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Abstract

Static program analysis plays a crucial role in ensuring the quality and security of
software applications by detecting and �xing bugs, and potential security vulner-
abilities in the code. The use of declarative paradigms in data�ow analysis as part
of static program analysis has become increasingly popular in recent years. This
is due to its enhanced expressivity and modularity, allowing for a higher-level
programming approach, resulting in easy and e�cient development.

The aim of this thesis is to explore the design and implementation of control-
�ow and data�ow analyses using the declarative Reference Attribute Grammars

formalism. Speci�cally, we focus on the construction of analyses directly on the
source code rather than on an intermediate representation.

The main result of this thesis is our language-agnostic framework, called In-
traCFG. IntraCFG enables e�cient and e�ective data�ow analysis by allowing
the construction of precise and source-level control-�ow graphs. The framework
superimposes control-�ow graphs on top of the abstract syntax tree of the pro-
gram. The e�ectiveness of IntraCFG is demonstrated through two case studies,
IntraJ and IntraTeal. These case studies showcase the potential and �exibility
of IntraCFG in diverse contexts, such as bug detection and education. IntraJ
supports the Java programming language, while IntraTeal is a tool designed for
teaching program analysis for an educational language, Teal.

IntraJ has proven to be faster than and as precise as well-known industrial
tools. The combination of precision, performance, and on-demand evaluation in
IntraJ leads to low latency in querying the analysis results. This makes IntraJ a
suitable tool for use in interactive tools. Preliminary experiments have also been
conducted to demonstrate how IntraJ can be used to support interactive bug
detection and �xing.

Additionally, this thesis presents JFeature, a tool for automatically extracting
and summarising the features of a Java corpus, including the use of di�erent Java
features (e.g., use of Lambda Expressions) across di�erent Java versions. JFea-
ture provides researchers and developers with a deeper understanding of the
characteristics of corpora, enabling them to identify suitable benchmarks for the
evaluation of their tools and methodologies.
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Introduction

1 Introduction

In the past few decades, software has become increasingly important in all sys-
tems. As our reliance on software increases, the repercussions of bugs can be-
come more severe, resulting in substantial �nancial losses and even loss of life.
Well-known examples of software bugs include the Therac-25 radiation therapy
machine [LT93], the Mars Climate Orbiter crash [Saw99], resulting in a 327 mil-
lion dollars loss, and the Toyota unintended acceleration [Kan+10]. Not only can
software bugs result in �nancial losses and harm people, but they can also nega-
tively impact the environment, as seen in the Deepwater Horizon oil spill [SL10].

Program analysis is a branch of computer science that aims to study the be-
haviour and properties of computer programs. Program analysis plays a crucial
role in software development and maintenance, as it helps to ensure the expected
functioning of software systems and to identify potential bugs or security vul-
nerabilities such as the ones mentioned above. In this thesis, we focus on static

program analysis. Static program analysis (static analysis for short) is “the art of
reasoning about a program’s behaviour without executing it” [MS18]. It is an essen-
tial technique for improving the quality and reliability of software systems and
has been widely used in various applications such as safety [Cou+05; Bla+02]
and security [PKB21; Arz+14; Aye+08; Say+22; FD12], performance optimisa-
tion [Aho+07; App04], and software maintenance [GDMH12]. Static analysis
aims to identify potential errors, bugs, or vulnerabilities in a program before it
is executed. By examining the source code of a program, static analysis can pro-
vide a detailed and precise understanding of its behaviour, including its control
�ow [All70], data�ow [KU77], and potential interactions with other system com-
ponents.

One of the fundamental techniques used in static analysis is data�ow anal-

ysis, which focuses on the �ow of data through a program. Data�ow analy-
sis applications are used to identify potential sources of errors, such as unini-
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tialised variables or null dereference [KSS17], and to optimise the program’s per-
formance by identifying opportunities for parallelisation or other forms of opti-
misation [Aho+07]. Traditionally, data�ow analysis has been implemented us-
ing imperative paradigms, which are based on the idea of explicitly specifying
how the analysis should be performed. However, more recently, there has been
a growing interest in using declarative paradigms for data�ow analysis, which
are based on specifying what the analysis should compute rather than how. The
declarative approach leads to a higher-level speci�cation, resulting in improved
modularity as the emphasis is on the desired outcome, rather than the speci�c
steps required to achieve it. There are several declarative languages for specify-
ing data�ow analysis, such as FlowSpec [SWV20], a domain-speci�c language, or
the functional language Flix [MYL16b].

In this thesis, we use Reference Attribute Grammars [Hed00] (RAGs) as a
declarative approach for implementing data�ow analysis. RAGs are a powerful
and �exible formalism for specifying the syntax and semantics of languages, and
as such, they are widely used in the development of compilers and static analy-
sis tools. Our implementation is built upon the ExtendJ [EH07a] Java compiler,
which is written in JastAdd [HM01]. The JastAdd system supports RAGs and
implements demand-driven evaluation algorithms, ensuring that properties are
evaluated only when necessary, reducing the overall evaluation time by avoiding
redundant computations.

The primary goal of this thesis is to explore the de�nition of static analy-
sis frameworks using RAGs. Our intention is to exploit the declarative nature
of RAGs and demand-driven evaluation to explore the possibility of using static
analysis directly in the development process, i.e., in the Integrated Development
Environment (IDE). Our attention is mainly directed towards intraprocedural
analyses, including control-�ow and data�ow analysis, which involve examin-
ing the behaviour of a method or function in isolation (i.e., without considering
the interactions with other methods or functions).

We initially employed the older RAG-based framework, JastAddJ-
intraflow [Söd+13], but we encountered some limitations, including the
construction of imprecise control-�ow graphs (CFGs). A CFG is a directed graph
that represents all possible paths in a program, and represents the evaluation
order of the program. An imprecise CFG can lead to incorrect results in
subsequent analyses, such as data�ow analysis.

Therefore, we developed a more general framework called IntraCFG. We
evaluated the precision of IntraCFG with two instances of the framework, In-
traJ and IntraTeal. IntraJ is an instance of IntraCFG for the Java program-
ming language built upon the ExtendJ compiler. We compared IntraJ’s perfor-
mance and precision with the industrial tool Sonar�be [Son]. Our results show
that IntraJ is more e�cient and as precise as Sonar�be. Additionally, we im-
plemented IntraTeal, an instance of our framework for the teaching language
Teal, which has been a supportive tool for teaching control-�ow and data�ow
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analyses. Finally, we initiated an exploratory study on integrating IntraJ and
IntraTeal in interactive tools, e.g., IDEs.

While evaluating IntraJ, we found it challenging to locate suitable bench-
mark suites. To overcome this issue, we designed and implemented JFeature,
a static analysis tool for automatically extracting features from a Java codebase.
JFeature allows researchers and developers to explore the characteristics of a
codebase, including the use of di�erent Java features (e.g., use of Lambda Ex-
pressions) across di�erent Java versions, facilitating the identi�cation of suitable
corpora for evaluating their tools and methodologies.

The next section of this thesis provides background on the underlying con-
cepts and techniques used in this work. We then present our main contributions:

• IntraCFG: a language-agnostic framework for intraprocedural analysis.
An overview of this contribution can be found in Section 3, and more details
are presented in Paper 1.

• IntraJ: an instance of IntraCFG for Java. We evaluate IntraJ compared to
an industrial tool, showcasing its performance and precision. An overview
of this contribution can be found in Section 3.3, with more details provided
in Paper 1.

• IntraTeal: an instance of IntraCFG for teaching control-�ow and
data�ow analysis using the Teal language. This contribution is described
in Section 4.

• Integration into IDEs: we have conducted exploratory experiments on in-
tegrating IntraJ into IDEs. The preliminary results of this contribution are
described in Section 5.

• JFeature: a tool for automatically extracting and summarising key fea-
tures of a Java codebase. An overview of this contribution can be found in
Section 6, with more details presented in Paper 2.

To conclude, we will present our conclusions and possible future work in
Section 7.
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2 Background
This section provides an overview of the research that underlies the main re-
sults of this thesis, with a focus on program analysis. Speci�cally, we will delve
into the concepts of data�ow analysis [Aho+07; NNH10], control-�ow analy-
sis [All70], (Reference) attribute grammars [Knu68; Hed00], and their implemen-
tation through the JastAdd metacompiler.

Dataflow
Analysis

Control-Flow
Analysis

JastAdd

Reference Attribute
Grammars (RAGs)

Attribute
Grammars

Teal Programming
Language

IntraCFG
IntraJ

IntraTeal

JFeature

Legend

Static Analysis Topic
Attribute Grammars
New contribution

Depends on

Java Programming
Language

Programming languages

Figure 1: Dependency graph of the concepts discussed in this Section.

The dependency graph in Figure 1 shows the relationship between the con-
cepts and the contributions of this thesis.

2.1 Automatic Program Analysis

Automatic Program Analysis is a branch of computer science that aims to auto-
matically analyse and evaluate programs’ properties, e.g., correctness, liveness and
safety. We can distinguish two main approaches to program analysis: static and
dynamic analysis.

Dynamic analysis examines the behaviour of a program by executing it. Pre-
cise information about a single program’s execution are gathered and used to
determine the properties of the program. This approach is e�ective in detecting
runtime errors, such as memory leaks [Lab03], performance bottlenecks [Int],
and security vulnerabilities [LZZ18]. However, its limitations come from the re-
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quirement for complete and accurate input data for a single run, and the di�culty
in accounting for all possible execution paths.

In contrast, static analysis performs the analysis without executing the pro-
gram, relying on information gathered from the source code. This approach has
the advantage of being more exhaustive, as it can analyse the entire program.
One limitation of static analysis is that it can result in false positive and false neg-

ative results. False positive results occur when the analysis incorrectly reports a
problem in the code, whereas false negative results occur when the analysis fails
to report an actual problem in the code. The soundness and completeness of the
analysis determine the accuracy of the results. Soundness refers to the property
that if the analysis reports a problem, then there is indeed a problem in the code.
Completeness refers to the property that if there is a problem in the code, the
analysis will eventually report it. In practice, it is often di�cult to achieve both
soundness and completeness, which leads to the trade-o� between false positive
and false negative results in static analysis.

Important kinds of static analysis include Type and E�ect analyses [NN99].
Type Analysis aims to determine the type of variables and expressions in a pro-
gram, which can be used to identify type mismatches, type errors, and improve
code readability. E�ect analysis focuses on the study of side e�ects that a pro-
gram can produce, such as the mutation of data. This information can be used to
identify potential bugs and improve program understandability.

In this thesis, we focus on intraprocedural control-�ow and data�ow analysis,
that are crucial for implementing many type and e�ect analyses. Intraprocedural
control-�ow analysis focuses on determining the order in which statements and
expressions within a single method in a program will be executed, without con-
sidering any function or method calls that may occur. Intraprocedural data�ow
analysis uses the control-�ow information to determine properties on the �ow of
data within a single method. Our implementations are instances of the Monotone
Framework, a mathematical framework that provides a foundation for data�ow
analysis. In the future, we aim to improve the precision of the analysis by consid-
ering the implementation of interprocedural analysis, which involves analysing
the �ow of data across multiple procedures in a program.

Precision is a crucial aspect of data�ow analysis. Depending on the desired
outcome, various levels of precision can be achieved, but it is important to weigh
the trade-o� between precision and performance. A higher level of precision
often requires increased computational resources, leading to a decrease in per-
formance, and vice versa. Hence, �nding the right balance between precision
and performance is crucial in achieving e�ective and e�cient data�ow analysis
results.

In our research, we have chosen to compute control-sensitive and exception-
sensitive control-�ow analyses. Control-sensitivity refers to the ability of the
analysis to distinguish between true and false branches of conditional statements,
such as if-statements, and taking into account the implicit side e�ects of the con-
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ditional expressions. Exception-sensitivity refers to the ability of the analysis to
distinguish between the normal and exceptional execution paths of a program.
This approach simpli�es the speci�cation of data�ow analyses which are built
upon the control-�ow analysis.

In terms of implementation strategies, there are various approaches that can
be used, including Datalog [DRS21], functional programming [MYL16a], or ad-
hoc implementation. However, we choose to implement the analysis using Ref-
erence Attribute Grammars [Hed00]. This approach allows us to exploit the ben-
e�ts of modularity, high-level programming, and on-demand evaluation, which
results in a �exible and e�cient implementation.

We recognise that the results of our analyses, while e�ective, may not be
sound nor complete and that the analysis may not be able to identify all the bugs
or vulnerabilities in a program [Liv+15].

2.2 Control-flow analysis

Control-�ow analysis refers to the computation of the execution and evaluation
order of the program’s statements and expressions. Each possible execution order
of a program is called a control-�ow path. The result of the control-�ow analysis
is a control-�ow graph (CFG) G = (V,E). Each vertex v ∈ V represents a unit
of execution, e.g., a single statement or expression, or a basic block (a sequence
of statements without labels and jumps). Each edge (v1,v2) ∈ E represents a
control-�ow edge, indicating that the execution of v1 may be directly followed
by the execution of v2.

We can distinguish two main approaches to constructing the CFG for a pro-
gram: on the source level and the intermediate representation (IR). The source-
level approach involves analysing the source code of a program and constructing
the CFG directly from the source code on top of the abstract syntax tree. The IR
approach involves �rst converting the source code into an IR, e.g., bytecode, and
then constructing the CFG from the IR.

