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AN ADAPTIVE POLE PLACEIIENT OONTROLLER

BASED ON POI-E_ZERO PARAMETERIZATION

B. Wittenmarkx

R.J. Evanst

ABSTRACT

The pole placement desÍgn principle provides à good way of

determining a closed loop system with desired properties. The nethod has

been used in adaptive cor¡texts for Íìany years. A drawback of the method

is, however, tlrat the pol¡momial f ornulation nay lead to robustness

problems because of the sênsitivity with respect to the coefficients of

the polynomials. Further, unless all process zeros are c€urcelled a set of

Iinear equations has to be solved at each step in time. fn this paper ¿ìn

attempt is made to avoid these two problems. The sensitivity of the

pol¡rnomial formulation is avoided by parameterizing the model in the poles

and zeros, which are estirnated on-line. Ilith the plant e>rpressed in this

forn it is possible to parameterize the controller such that the solution

of the Diophantine equation corresponds to the solution of a triangular

system of equatÍons. The controller parameters c¿ur thus be computed

recursively without extensive computations.
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1. INTRODUCTION

It{any different schemes for adaptive control have been suggested in
the literature. Two good survey papers u.." f."a"äm (1g83) and Seborg et aI
(1986). Most adaptive controllers c¿rn be regarded as a parameter

estÍmator combined with a design procedure. The parameters are updated

regularily, mostly at each sampling interval. The design problem is also

resolved as soon as new paraÍ¡eters are obtained. To simplify computation,

the models are sometimes reparameterÍzed such that the new model contains

the regulator parameters e>çlicity. Such approaches are called direct
adaptive control schemes. The advantage is a simplification of the design

step. The disadvantage of these methods is that they are usually

restricted to systems with a stable inverse i.e. mÍnimum phase systems,

because the zeros of the open loop system are cancelled in the design.

See for instance Goodwin and ldayne (1987) for a discussion of continuous

time model reference adaptive control. The pole placement design

princÍple is ¿m indirect method based on the solution of a DÍophantine

equation, see f,"a"är and Wittenmark (1gg4). The solurion of rhe

Diophantine equation is essentially the same as solving a set of linear

equations. The numerical propertÍes of the calculations are highly

dependent on the order of the system and the locatÍon of the open loop

poles and zeros. If there are multÍple poles or zeros close to the unÍt

circle (in the discrete time case) then the solution is sensitive to

changes in the estimated parameters, which leads to robustness problems.

In this pa.per an attempt is made to avoid the sensitivity problem

and the computational burden of general pole placement desÍgn. The
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approach is to Íntroduce a new parameterÍzation of the model of the

process. The model is parameterized into poles and zeros instead of a"

shift form model. This implies that the estimated model is no longer

Iinear in the parameters, which up till now has been regarded as €ìn almost

essential property. The pole-zero parameterization witl of course

complicate the estimation part of the algorithm, but it is argued in the

paper that there wiII be a total gain because of the simplification in the

design step. IVith the plant parameterized in the poles and zeros it is
possible to rnake a. parameterization of the controller such that the

solution of the Diophantine equation corresponds to the solution of a"

Iinear triangular system of equations. The controller parameters can thus

be computed recursÍvely wÍthout extensive computations.

The pa.per is organized in the following way. Section 2 contains the

f ormulation of the problem. The estÍrnation of poles and zeros is
discussed in Section 3. The design problem for the new parameterization

is solved in Section 4. Finally some properties of the new adaptive

algorithm are discussed in Section 5.
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2. PROBLEM FORMULATION

A new adaptive desÍgn procedure will be presented for dÍscrete time

single-input single-output systems described by the input-output model
s(q) c(q) z(ù c(q)y(t) = 

-u(t-d) 
+ 

-e(t) 
=+u(t-d) ç Je(t) (2.1)A(q) A(q) p(q) p(q)

where y and u are the output and input respectively. A, B, z, and p

are pol5momials in the forward shift operator q, Í.e.
A(q) = qt * .1qt-1*...* .r,
B(q) = boen + brgt-l*...*bn

Z(q,) = zo(t-zr) (q-"Ð. . . (q-rr,)

P(q) = (a-nr)(o-nr). . .(o-n r)
Further {"(t)} is a sequence of white noise random variables. We

will refer to n(q)zA(q) as rhe shifr modet a¡rd z(q)/p(q) as the

pole-zero model or the factorized modèI. rt is assurned that B(q) (z(q))
and A(q) (p(q)) do not have any common factors. Furthermore, d > L and

c(q) is assumed to have all its roots inside the unit circle.

