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AN ADAPTIVE POLE PLACEMENT CONTROLLER

BASED ON POLE-ZERO PARAMETERIZATION

B. Wittenmark*

R.J. EvansT

ABSTRACT

The pole placement design principle provides a good way of
determining a closed loop system with desired properties. The method has
been used in adaptive contexts for many years. A drawback of the method
is, however, that the polynomial formulation may lead to robustness
problems because of the sensitivity with respect to the coefficients of
the polynomials. Further, unless all process zeros are cancelled a set of
linear equations has to be solved at each step in time. In this paper an
attempt is made to avoid these two problems. The sensitivity of the
polynomial formulation is avoided by parameterizing the model in the poles
and zeros, which are estimated on-line. With the plant expressed in this
form it is possible to parameterize the controller such that the solution
of the Diophantine equation corresponds to the solution of a triangular
system of equations. The controller parameters can thus be computed

recursively without extensive computations.
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1. INTRODUCTION

Many different schemes for adaptive control have been suggested in
the literature. Two good survey papers are Kstr;m (1983) and Seborg et al
(1986). Most adaptive controllers can be regarded as a parameter
estimator combined with a design procedure. The parameters are updated
regularily, mostly at each sampling interval. The design problem is also
resolved as soon as new parameters are obtained. To simplify computation,
the models are sometimes reparameterized such that the new model contains
the regulator parameters explicity. Such approaches are called direct
adaptive control schemes. The advantage is a simplification of the design
step. The disadvantage of these methods is that they are usually
restricted to systems with a stable inverse i.e. minimum phase systems,
because the zeros of the open loop system are cancelled in the design.
See for instance Goodwin and Mayne (1987) for a discussion of continuous
time model reference adaptive control. The pole placement design
principle is an indirect method based on the solution of a Diophantine
equation, see XStr;m and Wittenmark (1984). The solution of the
Diophantine equation is essentially the same as solving a set of linear
equations. The numerical properties of the calculations are highly
dependent on the order of the system and the location of the open loop
poles and zeros. If there are multiple poles or zeros close to the unit
circle (in the discrete time case) then the solution is sensitive to
changes in the estimated parameters, which leads to robustness problems.

In this paper an attempt is made to avoid the sensitivity problem

and the computational burden of general pole placement design. The
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approach is to introduce a new parameterization of the model of the
process. The model is parameterized into poles and zeros instead of a
shift form model. This implies that the estimated model is no longer
linear in the parameters, which up till now has been regarded as an almost
essential property. The pole-zero parameterization will of course
complicate the estimation part of the algorithm, but it is argued in the
paper that there will be a total gain because of the simplification in the
design step. With the plant parameterized in the poles and zeros it is
possible to make a parameterization of the controller such that the
solution of the Diophantine equation corresponds to the solution of a
linear triangular system of equations. The controller parameters can thus
be computed recursively without extensive computations.

The paper is organized in the following way. Section 2 contains the
formulation of the problem. The estimation of poles and zeros is
discussed in Section 3. The design problem for the new parameterization
is solved in Section 4. Finally some properties of the new adaptive

algorithm are discussed in Section 5.
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2. PROBLEM FORMULATION

A new adaptive design procedure will be presented for discrete time

single-input single-output systems described by the input-output model

B(q) C(q) Z(q) C(a)
u(t-d) + e(t) = u(t-d) +
A(q) A(q) P(q) P(q)

where y and u are the output and input respectively. A, B, Z, and P

y(t) = e(t) (2.1)

are polynomials in the forward shift operator q, i.e.

AQ) = q” + aq" e s a_
B(q) = bya” + blqn_1+...+bn
2(a) = z(az))(a-zy). .. (a-2,)
P(a) = (a-py)(a-py).--(a-p,)

Further {e(t)} 1is a sequence of white noise random variables. We
will refer to B(q)/A(q) as the shift model and Z(q)/P(q) as the

pole-zero model or the factorized model. It is assumed that B(q) (Z(q))

and A(q) (P(q)) do not have any common factors. Furthermore, d > 1 and

C(q) is assumed to have all its roots inside the unit circle.

Remark 2.1.

In the model (2.1) it is assumed that the A(q) and B(q) polynomials
have the same degree and that there is a time delay of d > 1 sample
intervals. This is no loss of generality since an nth order continuous
time system with a time delay that is not a multiple of the sampling
period will give rise to a sampled data system of this form, Kstr;m and
Wittenmark (1984). If the delay is a multiple of the sampling interval
then the degree of the B-polynomial will be one less the degree of the
A-polynomial. For simplicity, we will use the structure defined above
since the other case can simply be incorporated in the proposed estimation

algorithm and in the design.