The construction of the CFG at the source level presents several advantages.
One of the main bene�ts is the ability to map the analysis results directly back
to the source code and present it to the user in the context of the original pro-
gram. On the other hand, if the CFG is constructed at the IR level, there would be
a complex translation step required to �nd the corresponding source level con-
structs. In some cases it would not even be possible due to the loss of information
during the translation process, e.g., source-file retention policy for Java an-
notations. For this reason, constructing the CFG at the source level is particularly
useful for debugging and program understanding tasks, as it provides a clear and
direct representation of the program. Additionally, this approach enables faster
and more e�cient analysis as it eliminates the overhead of IR generation and
can also handle semantically and syntactically invalid code, making it useful for
analysing programs with errors or incomplete code. Furthermore, in situations
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where IR generation must occur in real-time, such as when the analysis is per-
formed in an IDE, the overhead of code generation and optimisation may cause
latency in the IDE and frustration for the developer [Pis+22]. In these cases, con-
structing the CFG at the source level may be a more e�cient option.

However, there are also some disadvantages to constructing the CFG on the
source level. One of the main limitations is that it can be more di�cult to ac-
curately capture the control-�ow of a program since the source code may con-
tain unsugared constructs, such as macros and preprocessor directives, that can
complicate the analysis speci�cation. In comparison to the engineering e�ort
required by the IR approach, the source-level approach presents complex imple-
mentation challenges. Despite the advantage of IRs being generally smaller than
the source language, thus reducing the number of constructs to be handled in
constructing the CFG and potentially reducing the size or complexity of the anal-
ysis code, the source-level approach requires a higher level of complexity in its
implementation. In addition, the source code may be written in a variety of lan-
guages with di�erent syntax and semantics, making it challenging to design a
single analysis that works across all languages.

The examples in Figures 2 and 3 show the source-level and bytecode control-
�ow graphs of a simple method foo. Adding Entry and Exit nodes to a CFG is
a common practice to simplify the implementation of data�ow analyses. These
nodes represent the unique entry and exit points of the method, respectively.
The Entry node serves as a starting point for the analysis, allowing for a proper
initialisation of the parameters. The Exit node is particularly useful in backward
data�ow analyses (see Section 2.3), as it is used as unique starting point for the
analysis.

void foo(boolean b){
Integer x = 0;
if (b) {
x = 1;

} else {
x = null;

}
}

Entry

x = 0

if (b)

x = 1 x = null

Exit

true false

Figure 2: Source level control-�ow graph of the foo method, showing the branch-
ing behaviour of the if-statement.
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1 :0 : iconst_0
2 :1 : invokestatic #7
3 :4 : astore_2
4 :5 : iload_1
5 :6 : ifeq 17
6 :9 : iconst_1
7 :10: invokestatic #7
8 :13: astore_2
9 :14: goto 19
10:17: aconst_null
11:18: astore_2
12:19: return

1

2

3

4

56

7

8

9

10

11

12 exit

entry

Figure 3: Bytecode control-�ow graph of the foo method. Each dashed box rep-
resents a basic block.

2.3 Dataflow Analysis
Data�ow analysis is a technique used to analyse the �ow of data through a pro-
gram. It has its roots in the �eld of program optimisation [Kil73], where it was
initially used to identify opportunities for improving the performance of pro-
grams by tracking variable de�nitions and uses. This information can be used to
optimise the program by eliminating unnecessary computations (e.g., Very Busy
Expression or Available Expression analyses [Aho+07]) and improving the use of
available resources (e.g., registers optimisation).

In the context of bug detection, data�ow analysis can be used to identify po-
tential sources of errors in a program by tracking the �ow of data through the
program and identifying points where data may be used in unexpected or incor-
rect ways. This can be particularly useful in identifying bugs that may not be
immediately apparent, such as those that only occur under certain conditions or
when certain combinations of input data are used (e.g., IndexOutOfBound excep-
tion). Many static analysis tools for Java programs, e.g., FindBugs, employ in-
traprocedural data�ow analysis to identify potential bugs in Java code. Data�ow
analysis, particularly interprocedural data�ow analysis, is widely used to identify
potential security vulnerabilities in software [Arz+14]. For example, an interpro-
cedural control-�ow graph enables tracking of the �ow across multiple methods
or functions, thereby allowing identi�cation of points where the data may be
exposed to unauthorized access or manipulation.

We will demonstrate an application of intraprocedural data�ow analysis by
presenting the following practical, but incomplete, example. Let us reconsider
the foo method introduced in Figure 2. Our goal is to determine at each stage of
the program whether the variable x has a null value or not1.

1For simplicity, just for this example, we assume that the language allows only assignments of
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At the entry point of the method, i.e., Entry node, it is indeterminate whether
x is null or not, as it has not been initialized yet. However, at the declaration of
the variable x, we can determine that it is not null because it is initialised to a
non-null value. Then, if the condition if(b) is true, the variable x is assigned a
new value, which is not null. If the condition is false, the variable x is assigned
null. Therefore, at the end of the method, the variable x may be either null or
not null. Consider the scenario where x is used and dereferenced immediately
after the if-else statement, for example, calling a method on x. The program will
then crash, with a NullPointerException, if x is null. Data�ow information
can be used to identify potential bugs like this in a program.

We keep track of the value of x by mapping it to a �nite set of possible values:
null, notnull, maybenull, or unknown. As we traverse the control-�ow graph,
we propagate this information from node n to node n′ if (n,n′) ∈ E, until it
reaches the Exit node.

The information is updated at each node n according to the following rules:

• If n is an assignment node, the information is updated according to the
assignment operation. For example, if the assignment is x = null, then it
is recorded that x is updated to null. If the assignment is x = y, then x is
mapped to the value y maps to.

• If n is not an assignment node, no information is updated.

The data�ow analysis just described is an instance of the mathematical con-
cept of Monotone Frameworks [NNH10].

Monotone Frameworks

Monotone frameworks are a theoretical approach for reasoning about program
data�ow properties. This approach provides a �exible and generic framework for
expressing and solving data�ow equations, which can be used to reason about a
wide range of data�ow properties, such as live variables, reaching de�nitions and
available expressions analyses. Monotone frameworks are built on the concept of
lattices [Don68].

A lattice L = (S,≤) is a partially ordered set in which any two elements
have a unique least upper bound (also known as a join or a supremum) and a
unique greatest lower bound (also known as a meet or an in�mum). This means
that, for any elements a and b in S, there exists a unique element denoted as
a t b (or a ∨ b) such that a ≤ a t b and b ≤ a t b, and a u b (or a ∧ b) such
that a u b ≤ a and a u b ≤ b. A complete lattice has a unique least element,
commonly denoted as ⊥, and a unique greatest element commonly denoted as
>. These elements satisfy the properties that for any element x in the lattice,

the form x = y where y can be either a variable, a numeric constant or the null literal. We also
assume that CFG nodes are individual assignments.
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⊥ ≤ x and x ≤ >. In data�ow analysis, lattices are widely used to repre-
sent the information �ow in a program. A common example of a lattice used
in data�ow analysis is the binary lattice with elements true and false, which is
used to represent the presence or absence of a property. Another example is
the interval lattice, which is used to represent ranges of numbers. This lattice,
compared to the binary lattice, is more complex but provides more precise in-
formation about the �ow of numerical values in a program. Additionally, while
the binary lattice is �nite height, the interval lattice can be potentially in�nite.

maybenull

null notnull

unknown

Figure 4: Diagram of the partial order in
the example in Section 2.3, showing the
order relation between maybenull (>),
unknown (⊥), null, and notnull.

Monotone frameworks include a
join operator t, a monotone transfer
function f , and a �nite height lattice
L. A monotone transfer function is a
mathematical function that maps an
element of a partially ordered set to
another element in the same set such
that the partial ordering is preserved
under the function. More formally, if
(S,≤) is a partially ordered set and
f : S → S is a function, f is called a
monotone transfer function i�, for all
x, y ∈ S such that x ≤ y, it follows
that f(x) ≤ f(y).

In our example, the lattice L is used to model the possible values, i.e., null,
notnull, maybenull, and unknown, that a variable can assume. This lattice is
shown in Figure 4. Here maybenull is the greatest element in the lattice, as it
represents the set of all possible values that a variable can take. On the other
hand, undefined is the least element representing the absence of information.
The join operator t merges the information of two nodes. For instance, if node
n has information null and node n′ has information notnull, then the informa-
tion at the merged node n

⊔
n′ becomes maybenull. In the previous section, we

explained how a node a�ects the �ow of data using natural language. Now, we
will present this concept in a formal manner as a transfer function. Let Var be the
set of variables in the program, V be the set of nodes in the CFG, and Γ : Var→ L
be the function that maps variables to elements of the lattice L. The monotone
transfer function fNULL : (Var→ L)× V → (Var→ L) is de�ned as follows:

fNULL(Γ, node) =

{
Γ[v 7→ JeKΓ] if node is v = e
Γ otherwise

where JnKΓ for n ∈ Num = notnull
JnullKΓ = null
JvKΓ for v ∈ Var = Γ(v)
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To propagate information from node n to its succeeding nodes (in the CFG)
and to represent the e�ect of passing through a node, we de�ne the following
two equations:

in(n) =

{v → ⊥ | ∀v ∈Var} if n is Entry⊔
p∈pred(n)

out(p) otherwise

out(n) = fNULL(in(n),n)

where pred(n) is the set of predecessor of the node n, i.e., pred(n) = {p | (p,n) ∈
E} and E is the set of edges in the CFG. We have de�ned the in and the out sets
to model the information that is available before and after passing through a
node, respectively. The in set gathers the available information before entering
the node, while the out set captures the e�ect of applying the transfer function
fNULL on the in set. This kind of analysis is called a forward analysis because it
propagates information from the entry node to the exit node.

These equations can be adapted to perform backward analyses, i.e., analyses
that propagate information from the exit node to the entry node. Let us look at the
general de�nition of a backward analysis. Given a monotonic transfer function f
and a �nite lattice L, the equations for a backward analysis is de�ned as follow:

out(n) =
⊔

s∈succ(n)

in(s)

in(n) = f(out(n),n)

where succ(n) is the set of successors of the node n, i.e., succ(n) = {s | (n,s) ∈
E}. The boundary condition for the out set when n is the Exit node di�ers de-
pending on the analysis.

The equations for both forward and backward analyses de�ne a mutual de-
pendency between the in and out sets of a node. A �xpoint computation is used
to resolve this circular dependency. A �xpoint is a mathematical technique that
�nds a stable state, in a system. In the context of the Monotone frameworks, this
refers to �nding a state where the in and out sets of all nodes in the CFG have
reached a stable value, and no further changes will occur. The authors of [NNH10]
present several techniques for computing �xpoints. They demonstrate that there
exists a �xpoint [KT29] and that the resulting �xpoint is the unique and the min-
imum among all �xed points of the transfer function f .

2.4 A�ribute Grammars
Attribute grammars [Knu68] (AGs) are a formalism for specifying the syntax and
semantics of programming languages. This formalism is based on the concept of
attributes, which are properties associated with the elements of a language’s ab-
stract syntax tree. Attribute grammars provide a powerful tool for specifying the
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behaviour of a programming language and for verifying compile-time correctness
of programs written in that language. AGs are composed of three components:
a context-free grammar, which de�nes the language’s syntax, a set of attributes,
which are properties associated with the nodes of the abstract syntax tree, and
attribute equations, used to compute the values of the attributes associated with
each node in the abstract syntax tree.

Attribute grammars enable the description of the interdependence of syntac-
tic and semantic elements of a programming language. For instance, the type of a
variable may be determined by its declaration, but the type of an expression may
be determined by the types of its sub-expressions. Attribute grammars provide a
way to specify these rules.

We can distinguish two types of attributes: synthesized attributes and inher-
ited attributes. For the sake of readability, we use the notation introduced by Fors
et al. in [FSH20], where attribute names are preceded by a symbol (e.g.,↑,↓) that
indicates the kind of the attribute (e.g., synthesized or inherited).

A synthesized attribute is a property of a node that is computed based on
the attributes of the subtree rooted at that node. For example, the type of an
expression in a programming language may be a synthesized attribute computed
based on the types of sub-expressions in the expression. For instance, the type
of the expression “3 + 4”, is determined to be integer based on the types of the
operands.

Synthesized attributes are composed by a declaration and an equation:

T A.↑x
A.↑x = e

where T is the type of the attribute, A is the node type, and x is the attribute
name. The up-arrow symbol (↑) is used to denote a synthesized attribute. The
right-hand side of the equation, is an expression, e, that may use other attributes
of the A node or its children. If A has subtypes, say A1<:A and A2 <:A, di�erent
equations can be given for A2 and A1. If all subtypes will use the same equation,
the declaration and the equation can be combined into a single line, as follows:

T A.↑x = e

An inherited attribute is a property of a node that gets its value from its parent
in the abstract syntax tree. An example of inherited attribute is the expected
type of an expression. The expected type of an expression is inherited from the
context in which the expression is used. For example, the expected type of the
condition in an if-statement is boolean. This information is inherited from the
if statement node.

Inherited attributes are de�ned in two parts: a declaration and an equation.

