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ABSTRACT

This note gives a summary and some illustrative examples of the role
of different filters in adaptive control that are needed to make a robust
implementation. In adaptive controllers it is important to filter the
signals in order to avoid erroneous results in the estimation part of the
algorithm. In discrete time adaptive controllers as well as in sampled
data controllers it is important to filter the signals to avoid the
aliasing problem. An attempt is made to quantify and illustrate some of

the "folklore"” in this area.
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) i3 INTRODUCTION

Adaptive controllers are now more and more used in industrial
applications, see the surveys Astr;m (1983b) and Seborg et al (1986). The
convergence and stability issues for some classes of adaptive controllers
were solved in the late 1970's for ideal cases such as known orders and
delays of the process. The robustness properties of adaptive controllers
have been debated intensively during the last years. The concencus of
these discussions seems to be that adaptive control can be useful, but
that extreme care must be taken when implementing the controllers.
Different fixes have been suggested based partly on experience and partly
on analysis.

The implementation and robustness issues are therefore of great
importance. This report discusses some of these aspects. The signal
processing, i.e. the choice of different filters, in adaptive controllers
is treated. An attempt is made to quantify some of the "folklore" around
the implementation issues. We will concentrate on discrete time adaptive
controllers. Some of the signal processing issues are then the same as
for implementation of fixed parameter sampled data controllers. The
problems are for instance the choices of the sampling period, the
antialiasing filters and the specifications. These choices are, however,
also influenced by the process, which now is unknown. The estimator part
of the adaptive controller is also of great importance since it must
produce accurate process models in appropriate frequency bands. Finally
the interaction between the estimator and the controller may cause
problems. Practical issues have been discussed for instance in Astrom
(1983a,b), Rohrs et al (1984) and Wittenmark and Astrom (1984). The
following quotations give some general advices and statements about the

implementation.
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Quote 1.1 (Ljung and Soderstrom (1983), p 139-140)
N even if the true system is more complex than our models, the
identification procedure will pick the best approximation of the system.

The recursive algoirthm converges to that approximation that is best

under the input signal used during the experiment."

Quote 1.2 (Ljung and Soderstrom (1983), p 267)
"It is thus good practice to choose an input for the identification
experiment that as far as possible is similar to inputs to be used for the

system at later occasions."

Quote 1.3 (Astrom (1983a), p 986)

"Do not estimate unless the data is good."

Quote 1.4 (Astrom (1983a), p 986)

beneficial to use a design method which gives a high gain at low
frequencies and use adaptation only to find the characteristics around the

cross—over frequency."

Quote 1.5 (Rohrs et al (1984), p 653)

"Keep the adaptation gain of the system small and let the adaptation

proceed slowly.”

Quote 1.6 (Rohrs et al (1984), p 653)
"Design the nominal control loop so that it is robust and that approximate

model matching can be achieved even in the presence of unmodelled

dynamics.”
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These quotations and references pinpoints some of the fundamental
issues when implementing adaptive controllers. In this paper we will try
to quantify these advices and arrive at an overall view of the
implementation problem. The adaptive control problem is first defined in
Section 2. The true process is in general more complex than the estimated
model. To get a good approximation it is important to adapt the estimator
to the selected class of models. This problem is discussed in Section 3.
The starting point is a generalization (or rather adaptation) of results
in Wahlberg and Ljung (1986) and Gevers and Ljung (1986). Based on these
results some general rules of thumb can be given. Section 4 gives a
discussion of the implementation of the recursive estimator. One main
question is how to judge when the received data contains useful
information. Sampled data control aspects as the choices of antialiasing
filters, sampling interval and the bandwidth compromise is discussed in
Section 5. The interaction between the estimator and the controller is
finally treated in Section 6. This section also contains an example,
which illustrates the points discussed in the report. Sections 7 and 8

contain conclusions and references.

The contributions of this paper relative to previous work are:

a) An overall treatment of the implementation problem.
b) Quantitative rules of thumb are given to help the implementor.
c) Both analysis and examples are used to illustrate the different
points.
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2. THE ADAPTIVE CONTROL PROBLEM

An adaptive controller can often be structured as in Figure 2.1.
The system consists of two loops: an immer loop with a conventional
regulator and an outer loop which changes the parameters in the regulator.
The regulator parameters are calculated based on the specifications on the
closed loop system and the estimated parameters. Even if the system is
adaptive the user has to specify for instance what the specifications
should be and which design method that should be used. These choices
depend on the physical insight into the process and the disturbances
acting on the process. This implies that even an adaptive controller can
not be implemented without knowledge about the process. This knowledge is
used as for the case with a known system to determine suitable
specifications and the structure of the controller. The process is also
more complex than the estimated model. This implies that we have to
decide over which frequencies we want to have a good approximation,

compare Quotes 1.4 and 1.6.

Specifications > Design . Pai?mezer
' ions estimator
Calculat
Regulator
parameters Disturbances

l

Command
Signal — Output
Regulator —l— Process e
8 Control
signal

Figure 2.1 Structure of an Adaptive Control System
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To be more specific we will assume that the process is described by

the single input single output discrete time model

y(t) = G (a)u(t) + H_(q)e(t) + d(t) (2.1)
where
B (a)
G, (a) = A_(@) (2.2)
C(a)
HO(q) = ]—)o(_q) (2.3)

and y and u are the output and input of the process. Notice that we
allow possible antialiasing filters to be a part of the process Go(q).
The pulse transfer operator Go(q) is also a function of the sampling
period h. This dependence is, however, surpressed in the formulas. The
distubance e(t) is assumed to be a sequence of independent random
variables with zero mean values and variances 02. The second disturbance
term d(t) is a purely deterministic signal of known form but unknown
magnitude. It may be a level, a ramp or a sinusoidal signal.