Remark 2. L.

rn the model (2.1) ir is assumed that the À(q) and B(q) porynomials

have the same degree and that there is a" time delay of d ) r sannple

intervals. This is no loss of generality since rr, .rth order continuous

time system with a" time delay that is not a multÍple of the sampling

period will give rise to a sampì.ed data system of this form, Âsträm and

llittenmark (1984). If the delay is a nultiple of the sampling inrerval

then the degree of the B-pol5¡nomial will be one less the degree of the

A-polynomÍal. For simplicity, we witl use the structure defined above

since the other case can simply be incorporated in the proposed estimation

algorithm a¡rd in the design.

tr
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Remark 2.2.

It is also possible to formulate and solve

problems discussed in thÍs paper using ô-operators.

discussed for instance in Goodwin et. al. (1986).

tr

Remark 2.3.

The shift form B/^ has up until now been the dominating

parameterÍzation, since the model (2.1) is then linear in the parameters.

tr

The output of the plant (2.1) is measured at each step of time a¡rd

the control signal u(t) is determined. rt is assumed that the

controller is of the forrn

R(q) u(t) = -s(q)v(t) + r(q)y"(t) (2.2)

where Y" is the reference sigrral. The pol¡momial R is assumed to be

monÍc.

The specificatÍons for the closed loop system are given in terms of

a desired closed loop model with the pulse transfer operator

c,(c) = i'!tl (2.3)
Am(q)

from the reference value yr to the output y. The closed loop system

using (2.2) in (2.1) is
BT CR.

v(t) = -:- v"(t) +
q*AR + Bs qdAR * Bs

e( r) (2.4)

The pole placement problem is solved using the DÍophantine equation

qdl(q)n(q) + B(q)s(q) = Ao(a)Ar(c¡ = l"(e) e.5)
or

qdp(q)n(q) + z(q)s(q) = Ào(o)Àr(o¡ = l.(o) (2.6)

and

the adaptive design

The ô-operator Ís

(2.7)T(q) = Br(o)Ao(o).to
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where lo(o) corresponds to observer d5rnamics that are cancelled in the

pulse transfer operator from v" to y. The pa.rameter to is chosen such

that correct gain is obtained in (2.4). Details concerning the pole

placement design method are found in Lsträm and wittenrna.rk (1gg4).

In the adaptive case the system (2.L) is assumed to be unlorown. The

pa.rameters are estimated based on the measured outputs and the applied

inputs. The estÍ¡nated parameters are then used instead of the true ones

in the design procedure, i.e. the certaÍnty equivalence principle is used.

The control problern is defined by the Dioptrantine equation (2.5) or (2.6)

and the controller (2.3). The desired closed loop characteristic
polSrnomial À" can be gÍven in factorized form (preferable) or in shift
f orm.

The adaptive control problem discussed in this pa.per thus consists

of t¡,¿o parts:

Estimation of the parameters in the polynomials A(q) and B(q) or

P(q) and z(q).

Solution of the Diophantine equarion (2.5) or (2.6).