T B.↓x
A.B.↓x = e
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Syntax node

Inherited attribute

Equation for inherited attribute

A

CB

B

A.↑z = 37 

C.↑v = 5  

C.↓y = 42B.↓w = 36

B.↑x = 4

B.↑x = 35

B.↓w = 5

A

CB

B

A.↑z = B.↑x + 2  

C.↑v = B.↓w

C.↓y =     B.↓w =          

B.↑x = B.↓w -1

B.↑x = B.↓w - 1 

A.B.↓w = 36  

A.C.↓y = A.↑z + C.↑v

C.B.↓w = 5  

B.↓w =          
Legend

Synthesised attribute with equation

x

Figure 5: Attribute grammar example. Left: Abstract syntax tree with attribute
equation system. Right: solution of the equation system. Dashed arrows indicates
the location of the equation for an inherited attribute.

where A and B are node types and the down-arrow symbol (↓) is used to denote
an inherited attribute. The equation de�nes the x attribute of A’s child B. The
expression e may use the attributes of A and any of its children.

To better explain the concept of AGs, we present a very simple example. We
start by de�ning the following abstract grammar:

A ::= B C

B

C ::= B

and the following attribute declarations and equations:

Synthesized: Inherited:

int A.↑z = B.↑x + 2 int C.↓y
int B.↑x = B.↓w− 1 int B.↓w
int C.↑v = B.↓w A.B.↓w = 36

C.B.↓w = 5

A.C.↓y = A.↑z + C.↑v

It should be noted that there are two equations for the inherited attribute B.↓w,
due to the presence of B as a child node in both A and C. Figure 5 depicts the de-
scribed example. The attributes and equations are instantiated for the AST, and
then form an equation system which, in this case, can be solved by substitution.
If we instantiate the equations for the AST in Figure 5, we get the following equa-
tion system where all variables (attribute instances) are uniquely named from the
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root of the tree:

A.↑z = A.B.↑x + 2

A.B.↑x = A.B.↓w− 1

A.C.B.↑x = A.C.B.↓w− 1

A.C.↑v = A.C.B.↓w
A.B.↓w = 36

A.C.B.↓w = 5

A.C.↓y = A.↑z + A.C.↑v

Solving the equation system for the attribute A.↑z gives:

A.↑z =A.B.↑x + 2

=(A.B.↓w− 1) + 2

=(36− 1) + 2

=37

Solving for C.↓y, reusing the solved value for A.↑z, gives:

A.C.↓y =A.↑z + A.C.↑v
=37 + A.C.↑v
=37 + A.C.B.↓w
=37 + 5

=42

The attribute value of a node B depends on the context in which it is evaluated,
resulting in potentially di�erent values. Speci�cally, the attribute value of B.↓w
can be either 36 or 5, depending on the context of the node B. When we solve for
C.↓y, the value of B.↓w is de�ned by node C with value 5.

The previous example presents a straightforward instance of AGs and does
not display its full expressiveness. In real-life scenarios, AGs tend to be more
complex. Features such as node subtyping and declaration of nodes with multiple
children of the same type, play an essential role in expressing the semantics of a
programming language.

For example, in the following grammar:

A ::= B0 B1

B

the children of A can be distinguished by the index of the child, i.e., A has two
children B with indexes 0 and 1.
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2.5 Reference A�ribute Grammars
Reference Attribute Grammars (RAGs) were introduced in [Hed00] and are an
extension of AGs to Object-Oriented languages. While attributes in AGs can
only refer to terminal values, RAGs allow attributes to refer to non-terminals,
i.e., nodes in the AST. RAGs are well-suited for the analysis of programming
languages since they enable the de�nition of relations between AST nodes. At-
tributes referring to AST nodes can declaratively construct relations, i.e., graphs,
on the AST. Examples of the relations that can be constructed using RAGs are:

• Name analysis: checks that all names are well-de�ned and used correctly. A
relation between the name and the declaration of the name is constructed,

• Type analysis: checks that all expressions have a valid type. A relation
between the expression and its type is constructed,

• Graph of a class hierarchy: a graph where nodes are classes and edges are
inheritance relations,

• Control �ow graph: a graph where nodes are statements or expressions,
and edges are control �ow relations, and,

• Call graph: a graph where nodes are methods and edges are method calls.

2.6 The JastAdd Metacompiler
The JastAdd metacompiler [HM01] is a Java-based tool that generates Java code
from a RAG speci�cation. The generated code can be used by an analysis tool to
construct an AST and to perform analysis on the AST. Another important aspect
of JastAdd is its support for on-demand attribute evaluation. Attribute evalua-
tion is performed only when the corresponding attribute is required and triggered
by the analysis tool. This approach enables JastAdd to avoid performing unnec-
essary computations, which can improve the run-time performance of the tool.

The JastAdd metacompiler is based on the following components:

• The JastAdd language: a language for the de�nition of RAGs. The Jas-
tAdd language is used to specify the abstract grammar of a language and,
with a Java-like syntax, the attributes of the RAG.

• The JastAdd compiler: that is a compiler that generates Java code from a
RAG.

In JastAdd, synthesized attributes are de�ned using the syn keyword followed
by the type and the name of the attribute. Similarly, inherited attributes are de-
�ned using the inh keyword.

Let us reconsider the example depicted in Figure 5. The abstract grammar is
de�ned in a “.ast” �le with the following syntax:
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A ::= B C;
B;
C ::= B;

where each line de�nes an AST node type. The attributes are de�ned in a “.jrag”
�le with the following syntax:

1 syn int A.z() = getB().x() + 2;
2 syn int B.x() = w() - 1;
3 syn int C.v() = getB().w();
4 inh int C.y();
5 inh int B.y();
6 eq A.getC().y() = z() + getC.v();
7 eq C.getB().w() = 5;
8 eq A.getB().w() = 36;

An equation is de�ned in the context of a node type, and children are accessed
using getters. For example, the equation on line 6 de�nes the value of the inher-
ited attribute y of an A node’s child C. It uses the A node’s synthesized attribute
z and the C child’s synthesized attribute v to compute the value of the inherited
attribute y.

An additional key feature of JastAdd is its support of AspectJ-style [Kic+97]
intertype declarations for the de�nition of attributes. Attribute declarations and
equations can be written in aspects, and JastAdd creates corresponding Java
methods that are woven into the classes de�ned by the abstract grammar.
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  aspect AttrDecl {
    syn int A.x() = 1;
    syn int B.x() = 2;
 }

  class B {
    public int x(){
       return 1;
    }
 

  }

A;
B;

JastAdd
Metacompiler

Abstract Grammar (.ast)

JastAdd specification (.jrag)

A.java

B.java

  class A {
    public int x(){
       return 1;
    }
 

  }

 public int x(){
   //RAG eval support
   return 1;
 }

A.java

 public int x(){
   //RAG eval support
   return 2;
 }

Figure 6: JastAdd generates Java classes from the abstract grammar, and weaves
in code corresponding to the intertype declarations in the aspect into the gener-
ated classes A and B. Additional RAG code for on-demand evaluation support is
elided.

The example in Figure 6 shows an intertype declaration of an attribute. The
attributes A.↑x and B.↑x are de�ned in the aspect AttrDecl and are woven into
the classes A and B, respectively.

JastAdd supports not only synthesized and inherited attributes, but also:
Parametrised Attributes [Hed00], Higher-Order Attributes [VSK89], Circular At-
tributes [Far86; JS86], and Collection Attributes [Boy96].

Parametrised A�ributes

Parametrised Attributes are attributes which value might depend not only on the
AST node itself, but also on the value of the arguments supplied to it. Attributes
of this kind are widely used, especially in the de�nition of type-checking rules.
For example:

syn boolean Type.compatibleType(Type t) = this == t;

A more advanced set of rules, such as those desigend to handle subtyping, would
be expected for a real language.
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Higher-Order A�ribute (HOA)

Higher-Order Attribute, also known as Non-Terminal Attributes (NTA), are at-
tributes which value is a freshly new subtree. They are called Higher-Order At-

tributes because they are attributes and, at the same time, non-terminal; therefore,
they can be attributed. The subtree computed by an HOA behaves like a normal
AST node, i.e., it can be attributed and used in the de�nition of other attributes.
In JastAdd, HOAs are de�ned using the nta keyword. HOAs are widely used to
reify information that is not explicit in the source code and, therefore, not present
in the AST. For example, we use HOAs to reify a method’s entry and exit point. In
CFGs, it is common to have a unique entry point and exit point for each method.

syn nta Entry FunDecl.entry() = new Entry();
syn nta Exit FunDecl.exit() = new Exit();

In our examples, in this thesis, we will often use the right-arrow symbol (→)
to clarify that an attribute is an HOA. For example, FunDecl.→entry and
FunDecl.→exit.

Circular A�ributes

Circular Attributes are attributes which de�nition might depend directly or in-
directly on themselves. In JastAdd, circular attributes are expressed using the
circular keyword. To guarantee termination, circular attributes are given a
bottom starting value, and are evaluated in a �xed-point computation, i.e., the
attribute is evaluated until the value of the attribute does not change. The re-
quirements, which are not checked by JastAdd, to guarantee termination are:

• All the possible values computed by the attribute must be placed in a lattice
of �nite height.

• The intermediate results of the �x-point algorithm must increase or de-
crease monotonically2.

We use the symbol A.	↑x to denote a circular synthesized attribute. An example
of a circular attribute is the following:

syn int A.x() circular[0] = Math.min(3, x()+1);

In JastAdd, circular attributes are de�ned using the circular keyword. The
circular synthesized attribute A.	↑x begins with a value of 0 and a �x-point com-
putation is performed until the attribute reaches stability. In this example, the
attribute evaluates to 3 after the third iteration as the value of the attribute stops
changing.

2In this Thesis, boolean circular attributes start as false and monotonically grow with ∨, while
set-typed circular attributes start as the empty set and monotonically grow with ∪.
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Circular attributes can be used to directly encode mathematical recursive
equations, such as in and out in the monotone framework. For example, the equa-
tions for the nullness analysis, de�ned in Section 2.3, can be written as follows:

1 syn Gamma CFGNode.in() circular[new Gamma()] {
2 Gamma res = new Gamma();
3 for (CFGNode e : pred())
4 res.join(e.out());
5 return res;
6 }
7
8 eq Entry.in() = new Gamma(allVars());
9

10 syn Gamma CFGNode.out() circular[new Gamma()] {
11 Gamma res = new Gamma(in());
12 res = trFun(res);
13 return res;
14 }

The attribute declarations and de�nitions at Lines 1 and 10, de�ne the in and out
attributes, respectively, for all the CFG nodes. The attribute equation ad line 8
de�ne the boundary condition for the entry point of the CFG, i.e., all the variables
are mapped to ⊥.

Collection A�ributes

Collection Attributes are not de�ned using equations but instead using the so-
called contributions. The result of a collection attribute is the aggregation of
contributions that can come from anywhere in the AST. A contribution clause is
associated with an AST node type and describes the information to be included in
a collection attribute, possibly under certain conditions. Collection attributes are
especially useful, for example, in compiler construction to collect all the semantic
errors in a program from anywhere in the AST. In JastAdd, collection attributes
are de�ned using the coll keyword.

An example of a collection attribute is the following:

coll Set<Errors> Program.errors();
Expr contributes this when !type.compatible(expectedType()) to

Program.errors();

The collection attribute, Program.errors(), denoted with Program.�errors, is
used to collect all the semantic errors in the program. The contribution clause
states that a reference to the Expr node (i.e., this) is contributed to the collection
when the expression type is incompatible with the expected type. There can be
any number of contribution clauses for a particular collection attribute, so new
kinds of errors can be added simply by adding new contribution clauses.
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Other examples of using collections include �nding reverse relations, for ex-
ample, computing the predecessors in a CFG, given the set of successors.

Interfaces

JastAdd supports a mechanism for de�ning and extending AST classes with in-
terfaces. Interfaces in JastAdd provide a way to extend the behaviour of AST
classes. By declaring an interface for an AST class, the class can inherit equations
and attributes de�ned in the interface. This enables developers to modularise the
behaviour of AST classes, making it easier to reuse and maintain code. Interfaces
can be declared using the interface keyword, and, similarly to Java, they can
extend other interfaces. By using the implements keyword, it is possible to state
that an AST class implements an interface. For example, if we want to abstract
a common operation for all the CFG nodes, we can de�ne an interface CFGNode
and then specify that all the CFG nodes implement it. For example:

public interface CFGNode;

AddExpr implements CFGNode;
AssignStmt implements CFGNode;
//...

syn Gamma CFGNode.in() circular[new Gamma()] {
Gamma res = new Gamma();
for (CFGNode e : pred())
res.join(e.out());

return res;
}

In this case, both AddExpr and AssignStmt implement the interface CFGNode.
We then de�ne the CFGNode.	↑in for the CFGNode interface. This attribute is
then inherited by all the classes that implement the interface, i.e., AddExpr and
AssignStmt, allowing them to share the common behaviour speci�ed only for
CFGNode.
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3 IntraCFG: Intraprocedural Framework for
Source-Level Control-Flow Analysis

The techniques of CFG construction have seen signi�cant advancements in re-
cent years, with various frameworks being proposed to aid in the construction
of precise intraprocedural CFGs [SWV20; Söd+13]. We contribute to the state-
of-the-art by introducing IntraCFG, a declarative, RAG-based, and language-
independent framework for constructing precise intraprocedural CFGs. In this
section we give an overview of IntraCFG, and more details are available in Pa-
per 1.

