 h

0.9 h

o.7 h

The

frequency,

This will

table shows that, for a fixed sampling period or Nyquist

the delay will increase if a higher attenuation is desired.

also imply that the antialiasÍng filter must be taken into
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account when estimating the process model and in the design. For

reasonable values of P we can approxinate the filter with a delay of one

or two sampling periods. Sampled data models of systems with time delays

are discussed in Ä,sträm and Wittenmark (1984). It is shown thar rhe

sampled data model then is such that the À a¡rd B polSmornials are of

the same order. (Opposed to systems without time delays where the order

of B is one less than the order of A. ) The price for having the

antialiasing filter is that one extra parameter has to be estimated in the

model- However, if the desired closed loop bandwidth is less than

O.O5 - O.1 times the band-wÍdth of the antialiasing filter than the

filter will have very tittle influence on the process nodel around the

desÍred cross over frequency.

fn nnny process industry applications it can be sufficient to have

Iong sampling periods (1-30 minutes). A corresponding antialising filter
will then have quite large component values. This problern can be avoÍded

by nraking a faster sampling. wÍth an appropriate antialising filter, and

then filter the sampled sigrrals digitally to remove frequencies above the

Nyquist frequency for the control sigrral.

Example 5.1. - The effect of the antialiasing filter.

Let the process to be controlled by given by

c(s) ;TS+TI

which can be a model for a normalized notor. The system is sampled with

h = O.5 a¡rd the desired closed loop system is assumed to be described by

"* = L rad/s and f,n = 0.7. A controller of the form (3.12) is then

deternined. The output of the system is disturbed by a sinusoidal signal

Í.e. that the measured sigrral is

Ym(t) = y(t) + aU sin(out)

1
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a) î'

-t

c)z

t

-l

b)z
II

1

d)

-t

r)z

-1

FiEure 5.3 Output, reference value a¡rd control sigrral for the system in

Example 5.1.

a) .d = O, "B = 25 rad/s b)a. = O.1, ar, = 25 rad,/s

c) .d = O.1, "B = 6.28 rad/s d) .d = 0.1, 
"B - 6-28 rad./s

and the regulator compensated for a delay of 0.7 h

e) aU = 0, ar" = 2.51 rad,/s and the regulator compensated for

a delay of 1.7 h.

f) same as e) but with ad = O.1.

e) r,

I I

0
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This sigrral is filtered through a fourth order Bessel filter wÍth the

bandwidth oB. Figure 5.3 shows the influence of the disturbance a¡rd the

antialising filter. Figure 5.3 a and b show the influence of the

disturbance when 
"B = % rad/s, which is far too high for the disturbance

frequency. The Nyquist frequency is 6.28 rad/s. The disturba¡rce

frequency, which is 11.3 rad/s, is folded and gives rise to a" low

frequency disturbance in the sampled measurement. The controller then

tries to compensate this "imaginary" frequency. FÍgure 5.3 c shows the

effect of the antialising filter when 
"B = "N. The distubance is srnaller

but still seen in the input and the output. The filter wiII, however,

also influence the closed loop performance. Figure 5.3 d shows the same

e>rperiment as in Figure 5.3 c but when the controller is nodified. The

controller is now determined for the true process and when the

antialiasing fÍIter is approximated by a delay of o.7 h, compare Table

5.2. The closed loop response is improved compared to Figure 5.3 c.

Firrally Figure 5.3 e and f shows the case when rB = a"/2.5 and when the

filter is approximated by a" delay of L.7 h in the design of the

control Ier.

The experiments show that it is important to use an antialiasing

filter and that the filter has to influence the design. It is, however,

sufficient to approximate the filter by a time delay. This will in the

adaptive case simplify the estirnation a¡rd the desÍgn.

vvv

CtroÍce of Samplins PerÍod

The choice of the sampling period depends on the design algorithm as

well as of the desired closed loop performa.nce. Ore rule of thumb that is

useful for deterministic design methods is to let the sampling interval h
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be chosen such that

oh x 0.25 - 1

where úr^ is the natural frequency of the dominating poles of the desiredo

closed loop system. rf the dominating pole is real one can use

h/T x 0.25-1

o

o

where

that

To is the time consta¡rt of the domÍnating pole. These rules imply

there will be 5-2o samples on a step response of the closed loop

system.

The choice of the sampling interval must also be influenced by the

disturbances acting on the system. If the process is disturbed by

occationally large disturbances it nay be necessary to shorten the

sampling interval to ensure that the disturbance is detected and

compensated for as soon as possible.

For stochastic design methods it is of Ímportance how the

perforrnance of the closed loop system is measured. One way is to consider

the output and input signal variances at the sampling instances. Another

and from a practical point of view more relevant measure is to consider

the average variance of the continuous tÍme output of the process. The

reason is tltat the variance in "steady state" is periodic over the

sampling period. The periodicity is a fundamental property of sampled

data systems due to the periodÍcity of the changes in the control signal.