It is assumed that the desired specifications of the closed loop
system is given as the bandwidth or in terms of a desired closed loop

model

B (q)
Cul@) = A (@) (2.4)

Adaptive controllers can be divided into direct and indirect methods. In
the direct methods the controller parameters are estimated directly. This
implies that the design block in Figure 2.1 is very simple. The

specifications are in this case used to make a reparameterization of the
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”

model, see for instance Astrom and Wittenmark (1980). In the indirect
methods we first estimate the parameters in a model such as (2.1). The
estimated parameters are then used in the design calculations as if they
are the true ones.

Based on the specifications and the knowledge of the process we will
in the following sections discuss the implementation problem and how to

make an appropriate filtering of the signals.
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3. AD,JUSTMENT TO THE PRE,JUDICE MODEL

When determining the structure and complexity of a controller we
always have some more or less well defined "feeling” of how the process
can be described. For instance its complexity, amount of time delay,
types of disturbances. The purpose of the estimator part of the adaptive
controller is to find the parameters of this prejudice model. In this
section we will discuss how to adjust the measured data (Sic!) to the

prejudice model.

Elimination of known types of disturbances

The known types of disturbances was represented by d(t) in (2.1).

d(t) can be thought of as generated by pulses into known dynamic systems.

It is assumed that it is not known a priori when the pulses occur and the

amplitude of the pulses. Such signals are called piecewise deterministic

signals, see Astr;m and Wittenmark (1984, Ch 6). This type of disturbance
can be generated by

D

| (a
d(t) = Hy(q)s (t) = Dd(—q)ﬁs(t)

where 6S(t) is a sequence of pulses and Hd(q) a filter. For instance

if d(t) is an unknown level then

- 49
Hd(q) = q il 1
The signal d(t) can be eliminated (except for occational pulses or

finite length disturbances) by filtering the input and the output by

Dy(a)-
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The disturbance annihilation filter Dd(q) is of high pass or notch

type. It can then be advisable to use a filter of the form

(3.1)

where Dé(q) is a stable polynomial and Hf has a high attenuation at
high frequencies. Filtering by Hf will then remove low frequencies in
the signal and eventually also some other frequencies within a narrow
band. The filter Hf(q) should thus have an amplitude curve as in Figure
3.1. The lower break frequency Wep depends on the desired cross over
frequency of the closed loop system. As a rule of thumb o should be

fe

at least one decade below the cross over frequency.

fe fh

/N

Figure 3.1 Amplitude curve for the disturbance

rad/s

annihilation filter Hf(q).

The high frequency break frequency will be discussed later in this

section. In several references it is pointed out that it is advantageous
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for the estimation to eliminate levels in the signals. This is the case

when -d(t) is constant. See for instance Peterka (1984). These
recommendations are thus followed if the filter Hf is used.
With the filter H we will remove d(t) from the data. The

£

estimator will thus not be confused by low frequency drift or disturbances
at specific frequencies. These disturbances are instead taken into
consideration when the controller is designed by using the internal model
principle, see for instance Garcia and Morari (1982). This implies that a
level is removed by having an integrator in the controller and so on. See
Section 5. Notice that the regulator is still using the unfiltered

sampled signal.

The bias distribution problem

In the following it is assumed that d(t) = 0 in (2.1) or that this

disturbance has been properly eliminated by the filter H, in (3.1).

f
In the remaining part of this section we will analyze how the
asymptotic estimates of the parameters in the process are influenced by
design variables such as
. input signal and reference signal spectrum
- model orders and noise structure
- prefilters
- desired closed loop performance
We will follow the lines of thought for open loop estimation given
in Wahlberg and Ljung (1986). Their results are modified to suit the
adaptive control problem. One result in this section is a limiting
expression for the loss function that is minimized by the estimator. This

result can then be used for a more quantitative discussion in the

frequency domain of the influence of the design variables. Similar
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aspects are also discussed in Gevers and Ljung (1986).
The purpose of the estimator is to provide an estimate of the
process and eventually also the noise characteristics. Let the prejudice

model be described by
y(t) = G(q.68)u(t) + H(q,0)e(t) (3.2)

where the pulse transfer operators G and H are parameterized by the
unknown parameters 6. The structure such as model orders and time-delays
are parts of the parameterization. The model (3.2) includes for instance

ARMAX models of different orders.

The estimation is done by comparing the model with observed data. The one

step ahead prediction of y(t + h) can be written as

y(t+h|t, 8) = H(q.0)"' G(q.8) u(t+h) + (1 - H(q.8) 1)y(t+h)

(3.3)

Notice that the right hand side is a function of data observed up to
and including time t. Define the prediction error
y(t + h) - y(t + h]t. 0)
(G (@) - G(a.6))H(q.0) ™" u(t + 1)
+ (H () - H(q.0))H(q.0) 'e(t+1) + e(t+1)

= AG(q.0)H(q.8) lu(t+1)

€(t + h, t, 0)

+ AH(q.0)H(q.0) lu(t+1) + e(t+1)

(3.4)

and the filtered prediction error
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Gr(t,t—h,B) = Hp.(q)e(t,t—h,e) (3.5)

where Hp(q) is a stable causal prefilter. The estimate is now obtained

by using the criterion

=

1 e 2
Vy(8) = Nizlef(1h,(1—1)h,6) (3.6)

and the estimate is given by

BN . argemin VN(G) (3.7)

A

The estimate GN in (3.7) is influenced in a complex way by many

factors, design variables, such as sampling period, model structure
prefilter and number of observations. To be able to draw any conclusions

we will first derive the limiting pulse transfer operator estimate as the

number of data tends to infinity.