Unlike most other frameworks, which build CFGs on the IR level, e.g., byte-
code, IntraCFG’s approach superimposes the CFGs on the AST. This allows for
accurate client analysis, as the CFGs are constructed directly on the source code
level rather than an intermediate representation. Di�erently from the existing
RAG-based framework [Söd+13], IntraCFG enables the construction of AST-
Unrestricted CFGs, which are CFGs whose shape is not restricted to the AST
structure.

3.1 Overall Architecture

The overall architecture of how to use our proposed framework, IntraCFG, is
shown in Figure 7. IntraCFG provides the skeleton and default behaviour for
constructing CFGs, which can be instantiated for speci�c languages3, e.g., Java
or Teal. The Control-�ow analysis (CFA) module is speci�cally tailored for a
particular programming language and implements the interfaces de�ned in In-
traCFG. This module is responsible for constructing the CFG for the program.
Once the CFA module has generated the CFG, other client analyses can be added,
for example, di�erent data�ow analyses. The compiler module plays a crucial
role as it de�nes the AST nodes on which the CFA module heavily relies. The
compiler also provides access to several APIs that can be used by the CFA mod-
ule and client analyses, such as the type of a variable or the constant value of an
expression, to perform advanced optimizations.

3IntraX in the diagram.
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General Architecture
IntraX

Language Agnostic

IntraCFG Control-flow
analysis

Dataflow
Analysis (1)

Dataflow
 Analysis (2)

Dataflow
Analysis (3)

Depends on

Legend

Compiler for X

Figure 7: Overall architecture of instantiating IntraCFG for a language X.

IntraCFG consists of several key components, including interfaces, attribute
equations that de�ne the default behaviour, and APIs. The interfaces provide the
structure for the CFG, and the attribute equations de�ne the default behaviour
for the CFG construction. In the language dependent control-�ow module, im-
plementations of the IntraCFG interfaces are added to the AST types of the lan-
guage. This can be done according to the precision desired for the CFG.

IntraCFG has APIs in the form of attributes, allowing clients to access en-
try and exit nodes and to traverse the CFG. The language-independent nature
of IntraCFG allows for easy integration with various programming languages
and enables the construction of precise CFGs for those languages. The use of
attribute equations and interfaces also allows for a high degree of �exibility in
the CFG construction process, enabling the customization of the CFG to �t the
speci�c needs of the analysis being performed.

3.2 The IntraCFG Framework
In this section, we describe the main components of IntraCFG and how they
are used to construct CFGs. A more detailed description of the framework can be
found in Paper 1.

IntraCFG provides three di�erent interfaces: CFGRoot, CFGNode, and
CFGSupport. These interfaces are implemented by AST types to construct the
CFG. Each interface has a set of attributes, and default equations that are used to
construct the CFGs.

The CFGRoot interface is intended to be implemented by AST nodes that rep-
resent subroutines, e.g., MethodDecl or ConstructorDecl. The CFGRoot inter-
face de�nes two HOAs: CFGRoot.→entry and CFGRoot.→exit. These HOAs are
used to represent the unique entry and unique exit points of the CFG.

The CFGNode is the most important interface in IntraCFG. The purpose of
the CFGNode interface is to represent AST nodes that can be part of the CFG. This
interface de�nes the synthesised attributes CFGNode.↑succ and CFGNode.↑pred,
which are used to represent the sets of successors and predecessors of a CFG
node, respectively.
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Finally, the CFGSupport interface is implemented by all the AST nodes that
may contain CFGNodes in their subtrees. Indeed, all CFGNodes are CFGSupport
nodes, but CFGSupport nodes that are not CFGNodes can help steer the construc-
tion of the CFG.

To compute the CFGNode.↑succ attribute, the framework uses the
helper attributes CFGNode.↑�rstNodes and CFGNode.↓nextNodes. The
CFGNode.↑�rstNodes attribute of a CFGNode n contains the �rst CFGNode
within or after the AST subtree rooted in n. The default de�nitions provided
by IntraCFG for the CFGNode.↑�rstNodes attribute are the empty set for a
CFGSupport node and the node itself for a CFGNode.

The inherited attribute CFGNode.↓nextNodes is used to keep track of the
CFGNodes that are outside the tree rooted in n, and that would immediately
follow the last CFGNode within n. By default, the CFGNode.↑succ attribute is
de�ned as equal to CFGNode.↓nextNodes.

AddExpr
+

Access
3

IntegerLit
2

succ:{ } succ:{ }

CFGNode

Right.↓nextNodes = Left.↑firstNodes

↑firstNodes  = Right.↑firstNodes    

Left.↓nextNodes = {this}

↑firstNodes  = {this}   ↑firstNodes = {this}   

succ:{ }

↓nextNodes = ↓nextNodes = 

Syntax node

Inherited attribute

Equation for inherited attribute

Synthesised attribute with equation

x

Legend

Figure 8: Example of de�nition of ↓nextNodes and ↑�rstNodes for the Teal
AddExpr using right-to-left operand evaluation. All the nodes are CFGNodes.
Dashed arrows indicates the location of the equation for an inherited attribute.

The example in Figure 8 shows how the ↓nextNodes and ↑�rstNodes
attributes can be de�ned to achieve the desired CFG. This example assumes
that operands are evaluated right-to-left in order to illustrate the versatility
of the approach. The AddExpr and its operands all implement the CFGNode
interface. For any AddExpr, the ↑�rstNodes attribute is de�ned to be equal to the
↑�rstNodes of its right operand. The AddExpr node also de�nes the ↓nextNodes
attribute of both its operands: for the right operand, it is equal to the ↑�rstNodes
of the left operand, while for the left operand, it is equal to a singleton set
containing the AddExpr node itself. The ↑succ attribute is not overridden by any
node, and therefore, it is de�ned to be equal to the node’s ↓nextNodes attribute.
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To support both forward and backward analyses, the framework provides
a predecessor attribute that captures the inverse of the successor attribute, i.e.,
CFGNode.↑succ. However, CFGNode.↑succ is also de�ned for CFGNodes that are
not reachable from Entry by following CFGNode.↑succ (i.e., that are “dead code”).
The framework computes predecessor edges CFGNode.↑pred by not only inverting
CFGNode.↑succ into the collection attribute CFGNode.�succInv, but also by �lter-
ing out “dead” nodes from CFGNode.�succInv with a boolean circular attribute,
CFGNode.	↑reachable.

All CFGNodes have immediate access to the Entry and Exit nodes of the CFG,
through the inherited CFGNode.↓entry and CFGNode.↓exit attributes declared in
CFGNode and de�ned by the nearest CFGRoot ancestor.

3.3 IntraJ: IntraCFG for Java

To demonstrate IntraCFG applicability, we developed IntraJ, an instance of the
framework for the Java programming language. We built IntraJ upon the Ex-
tendJ extensible Java compiler [EH07a].

Java Implementation
IntraJ

Language Agnostic

IntraCFG

Control-flow
analysis

Live Variable
Analysis

Reaching
Definition

NullPointerException
Analysis

DeadAssignment
Analysis

Indirect
DeadAssignment

Analysis

Java Compiler

Extendj

Depends on

Legend

for Java 4

for Java 5

for Java 7

for Java 8

Figure 9: Overall architecture of instantiating IntraCFG for the Java language.

As seen in Figure 9, we designed IntraJ following a modular approach, and
we separately instantiated the framework for di�erent versions of Java, such as
Java 4, Java 5, Java 7 and Java 8. ExtendJ has a similar modularisation of di�erent
Java versions. When ExtendJ is extended to support new versions of Java, this
approach will allow us to extend IntraJ in a corresponding way. This approach
allows us and the users of IntraJ to easily extend the framework to support new
versions of Java.

The degree of precision in creating CFGs using IntraCFG can di�er in order
to meet the requirements of a given application. This �exibility allows the frame-
work users to optimise the analysis’s e�ciency by selectively excluding/includ-
ing speci�c AST nodes from the CFG. For example, nodes such as WhileStmt,
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which are essential for the construction of CFGs, as they are used to de�ne the
shape of CFGs, can be excluded from the CFGs as all relevant execution points
for the WhileStmt are already captured by other AST nodes, i.e., evaluation of
the condition, and execution of the body.

MethodDecl 
foo

ParamDecl 
boolean b

DeclStmt 
String x = null

IfStmt

VarAccess 
b

AssignStmt

Dot

VarAccess 
x

MethodAccess 
toString()

VarAccess 
x

Literal 
 "Hello world"

succ:{ }

succ:{ , }

succ:{ }succ:{ }

succ:{ } succ:{ }

Entry Exit

succ:{ } succ:{}

Legend

Higher Order Attributes

Not CFG nodes

Successor relation

Source Code

Child Relation

CFG Nodes

void foo(boolean b){
String x = null;
if(b) {
x = "Hello␣World";

}
x.toString();

}

Figure 10: CFG of the foo Java method.

The example in Figure 10 is a visual representation of the AST and CFG of the
foo Java method. The �gure illustrates the ability of the framework to tailor the
CFG to the speci�c requirements of the analysis and eliminate unnecessary com-
plexity for improved performance. In this example, nodes like IfStmt or Dot are
not included in the CFG, resulting in a more concise but precise representation
of the control �ow of the program. On the other hand, the precision of the CFGs
can be improved by synthesising new nodes and subtrees as HOAs. For instance,
we designed IntraJ to compute an exception-sensitive control-�ow analysis, i.e.,
new AST subtrees are synthesized for each possible exceptional path. The result-
ing CFGs are more precise but also more complex, resulting in higher memory
consumption and a more extended analysis time.

In IntraJ, we implemented �ve di�erent data�ow analyses:

• Live Variable Analysis: computes the set of variables that are live at each
point in the program.

• Reaching De�nition: computes the set of de�nitions that reach each point
in the program.

• Null Pointer Analysis: detects possible null pointer dereferences.

• Dead Assignment Analysis: detects assignments to l-values that are never
used from that point on.
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• Indirect Dead Assignment Analysis: detects assignments to l-values which
uses always �ow to a dead assignment.

All the analyses rely on the result of the control-�ow analysis. The analyses
use the CFGRoot.→entry and CFGRoot.→exit attributes of the CFG, as well as
the CFGNode.↑succ and CFGNode.↑pred attributes of each node. Each analysis is
implemented as a separate aspect. Still, some analyses’ results are used as input
for other analyses. For instance, the result of Live Variable Analysis is used as
input for the Dead Assignment Analysis. Similarly, the result of Dead Assignment
Analysis is used to compute Indirect Dead Assignment Analysis.

The implemented analyses are instances of the monotone frameworks
(see Section 2.3). Each analysis de�nes its abstract domain, transfer function
and in and out

4 circular attributes for each CFGNode (e.g., CFGNode.	↑in and
CFGNode.	↑out). While the core of each data�ow analysis is language indepen-
dent, relying only on the attributes de�ned by IntraCFG, there are language
dependencies in the transfer function, which is modelled as a parametrised
attribute. The transfer function attribute is de�ned for each AST node in the
CFG to capture the semantics of passing through that node, and for di�erent
AST node types, the transfer function is de�ned di�erently. For example, in the
case of NullPointerException analysis, the general and language-independent
de�nition of the transfer function is de�ned as follows:

syn CFGNode.trFun(Gamma gamma) = gamma;

While the transfer function for AssignStmt is de�ned as follows:

eq AssignStmt.trFun(Gamma gamma) {
Gamma newGamma = new Gamma(gamma);
Variable decl = getLHSDecl();
if (nullRHS()){
newGamma.put(decl, NULL);

}
else{
newGamma.put(decl, NOTNULL);

}
return newGamma;

}

The transfer function for AssignStmt in this example receives the mapping of
variables to their nullable status, denoted as Γ (see Section 2.3). The equation
begins by retrieving the declaration of the left-hand side of the assignment state-
ment (computed by the compiler), and checks whether the right-hand side is null
or not. Depending on the result, the equation updates the status of the left-hand
side variable in Γ. Note that in this example, the attribute trFun for the AST

4Or kill and gen.
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node AssignStmt has been de�ned with a body (surrounded by { and }) to spec-
ify its behaviour, whereas we have previously declared attributes in a single line
without the body. This is because the attribute in this case is more complex, and
requires a more detailed de�nition to capture its functionality accurately. One
requirement, to ensure the correct evaluation of results, for de�ning attributes in
JastAdd is that the code within the body must be observationally pure, which
means that it should not produce any externally visible side-e�ects.

3.4 Performance and Precision

We evaluated the performance and precision of IntraJ on a set of 4 well-known
open-source Java projects, including: the ANTLR parser generator, the PMD
static code analyser, the JFreeChart charting library and the FOP PDF format-
ter. The selection of these projects was aimed at representing diverse types of
projects, including libraries, frameworks, and applications, as well as varying
sizes, ranging from 30K for ANTLR to 100K for FOP. We compared the pre-
cision and performance of IntraJ with the RAG-based framework JastAddJ-
Intraflow [Söd+13], and the Sonar�be static code analyser [Son]. In this
section, we provide an overview of the evaluation compared to Sonar�be,
while the evaluation compared to JastAddJ-Intraflow can be found in Paper 1.
Speci�cally, we compared IntraJ with Sonar�be on two distinct analyses: the
DeadAssignment and NullPointerException analysis.