Most adaptive pole placement controllers have previously used the

shift form B(q)zA(q). In the special case when all the process zeros are

cancelled, it Ís possible to nal<e a direct adaptive controller, see for

instance f"a"ät a¡rd l{Ítterunark (1980). This requires, however, that the

system has all its zeros inside the unit circle, i.e. that the system is
minimum phase. Cancellation of aII process zeros reduces the Diophantine

equation to a triangular system of equations, which is easy to solve. The

approach taken in this paper is to use the pole-zero parameterization,

Z(q)/P(q). This will always make it possible to convert the general pole

placement problem into the solution of a triangular system of equatÍons,

thus reducing the computations when controlling general nonminimum phase

systems. The pole-zero parameterization also avoids the sensitivity
problems associated with the shift form.
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3 ^ÀRAMETER

In this section we will discuss the estinatÍon of parameters in
factorized form. ThÍs has the disadvantage when compared to the shÍft
form that it is not lÍnear in the parameters. Estirnation of systems in
factorized form has been discussed in the adaptive filtering literature,
see for instance Jackson and l{ood (1978) and Orfanidis a¡rd VaiI (1986).

fn these papers usually only all zero models are considered. Another

approach is suggested in Dasgupta et. aI. (1983, 1gg5). Their approach is
designed for pa.rtially known systems, but can also be used for estination

of the paranneters in factorized form. The disadvantage of this approach

however, is a¡r increase in the number of estimated parameters.

The approach taken in this paper is to base the esti¡nation of the

poles and zeros on the Recursive Prediction Error Method (RPEM) described
tt It

in Ljung a¡rd Soderstrom (1983). The idea is to convert the input-output

model (2.L) into a state space model with unlorown parameters. The loss

function has, however, several minina depending on the ordering of the

poles and the zeros. Fortunately all local minirna are equally valid for

us since we are only interested in the values of the poles a¡rd zeros and

not on their corurection with our fictious state space model. The RPEM has

the advantage that it ca¡r be shown, under certain conditions, to converge

to a local minimum of the loss function.

consider the model (2.1). rn Ljung and säaersträm (1983) ir is

shown how the system can be written in the in:rovatÍons form

x(t+l,0) = F(o)x(t,0) + c(0)u(t) + K(o)v(t)

(3.1)

y(t) =H(0)x(t,0)+v(t)
v(t) corresponds to the prediction error or irurovatÍonwhere
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y(t) - ît. lel and K(o) corresponds ro the gain in the sready srare

Ihlman filter- Notice that the model (3.1) is parameterized in the gain,

K(0)' directly instead of an indirect paraneterization through noise

covaria¡ces. The order of the state space representation (3.1) is n+d.

The parameters in (3.1) can be estinì¿Lted using the following

algorithm (Ljung and Sodersrrom (1993) p.L2T).

€(r) =

L(t) =

P(r) =

y(t+1) =

W( t+1) =

v(t) - v(t)
P(t-1)ú(r)[ú(r)T -1

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.2f )

0(
t

P( t-1 )9( t)+À( t) l
[p( t-l)-L( r)tú(t)rp( r-1)ú( t)+x( t¡ 1-1r-r1t) ]/À( r)

e( r) e(t-1) + l-(r)€(r)

x(t+l) = F(e(r))"(t) + c(0(t))u(t) + K(0(r))€(r)

H(0( t) )x( t+l)
^ ^[F(0( t) )-r(e( t) )u(e( r) ) ]I[( t¡+u1e1 t), x( t),u( t), e( t) )

-K(e(t))n(e(t),x(t)) (3.2g)

\r(r+1) = wr(r+t)H(ô(t¡¡r+nr1ôqr),;(t+t)) (3.2h)

r'ltâttl,î(.), m(r),€(r)) = 36 þ{e)**c{e)u+x1e¡e]r=ô (r.rr)

D(ô,x) = 3u þtr)*] ,=ô (3.2i)

The forgetting factor À(t) rnay be either a constant o ( À ( r or can be

chosen to be time-varying

À(t) = ÀoÀ(r-1) + (1-Ào) (3.3)

rf À(t) Ís chosen according ro (3.3) rhen À(r) will srarr ar À(o)

and approach L with a time constant À0.

Finally the updating in (3.2d) musr be made such thar
^^^F(e) - K(0)H(e) has all eÍgenvalues strictly inside the unir circle.

This projection can be done simply by decreasing the length of the

correction L(t)€(t) if the updated estimates corresponds to a¡r unstable

system.