Introduce the weighting function

H (eimh) 2
H(eimh,e)

W(w.8) = (3.8)

In Gevers and Ljung (1986) it is shown that the limiting estimate as

N oo ijs

0" = arg min V(6)
0
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where
m/h
V() = J B (P, 8)¢(w)B(e 1M, 0)W(w, 6)dw (3.9)
-w/h
where
" G(eiwh,e) _G (eiwh)
B(e'“™,0) = oh ° . h) (3.10)
H(e'“",0) - Ho(ew
and
¢ (0) ¢ ()
(o) = [ u ue ]
b,©@) 9 ()
where ¢u(w) is the input spectrum, ¢ue(w) is the cross—spectrum

between the input and the noise e and ¢e(w) = 02. The conditions for
the excistence of ¢u and ¢ue are given in Gevers and Ljung (1986).

In Wahlberg and Ljung (1986) it is assumed that ¢uv(w) = 0, since
the estimation is done in open loop. In the adaptive case we must take
into consideration that the input signal is generated through feedback.

The simplicity of (3.9) is misleading since it is in fact a
complicated function of 6 and the design variables. Qualitatively we
can say that the estimate is weighted in frequency. This implies that the
estimates will depend on the experiment conditions. To be able to draw
further conclusions it is necessary to be more specific with respect to
model structure and feedback.

If the parameterization is such that the true process model

{Go(q), Ho(q)} is among the model set {G(q,6), H(q.6)} then the
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estimate will under weak conditions converge to the true parameters
independent of the filtering and the frequency dependence of the weighting
function W(w,0). However if the model set does not include the true
system then the estimate will be biased. The bias distribution will be a
function of the design variables. We refer to Wahlberg and Ljung (1986)
for a thorough discussion of this important property for open loop
estimation.

Mannerfelt (1981) discusses estimation of simple parametric models
for high order systems. Equation (3.9) is derived for open loop least
squares estimation. It is for instance shown that if the input spectrum
¢u has a discrete spectrum with n delta functions where n is the
number of parameters in G(q,0) then there exists a unique solution 9*
to the estimation problem such that

G(eiw'h,e*) _ Go(eimjh)
where wj are the frequencies of the spectrum of ¢u' The Nyquist curves
of the true system and the model will thus coincide at the frequencies of
the input spectrum. This gives an indication of the importance of the
frequency content in the input signal. Too high frequencies in the input
signal will give good models in the "wrong" frequency band. The important
frequency band is determined by the design method for the controller and

the specifications of the closed loop system.

Discussion of the choice of prefilter

To get further insight into the bias distribution problem and

guidance to choose the prefilter we make the following assumptions:
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- The true process is described by

A (@¥(t) = B (a)u(t) + C_(a) e(t) (3.10)

where e(t) is white Gaussian noise with variance 02.
- The least squares (LS) or maximum likelihood (ML) methods are used

for the estimation. This implies that the model is

A(qQ)y(t) = B(q)u(t) + e(t) (LS)
(3.11)
A(q)y(t) = B(q)u(t) + C(q) e(t) (ML)
and
H= 1/A (Ls)
H = C/A (ML)

- The input signal to the process is generated by the fixed control

law

R(q)u(t) = - S(a)y(t) + T(a)y (t) (3.12)

Using (3.12) in (3.10) gives the closed loop system

BT C R
y(8) = rx+5s V(Y *Tr+gs e
[¢] (o] (o] o

Bm COR
A yr(t) + A e(t)
m m

]
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where we have assumed that the controller 1is chosen such that
Gm(q) = Bm(q)/Am(q) is the desired pulse transfer operator from y. to
y. We are thus assuming that the control signal has the optimal

(= desired) properties, compare Quote 1.2. Simple calculations now give

AO Bm COS
u(t) = g v.(t) - = e(t)
O m m

If we assume that Y, is independent of e then the input spectrum

is
- - 2
0,0 = | 6™ ¢ (™M by (0)
C (eiwh) S(eimh) 5 o
* | = ioh I o
A (')
Further

iwh ioh
G 8 (")

] = = :
ue(w) Am(elwh)

For the least squares case we now have

D
~—
|

. ] 2
_ IHp(elwh) A(elwh)l
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The unknown parameters are the coefficients in the A and B
polynomials. The expression for (3.9) is still quite complex and we will

first consider the noise free case (o0 = 0). Then

w/h

= 2 (1. 2 2

vV(e) = I |AG0—B| |c;0 cml ]le ¢yr(m)dm (3.13)
-w/h

The part |G;1 Gme|2¢yr is a frequency dependent weighting, which
determines the frequency band where the estimate should be good.

The desired closed loop transfer operator Gm is in general
constant for low frequencies and the gain decreases for frequencies above
the bandwidth. Further G0 is in general of low pass character. This
implies that G;l will be of high pass character.