IntraJ SQ IntraJ SQ IntraJ SQ IntraJ SQ
ANTLR PMD JFC FOP

Analysis Execution 0,53 0,24 0,47 0,18 0,75 0,24 0,67 0,34
Baseline 2,14 4,91 3,56 10,76 4,29 10,81 4,42 17,2
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Figure 11: Total time for the DeadAssignment Analysis. This includes time for
parsing, checking the absence of errors, running the analysis.

Figure 11 shows the evaluation results for the DeadAssignment analysis. The
�gure reports two distinct measurements: the total time to load each benchmark
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without executing the analysis, i.e., Baseline, and the total time to compute the
analysis, i.e., Analysis Execution.

Our analysis shows that IntraJ outperforms Sonar�be in all cases since
the Baseline in Sonar�be is signi�cantly higher than in IntraJ. However, we
can observe, that Sonar�be’s DeadAssignment analysis is faster than IntraJ’s.
We believe that this is due to the fact that Sonar�be computes the CFGs during
the Baseline phase.

IntraJ SQ IntraJ SQ IntraJ SQ IntraJ SQ
ANTLR PMD JFC FOP

Analysis Execution 0,9 12,35 0,8 12,4 1,62 10,71 1,42 19,25
Baseline 2,14 4,91 3,56 10,76 4,29 10,81 4,42 17,2
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Figure 12: Total time for the NullPointerException. This includes time for
parsing, checking the absence of errors, running the analysis.

The evaluation results for the NullPointerException analysis are presented
in Figure 12. Similarly to the DeadAssignment analysis, we compared both the
total time to process each benchmark and the total time to run the analysis. The
results indicate that, in all cases, IntraJ outperforms Sonar�be. It can be no-
ticed that, even when excluding the Baseline measurements, IntraJ still achieves
faster execution times than Sonar�be for all benchmarks.

We compared the precision of IntraJ with Sonar�be for the DeadAssignment
and NullPointerException analyses. The precision of an analysis is measured
as the ratio of true positives and false positives to the total number of reports.
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IntraJ Both SQ IntraJ Both SQ IntraJ Both SQ IntraJ Both SQ
ANTLR PMD JFC FOP

False Positive 0 0 0 0 0 8 0 1 0 0 0 44
True Postive 9 121 0 4 20 0 2 88 0 95 156 0
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Figure 13: Precision of the DeadAssignment Analysis. We report the ratio of true
positives and false positives to the total number of reports.

IntraJ Both SQ IntraJ Both SQ IntraJ Both SQ IntraJ Both SQ
ANTLR PMD JFC FOP

False Positive 6 0 0 0 0 0 3 15 0 13 3 0
True Postive 11 4 0 6 7 3 14 172 0 16 21 0
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Figure 14: Precision of the NullPointerException Analysis. We report the ratio
of true positives and false positives to the total number of reports.

Figure 13 shows the results for the DeadAssignment analysis. It is evident that
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IntraJ outperforms Sonar�be in terms of precision for all benchmarks. IntraJ
is able to identify additional true positives that are not reported by Sonar�be.
Conversely, Sonar�be reports a signi�cant number of false positives, especially
in FOP, where it reports 44 false positives.

The results for NullPointerException analysis are shown in Figure 14. For
this analysis IntraJ is slightly less precise than Sonar�be. Generally, IntraJ
detects at least as many reports as Sonar�be. However, there is one exception:
in the case of PMD, where Sonar�be can identify three additional true posi-
tives by exploiting path sensitivity. On the other hand, IntraJ does report some
additional true positives that Sonar�be does not. The false positives reported
by IntraJ are a result of our analysis lacking path sensitivity.

Overall, the results suggest that IntraJ enables practical data�ow analyses,
with run-times and precision comparable to state-of-the-art tools.

IntraJ Artifact Evaluation

Artifact evaluation is an essential part of the scienti�c process as it en-
ables researchers to demonstrate the reproducibility and practicality of their
work [Kri13]. It also allows other researchers to build upon and reuse the work
in their studies, helping to advance the �eld as a whole.

In this context, our artifact, IntraJ, was presented at the ROSE5 Festival 2021,
co-located with ICSME2021 and SCAM2021. The artifact was awarded the Open

Research Objects (ORO) and Research Objects Reviewed (ROR) badges. The ORO
badge indicates that the artifact is publicly accessible and has been “placed in an

archival repository, with a unique identi�er and a link provided”. The ROR badge
highlights that the artifact has been “very carefully documented and structured,

making it suitable for reuse and repurposing in accordance with research commu-

nity norms and standards”. This recognition demonstrates the high quality and
usefulness of the artifact.

5Recognizing and Rewarding Open Science in SE, https://icsme2021.github.io/cfp/AEan
dROSETrack.html

https://icsme2021.github.io/cfp/AEandROSETrack.html
https://icsme2021.github.io/cfp/AEandROSETrack.html
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(a) Open Research Objects
(ORO) badge

(b) Research Objects Re-
viewed (ROR) badge

Figure 15: Badges awarded to the artifact.

4 IntraTeal: IntraCFG for Teal

As a further demonstration6 of the applicability of IntraCFG, we developed In-
traTeal7, an implementation of IntraCFG for the Teal programming language.
Teal v0.4 (Typed Easily Analysable Language) is a programming language de-
signed by Christoph Reichenbach and used in the program analysis8 course at
Lund University. Teal aims to provide a language that allows students to focus on
the challenges of performing program analysis on a real-world language without
being overwhelmed by the details of a fully-featured language. Teal is divided in
layers, with each version building upon the features of the previous one. Teal-0
is the most basic version and includes support for variable declarations and use,
procedures, and basic control structures such as if and while statements. Teal-1
introduces the enhanced-for loop, and Teal-2 introduces user-de�ned classes. In
this section, we will use Teal-0 to exemplify the use of RAGs and IntraCFG. The
concrete and abstract grammar of Teal-0 are shown in Figure 16. The concrete
grammar is used for parsing. The abstract grammar is given using JastAdd syn-
tax, and will be used in examples throughout this section to describe analyses in
Teal.

6This application of IntraCFG has not been peer-reviewed by the scienti�c community.
7The complete source code of IntraTeal is available at 10.5281/zenodo.7649171.
8https://fileadmin.cs.lth.se/cs/Education/EDAP15/2022/web/index.html

https://doi.org/10.5281/zenodo.7649171
https://fileadmin.cs.lth.se/cs/Education/EDAP15/2022/web/index.html
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Program ::= 〈Decl〉?

Decl ::= 〈VarDecl〉
| fun id ( 〈formals〉? )
〈optTyped〉 = 〈stmt〉

VarDecl ::= var id 〈optTyped〉
| var id 〈optTyped〉 := 〈Expr〉;

formals ::= id 〈optTyped〉
| id 〈optTyped〉 , 〈formals〉

optTyped ::= : 〈Type〉
| ε

Type ::= int | string | any
| array [ 〈Type〉 ]

Block ::= { 〈Stmt〉 ? }

Expr ::= 〈Expr〉 〈binop〉 〈Expr〉
| not 〈Expr〉
| ( 〈Expr〉 〈optTyped〉 )
| 〈Expr〉 [ 〈Expr〉 ]
| id ( 〈actuals〉? )
| [ 〈actuals〉? ]
| new 〈Type〉 ( 〈Expr〉 )
| int | string | null
| id

actuals ::= 〈Expr〉
| 〈Expr〉, 〈actuals〉

binop ::= + | - | * | / | %
| == | !=
| < | <= | >= | >
| or | and

Stmt ::= 〈VarDecl〉
| 〈Expr〉 ;
| 〈Expr〉 := 〈Expr〉 ;
| 〈Block〉
| if 〈expr〉 〈block〉 else 〈block〉
| if 〈expr〉 〈block〉
| while 〈expr〉 〈block〉
| return 〈expr〉 ;

Program ::= Decl*;

abstract Decl;
VarDecl : Decl ::= IdDecl [DeclTy:Type]

[Initializer:Expr];
FunDecl : Decl ::= IdDecl [DeclRetTy:Type]

Formal:VarDecl* [Body:Stmt];

abstract Expr;
abstract BinExpr : Expr ::=

Left:Expr Right:Expr;
AddExpr : BinExpr;
SubExpr : BinExpr;
MulExpr : BinExpr;
DivExpr : BinExpr;
ModExpr : BinExpr;
EQExpr : BinExpr;
NEQExpr : BinExpr;
LTExpr : BinExpr;
GTExpr : BinExpr;
LEQExpr : BinExpr;
GEQExpr : BinExpr;
OrExpr : BinExpr;
AndExpr : BinExpr;
CallExpr : Expr ::= IdUse Actual:Expr*;
Null : Expr;
ArrayLiteralExpr : Expr ::= Expr*;
IndexExpr : Expr ::= Base:Expr Index:Expr;
NotExpr : Expr ::= Expr;
TypedExpr : Expr ::= Expr DeclType:Type;
NewExpr : Expr ::= Type Actual:Expr*;
Access : Expr ::= IdUse ;

abstract Constant : Expr;
IntConstant : Constant ::= <Value:Long>;
StringConstant : Constant ::= <Value:String>;

abstract Stmt;
VarDeclStmt : Stmt ::= VarDecl;
ExprStmt : Stmt ::= Expr;
AssignStmt : Stmt ::= LValue:Expr RValue:Expr;
Block : Stmt ::= Stmt*;
IfStmt : Stmt ::= Cond:Expr Then:Stmt Else:Stmt;
WhileStmt : Stmt ::= Cond:Expr Body:Stmt;
ReturnStmt : Stmt ::= Expr;
SkipStmt : Stmt;

IdUse ::= <Identifier>;
IdDecl ::= <Identifier>;

Figure 16: The concrete parsing grammar and parts of the abstract JastAdd
grammar of the Teal language. Colour coding highlights declarations (orange),
expressions (blue), attribute names (grey), and statements (magenta).

IntraTeal is our implementation of IntraCFG for the Teal language. In
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line with the approach taken for the implementation of the control-�ow analysis
for IntraJ and di�erent versions of Java, we created separate aspects for the
control-�ow analysis of Teal-0 and Teal-1. The control-�ow analysis is then
used to implement the NullPointerException analysis. The overall architecture
of IntraTeal is shown in Figure 17.

Teal implementation
IntraTeal

Language Agnostic

IntraCFG Control-flow
Analysis

IndexOutOfBound
Analysis

NullPointerException
Analysis

Depends on

Legend

Teal-0

Teal-1

Teal Compiler

Student Module

Figure 17: Overall architecture of IntraCFG instantiated for the Teal language.

As part of the course, the complete source code of the IntraTeal control-�ow
analysis was provided to students, along with instructions and guidelines for uti-
lizing the API to implement their analyses. We also made available a reference
implementation of the NullPointerException analysis. To extend their under-
standing and skills, we then asked students to implement an IndexOutOfBound
analysis on the interval abstract domain. This exercise allowed the students to
apply the concepts they had learned in a practical setting and gain a deeper un-
derstanding of data�ow analysis.

Another key aspect of IntraTeal and IntraJ implementations is that they
construct enhanced control sensitive CFGs, i.e., it understands that the following
code, dereferencing x inside the body of the if-statement, is safe:
if (x != null){
x.f = 1

}

Control sensitive CFGs are a more precise representation of the control �ow of
a program, as they take into account the di�erent behaviour when a branching
condition is true or false. This is achieved by using HOAs to synthesise two
AST nodes, i.e., ControlTrue and ControlFalse, for each comparison operator,
e.g., “≤”, “==”, “! =”, inside a conditional expression. These HOAs are used to
enhance the control �ow of the program with the information that can be inferred
from it.

Figure 18 shows IntraTeal’s control sensitive CFG for a simple program with
an if-statement. The ControlTrue and ControlFalse HOAs are used to distin-
guish the execution path when the condition in the if-statement evaluates to true
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fun foo(x) = {
if(x==null){
print(x);

}
}

Figure 18: Example of control sensitivity in IntraTeal.

eq ControlTrue.nullnessTransfer(NullDomain lattice) = new
NullDomain(lattice).join(getCond().getImplicitAssignment());

Listing 1: Transfer function for ControlTrue HOA.

or false, respectively. The NullPointerException analysis can bene�t from this
more re�ned CFG. In Listing 1, we show how this enhanced CFG is used to im-
prove the precision of the analysis. The Listing shows the equation for the trans-
fer function of the ControlTrue HOA. Speci�cally, the transfer function for the
ControlTrue HOA records the e�ect of the implicit assignment9 when the con-
dition of the IfStmt evaluates to true. In this case, the variable x is assigned the
value null and the ControlTrue’s transfer function records this information.

Listing 2: Control sensitivity to im-
prove null pointer analysis.
if(x!=null){
//x is not null here
}

Listing 3: Control sensitivity to im-
prove interval analysis.
if(x > 4 and x <= 6){
//x is [5,6] here

}

For the example in Listing 2 the ControlTrue and ControlFalse HOAs are used
to keep track of the information that the object x is not null in the then branch
and null in the else branch. This information is used to improve the precision of
the analysis and provide more accurate results without a�ecting the performance
of the analysis.

9Modelled as assertions in [MS18]
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x iter 1 [1,1] iter 2 [2,2]

iter 3

[3,3]iter k[k,k] ...

[ , ]iter 

...[j,j]

...