The variance c€LTt be large at times between the samplÍng Ínstances. See de

Souza and Goodwin (1984) and Lennartsson (1996). This periodical
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behaviour can be considered as the stochastic correspondence to hidden

oscillations in determinÍstic sampled data control. Lennartsson (19g6)

discusses the choices of the design method and the sampling period. One

conclusÍon is that Ít is advisable to choose a design method that has a

continuous time counterpart for Ínstance linear quadratic control. The

sampling period c¿¡n be chosen as the rules of thumb above for
deterministic controller design with a preference for the higher linit of

the sampling frequence.

The choÍce of the sampling interval also influences if the

antialiasing filter should be taken into account in the design. First
assume tlrat the sampling frequency is high (2O - 1OO times) compared with

the desired closed loop bandwidth.

It is then not necessary to take the filter into account when rnaking

the design. The amplitude of the fÍIter is about unity and the phase lag

is neglectable at the cross over frequency. The influence of the filter
c¿rn, however, not be neglected in the design if the Nyguist frequency is
only a little bit larger than the desired cross over frequency. This in
general implies that the estirnated model must be of higher order tha¡r Íf a

higher sampling rate Ís chosen. Compare E><ample 5.1. This is therefore

one motivation why the sampling period should be quite short. Other

aspects on the choice of the samplÍng interval is dÍscussed in Goodwin

(1e85).

Antireset windup

In the discussÍon in Section 3 it was pointed out that unlarown

levels, ramps etc are taken care off by introducing integrators in the

controller. An integrator is a¡r unstable system and it nray happen that

the integral term in the controller can assume very large values if the
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control signal is limited when there still is a¡r error. ThÍs is called

reset windup or inteErator windup. Special precautions must be taken in
order to avoid this. Different ways are discussed in Asträrn and

Wittenmark (1984) for different controller structures.

Consider a regulator described by

-1RX q ).'( t)( - s*(q-1)y(r) + T*(c-l)y"(r)

The regulator may contain unstable modes. One way

reset windup problem is to rewrite the regulator by adding

to both sides. This gives
{{o-1)"{t)

*
A ( 1 lllto-l) - n*(q-t)) ,r(t) - s*(q-t)"(.) * r*(q-l)v"(t)q )"( t)

to solve the

(5.1)

o

el{a-1)"{t)

Antiset compensation is then obtained by using

1{to-1) - n*(q-t)),r(t) - s*(q-t)"(t) + rxlq-l)v"{t)
u( r) sat (v(t)) (5.2)

where sat(') is the saturation function. This regulator is equivalent to

(5.1) when the control signal does nor sarurare A: is chosen as a
stable pol¡momÍal and can be interpreted as the observer dJmamics of the

controller. À block diagram of (5.2) is shown in Figure 5.4.
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Fiqure 5.4 Block diagram of (5.2) which avoids integrator wÍndup.
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6. TI{E INTERACTION BETWEEN ESTII{ATION AND OONTROL

The estimation, design and controller Ínplementation have been

discussed as seperate subjects Ín the previous sections. We have,

however, also seen that there is a strong interaction between these parts.

For instance the desired closed loop perforrnance will influence the

frequency content of the input a¡rd output signals. This wiII then

influence the properties of the estimator. This interactÍon is complex as

discussed above. One way to decrease the interaction is to follow the

advice in Quote 1.5 and use a low gain in the adaptation loop. This will
exaggerate the two time scale property indÍcated in Figure 2.L. A low

gain in the adaptation Ioop nrakes it, however, more difficult to follow

fast varÍations in the parameters of the process.

The estirnator gain is determÍned by the e>(ponential f orgetting

facror À in (4.2) (4.4), c, and "Z in (4.5) (4.8) or a" in

(4.10) - (4.15).

Startup procedures

There are several ways in which €u1 adaptive algorithm c€ìn be

initialized depending on the a priori Ínfornation about the process.

One case is if nothing is lsxown about the process initially. The initial
values of the parameters in the estimator can then be chosen to zero or

such that the initial controller is a proportional or integral controller

wÍth low gain. The inputs and outputs should be scaled such that they are

of the same Inagnitude. This wÍIl improve the numerical properties of the

estimator and controller parts. The initial value of the covariance

matrix P can be 1-1OO times a unit matrix. These values are usually

not critical since the estirnator will obtain reasonable values in a short
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period of time. The e>çerience is that 1O-5O samples are sufficient to

get a good controller. During the initial phase it ca¡r be advantageous to

add a perturbation sÍgnal to speed up the convergence of the estinator.

One way to initialise an adaptive algorithm Ís to use the auto-tuner

discussed in Asträm a¡rd Hågelund (1984). The auto-tuner generares a

suitable input signal and will give safe initial values for the pa.rameters

Ín the controller. Another situation occurs if the process has been

controlled before with a" conventional or an adaptive controller. The

initial values should then be such that they correspond to the controller
used before.