For the design of controllers it is important to have a good model
around the cross over frequency. This implies that the prefilter H
should be chosen such that the weighting is largest around the desired
cross over frequency and low at frequencies above the bandwidth. H
should thus in general be of low pass type or band pass type with the pass
band around the desired cross over frequency. If H =1 then the

p
estimator will concentrate on too high frequencies, which is a well known

property of least squares estimation, see Ljung and S;derstrgm (1983).
From (3.9) it is seen that the noise will introduce a bias and more
weight on higher frequencies. This makes it even more important that a
proper weighting is introduced through prefiltering of the data before it
is used in the estimator. It is also seen that the desired bandwidth of
the closed loop system will influence the bias through Gm and Am. A

high desired bandwidth implies that the model must be accurate over a

large frequency band. It may then be necessary to increase the order of
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the model. Finally increased input power or excitation will decrease the
relative influence of the noise terms. This again in accordance with

rules of thumb in identification.

Direct or indirect adaptive algorithms

In the literature it is sometimes, without any quantitative results,
argued that direct adaptive controllers are more robust than indirect
methods. One reason why this may be correct is given in Quote 1.1.
Direct methods are essentially based on prediction of the output and
direct estimation of the parameters in the predictor. Prediction error
methods are robust even for low order models. Also numerical difficulties
in the design calculations are avoided in direct methods.

Some direct methods are, however, based on cancellation of process
zeros, for instant the basic self-tuning regulator in Astr;m and
Wittenmark (1973). These controllers are not suitable for nomnminimum
phase systems. A modification of the basic self-tuner is given in Astr;m
and Wittenmark (1985) where moving average controllers are obtained by
increasing the prediction horizon. There will not be any zero
cancellations if the prediction horizon is increased sufficiently.
Examples

A couple of examples will illustrate the analysis given above.
Example 3.1 — Influence of desired closed loop bandwidth.

The example is taken from Wittenmark and Astrom (1980). The process

is a fourth order system.

1

el o mm———
=) (s + 1)4

The process is identified as a second order sampled data system



- 3.12 -

using least squares estimation without any prefiltering of the signals.
The controller is of the form (3.12) and has the same structure as a
digital PID-controller. The desired closed loop response is given as the
model

2
©

G(S) =
m s2 + 2(lws + w2

with ( = 0.7. The system and the controller was simulated for different
values of . Figure 3.2 shows the output and the control signal when the
parameters have converged. For w < 0.3 the control is good. The
behaviour starts to deteriorate when ® is increased to 0.4 and 0.45.
The reason is the difficulty for the estimator to find a good second order
model of the process in the desired frequency band. The example shows
that too simple models can restrict the performance of the system, due to
modelling errors.

vvv



-3.13 -

w=03 w=04 w=0 LS
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0 0- o=
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0 50s 0 50s 0 50s

Figure 3.2: The output and the control signals for a fourth order
system when w = 0.3, 0.4 and 0.45. For w = 0.3 the
control is good but the performance starts to deteriorate

when ® 1is increased.

Summary

The aim of the signal processing is to guarantee that the true
process can be well approximated by the prejudice model such as (3.11)
within the desired bandwidth of the closed loop system.

To summarize we can draw the following conclusions from the

discussion above.
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Eliminate known types of disturbances such as d(t) in (2.1) using
high pass or notch filters. The effect of the disturbance d(t) is
then eliminated through the choice of the regulator structure.
Compare Middleton et al (1985).

Use a prefilter Hb such that the process can be well described by
the model within the desired frequency band. Hﬁ should be of low
pass or band pass type.

Increase in the desired closed loop performance in general implies
that higher order models should be used.

Estimate only when there is useful information in the system i.e.
when the system is excited, compare Astr;m (1983a). This point is

further discussed in Section 4.
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4, THE ESTIMATOR ALGORITHM

The previous section discussed the shaping of the data to adjust it
to the prejudice model. In this section we will discuss implementation of
recursive estimation algorithms. We will primarily discuss prediction
error methods for the least squares or maximum likelihood models (3.11).

The process model is now written as

y(£) = ¢ (£)8 + €(t) (4.1)
where
¢ (t) = [¥(e-1). oo . y(t=n) u(t-d), ... . u(t-d-n)
€(t-1), ... ,E(t—nc)]
o = [a ... b c c ]

The variables ai, bi and c¢ are the coefficients of the A, B and

i

C polynomials respectively. Further

]

€(t) = y(t) - ¢ (t)B(¢)

If 4 and € are omitted from 6 and ¢(t) respectively we get
the least squares model.

The most widespread way to estimate 6 is defined by the least

squares estimate

8(t) = 6(t-1) + K(t)(y(t) - ¢ (£)8(t-1)) (4.2)
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K(t) = P(t-1)p(t)(A + ¢ (t)P(t-1)p(t)) . (4.3)

P(t) = [P(t-1) - P(t-1)o(t)(A + ¢  ()P(t=1)o(t)) Lol (£)P(t-1)T/A

(I - K(t)¢ (£))P(t-1)/A (4.4)

We have also introduced the exponential forgetting factor A. It is
assumed that O < A { 1. If A <1 then there will be an exponential

weighting of old data and the estimator will minimize the loss function

N .
s A1 g(y)
=1

i

If AN=1 then P(t) -0 as the number of data points is increased.
This is not a desirable feature in an adaptive regulator since the
estimator will then not be able to follow changes in the process.

The drawback with a constant forgetting factor as in (4.3) and (4.4)
is that the estimator has a fading memory. As a rule of thumb we can say
that the memory window is

Nmem = T%X
Datapoints further away are weighted by less than 0.1.