...

widening operator

fun foo(x) = {
x := 0;
while (true) {
x = x + 1;

}
}

Figure 19: Trivial example of non-converging analysis. The red path represents
the non-converging evaluation sequence. The analysis keeps changing the value
of the variable x without ever reaching a �x-point. The green path represents a
sequence converging to a �x-point by using the widening operator.

We also asked students to use the ControlTrue and ControlFalse HOAs to
improve the precision of the interval analysis. Similarly to the previous example,
in Listing 3 the ControlTrue and ControlFalse are used to keep track of the
information that the object x is in the interval [5,6].

The task assigned to the students was to implement an IndexOutOfBound
analysis on the interval domain. The interval domain, being an in�nite domain,
poses a signi�cant challenge for data�ow analysis. In particular, the iterative
nature of data�ow analysis algorithms, which rely on the computation of a se-
quence of approximations, may not terminate when applied to an in�nite domain.
Even if the computation terminates, it can result in an excessive consumption of
computational resources. The example in Figure 19 illustrates a non-converging
program.

To ensure the termination of the analysis, the students were required to de�ne
their own widening operator [BHZ03]. However, JastAdd circular attributes,
which are used to implement data�ow analysis, do not natively support widening
operators, as they are designed to work only on �nite lattices. To overcome this
limitation, an ad-hoc solution solution was implemented to trigger the widening
operator after a certain number of steps.

This experience highlights the need for native support for widening and nar-
rowing operators in JastAdd, to allow static analysis developers to e�ectively
deal with in�nite lattices. In the future, we plan to investigate the implemen-
tation of this feature in JastAdd to facilitate the development of static analysis
tools.
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5 IDE Integration
In this Section, we focus on the integration of IntraJ and IntraTeal with dif-
ferent IDEs and developer tools. We �rst describe the integration of IntraJ with
IDEs that support the Language Server Protocol (LSP) [Mica], such as Visual Stu-
dio Code [Micb], Emacs [Fou], and Vim[Moo], using the MagpieBridge [LDB19]
framework. We then describe the integration of IntraJ and IntraTeal with
CodeProber [RA+22], a tool for visualising and exploring the results of compil-
ers and static analysis tools. Our work on integrating IntraJ with di�erent IDEs
via the MagpieBridge framework has gained attention from the MagpieBridge
maintainer and resulted in an invitation to present at the PRIDE10 workshop,
held in conjunction with ECOOP 2022, with the title “Source-Level Data�ow-Based
Fixes: Experiences From Using IntraJ and MagpieBridge”.

This integration process and evaluation are not covered in any of the papers
included in this thesis. However, it was developed as an application of the re-
search and methods previously described in these papers, and was carried out
subsequently.

5.1 LSP support via MagpieBridge: warnings, quick-fixes
and bug explanations

Initially, IntraJ was developed as a command-line tool, which performance was
competitive compared to existing industrial tools. However, we recognized the
potential for further improvement, by exploiting the on-demand evaluation fea-
ture of JastAdd. On-demand evaluation enables the execution of data�ow anal-
yses on methods within open �les, as opposed to the entire codebase. This ap-
proach allows for local and in real-time feedback on complex bugs, providing
developers with instantaneous insights, facilitating the debugging process. To
achieve this, we used the MagpieBridge framework, which facilitates the inte-
gration of static analysers with IDEs that support the LSP. MagpieBridge pro-
vides an abstraction layer between the IDE and the static analysis tool, simpli-
fying the integration process and allowing for the development of IDE plug-ins
with minimal e�ort. MagpieBridge provides an abstraction layer between the
IDE and the static analysis tool allowing the display of warnings, quick-�xes,
and explanations for bugs within the IDE, providing developers with an imme-
diate and convenient way to access and interact with analysis results, while also
facilitating communication between the static analysis tool and the IDE. Addi-
tionally, the framework allows for the display of web pages within the IDE, pro-
viding developers with a new level of support for visualization, customizable user
interfaces, and a better way to interact with analysis results.

Figure 20 illustrates the integration of IntraJ with di�erent IDEs. Server-
Analysis is a component that we developed to handle the communication be-

10Practical Research IDEs.
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Figure 20: Integration of IntraJ with IDEs through the use of the MagpieBridge
framework.

tween IntraJ and the MagpieBridge Server. It is responsible for maintaining
a record of the active analyses and forwarding events in the editor, such as the
save command or opening of a �le, to IntraJ. The results of the analysis are then
sent back to the MagpieBridge, which subsequently forwards them to the editor,
displaying warnings, quick-�xes, and explanations to the developer. To enable a
better user experience, we extended the functionality of the existing analysis.
Speci�cally, we enhanced the NullPointerException analysis to not only de-
tect issues but also provide developers with quick �xes and explanations, allow-
ing them to address the problems more e�ciently. Additionally, we enhanced
the (Indirect) Dead Assignment analysis to provide explanations, giving de-
velopers a deeper understanding of the issues detected. Figure 21 illustrates an
example of interaction between IntraJ and Visual Studio Code. More specif-
ically, it illustrates an instance of a NullPointerException detected by IntraJ
and its representation within the IDE. The “ ” icon indicates that an quick-�x is
available, which can be applied by clicking on the icon.

5.2 Visualisation via CodeProber
In this Section, we will give an overview of the integration of IntraTeal with
CodeProber, a tool for visualizing and exploring the results of compilers and
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1

2

3

Figure 21: Bug detection and quick-�x in Visual Studio Code using IntraJ.
1. The NullPointerException is detected by IntraJ (squiggly line under x)
with a quick-�x available ( ). 2. The user can hover over the warning to see an
explanation of the issue. 3. The user can click on the quick-�x icon ( ) to apply
the �x.

static analysers. CodeProber allows developers to interact with the results of
the analysis in a visual and intuitive manner. It enables real-time interaction with
the AST node’s attributes and the source code, enabling analysis developers to
explore results and partial results, making debugging and troubleshooting more
e�cient in comparison to the traditional debugging approaches. As a browser-
based tool that is not restricted to the Language Server Protocol, CodeProber
enables the visualisation of analysis results in di�erent formats, including, but not
limited to, graph representation and other visual forms, beyond simply displaying
warnings.

Figure 22: Interaction of IntraTeal in CodeProber.
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The example in Figure 22 shows the visual representation of the CFG on
top of the source code. The CFG is generated by IntraTeal and visualized by
CodeProber. The graph is rendered automatically at each change in the source
code, allowing developers to understand the �ow of the program and all the pos-
sible execution paths of the analysis in real-time.

We used the IntraTeal and CodeProber integration in the Program analysis
course. Students were able to understand the CFG and the �ow of the program
and were asked to identify IndexOutOfBound exceptions. Students were able to
observe their progress and the outcomes of their analysis within a realistic IDE.

6 JFeature: Java Feature Extractor

JFeature is a RAG-based static analysis tool for the Java programming language
that extracts syntactic and semantic features from Java programs. The tool is
designed to assist researchers and developers in selecting appropriate software
corpora to better evaluate the robustness and performance of software tools, such
as static analysers. JFeature is implemented as an extension of the ExtendJ Java
compiler. It is declarative and extensible, allowing for the easy addition of new
queries. In this Section, we give an overview of this work, and more details are
available in Paper 2.

The need for JFeature arose during the evaluation of IntraJ. While
analysing Java projects from the DaCapo Benchmark suite [Bla+06] corpus
to evaluate the precision of IntraJ on Java 8 projects, it became apparent
that there were no Java 8 projects in the Da Capo Benchmark suite. Further
investigation revealed that many commonly used software corpora in the �eld
of static analysis were lacking representation of Java 8 projects.

To address this problem, we developed JFeature, a tool that extracts features
from Java programs categorised by the Java version they were introduced in. The
goal of JFeature is to provide insight and an overview of the composition of a
Java project or corpus, speci�cally in terms of the di�erent Java features cate-
gorized by the Java version in use. JFeature comes with twenty-six prede�ned
queries and can be easily extended with new ones. Since JFeature is built on top
of the ExtendJ compiler, JFeature has access to all the information computed by
the compiler, allowing the de�nition of complex queries. In Figure 23, we show
the architecture of JFeature.
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Figure 23: JFeature architecture.

We conducted a case study, applying JFeature to four widely used corpora
in the program analysis area: the Da Capo Benchmark suite [Bla+06], De-
fects4J [JJE14], �alitas Corpus [Tem+10], and XCorpus [Die+17]. The results
showed that Java 1-5 features were predominant among the corpora, suggesting
that some of the corpora may be less suited for the evaluation of tools that ad-
dress features in Java 7 and 8. In addition to evaluating corpora, we showed how
JFeature could also be used for other applications such as longitudinal studies
of individual Java projects and the creation of new corpora. In Paper 2, we also
demonstrate a practical application of how JFeature can be extended to capture
more complex semantic features by writing queries using the RAGs formalism.
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7 Conclusions and Future Work

In this thesis, we have explored the use of RAGs declarative paradigms for
intraprocedural control-�ow and data�ow analysis in static program analysis.
Our main contributions is the development of a new framework for precise
construction of source-level control-�ow graphs, called IntraCFG. IntraCFG
is language-agnostic and is a �exible framework that can be used to construct
precise control-�ow graphs for a wide range of programming languages. We
have demonstrated the e�ectiveness of IntraCFG through two case studies,
namely IntraJ and IntraTeal. IntraJ is an instance of IntraCFG for Java, built
upon the ExtendJ compiler. We have demonstrated the potential of IntraJ as a
precise tool for detecting complex data�ow analysis, such as NullPointerEx-
ceptions and DeadAssignements. We compared its performance and precision
with the industrial tool Sonar�be. The results showed that IntraJ is more
e�cient and as precise as Sonar�be. Additionally, we have shown the use of
IntraTeal for educational purposes, in combination with the visualisation tool
CodeProber, resulting in an e�ective tool for students to learn about data�ow
analysis. We also presented JFeature, an extensible tool for automatically
extracting and summarising the key features of a corpus of Java programs.
JFeature allows researchers and developers to gain a deeper understanding of
the composition and suitability of software corpora for their particular research
or development needs. By applying JFeature to four widely-used corpora in
the program analysis area, we demonstrated its potential for use in corpus
evaluation, the creation of new corpora, and longitudinal studies of individual
Java projects. Together, these contributions provide frameworks and practical
tools for improving the development and maintenance of software systems.

In the future, we plan to investigate using RAGs to support interprocedural
analysis in IntraCFG. Interprocedural analysis refers to the process of analysing
the interactions and dependencies between di�erent procedures or functions
within a program. One of the main challenges in this area is the computation
of precise call graphs, which are graphs representing the dependencies between
procedures and functions. Call graphs are crucial for interprocedural data�ow
analysis, as they allow to determine the �ow of data between di�erent proce-
dures and functions. Static analysis techniques can be used to compute call
graphs, including Rapid Type Analysis [BS96] which is fast but imprecise, or call
graph analysis [VR+10a] in combination with points-to [Ste96] analysis which
is computationally expensive but more precise. Points-to analysis involves
determining the memory locations that a variable may point to. In order to
achieve accurate and e�cient program analysis within IDEs, we aim to explore
a combination of static analysis techniques, including Rapid Type Analysis and
Points-to Analysis. Performing a precise analysis typically requires starting
from the main entry point of the program. However, in order to run the analysis
within IDEs, we plan to start with the methods that are currently being edited.
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This presents a signi�cant challenge for the analysis, as it must be able to
accurately track data �ow from these partial starting points.

Furthermore, we plan to push even further the use of the on-demand evalu-
ation feature in IntraJ. Currently, quick-�xes are computed when the analyses
are triggered. We plan to investigate the feasibility of computing quick-�xes on-
demand, i.e., when they are requested by the user. The proposed change could
help optimize the use of IntraJ in IDEs. Finally, we plan to add native support
for widening and narrowing operators in JastAdd’s circular attributes, which
would enable an easier implementation of analysis over in�nite lattices.
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1 Abstract

This paper presents IntraCFG, a declarative and language-independent frame-
work for constructing precise intraprocedural control-�ow graphs (CFGs) based
on the reference attribute grammar system JastAdd. Unlike most other frame-
works, which build CFGs on an Intermediate Representation level, e.g., bytecode,
our approach superimposes the CFGs on the Abstract Syntax Tree, enabling accu-
rate client analysis. Moreover, IntraCFG overcomes expressivity limitations of
an earlier RAG-based framework, allowing the construction of AST-Unrestricted
CFGs: CFGs whose shape is not con�ned to the AST structure. We evaluate the
expressivity of IntraCFG with IntraJ, an application of IntraCFG to Java 7,
by comparing two data �ow analyses built on top of IntraJ against tools from
academia and from the industry. The results demonstrate that IntraJ is e�ec-
tive at building precise and e�cient CFGs and enables analyses with competitive
performance.
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2 Introduction
Static program analysis plays an important role in software development, and
may help developers detect subtle bugs such as null pointer exceptions [HSP05]
or security vulnerabilities [Smi+15].

Many client analyses make use of intraprocedural control-�ow analysis, and
are dependent on its precision and e�ciency for useful results. Bug checkers
and other clients that report to the user must be able to link their results to the
source code, so the control-�ow analysis itself must also connect to a represen-
tation close to the source code, such as an abstract syntax tree (AST). Current
mainstream program analysis tools and IDEs, like SonarQube, ErrorProne, and
Eclipse JDT, take this exact approach.