Remark 2.2.
It is also possible to formulate and solve the adaptive design
problems discussed in this paper using &-operators. The 6-operator is

discussed for instance in Goodwin et. al. (19886).

Remark 2.3.

The shift form B/A has up until now been the dominating
parameterization, since the model (2.1) is then linear in the parameters.

O

The output of the plant (2.1) is measured at each step of time and
the control signal u(t) is determined. It is assumed that the
controller is of the form

R(q) u(t) = -S(q)y(t) + T(a)y,(t) (2.2)

where Y, is the reference signal. The polynomial R is assumed to be
monic.

The specifications for the closed loop system are given in terms of

a desired closed loop model with the pulse transfer operator
B (q)

A, (q)

G (a) = (2.3)

from the reference value Y, to the output y. The closed loop system

using (2.2) in (2.1) is

BT CR
y(t) = g—— vy (t) + T—— e(t) (2.4)
q AR + BS q AR + BS
The pole placement problem is solved using the Diophantine equation
d

qd“A(Q)R(a) + B(a)S(a) = A_(a)A () = A_(q) (2.5)
or

a’P(a)R(a) + Z(a)S(a) = A (a)A (a) = A_(a) (2.6)
and

T(a) = B_(a)A (a)-t, (2.7)
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where Ao(q) corresponds to observer dynamics that are cancelled in the
pulse transfer operator from Ve to y. The parameter to is chosen such
that correct gain is obtained in (2.4). Details concerning the pole
placement design method are found in Xstr;m and Wittenmark (1984).

In the adaptive case the system (2.1) is assumed to be unknown. The
parameters are estimated based on the measured outputs and the applied
inputs. The estimated parameters are then used instead of the true ones
in the design procedure, i.e. the certainty equivalence principle is used.
The control problem is defined by the Diophantine equation (2.5) or (2.6)
and the controller (2.3). The desired closed loop characteristic
polynomial Ac can be given in factorized form (preferable) or in shift
form.

The adaptive control problem discussed in this paper thus consists
of two parts:

- Estimation of the parameters in the polynomials A(q) and B(q) or

P(q) and Z(q).

- Solution of the Diophantine equation (2.5) or (2.6).

Most adaptive pole placement controllers have previously used the
shift form B(q)/A(q). In the special case when all the process zeros are
cancelled, it is possible to make a direct adaptive controller, see for
instance Kstr;m and Wittenmark (1980). This requires, however, that the
system has all its zeros inside the unit circle, i.e. that the system is
minimum phase. Cancellation of all process zeros reduces the Diophantine
equation to a triangular system of equations, which is easy to solve. The
approach taken in this paper is to use the pole-zero parameterization,
Z(q)/P(q). This will always make it possible to convert the general pole
placement problem into the solution of a triangular system of equations,
thus reducing the computations when controlling general nonminimum phase
systems. The pole-zero parameterization also avoids the sensitivity

problems associated with the shift form.




3s PARAMETER ESTIMATION

In this section we will discuss the estimation of parameters in
factorized form. This has the disadvantage when compared to the shift
form that it is not linear in the parameters. Estimation of systems in
factorized form has been discussed in the adaptive filtering literature,
see for instance Jackson and Wood (1978) and Orfanidis and Vail (1986).
In these papers usually only all zero models are considered. Another
approach is suggested in Dasgupta et. al. (1983, 1985). Their approach is
designed for partially known systems, but can also be used for estimation
of the parameters in factorized form. The disadvantage of this approach
however, is an increase in the number of estimated parameters.

The approach taken in this paper is to base the estimation of the
poles and zeros on the Recursive Prediction Error Method (RPEM) described
in Ljung and S;derstr;m (1983). The idea is to convert the input-output
model (2.1) into a state space model with unknown parameters. The loss
function has, however, several minima depending on the ordering of the
poles and the zeros. Fortunately all local minima are equally valid for
us since we are only interested in the values of the poles and zeros and
not on their connection with our fictious state space model. The RPEM has
the advantage that it can be shown, under certain conditions, to converge
to a local minimum of the loss function.

Consider the model (2.1). In Ljung and S;derstrgm (1983) it is
shown how the system can be written in the innovations form

x(t+1,8) = F(8)x(t.6) + G(6)u(t) + K(B)v(t)

(3.1)

v(t) H(8)x(t.0) + v(t)

where v(t) corresponds to the prediction error or innovation
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y(t) - ;(tle) and K(8) corresponds to the gain in the steady state
Kalman filter. Notice that the model (3.1) is parameterized in the gain,
K(6). directly instead of an indirect parameterization through noise
covariances. The order of the state space representation (3.1) is n+d.
The parameters in (3.1) can be estimated using the following

algorithm (Ljung and Soderstrom (1983) p.127).