Exponential forgetting works well only if the process is properly
excited all the time. There are several problems with exponential
forgetting when the excitation of the process changes. A typical
situation is when the main source of excitation is changes in the set
point. There may then be long periods with no excitation and the P

matrix will grow. This can be called estimator windup (compare with
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integrator windup in conventional integral control). The problem can be
understood from (4.4). The negative term on the right hand side
represents the reduction in uncertainty due to the last measurement. If
there is no information in the last measurement then P(t-1)¢(t) will be

zero and (4.4) reduces to

P(t+1) = P(t)/A

P(t) will thus grow exponentially until ¢ changes if A < 1. If there
is no excitation for a long period of time then P(t) may be very large.
Since P(t) also influences the gain in (4.3) then there may be large
changes in the estimated parameters when new information is coming into
the system, for instance when the reference value changes. The estimator
windup may then cause a burst in the output of the process.

Other ways have therefore been suggested to tackle this problem:

= Covariance resetting, see Goodwin and Sin (1984)

- Time variable forgetting factors, see Fortescue et al (1981),
Wellstead and Sanoff (1981)

= Constant trace algorithm, see Irving (1979)

- Directional forgetting, see Hagglund (1985)

The main idea with these modifications is to ensure that P stays
bounded.

Following the advice in Quote 1.3 it has in practice and theory been
shown that it is advantageous to introduce a deadzone in the estimator and
turn it off when the residual € is sufficiently small. See Egardt

(1979) Kreisselmeier and Narendra (1982) and Middleton et al (1985).
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One version of the regularized constant trace algorithm that has

shown good properties in experiments is

8(t) = 8(t-1) + a(©)K(t)(y(t) - ¢ (£)B(t-1)) (4.5)
K(t) = P(t-1)e(t)(1 + ¢(t) P(t-1)9(t) + T o(t)Te(t))™!  (4.6)
T
P(t) = P(t-1) - a(t) P-De(t)e (OP(E]) (4.7)
1+ o(t)TP(t-1)9(t) + © o(t) o(t)
P(t) = o P eyl (4.8)
er(P(t))
{E ly(t) - ¢ (£)8(t-1)| > 24
a(t) 3 (4.9)
0 otherwise

where ¢, >0, ¢, 20, ¢>20 and A is an estimate of the magnitude of

1 2

the noise. Typical values for the parameters can be, Middleton (1986).

a € [0.1,0.5]

4

/ ~ 10

€17¢2
¢T¢ *c » 1

poec ~ 1

for typical values of ¢T¢.

If C,

A new approach to the problem of estimator windup is given in

is used in (4.8) then it is not necessary to use c.

Hagglund (1985). The main idea is to forget information only in the
directions in which new information is gathered. The following estimator

is then obtained.
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B8(t) = 6(t-1) + K(t)(y(t) - o(t)T8(t-1)) (4.10)

P(t_l)‘P(t) (411)

K(t) T
v(t) + o(t)" P(t-1) o(t)(1-a(t)v(t))

T
P(t) = P(t-1) - eot)e(t)ole) Ple-d) (4.12)
[v(t) © - a(t)] * + ¢(t) P(t-1)¢(t)

- oy <0 .
4 0« ad < T
¢ Po
a(t) = o ; ) S a (4.13)
T T Cog v+
¢ Po ¢ Py ¢ Py
~ 0 a, Y v_1 + 1
d T
¢ Pp

o(£) "P(t-1)P(t-1)P(t-1)p(t)
@' (£)P(t-1)P(t-1)p(t)

6,(t) = (4.14)
d T 2
e(t)” P(t-1)7(t)
-1 64(t)
ad(t) = v(t) * + T (4.15)
64(t) o(t) P(t-1)¢(t) - 1
The estimates will then converge to values such that P(t) = a-I

where a should be chosen as a small value. Finally v(t) should be an
estimate of the variance of € in (4.1).

The covariance matrix P in (4.4), (4.7) or (4.12) should be a
symmetric positive definite matrix. A straight forward implementation of
the equations may lead to numerical problems in the same way as when
implementing Kalman filters. The algorithm will become more numerical
robust if U-D factorization or square root algorithms are used for the

updating of the P-matrix, see Bieman (1977).
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Example

The following example from Wittenmark and Astr;m (1984) illustrates
the problem with estimator windup.
Example 4.1 - Estimator windup

Let the process to be controlled be described by

y(t) - 0.9y(t - 1) = u(t-1)

It is desired that the pulse transfer operator from the reference
signal to the output has a pole in 0.7 and that the gain is unity. This

is achieved with the controller

u(t) = 0.3y(t) - 0.35y(t-1) + uc(t) - 0.5uc(t—1)

The process is controlled using an direct pole placement algorithm
where the parameters in the controller are estimated. Figure 4.1 shows
the diagonal elements of the P-matrix (4.4) or (4.12) when different
estimation schemes are used. The reference signal is a square wave with
unit magnitude and period 100 up to time 300. After that the reference
signal is constant. In Figure 4.la the estimation algorithm described by
(4.2) - (4.4) is used with A = 0.99. When the reference signal is
constant and the output has settled there is no information in the
measurements. The variance will then start to increase. In Figure 4.1b
the estimation routine described by (4.10) - (4.15) is used. The
variances of the estimates now settle on constant values and there is no
estimator windup.

vvv
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al 105
0 T 1
b/ 10
Pli, i)
0 - |
0 250 500
Time

Figure 4.1: The diagonal elements of the P-matrix when controlling the
process in Example 4.1 a)Constant exponential forgetting factor A = 0.99.

b)Forgetting according to Hagglund (1984).
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5. SAMPLED DATA CONTROL ASPECTS

Design and implementation of digital controllers are treated in
books on digital control, see for instance Chapter 15 of Astrom and