Sometimes it is Ímportant to have as small disturba¡rce as possible

at the start up of the adaptive controller. There are then two

precautions that can be taken. First the estimator can be used for some

sampling periods before the adaptive contoller Ís allowed to apply arry

control actions. During that perÍod a safe simple controller should be

used. It is also possible and desirable to limit the control signal.

The allowable nngnitude ca¡r be very snall during the first period of time

and can then be increased when better parameter estimaters are obtained.

This kind of "soft" start-up can for instance be used in Asea's Novatune,

see Bengtson and Egardt (1984). A drawback of having small input sig¡als

is that the excitation of the process will be poor and that it will take

longer time to get good parameter estimates.

fnf luence of the desi€rn varÍables

In the previous sections we have tried to isolate the influences of the

different design variables by either looking at the estÍmation or the

controller design. Ife wiII now illustrate the interdependence through a
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simulated e:<ample.

Example 6. L

Consider again the process and output disturbance in Example 5.1. The

antialiasing filter is a fourth order Bessel filter. The ¡mrameters in
the process Ís estimated from the model

y(t)+aly(t-l)+arv(t-2) = bru(t-l)+bru(t-2)+bru(t-3)+e(t) (6. 1)

i.e. it is assumed that the antialiasing filter can be approximated by a

delay that is less than one sarnpling period.

The controller is designed based on the estÍmated para¡neters such that the

corresponding continuous closed loop system is described by the natural

frequency r, and the damping fm. Figure 6.1a shows the output and

reference value when "B = 25 tad,/s, 
"B = 1, f,n = O.Z and .d = O.

Figure 6.1b shows the influence of the disturbance. Compare Figure 5.3b.

Figure. Figure 6.2 is the same as Figure 6.1 but when "B = lllh = arr.

Compare Figure 5.3d. These two figures show that the antialiasing filter
is necessary and that it is autonratically compensated for by using the

model structure (6.1). Figure 6.3a shows a simulation of the adaptive

controller when u, = 2.s!2. The closed loop response is not satisfactory

since (6.1) will not give an adequate model. To be able to use a lower

"B it would be necessary to change (6.1) to

y( t)+aly( t-1 )+arb( t-2)=bru( t-2)+bru( t-3)+bnu( t-4)+e( t)

i.e. to introduce an extra time delay in the estin¡ated nodel. Compare

Table 5.2.
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Figure 6.3b shows the same as Figure 6.3a but when om=O.5. By decreasing

the desired closed frequency it is possible to again get a good model

using (6.1). This implies that there is an intricate relationship between

the desired response, the model structure, a.rrd the frequency content of

the input original.

vvv

-z

b)2

-t

FiEure 6.1 Output a¡rd reference value when using an adaptive controller
on the process Ín Example 6.1.
a) h=0-5, "m=1, ,B=25, .d=0

b) same as (a) but wÍth .d=0.1

a)

x,

I

-l

I

e
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FÍEure 6.2 Same as Figure 6.1. but with 18=6 28
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-2
5



-6.6-

a)

b)L

¡,

I

-t

I

t

-l

FiEure 6.3 Output and reference value when using an adaptive controller
on the process in E:<arnple 6.1.
a) h=0.5, "r=1, 6n.=2.512, ad=Q.1

b) Same as (a) bur with om=0.5.
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I
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7. æNCI,USTONS

In this paper we have discussed different filters that are used in

the implementation of adaptive controllers. The filters and signal

processing that are used are quite different in the different parts of the

controller. The filters play ¿ur inportant role in order to obtain a

robust implementation of ¿ur adaptÍve controller. The algorithm will
contain the following steps:

Analog antialiasing f i lter

Second or fourth order filter

Nyguist frequency r¡lh, where

bandwidth below or around the

the sampling perÍod.

with

his

HÍgh pass filtering of the sampled signal to remove low frequency

disturbances such as levels and ramps. I(:rown sinusoidals ca¡r also

be removed using notch filters. The Iower limit of the passband

should be at least one decade below the desired cross over

frequency

Low pa.ss f i I ter wi th HO to get a weighting in the estimator in an

approprÍate frequency band.

Estirnate a low order model using an algorithm with time variable

exponential forgetting, regularized constant trace or directional

forgetting. The estinator should also contain a dead zone. Finally

the estinrator r¡ay contain a "switch", which detects if the system is

sufficiently excited. The "switch" can measure the power in

different frequency bands and controls if the estimator should be

active or not.
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The design method for the controller should be robust against

unmodelled d5mamics. Level and ramp disturbances are elininated by

introducing integrators in the controller. The control signal

should be limited a¡rd the controller should include antireset

windup.

A more detaÍIed block diagrarn with added filters

7 .L.

AII these points contaÍn choices of parameters.

the previous sections contain guidelines that can

selection of the parameters"

is given in Figure

The discussions in

be used for the

0

Ir

FiEure 7.1 An adaptive control system with added
filters. 0 are the estimated parameters
a¡rd 'q the controller parameters.

H fpEstimatorDesign

H I{.pf

S4mpler(s)G
aaProcessRegulator

u
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