€t) = y(t) - y(t) (3.2a)
L(t) = P(t=1)p(£)[¥(t) P(e-1)w(t)n(t) ]! (3.2b)
P(t) = [P(t-1)-L(e)[(t) P(t-1)v(t)A(£)T LT (t)1m(t)
(3.2¢)
8(t) = 6(t-1) + L(t)e(t) (3.2d)
x(t+1) = F(8(£))x(t) + C(B(t))u(t) + K(B(£))E(t)  (3.2¢)
y(t+1) = H(B(t))x(t+1) (3.2f)
W(t+1) = [F(8(t))-K(B(£))H(B(t))W()+H(B(t).x(t) u(t). €(t))
K(B(t))D(B(t).x(t)) (3.2g)
W(t+1) = W (t+1)H(B(t)) +DT (8(¢t).x(+1)) (3.2h)
H(O(t).x(t), m(t).€(t)) = g [F(e)x+c;(e)u+1<(e)e]9_a (3.21)
D(8,x) = - [H(G)x] R (3.2j)

0=0
The forgetting factor A(t) may be either a constant O < A { 1 or can be
chosen to be time-varying
A(t) = Aok(t—l) + (I—AO) (3.3)

If A(t) 1is chosen according to (3.3) then A(t) will start at A(0)
and approach 1 with aytime constant AO.

Finally the wupdating in (3.2d) wmust be made such that
F(a) - K(a)H(a) has all eigenvalues strictly inside the unit circle.
This projection can be done simply by decreasing the length of the

correction L(t)€(t) if the updated estimates corresponds to an unstable

system.
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The next step is to transform the factorized input output model into
state space form and to compute the partial derivatives in (3.2i, j).
Since we do not know if the poles and zeros are complex or real, it is

necessary to rewrite (2.1) into the form

2 2
Z(q) 4 ¥2119%2%19 4 V2 T2
—— = oz M= (3.4)
02 2
P(q) 9 4P 9P, 9 +P Gt o

where m=n/2 if n is even and m=(n+1)/2 if n odd. The parameters

z and P o will be zero if n is odd. Fach of the second order

m2

blocks have the form shown in Figure 3.1 and can be written in the state

space form

2
Vi_1(8) | d+zg avz, |y (F)

2
4 *P119Pip

Figure 3.1 Block diagram for the ith block of (3.4)

SLCE ] I PR 2P | PO I
IXIl(t+ )] _ [ Pyq p12][X11(t)] . [ ] yi_1(t)

xi2(t+1) 1 0 xiZ(t) 0
(3.5)
x;1()
¥;(®) =70y Zp el | ol ¥i-1(t)
12

with yo(t) = u(t-d) and ym(t) = y(t). The system (3.4) can be written

as



P11 “P1o 0 ° o 20
1 0 0 0 0
2117P11 Z197P12  "Pyy “Poy Z0
0 0 1 0 0
x(t+l) = : z(t)+ | |u(t-d)
2117P11 Z127P12 Z917Pg1 ZooPyo Pp1 Ppo Z0
0 0 0 0 1 o | 0 |
(3.6)

Y(6) = [2137Py1 2197P1g: - -2y Prg Zug Pyl X + %o u(t-d)

where

x(t)T = [xll(t) x12(t) x21(t) x22(t) ... xml(t) xm2(t)]
To obtain a complete state space representation we also need to have a
small subsystem that implements the d step delay in the control signal.
This part will, however, not contain any of the parameters zij or pij'
The system (3.6) is now of the form (3.1) and the partial derivatives in
(3.21,j) are easily computed. The algorithm (3.2) can thus be used to
estimate the parameters Zij and pij i=1,...,m, j=1,2 and Z4- The poles
and zeros can then easily be computed.

The algorithm (3.2) also estimates the elements of the K-vector.
The characteristic polynomial of F(a)—K(g)H(a) is an estimate of the
noise polynomial C in (2.1).