-8-

The next step is to transform the factorized Ínput output nodel into
state space form and to compute the partial derivatives in (3.2i, j).
since we do not lcrow Íf the poles and. zeros are complex or real, it is
necessary to rewrite (2.1) Ínto the form

z(q) q2*rLl9*rL2 nz*"^rr*r*
(3.4)'o' 2I *Pl1A*P1.2 2q +pmlq+pm2

where m=n'/2 if n is even a¡rd m=(n+r)/Z if n odd. The parameters

'rn2 and pm2 wÍll be zero if n is odd. Each of the second ord.er

blocks have the form shown in Figure 3.1 and can be written in the state
space form

P(q)

vi_1 ( t)

-..+

2
A *"lLA*ri2
2q +pi1q+pi2

vi(r)

Fisure 3.L Block diagrarn for rhe ith block of (3.a)

[:;;1..1]l 
=[-i" -:"] [:l:ll .[] ",-,,.,

v,(t) = r,rl-pi r ,¡z-pizr 
Hl.]] 

. 
",-,,

with vo(t) = u(t-d) and Vr(t) = y(t). The sysrem (3.4) can be wrirren

(3.5)

t )

as
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-ptt -þtz o

100
,.tL-Pt.t 't2-þt2 -Pzt

oo1

o

0

-Pzz

0

o to

,o

o

x( t+1) =

,t2-PL2 
'2t-P2t

oo
-Pml -Pm2

10

0

z(t)+ u( t-d)

o

'L1,-ÞLL

0

"22-P22

o

,o

(3.6)

y(t) = lrn-trl tl2-pLz...zml-pml zmz-pmz] x + zo u(t-d)

where
.F

*(t)' = [*111t¡ xrr(t) xzr(t) xrr(t) ... xnllt) x-(t)J
To obtain a complete state space representation we also need. to have a

snall subsystem that implements the d step delay in the control signal.

This part will, however, not contain any of the parameters 
"¡j or pij.

The system (3.6) is now of the form (3.1) and the partial derivatives in
(3.2i,j) are easily computed. The algorirhm (3.2) can thus be used to

estimate the parameters 
"f j and pij i=l,...,m, j=L,2 and zO. The poles

and zeros can then easily be computed.

The algorithm (3.2) also estimates the elements of the K-vector.

The characteristic polynomial of rtôt-xfôlHtôl is an esrimare of the

noise pol¡momial C Ín (2.L).

The orderÍng of the second order blocks in (3.a) can of course not

be determined by the RPEM algorithm. This implies that the loss function

will have several minirna, each corresponding to one permutation of the

blocks. SÍnce l¡e are only interested in the poles a¡rd zeros it is

unimportant to which minirna the algorithm converges.
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4. FACTORIZED FORM OF TI]E DIOPHANTII.IE EQUATION

In this section we will discuss the solution of the Diophantine

equation (2.6), where p(q) and z(q) are given in factorized form. rn

Section 2 it was assumed that P and Z do not have any co¡nmon factors.

To begin with we also assume that there are no multiple poles or zeros.

(That case will be treated later ln the paper). Further, we Ìrave the

condition that deg P = d,eg Z. It witl be assumed in the following that

B,n = B. The generalization to arbritary B,n is trivial. A casual

feedback cannot reduce the time delay in the system. This implies that

Ac(q) must contain the factor qd, which implies that the factor also

must be present in s. The equation (2.6) is now reduced to

P(q)n(q) + z(q)s'(q) = A;(q) (4.1)

where

deg R = n+d-l

degS =n-1 G.2)
deg A' = 2n-1.

The unlmown pol¡momials R and s' have 2n+d-1 unlcrown

coefficients. lVe will now discuss some methods of obtaining these

polSrnomials.

The standard way to solve (4.1) is to compute the shift form of p

and Z and equate the coefficients for different powers of q. ThÍs leads

to a set of 2n+d-1. linear equations.

fntroduce the notation

R(q) = n(q) * R'(q) (4.3)

where

n(q)

R' (q)
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considering the degrees of the polynomials in (4.1) it is easily

seen tbat the coefficÍents in the F polsmomial can be computed

recursively. (Use for insta¡rce long division). I{e are thus left with 2n

linear equations fn the polSmomial form.

p(q)R'(q) + z(q)s,(q) = A¿(q) - p(q)n(q) (4.4)

This polynomial equation can be solved for R' and s, provided

the P and Z (or equivalently the A and B) pol5momials do not have any

common factors-

In the second approach for solvÍng the Diophantine equation we will
use the fact that the model is given in factorized forn.