Wittenmark (1984). The following points are discussed in this section

- Antialiasing filters
= Choice of sampling period

- Antireset windup

Antialiasing filters

In all digital control applications it is important to have a proper
filtering of the signals before they are sampled. Due to the aliasing
problem connected with the sampling procedure it is necessary to eliminate
all frequencies above the Nyquist frequency before sampling the signals.
High frequencies may otherwise be interpreted as low frequencies and
introduce disturbances in the controller. This implies that the signal
conditioning is related to the choice of the sampling interval. Suitable
choices of antialiasing filters are second or fourth order Butterworth,
ITAE (Integral Time Absolute Error) or Bessel filters. They consist of
one or two cascaded filters of the form

2
W

G (S) =
£ s2 + 2lws + w2

Let wp be the desired bandwidth of the filter. The damping (

and the frequency  should then be chosen according to Table 5.1.
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Table 5.1 Damping and natural frequency of second and fourth order
Butterworth, ITAE, and Bessel filters. The filters have the

bandwidth

B
Butterworth ITAE Bessel
Order w/wB C w/wB C w/wB C
2 1 0.71 1 0.71 1.27 0.87
4 1 0.38 1.48 0.32 1.59 0.62
1 0.92 0.83 0.83 1.42 0.96

Figure 5.1 shows the Bode diagrams for fourth order Butterworth,
ITAE and Bessel filters and Figure 5.2 shows the step responses for the
same filters.

The antialiasing filter with then naturally low pass filter the
outputs of the process. The filter will also make if possible for the
estimator to get good models in correct frequency bounds. Compare the
discussion of Hb in Section 3. This feature of discrete time systems
may be one reason why the type of difficulties discussed by Rohrs et al
(1982) were first noticed in continuous time adaptive controllers. The
natural filtering obtained through the sampling helps the estimator to get
better models.

How will the antialiasing filter influence the sampled data model?
The Besel filter is a good approximation of a time delay to frequencies up
to around W, . For instance the fourth order filter can be well

B

approximated by a time delay of

2w
T = =— [s]
BQB
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re 5.1 Bode diagrams for fourth order Butterworth, ITAE, and Bessel

Fi

1 rad/s.

(I)B =

All filters have the bandwidth
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All filters have the bandwidth

re 5.2 Step responses for fourth order Butterworth, ITAE, and Bessel
filters.
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This implies that the sampled data model can be assumed to contain
additional time delay compared to the process. Assume that the bandwidth

of the filter is chosen as

IGaa(in) I = P
where oy = m/h  is the Nyquist frequency and Gaa(s) is the transfer
function of the filter. The attenuation J may be in the range 0.1 -
0.5.

Table 5.2 gives some values of T, as a function of .

d
Table 5.2: The time delay Td as a function of the desired attenuation
B at the Nyquist frequency for a fourth order antialiason

Bessel filter.

N "B d
0.05 3.1 2.1 h
0.1 2.5 1.7 h
0.2 2.0 1.3 h
0.5 1.4 0.9 h
0.7 1.0 0.7 h

The table shows that, for a fixed sampling period or Nyquist
frequency, the delay will increase if a higher attenuation is desired.

This will also imply that the antialiasing filter must be taken into
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account when estimating the process model and in the design. For
reasonable values of B we can approximate the filter with a delay of one
or two sampling periods. Sampled data models of systems with time delays
are discussed in Astr;m and Wittenmark (1984). It is shown that the
sampled data model then is such that the A and B polynomials are of
the same order. (Opposed to systems without time delays where the order
of B is one less than the order of A.) The price for having the
antialiasing filter is that one extra parameter has to be estimated in the
model . However, if the desired closed loop bandwidth is less than
0.05 - 0.1 times the band-width of the antialiasing filter than the
filter will have very little influence on the process model around the
desired cross over frequency.

In many process industry applications it can be sufficient to have
long sampling periods (1-30 minutes). A corresponding antialising filter
will then have quite large component values. This problem can be avoided
by making a faster sampling, with an appropriate antialising filter, and
then filter the sampled signals digitally to remove frequencies above the
Nyquist frequency for the control signal.

Example 5.1 - The effect of the antialiasing filter.

Let the process to be controlled by given by

1

G(s) s(s+1)

which can be a model for a normalized motor. The system is sampled with
h = 0.5 and the desired closed loop system is assumed to be described by
©, = 1 rad/s and fm = 0.7. A controller of the form (3.12) is then

determined. The output of the system is disturbed by a sinusoidal signal

i.e. that the measured signal is

ym(t) = y(t) + aj sin(mdt)
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a) 2 b) 2,
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Figure 5.3 Output, reference value and control signal for the system in

Example 5.1.
a) ay = 0, wp = 25 rad/s b)ad = 0.1, wg = 25 rad/s
c) ay = 0.1, wp = 6.28 rad/s d) ay = 0.1, wg = 6.28 rad/s

and the regulator compensated for a delay of 0.7 h
e) ay = 0, v = 2.51 rad/s and the regulator compensated for
a delay of 1.7 h.

f) same as e) but with ay = 0.1.