The ordering of the second order blocks in (3.4) can of course not
be determined by the RPEM algorithm. This implies that the loss function
will have several minima, each corresponding to one permutation of the

blocks. Since we are only interested in the poles and zeros it is

unimportant to which minima the algorithm converges.
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4. FACTORIZED FORM OF THE DIOPHANTINE EQUATION

In this section we will discuss the solution of the Diophantine
equation (2.6), where P(q) and Z(q) are given in factorized form. In
Section 2 it was assumed that P and Z do not have any common factors.
To begin with we also assume that there are no multiple poles or zeros.
(That case will be treated later in the paper). Further, we have the
condition that deg P = deg Z. It will be assumed in the following that
Bm = B. The generalization to arbritary Bm is trivial. A casual
feedback cannot reduce the time delay in the system. This implies that

Ac(q) must contain the factor qd, which implies that the factor also

must be present in S. The equation (2.6) is now reduced to

P(q)R(q) + Z(q)S'(q) = A (q) (4.1)
where

deg R = n+d-1

deg S = n-1 (4.2)

deg Aé = 2n-1

The wunknown polynomials R and S’ have 2n+d-1 unknown
coefficients. We will now discuss some methods of obtaining these
polynomials.

The standard way to solve (4.1) is to compute the shift form of P
and Z and equate the coefficients for different powers of q. This leads
to a set of 2n+d-1 linear equations.

Introduce the notation

R(q) = R(q) + R'(q) (4.3)
where
R(q) = qn(qd_ +Tq Aty )

R'(q) = Ty d triq +...+T
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Considering the degrees of the polynomials in (4.1) it is easily
seen that the coefficients in the R polynomial can be computed
recursively. (Use for instance long division). We are thus left with 2n
linear equations in the polynomial form.

P(q)R"(q) + Z(q)S'(q) = A (q) - P(a)R(q) (4.4)

This polynomial equation can be solved for R' and S' provided
the P and Z (or equivalently the A and B) polynomials do not have any
common factors.

In the second approach for solving the Diophantine equation we will
use the fact that the model is given in factorized form.

If we evaluate (4.4) for q=p; and q=z;, we get two sets of n

linear equations

Z(pi) S (pi) = Ac(pi) i=1,...,n (4.5)
P(zi)R (Zi) = Ac(zi)—P(zi)R(zi) i=1l,...,n (4.6)
Remark 4.1.
For simplicity we assumed that the poles and zeros are real. If

there are complex poles or zeros we have to evaluate both the real and

complex parts of the equations. o

This will decrease the complexity of the computations by a factor of
4 since the number of operations in the solution of a set of linear
equations is proportional to m3 where m is the number of equations.

The new way to further reduce the computations and to solve (4.4)

that is proposed in this paper is to reparameterize R' and S' as

n-1

R'(a) = ) rig,(a) (4.7)
i=0
n-1

S'(a) = ) sif(q) (4.8)
i=0

where
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1 1=0
g;(@) =19 (4.9)
T T(a-z,) 1<i¢n-1
S
[ 1 i=0
£(@) =19 (4.10)
T_I(q-pi) 1<i<n-1
-.J'_

The n polynomials 8 (fi) are linearly independent and are
called the Newton coefficients of the set zZ, (pi). This representation
is always possible, see for instance Blum (1972, p.339). The polynomials

g5 and fi have the properties

-

0 1<k<i
gi(z) =19 4 (4.11)
[T (z,2)) i+1<k<n-1
. j=1 J
[0 1<k<i

(4.12)

I
v_.

f,(p)

i
[T (pp)  i+1¢kén-1
: J

-~ j=1

Now consider (4.5) with the parameterization defined by (4.8) and

(4.10). Because of the property (4.12) we get a triangular system of

equations.
Sa 3 Aé(pl)
so + 51 £1(py) = A (py)
56 + si' fl(p3) + Sé f2(p3) = A(.:(p3)
sa + . I s;_lfn_l(pn) = Ac(pn)

A similar triangular system of equations is obtained using (4.6),
(4.7), (4.9) and (4.11).

The solution of (4.4) is now reduced to two triangular nth order

system of equations. This implies that all of the coefficients s{» Ty,

i=l,...n and r. i=1l, ..., d-1 can be obtained recursively. This will

considerably simplify the computations. There are two problems that still

have to be resolved: multiple poles or zeros and complex poles and zeros.
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Multiple poles or zeros.

Assume that a pole Py has multiplicity m, . This implies that m,

equations in (4.5) are replaced by

Z(p;)S'(py) = Al(p;)

d d ]
-— |Z(q)S’' = — (A’ 4.13
& s @y, <& k@, (4.13)
m, m, .
1 d 1
Z(q)S' = A'
5 2@ (q)]q=pi T [c(q)]q=Pi
dq dq
The first equation will make it possible to evaluate s;_l. The
second equation can be used to get s; etc. The procedure is best

illustrated by an example.