If we evaluate (4.4) for g=pÍ a¡rd q=zi we get two sets of n

linear equations

Z(p)s'(pi¡=Ai(ni) i=1,...,n (4.5)

P(zr)R'(tí) = li(zr)-r(zr)R(zr) i=1,...,n (4.6)

Remark 4. L.

For simplicity we assumed that the poles a¡rd zeros are real. If
there are complex poles or zeros we have to evaluate both the real and

complex pa,rts of the equations. tr

This will decrease the complexity of the conputations by a factor of

4 since the number of operations in the solution of a" set of linear

equations is proportional to 13 where m is the number of equations.

The new way to further reduce the computations and to solve (4.4)

that is proposed in this paper is to reparameteríze R' and s' as

n-1

R'(q) = ) rrer(o) (4.7)
i=0
n-1.

s'(q) = ) srf ,(a) (4.s)
i=O

where
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1

{

{

(q)

i=0

er(o)

f I

o-, J)
1(i(n-1

i=O

1(i(n-1

Í
T-Tt
j=1

1

(4.e)

(4.10)

(4.72)

(4.8) and

system of

i
TTq-p. )
j=l 'r'

The n pol¡momÍals gi (fi) are linearly independent and are

called the Newton coefficients of the set "i (nr). This representation

is always possible, see for ínsta¡rce BIum (L972, p.339). The pol5momials

Ci and fi have the properties

0 1(k<i

er(zu) I (4.11)

Jl (zn-zr) i+1(k(n-1

1(k<i

rr(nu) i

ll 
(n¿nr) i+1(k(n-1

Now consider (4.5) with the paranneterization defined by

(4.1O). Because of the properry (4.L2) we ger a triangular

equations.

s[ = li(n1)
s[ + st rt(nr) = Ài(n2)

s[ + s, r1(nr) + si f2(n3) = ai(n3)

o

{

{

"ö* "rr-rfr.-r(Rr)=Ai(nr)
À similar trÍangular system of equations is obtained using (4.6),

(4.7), (4.e) and (4.11).

The solution of (4.4) is now reduced to two triangula" ,rth order

system of equatÍons. ThÍs irnplies that all of the coefficients sï, rï,
Í=1"...n and i' i=1, d-1 can be obtained recursively. This wirl
considerably sÍmplify the computatÍons. There are two problems tlnt stiII
have to be resolved: nultiple poles or zeros and complex poles and zeros.
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Multiple poles or zeros.

Assume that a pole p. has multipticity m.. This irnplies that ,i
equations in (4.5) are replaced by

Z(pi)s'(nr) = Ai(or)

ft þtolr'(ol]o-o. = $a þ¿,o)]o=o, (4.13)

mr m.

Ë þror''{o)]o=p. =Ë þ.ror]o-o

The first equation will make Ít possible to evaluate 
"ï_r. The

second equation c€ur be used to get s, etc. The procedure is best

illustrated by an example.

Example 4.1.

Àssume that

z(q) = (q_zt) k_"Ð(q_r¡)
and that P has a pole of multiplicity 3 in pl. Then

f =1o

and

f1 = Q-Pl'

fz = (q-pt)2

S'(q) = s[ + sifr(o) + s!fr(o)

The equatÍons (4.13) are 'then

z(pr)"ö = Ai(n1)

7'(ÞL) 
"ö 

* z(pt) "i = åA þ"fot]o-o,

7"(pL) 
"ö 

* 
'7'(pL)"i 

* z(pì.2s.)=s [^;,"r] Q=Pr.

where Z' a¡¡d Z" are the first and second derivative of Z

have used the fact that
d
¡U rr(a) = zrt(o)

Further we
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three equations s[ s
1

and si can be obtained

tr

Multiple poles will thus not cause arry problems in principle. It
should, however, be remarked that multÍple and almost rnultiple poles or

zeros must be tested for a¡rd specially treated in the implementation of

the algorithm.