However, building analyses at the AST level typically ties the analysis closely
to a particular language and thereby reduces opportunities for reuse. Further-
more, language semantics can require highly intricate control �ow, e.g. for object
initialisation and exception handling.

In this paper, we present an approach for developing control-�ow analyses
and client analyses at the AST level that is based on reference attribute grammars
(RAGs) [Hed00] and addresses these challenges. We build on an earlier approach
that also used RAGs [Söd+13] and remove its two main limitations: imprecision
and bloat, both caused by limited �exibility in the shape of control-�ow graphs
(CFGs) that could be built. Our approach introduces a new generalised frame-
work, IntraCFG, that is unrestricted in the shape of the CFGs that it can build.
This improves precision as well as conciseness, in that IntraCFG connects only
AST nodes of interest in the CFG. As a case study, we applied IntraCFG to the
Java language, implementing IntraJ, a CFG constructor for Java, as an extension
of the Java compiler ExtendJ [EH07b]. To evaluate the precision and perfor-
mance of IntraJ, we implemented two client data �ow analyses, one forward
and one backward, namely Null Pointer Exception analysis and Dead Assignment

analysis, respectively.
More precisely, our contributions are as follows:

• We present IntraCFG, a modular and precise language-independent
framework for intraprocedural CFG construction, implemented using
RAGs.

• We present IntraJ, an application of the framework to construct concise
and precise CFGs for Java 7. We discuss design decisions for what facts
to include, and how to reify implicit facts that the AST does not expose
directly.

• We provide two di�erent client analyses to validate and evaluate the frame-
work: Dead Assignment analysis, which detects unnecessary assignments,
and Null Pointer Exception analysis, which detects if there exists a path in
which a NullPointerException can be thrown.
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ExprStmtLessOp ExprStmt

· · · · · ·

p1 PostInc

While While

Parent-First AST-unrestricted

Not in CFG
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Redundant

succ

Child relation

AST node

Legend

LessOp

· · · · · ·

p1 PostIncp2

p1

p2

p1

while(p1<p2){
p1++;

}

Figure 1: In the Parent-First CFG (left) a parent always precedes its children,
resulting in redundant and misplaced nodes. The AST-unrestricted CFG (right)
is correct and minimal.

• We provide an evaluation of performance and precision for a number of
Java subject applications, and compare performance and precision both to
the earlier RAGs-based approach and to SonarQube, a current mainstream
program analysis tool.

In the rest of this paper, we review RAGs and introduce IntraCFG (Section 3)
and IntraJ, along with underlying design decisions and implementation details
(Section 4), present our client analyses (Section 5) and evaluation (Section 6),
discuss related work (Section 7) and conclude (Section 8).

3 RAGs and the IntraCFG framework

Attribute grammars, originally introduced by Knuth [Knu68], are declarative
speci�cations that decorate AST nodes with attributes. Each AST node type can
declare attributes and de�ne their values through equations. There are two main
kinds of attributes: synthesised a�ributes, de�ned in the same node, and inher-
ited a�ributes, de�ned in a parent or an ancestor node. Synthesised attributes
are useful for propagating information upwards in an AST, e.g. for basic type anal-
ysis of expressions. Inherited attributes are useful for propagating information
downwards, e.g., for environment information.
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Reference Attribute Grammars (RAGs) [Hed00] extend Knuth’s attribute
grammars with reference a�ributes, whose values are references to other
AST nodes. Attributes that compute references to AST nodes can declaratively
construct graphs that are superimposed on the AST, e.g., CFGs, so that RAGs can
propagate information directly along these graph references.

For our implementation, we have used the JastAdd metacompilation sys-
tem [HM03], which supports RAGs as well as the following attribute grammar
extensions that we use here:

Higher-order attributes (HOAs) [VSK89] have a value that is a fresh AST sub-
tree, which can itself have attributes. HOAs are useful for reifying implicit
structures not available in the AST constructed by the parser. We use HOAs
to reify, for example, control �ow for unchecked exceptions and implicit
null assignments.

Circular attributes are attributes whose equations may transitively depend on
their own values [MH07]. They support declarative �xpoint computations
and can e.g. express data �ow properties on top of a CFG.

Collection attributes are attributes that aggregate any number of contributions
from anywhere in the AST, or from a bounded AST region [MEH07a]. They
simplify e.g. error reporting and the computation of the predecessor rela-
tion from the successor relation in a CFG.

Node type interfaces are similar to Java interfaces and can be mixed into
AST node types. They declare e.g. attributes and equations, and enable
language-independent plugin components in attribute grammars [FSH20].

Attribution aspects are modules that use inter-type declarations to declare a
set of attributes, equations, collection contributions, etc. for speci�c node
types [HM03], and mix in interfaces to existing node types. They provide
a modular extension mechanism for RAGs.

On-demand evaluation, where attributes are evaluated only if they are used,
and with optional caching that prevents reevaluation of attributes used
more than once [Jou84]. JastAdd exclusively uses this evaluation strategy.

3.1 RAG frameworks for control flow
Our work is the second to construct CFGs in a RAG framework, following the
earlier jastaddj-intraflow [Söd+13]. jastaddj-intraflow constructs Parent-
First CFGs, in the sense that all AST nodes involved in the CFG computation are
also part of the CFG and impose their nesting structure, so that the CFG must
always pass through all of a node’s ancestors before it can reach the node itself.
By contrast, our IntraCFG framework is AST-unrestricted, in that the resulting
CFG need not follow the syntactic nesting structure.
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Figure 1 illustrates this di�erence between the two approaches for a while
loop in Java. The left (Parent-First) CFG from jastaddj-intraflow �rst �ows
through the While node to reach the loop condition. However, the CFG already
encodes the �ow properties of While, so this �ow is unnecessary for data �ow
analysis. The same holds for ExprStmt. We therefore consider these nodes redun-
dant for the CFG. By contrast, our system’s AST-unrestricted CFG on the right
skips these two nodes entirely.

The second, more severe concern is that the control �ow in the left CFG in
Figure 1 cannot follow Java’s evaluation order due to the Parent-First constraint:
�ow passes through the PostUnaryInc node, which represents an update, before
passing through the node’s subexpression p1. This �ow would represent an in-
version of the actual order of evaluation: the nodes are misplaced in the CFG.
Typical client analyses on such a �awed CFG must add additional checks to com-
pensate or otherwise sacri�ce soundness or precision in programs where p1 also
has a side e�ect. By contrast, our AST-unrestricted CFG on the right addresses
this limitation and accurately re�ects Java’s control �ow.

We note that recent work on program analysis [Sza; Hel+20] has asserted
that attribute grammars restrict computations to be tightly bound to the AST
structure. Our work demonstrates that this generalization does not hold, and
that RAGs are an e�ective framework for e�ciently deriving precise CFGs that
deviate from the AST structure and for expressing client analyses directly in terms
of such derived structures.

3.2 The IntraCFG framework

IntraCFG is our new RAG framework for constructing intraprocedural AST-
unrestricted CFGs, superimposing the graph on the AST. Figure 2 shows the
framework as a UML class diagram. IntraCFG is language-independent, and in-
cludes interfaces that AST types in an abstract grammar can mix in and specialise
to compute the CFG for a particular language. The �gure shows �ve types: the
CFGRoot interface is intended for subroutines, e.g., methods and constructors, to
represent a local CFG with a unique entry and exit node. We represent the latter
as synthetic AST node types Entry and Exit. The CFGNode interface marks nodes
in the CFG, and each node has reference attributes succ and pred to represent the
successor and predecessor edges. The CFGSupport interface marks AST nodes in
a location that may contain CFGNodes. All CFGNodes are CFGSupport nodes, but
CFGSupport nodes that are not CFGNodes can help steer the construction of the
CFG.

Figure 2 also shows the AST node types’ attributes and their types (middle
boxes), as well the de�ning equations (bottom boxes). Here, we writeP(CFGNode)
for the type of sets over CFGNodes. We optionally pre�x attribute names with ↑,
↓,→, �, or 	 to highlight the AST traversal underlying their computation. For
the di�erent kinds of attributes, we use the following equations, for attributes x
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<<interface>>
CFGSupport

↑�rstNodes : P(CFGNode)
↓nextNodes : P(CFGNode)
↓nextNodesTT : P(CFGNode) [df-api]
↓nextNodesFF : P(CFGNode) [df-api]

↑�rstNodes = ∅

<<interface>>
CFGRoot

→entry : Entry [df-api]
→exit : Exit [df-api]

→entry = new Entry
→exit = new Exit
*.↓entry =→entry
*.↓exit =→exit
*.↓nextNodes = ∅
*.↓nextNodesTT = ∅
*.↓nextNodesFF = ∅

<<interface>>
CFGNode

↑succ : P(CFGNode) [df-api]
↑pred : P(CFGNode) [df-api]
↓entry : Entry
↓exit : Exit
�succInv : P(CFGNode)
	reachable : boolean
↑�rstNodes = {this}
↑succ = ↓nextNodes
s ∈ ↑succ =⇒ this ∈ s.�succInv
	reachable =
↓entry∈ �succInv ∨ ∃p ∈ �succInv : p.	reachable
↑pred = {p | p ∈ �succInv ∧ p.	reachable}

Entry

Exit

Attribute markers
↑ synthesized
↓ inherited
→ higher-order
� collection
	 circular

[df-api] for client data
�ow analyses

Figure 2: The IntraCFG framework with interfaces CFGRoot, CFGSupport,
CFGNode, and synthetic AST types Entry, Exit. Highlighted attribute equations
are default equations, intended for overriding.

and expressions e:

Synthesised attributes: ↑x = e de�nes attribute ↑x for the local AST node
(which we call this).

Inherited attributes: c.↓x = e gives AST child node c and its descendants
access to e through ↓x, where e is evaluated in the context of the this
node (c’s parent). We use the wildcard ∗ for c to broadcast to all children,
∗.↓x = e.

Higher-order attributes: →x = e where e must construct a fresh AST subtree.

Circular attributes: 	x = e, where e computes a �xpoint. In this paper,
boolean circular attributes start at false and monotonically grow with ∨,
while set-typed circular attributes start at ∅ and monotonically grow with
∪.

Collection attributes have no equations, but contributions. We write P =⇒
e ∈ n.�x to contribute the value of expression e to collection attribute �x
in node n if P holds. In this paper, all collection attributes are sets.

This pseudocode translates straightforwardly to more verbose JastAdd code
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MethodDecl ::= ... b:Block
implements CFGRoot

entry.↓nextNodes = b.↑�rstNodes
b.↓nextNodes = {↓exit}

EQOp ::= left:Expr right:Expr

implements CFGNode

↑�rstNodes = left.↑�rstNodes
left.↓nextNodes = right.↑�rstNodes
right.↓nextNodes = {this}

AndOp ::= left:Expr right:Expr

implements CFGSupport

↑�rstNodes = left.↑�rstNodes
left.↓nextNodesTT = right.↑�rstNodes
left.↓nextNodesFF = ↓nextNodesFF
...

ReturnStmt ::= [e:Expr]

implements CFGNode
...
↑succ = {↓exit}

Figure 3: Example application of the IntraCFG framework.

EQOp ::= Left:Expr Right:Expr; // Abstract grammar
EQOp implements CFGNode;
eq EQOp.firstNodes() = getLeft().firstNodes();
eq EQOp.getLeft().nextNodes() = getRight().firstNodes();
eq EQOp.getRight().nextNodes() =

SmallSet<CFGNode>.singleton(this);

Listing 1: JastAdd translation of EQOp in Figure 3.

that uses Java for the right-hand sides in our equations. IntraCFG is 45 LOC of
JastAdd code.1

The equations in the framework de�ne some of the attributes, and provide de-
fault de�nitions for others. To specialise the framework to a particular language,
the default equations can be overridden for speci�c AST node types to capture
the control �ow of the language.

Client analyses can then use attributes marked as [df-api] in Figure 2, such
as, ↑succ and ↑pred, to analyze the CFG. Since CFG nodes are also AST nodes,
it is easy for these analyses to also access syntactic information and attributes
from, e.g., type analysis, as we illustrate in Section 5.

3.3 Computing the successor a�ributes

To compute the ↑succ attributes, we use the helper attributes ↑�rstNodes and
↓nextNodes. Given an AST subtree t, its ↑�rstNodes contain the �rst CFGNode
within or after t that should be executed, if such a node exists. If not, ↑�rstNodes is
empty. The framework in Figure 2 shows the default de�nitions for this attribute:
the empty set for a CFGSupport node, and the node itself for a CFGNode.

1https://github.com/lu-cs-sde/IntraJSCAM2021/

https://github.com/lu-cs-sde/IntraJSCAM2021/
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The ↓nextNodes attribute contains the CFGNodes that are outside t, and that
would immediately follow the last executed CFGNode within t, disregarding
abrupt execution �ow like returns and exceptions. By default, the ↑succ attribute
is de�ned as equal to ↓nextNodes.

Figure 3 shows how the framework can be specialised to some example AST
node types to de�ne the desired CFG. JastAdd expresses these additions in a mod-
ular attribution aspect. For illustration, we again encode the JastAdd speci�cation
into UML and include the abstract syntax of each node type. Listing 1 also illus-
trates how the pseudocode can be translated to JastAdd code.