Example 4.1.
Assume that
Z(q) = (q—zl)(q—z2)(q—23)

and that P has a pole of multiplicity 3 in Py- Then

fO =1
fl = q7Py-

2
f2 = (q_pl)

S'(a) = s + s7f,(a) + syfy(q)
The equations (4.13) are ‘then
A.(p;)

2(6) 55+ 206) 5} = B (800,

Z(pq)sy

2
(4] ” ) " ° " —_ d L]
2"(py) sg *+ 2Z'(p)s] + Z(py)+2s = 2 [Ac(q)]q=p1
where Z' and Z" are the first and second derivative of Z. Further we

have used the fact that

% 2@ = 2f, (@)
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From these three equations sa. s] and Sg can be obtained
recursively.
O
Multiple poles will thus not cause any problems in principle. It
should, however, be remarked that multiple and almost multiple poles or
zeros must be tested for and specially treated in the implementation of

the algorithm.

Complex poles and zeros.

Complex poles and zeros do not cause any problems since (4.5) and
(4.6) can be treated as equations defined in the complex plane. The
coefficients are complex however, and filtering of complex signals must be
included in the implementation of the controller. (The net result must,
however, become a real signal). One way to circumvent this problem is to
have another representation for S' and R' for the complex poles and zeros
respectively. The methodology is most easily explained by example.
Example 4.2.
Assume that
P(a) = (9-p;)(a-P)(a-p)
where Py is a real pole and p and 5 are a pair of complex conjugate
poles. The S' polynomial has three coefficients. Assume that
$'(a) = sy + s;(a-p) + sy(a-p)(a-p)
= 5575,P + 5,4 + s,(a"~(p*P)a + BP)
We now get the following equations
Z(p))[sy + 5,(Py=P) + so(p;-p)(p;P)] = Al(p,)
Z(p)[sg + s;(p-P)] = A’ (p)
Z(p) sy = AL(P)
Introduce the notation

A’ (p)
Ze) = * P
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A (P)
c_ =a - Bi
%
c'P1 =
Z(p;) d
P =a+ bi
This gives
A’ (p)
Sg = c_ =a - Bi
Z(p)
o Al(p) - s(_)Z(p) _ g
Z(p)(op)
. - sy T sl(pl—a+1b) ) ¥ - a- ﬁ(pl—a)/b
2 (»-P)(p;-p) by - 2pja + aZ+b>

It is only So that is complex, but we use it in the combination

s p=a- aff/b

0~ %1

This implies that all the signals in the filtering are real.

5]

The example can easily be generalized. For every pair of complex
poles or zeros we have to solve a similar problem to that in the example
in order to determine two new controller coefficients. The only
computation that involves complex computations is the evaluation of the

polynomials for a complex argument. It is straightforward to write a

subroutine for these computations.

Realization of the control law.

The controller (2.2) can be implemented as shown in Figure 4.1. The
polynomials T*, etc. are the backward shift operator representations of
the respective polynomials. The blocks for S'* and R'™ can be
implemented as shown in Figure 4.2.

This implies that the poles and zeros can be used in the solution of
the Diophantine equation and in the implementation of the control law. It
is thus possible to avoid the sensitivity problems associated with the

shift form representation.
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Figure 4.1. Imlementation of the controller (2.2)

-y (t)
-1 e -
1-p;4 1-p,q 1-p ;4

0 1 n-2 n-1

-S"*y(t)

5 con e (]

Figure 4.2. Implementation of —S'*y(t) based on the parameterization
(4.8) and (4.10).

5. DISCUSSION AND CONCLUSIONS.

In this paper we have discussed and investigated new algorithms for

general adaptive pole placement. The algorithms are based on a pole zero
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parameterization of the process to be controlled. It is shown that the
new parameterization can be used to simplify the computations when solving
the design problem. The Diophantine equation (4.1) is reduced to a
triangular set of linear equations. The parameters of the controller can
then be found recursively. It is also shown that the new parameterization
can be used for implementing the controller. This makes it possible "to
avoid calculation of the shift form of the process model on the controller
and consequently to avoid the sensitivity problems associated with the
shift form. The advantages with the proposed parameterization are
obtained by abandoning the linear in the parameters concept.

The estimation procedure discussed in Section 3 is not very much
more complex than the conventional extended least squares method that can
be used for the shift form of (2.1). The RPEM will converge to a local
minimum of the loss function. There exist several local minima which
corresponds (at least in the noise free case) to permutations of poles
and/or zeros. It is, however, irrelevant to which of these minima the
estimator converges.

There are still many unanswered questions when using the proposed
algorithm adaptivley. Convergence and stability properties and the

numerical robustness issues are under investigation.
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