ComÞIex poles and zeros.

conplex poles and zeros do not cause any problems since (4.5) and

(4.6) c¿ur be treated as equations defined in the complex plane. The

coefficients are complex however, and filtering of complex sigrrals must be

included in the implementation of the controller. (Th" net result must,

however, become a real signal). One way to circumvent this problem is to

Ìrave a¡rother representation for S' and. R' for the complex poles and zeros

respectively. The methodology Ís most easily e>rplained by example.

Example 4.2.

Assume that

P(q) = (c-nr)(q-p)(q-p)

where

poles

pl is a real pole and p and p are a pair of comprex conjugate

The S' pol¡momial has three coefficients. Assune that

S'(q) = so * "r{a-n) * "r(o-n)(q-p)
= "o-"rF 

* "'9 * "r{12-(p+ñ)q 
+ pp)

We now get the following equatÍons

z(pì["o * "r(nr-n) + 
"r(n1-ñ)(nr-n)¡ = Ài(n1)

z(p)[so * 
"r(n-n)1 = A.(n)

z(p) so = A¿(e)

Introduce the notatÍon
A¿(e)

re= -a+Bí
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This gives

ll(p)
+=a-Þi
z(p)
A.(or ) .

-- 

Yz(pì - q

P=a+bi

À¿(e)
sn=l-=a-Þiv zlJ)

1
s

"2

A;(p) - "oz(p)
z(p) (p-p)

U- "O- sr(nr-a+ib) V-ø -F(r-r-{n

p-
b

(nt-n) (nr-n) ol-roru*u2*b2
rt is only "o thå.t is complex, but we use it in the combination

sO-s1p=a-aÞ/b

This implies that all the signals in the filtering are real.

The example can easily be generalized. For every ¡mir of complex

poles or zeros we have to solve a similar problem to that in the e><ample

in order to determine two new controller coefficients. The only

computation that involves complex computations is the evaluation of the

polSmornials for a complex argument. It is straightforward to write a.

subroutine for these computations.

Real.ization of the control law.

The controller (2.2) can be implemented as shown in Figure 4.1. The

pol¡rnomials T*, etc. are the backward shift operator representations of

the respective pol¡momials. The blocks for s'x and R'* can be

Ímplemented as shown in Figure 4.2.

This implies that the poles a¡rd zeros ca¡ be used in the solution of

the Diophantine equation and in the implementation of the control lanv. It
is thus possible to avoid the sensitÍvity problems associated with the

shift form representation.
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FiEure 4.1. Inlementation of the controlter (2.2)

u

\t
J

-v(r)

-s'*y(r)

FÍeure 4.2. Implementation of
(4.8) and (a.10).

-S'*y(t) based on the parameterization

5. DISCUSSION AND OONCX-USIONS

In this paper we have discussed and investigated new algorithms for

general adaptive pole pì.acement. The algorithms are based on a pole zero
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parameterization of the process to be controlled. It is shov¡n that the

ne'w pararneterization can be used to simplify the computations when solving

the design problem. The Diophantine equation (4.1) is reduced to a

triangular set of linear equatÍons. The parameters of the controller can

then be found recursively. It is also shown that the new parameterization

can be used for implementing the controller. This makes it possible to

avoid calculation of the shift form of the process model on the controller

and consequently to avoid the sensitivity problems associated with the

shift form. The advantages with the proposed parameterization are

obtained by abandoning the linear in the parameters concept.

The estimation procedure discussed in Section 3 is not very much

more complex than the conventional extended least squares method that ca¡r

be used for the shift form of (2.L). The RPEM wiII converge ro a local

minimum of the loss functÍon. There exist several local mininra which

corresponds (at least in the noise free case) to permutations of poles

and,/or zer"os. It is, however, irrelevant to which of these minima the

estimator converges.

There are still nìany un¿rnswered questions when using the proposed

algorithm adaptivley. Convergence a¡rd stability properties a¡rd the

numerical robustness issues are under investigation.
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