- 5.8 -

This signal is filtered through a fourth order Bessel filter with the
bandwidth wg- Figure 5.3 shows the influence of the disturbance and the
antialising filter. Figure 5.3 a and b show the influence of the
disturbance when wg = 25 rad/s, which is far too high for the disturbance
frequency. The Nyquist frequency is 6.28 rad/s. The disturbance
frequency, which is 11.3 rad/s, is folded and gives rise to a low
frequency disturbance in the sampled measurement. The controller then
tries to compensate this "imaginary" frequency. Figure 5.3 c shows the

effect of the antialising filter when w The distubance is smaller

B = Yy
but still seen in the input and the output. The filter will, however,
also influence the closed loop performance. Figure 5.3 d shows the same
experiment as in Figure 5.3 c¢ but when the controller is modified. The
controller is now determined for the true process and when the
antialiasing filter is approximated by a delay of 0.7 h, compare Table
5.2. The closed loop response is improved compared to Figure 5.3 c.
Finally Figure 5.3 e and f shows the case when wg = wN/2.5 and when the
filter is approximated by a delay of 1.7 h in the design of the
controller.

The experiments show that it is important to use an antialiasing
filter and that the filter has to influence the design. It is, however,
sufficient to approximate the filter by a time delay. This will in the
adaptive case simplify the estimation and the design.

vvv

Choice of Sampling Period

The choice of the sampling period depends on the design algorithm as
well as of the desired closed loop performance. One rule of thumb that is

useful for deterministic design methods is to let the sampling interval h
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be chosen such that

oh =~ 0.25-1
o

where N is the natural frequency of the dominating poles of the desired

closed loop system. If the dominating pole is real one can use

T =~ 0.25 -1
o]

where To is the time constant of the dominating pole. These rules imply
that there will be 5-20 samples on a step response of the closed loop
system.

The choice of the sampling interval must also be influenced by the
disturbances acting on the system. If the process is disturbed by
occationally large disturbances it may be necessary to shorten the
sampling interval to ensure that the disturbance is detected and
compensated for as soon as possible.

For stochastic design methods it is of importance how the
performance of the closed loop system is measured. One way is to consider
the output and input signal variances at the sampling instances. Another
and from a practical point of view more relevant measure is to consider
the average variance of the continuous time output of the process. The
reason is that the variance in "steady state" is periodic over the
sampling period. The periodicity is a fundamental property of sampled
data systems due to the periodicity of the changes in the control signal.
The variance can be large at times between the sampling instances. See de

Souza and Goodwin (1984) and Lennartsson (1986). This periodical
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behaviour can be considered as the stochastic correspondence to hidden
oscillations in deterministic sampled data control. Lennartsson (1986)
discusses the choices of the design method and the sampling period. One
conclusion is that it is advisable to choose a design method that has a
continuous time counterpart for instance linear quadratic control. The
sampling period can be chosen as the rules of thumb above for
deterministic controller design with a preference for the higher limit of
the sampling frequence.

The choice of the sampling interval also influences if the
antialiasing filter should be taken into account in the design. First
assume that the sampling frequency is high (20 - 100 times) compared with
the desired closed loop bandwidth.

It is then not necessary to take the filter into account when making
the design. The amplitude of the filter is about unity and the phase lag
is neglectable at the cross over frequency. The influence of the filter
can, however, not be neglected in the design if the Nyguist frequency is
only a little bit larger than the desired cross over frequency. This in
general implies that the estimated model must be of higher order than if a
higher sampling rate is chosen. Compare Example 5.1. This is therefore
one motivation why the sampling period should be quite short. Other
aspects on the choice of the sampling interval is discussed in Goodwin

(1985).

Antireset windup

In the discussion in Section 3 it was pointed out that unknown
levels, ramps etc are taken care off by introducing integrators in the
controller. An integrator is an unstable system and it may happen that

the integral term in the controller can assume very large values if the
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control signal is limited when there still is an error. This is called

reset windup or integrator windup. Special precautions must be taken in

order to avoid this. Different ways are discussed in Astrom and

Wittenmark (1984) for different controller structures.

Consider a regulator described by
»* -1 »*_ -1 » -1
R'(q u(t) = -8(a Jy(t) + T(qa Iy,.(t)

The regulator may contain unstable modes. One way to solve the
reset windup problem is to rewrite the regulator by adding A:(q_l)u(t)

to both sides. This gives

A u(e) = (Aaa ) - R*@™) u(t) - $*@ (o) + T Dy (6)

(5.1)
Antiset compensation is then obtained by using
A v(e) = (A - B (e - s*a o) + a0
u(t) = sat (v(t)) (5.2)

where sat(+) is the saturation function. This regulator is equivalent to
»*

(5.1) when the control signal does not saturate. A° is chosen as a

stable polynomial and can be interpreted as the observer dynamics of the

controller. A block diagram of (5.2) is shown in Figure 5.4.
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— T*

-S*

Figure 5.4 Block diagram of (5.2) which avoids integrator windup.
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6. THE INTERACTION BETWEEN ESTIMATION AND CONTROL

The estimation, design and controller implementation have been
discussed as seperate subjects in the previous sections. We have,
however, also seen that there is a strong interaction between these parts.
For instance the desired closed loop performance will influence the
frequency content of the input and output signals. This will then
influence the properties of the estimator. This interaction is complex as
discussed above. One way to decrease the interaction is to follow the
advice in Quote 1.5 and use a low gain in the adaptation loop. This will
exaggerate the two time scale property indicated in Figure 2.1. A low
gain in the adaptation loop makes it, however, more difficult to follow
fast variations in the parameters of the process.

The estimator gain is determined by the exponential forgetting

factor A in (4.2) - (4.4), c, and <c

1 in (4.5) - (4.8) or a in

2
(4.10) - (4.15).

Startup procedures

There are several ways in which an adaptive algorithm can be
initialized depending on the a priori information about the process.
One case is if nothing is known about the process initially. The initial
values of the parameters in the estimator can then be chosen to zero or
such that the initial controller is a proportional or integral controller
with low gain. The inputs and outputs should be scaled such that they are
of the same magnitude. This will improve the numerical properties of the
estimator and controller parts. The initial value of the covariance
matrix P can be 1-100 times a unit matrix. These values are usually

not critical since the estimator will obtain reasonable values in a short
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period of time. The experience is that 10-50 samples are sufficient to
get a good controller. During the initial phase it can be advantageous to
add a perturbation signal to speed up the convergence of the estimator.

One way to initialise an adaptive algorithm is to use the auto-tuner
discussed in .Astr;nl and H;gglund (1984). The auto-tuner generates a
suitable input signal and will give safe initial values for the parameters
in the controller. Another situation occurs if the process has been
controlled before with a conventional or an adaptive controller. The
initial values should then be such that they correspond to the controller
used before.

Sometimes it is important to have as small disturbance as possible
at the start up of the adaptive controller. There are then two
precautions that can be taken. First the estimator can be used for some
sampling periods before the adaptive contoller is allowed to apply any
control actions. During that period a safe simple controller should be
used. It is also possible and desirable to limit the control signal.
The allowable magnitude can be very small during the first period of time
and can then be increased when better parameter estimaters are obtained.
This kind of "soft" start-up can for instance be used in Asea’s Novatune,
see Bengtson and Egardt (1984). A drawback of having small input signals
is that the excitation of the process will be poor and that it will take

longer time to get good parameter estimates.

Influence of the design variables

In the previous sections we have tried to isolate the influences of the
different design variables by either looking at the estimation or the

controller design. We will now illustrate the interdependence through a
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simulated example.

Example 6.1

Consider again the process and output disturbance in Example 5.1. The
antialiasing filter is a fourth order Bessel filter. The parameters in

the process is estimated from the model

y(t)+a1y(t—1)+a2y(t—2) = blu(t—1)+b2u(t—2)+b3u(t—3)+e(t) (6.1)

i.e. it is assumed that the antialiasing filter can be approximated by a
delay that is less than one sampling period.

The controller is designed based on the estimated parameters such that the
corresponding continuous closed loop system is described by the natural
frequency W and the damping (m. Figure 6.1a shows the output and
reference value when wp = 25 rad/s, wg = 1, (m = 0.7 and ay = 0.
Figure 6.1b shows the influence of the disturbance. Compare Figure 5.3b.
Figure. Figure 6.2 is the same as Figure 6.1 but when wp = I/h = N
Compare Figure 5.3d. These two figures show that the antialiasing filter
is necessary and that it is automatically compensated for by using the
model structure (6.1). Figure 6.3a shows a simulation of the adaptive '
controller when w, = 2.512. The closed loop response is not satisfactory

B

since (6.1) will not give an adequate model. To be able to use a lower

wp 1t would be necessary to change (6.1) to
y(t)+a1y(t-1)+a2b(t—2)=b2u(t—2)+b3u(t—3)+b4u(t—4)+e(t)
i.e. to introduce an extra time delay in the estimated model. Compare

Table 5.2.
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Figure 6.3b shows the same as Figure 6.3a but when wm=0.5. By decreasing
the desired closed frequency it is possible to again get a good model
using (6.1). This implies that there is an intricate relationship between
the desired response, the model structure, and the frequency content of

the input original.
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Figure 6.1 Output and reference value when using an adaptive controller
on the process in Example 6.1.

a) h=0.5, (-Jm=1. (.JB=25, ad=0

b) same as (a) but with ad=0.1
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Figure 6.2 Same as Figure 6.1 but with

w,=6.
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58 150

Figure 6.3

5@ 160 150

Output and reference value when using an adaptive

on the process in Example 6.1.
a) h=0.5, wm=1, wB=2.512, ad=0.1

b) Same as (a) but with mm=0.5.

controller
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7. CONCLUSIONS

In this paper we have discussed different filters that are used in
the implementation of adaptive controllers. The filters and signal
processing that are used are quite different in the different parts of the
controller. The filters play an important role in order to obtain a
robust implementation of an adaptive controller. The algorithm will

contain the following steps:

. Analog antialiasing filter
Second or fourth order filter with bandwidth below or around the

Nyguist frequency w/h, where h 1is the sampling period.

. High pass filtering of the sampled signal to remove low frequency
disturbances such as levels and ramps. Known sinusoidals can also
be removed using notch filters. The lower limit of the passband
should be at least one decade below the desired cross over

frequency.

. Low pass filter with Hb to get a weighting in the estimator in an

appropriate frequency band.

. Estimate a low order model using an algorithm with time variable
exponential forgetting, regularized constant trace or directional
forgetting. The estimator should also contain a dead zone. Finally
the estimator may contain a "switch", which detects if the system is
sufficiently excited. The "switch” can measure the power in
different frequency bands and controls if the estimator should be

active or not.
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The design method for the controller should be robust against
unmodelled dynamics. Level and ramp disturbances are eliminated by
introducing integrators in the controller. The control signal
should be limited and the controller should include antireset

windup.

A more detailed block diagram with added filters is given in Figure

All these points contain choices of parameters. The discussions in

the previous sections contain guidelines that can be used for the

selection of the parameters.

.._._fl__
Design Estimator [® Hpr
HH d
£ e
n p | l
Ir
—l
Regulator Process Gaa(s) Sampler .__?
u

Figure 7.1 An adaptive control system with added
filters. 0O are the estimated parameters
and 7 the controller parameters.
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