Here, MethodDecl exempli�es a CFGRoot. It de�nes the �ow between its
→entry and →exit HOAs and its children. EQOp exempli�es a CFGNode. It de-
�nes a pre-order �ow: left, then right, then the node itself. Each type de�nes
its own synthesised attributes as well as the inherited attributes of its children
and HOAs.

All CFGNodes have immediate access to the Entry and Exit nodes of the CFG,
through the inherited ↓entry and ↓exit attributes declared in CFGNode and de�ned
by the nearest CFGRoot ancestor (Figure 2). This allows e.g., the ReturnStmt to
point its ↑succ edge directly to the Exit node.

For boolean expressions that a�ect control-�ow, IntraCFG supports path-
sensitive analysis, splitting the successor set into two disjoint sets for the true and
false branches. We provide attributes ↓nextNodesTT and ↓nextNodesFF, respec-
tively, to capture these branches. The AndOp type illustrates how these attributes
can capture short-circuit evaluation on the left child. These attributes are rele-
vant only for boolean branches, and must ensure the following property:
↓nextNodesTT ∪ ↓nextNodesFF = ↓nextNodes

Figure 4 illustrates these attributes on a small program in a language with
methods, statements, and expressions. Here, MethodDecl is a CFGRoot and thus
automatically has fresh Entry and Exit nodes. Nodes in the control �ow, e.g.,
identi�ers and the equality-check operator, EQOp, are CFGNodes, and thus have
the ↑succ attribute. Nodes that do not belong to the control-�ow but live in AST
locations below a CFGRoot that may contribute to control �ow are CFGSupport
nodes. The left-hand-side variable of the assignment p1 = 0 (i.e., p1) is not part
of the �ow (cf. Section 4.1).

3.4 Computing predecessors

To support both forward and backward analyses, we provide a predecessor at-
tribute that captures the inverse of the successor attribute ↑succ. However, ↑succ
is also de�ned for CFGNodes that are not reachable from Entry by following ↑succ
(i.e., that are “dead code”). Our framework therefore computes predecessor edges
↑pred by not only inverting ↑succ into a collection attribute�succInv, but also by
�ltering out such “dead” nodes from �succInv with a boolean circular attribute
	reachable (Figure 2).
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void foo(int p1, int p2, boolean b1){
if (p1==p2 && b1) p1 = 0;

}

AndOp

b1

p1 p2

EQOp

Entry Exit

p1 0

ExprStmt

MethodDecl
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AndOp
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Figure 4: Visualization of the attributes ↑�rstNodes, ↓nextNodes and ↑succ.
For boolean expressions (AndOp and EQOp), the subsets ↓nextNodesTT and
↓nextNodesFF are shown instead of ↓nextNodes, marked by True and False, re-
spectively.
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4 IntraJ: IntraCFG implementation for Java 7
IntraJ is our implementation of a precise intraprocedural CFG for Java 7, extend-
ing the IntraCFG framework and the ExtendJ Java compiler. IntraJ exploits the
ExtendJ front-end, which performs name-, type-, and compile-time error analy-
sis. ExtendJ produces an attributed AST2 on top of which IntraJ superimposes
the CFG.

In this Section, we discuss the most important design decisions for IntraJ,
and in particular, how we used HOAs to improve the precision of the CFG. Our
two main goals were:

1. minimality: build a concise CFG by excluding AST nodes that do not cor-
respond to any runtime action. This improves client analysis performance,
in particular for �xpoint computations.

2. high precision: the constructed CFGs should capture most program details.
We exploit HOAs to reify implicit structures in the program, such as calls
to static and instance initialisers and implicit conditions in for loops.

We gave particular importance to exceptions, modelling them as accurately as
possible and weighing the trade-o� between precision and minimality.

IntraJ consists of a total of 989 LOC (598 for Java 4; 11 for Java 5; 380 for
Java 7). We have constructed a systematic benchmark test suite for IntraJ, con-
sisting of 151 tests in total (126 for Java 4; 5 for Java 5; 20 for Java 7). The test
suite reads source code as input and produces CFGs as dot �les as output. We
validated the result of each test manually.

4.1 Statements and Expressions

When a language implementer specialises IntraCFG for a given language, they
must decide which AST nodes should be part of the CFG, i.e., mix in (implement)
the CFGNode interface. As a general design principle, we included AST nodes that
correspond to a single action at runtime. This includes operations on values, like
additions, comparisons, and read operations on variables and �elds.

We also included nodes that are interesting points in the execution that a
client analysis might want to use. This includes nodes that redirect �ow outside
of the CFG, like method calls, return statements, and throw statements.

For assignments, the choice of nodes to include in the CFG was not obvious.
The left-hand side of an assignment can be a chain of named accesses and method
calls, e.g., f.m().x, with the rightmost named access, x, corresponding to the
write. Here, we chose to not include x in the CFG but instead use the assignment
node itself to represent the write operation, see Figure 5. We argue that this gives

2The full abstract grammar for Java 7 can be found at https://extendj.org

https://extendj.org
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a simpler client interface, since the same AST node type, VarAccess, otherwise
represents all named accesses on the left- and right-hand side of an assignment.

AssignExpr

Dot

DotVarAccess

MethodAccess
< m >

< f >

IntegerLiteral

< 0 >

MethodDecl

Entry Exit
Block

VarAccess
< x >

void foo() {
f.m().x = 0;

}

We represent the write to
x by the AssignExpr
node in the CFG.

↑succ

CFGRoot

CFGNode

CFGSupport

AST node

Legend

HOA

Figure 5: An assignment with a complex left-hand side.

We do not include purely structural nodes, like Block or type information
nodes, in the CFG. We also exclude nodes that redirect internal �ow, like while
statements and conditionals. While these nodes do represent runtime actions, the
CFG already re�ects their �ow through successor edges.

MethodDecl and the analogous ConstructorDecl for constructors mix in the
CFGRoot interface, thus representing a local CFG. A CFGSupport node de�nes the
inherited attributes for its CFGNodes children, if any. For example, a Block de�nes
the ↓nextNodes attribute for all its children.

As an example of the �exibility of IntraCFG, consider the Java ForStmt,
which is composed of variable initialisation, termination condition, post-iteration
instruction, and loop body. The CFG should include a loop over these compo-
nents. However, it is legal to omit all the components, i.e., to write: ‘for ( ;
; ){}’. The condition is implicitly true in this case, resulting in an in�nite loop.
To construct a correct CFG, we still need a node to loop over; we therefore opt to
reify this implicit condition. We construct an instance of the boolean literal true
as the HOA →implC. Figure 6 shows how the ↑�rstNodes attribute then uses
→implC only if both the initialisation statements and the condition are missing.
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MethodDecl

Entry Exit

Block

ForStmt

True

BooleanLiteral

< true >

Block

F
a
l
s
e

CFGRoot

CFGNode

CFGSupport

AST node

Legend

HOA

↑�rstNodes
↑succ

void foo(){
for( ; ; ){ }

}

ForStmt ::= init:Stmt∗ c:Expr ... b:Block

implements CFGSupport
→implC : BooleanLiteral

→implC = new BooleanLiteral(true)
↑�rstNodes = if ¬init.empty then
init0.↑�rstNodes

elif ¬c.empty then c.↑�rstNodes
else →implC.↑�rstNodes

Figure 6: CFG for method with empty ForStmt. The HOA →implC rei�es the
implicit true condition.

Another interesting corner case is the EmptyStmt. This node represents
e.g. the semicolon in the trivial block {;}. The EmptyStmt is a CFGSupport
node since it does not map to a runtime action. Since EmptyStmt has no
children, its ↑�rstNodes will be the following CFG node. We achieve this by
de�ning ↑�rstNodes as equal to ↓nextNodes, overriding the default equation
from CFGSupport. In this manner, the CFG skips the EmptyStmt, and if there
are occurrences of multiple EmptyStmts, we skip them transitively and link to
the next concrete CFGNode. The example in Figure 7 shows how we exclude
two EmptyStmts from the CFG and obtain a CFG with only a single edge from
method Entry to Exit. Let us call the two EmptyStmts e1 and e2, from left to
right. The equations give that Entry.↑succ = Exit since

Entry.↑succ = Entry.↓nextNodes = Block.↑�rstNodes
= e1.↑�rstNodes = e1.↓nextNodes
= e2.↑�rstNodes = e2.↓nextNodes
= Block.↓nextNodes = Exit

4.2 Static and Instance Initialisers
When a Java program accesses or instantiates classes, it executes static and in-

stance initialisers. We will use the example in Figure 8 to explain how we handle
initialisers. As seen in the example, static and instance initialisers can be syn-
tactically interleaved: The instance �eld foo is followed by the static �eld bar,
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MethodDecl

Entry Exit

Block

EmptyStmt EmptyStmt

CFGRoot

CFGNode

CFGSupport

AST node

Legend

HOA

↑�rstNodes
↑succ

void bar(){
; ;

}

EmptyStmt

implements CFGSupport

↑�rstNodes = ↓nextNodes

Figure 7: The CFG can entirely skip AST nodes.

another static �eld foobar, and by an instance initialiser block printing the string
"Instance".

The Java Language Speci�cation speci�es that when a class is instantiated,
the static initialisers are executed �rst (unless already executed), then the in-
stance initialisers, and �nally the constructor. During the execution of the static
initialisers, the ones in a superclass are executed before those in a subclass, and
similarly for the instance initialisers.

To handle this execution order, our solution is to use HOAs to construct
two independent CFGs for each ClassDecl: one for the static initialisa-
tions, →staticInit, and one for the instance initialisations, →instanceInit.
The →staticInit connects all the static �eld declarations and all static ini-
tialisers. →instanceInit analogously connects instance �elds and initialisers.
→instanceInit and →staticInit mix in the CFGRoot interface, and automatically
get Entry and Exit nodes. The equations for ↑�rstNodes and ↓nextNodes
are overridden to include the initialisers in the same order as they appear in
the source code. To connect the initialisation CFGs, we view them as implicit
methods and use HOAs to insert implicit method calls to them. For example, if a
class has a superclass, the implicit static/instance initialiser method will start by
calling the corresponding initialiser in the superclass.

4.3 Exceptions Modelling

Control �ow for exceptions is complex to model and often requires non-trivial
approximations [Ami+16; JC04; Cho+99]. In Java, there are two kinds of excep-
tions: checked and unchecked. If an expression can throw a checked exception,
then Java’s static semantics require that the method that contains this expression
must surround the expression with an exception handler, or declare the excep-
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ClassDecl

StaticInit

Exit

FieldDecl

Block

ExprStmt

StringLiteral

< Instance >

InstanceInit

FieldDecl FieldDecl

BooleanLiteral

< false >
IntegerLiteral

< 1 >
IntegerLiteral

< 0 >

FieldDeclarator

< foo >

FieldDeclarator

< bar >
FieldDeclarator
< foobar > MethodAccess

< println >

EntryExitEntry

public class A {
int foo = 1; //instance field
static int bar = 0; //static field
static boolean foobar = false; //static field
{ println("Instance"); } //instance initialiser

}

Figure 8: Example of class that interleaves static and instance initialisers. The
→instanceInit and →staticInit HOAs represent the CFGs for each kind of ini-
tialisers.

tion in the method signature (using the throws keyword). If the exception is
unchecked, it is optional for the method to handle or declare the exception. Some
methods still declare unchecked exceptions, possibly to increase readability or to
follow coding conventions.

For the IntraJ CFG, we decided to explicitly represent all checked exceptions,
and, in addition, all unchecked exceptions that are explicitly thrown in the method
or declared in the method signature. For unchecked exceptions, we represent only
those that may escape from a try-catch statement. Within the try block of such
a statement, we introduce individual CFG edges for each represented exception
whenever it may be thrown, and separate edges for regular (non-exceptional)
control �ow. This design allows us to avoid conservative overapproximation, and
enables client analyses to distinguish whether control reached a finally block
through exceptional control �ow or through regular control �ow.

Consider the following example with two nested try blocks:
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void ex(Long x) throws Exn {
try {
try {
if (x < 10) NPE
array[x] = 0; OOB

else throw new Exn(); Exn
return; R

} finally { . . . } F1
} catch (Exn e) { . . . } CExn
catch (Alt e) { . . . } CAlt
finally { . . . } F2

}

NPE OOB Exn R

F1

CExn CAlt

F2

NPE OOB Exn R

F1

CExn CAlt

F2

NPE OOB Exn R

F1

CExn CAlt

F2

Figure 9: Complex exception �ow in a conservative CFG. Only the �ow paths in
green and orange are realisable.

Calling ex(null) from Figure 9 triggers a null pointer exception at NPE. Con-
trol then �ows from the exception to the �rst and then to the second finally
block, NPE F1 F2 . Calling ex(-1) similarly triggers an out-of-bounds excep-
tion at OOB, with analogous �ow. The explicit exception at Exn takes the path
Exn F1 CExn F2 , and no path can go through CAlt assuming that F1 does
not throw Alt. Note that finally also a�ects break, continue, and return, as
we see in the path R F1 F2 .

If we represent the CFG as on the right in Figure 9, client analyses will pro-
cess many unrealisable paths, such as R F1 CAlt F2 . Instead, we exploit
an existing feature in ExtendJ, originally intended for code generation [Öqv18],
that clones finally blocks. We incorporate the HOAs that represent each cloned
block into our CFG. In our example, this yields the CFG from Figure 10, and leaves
CAlt as dead code.

NPE OOB Exn R

UE

F11

F12 F13

CExn

F21 F22 F23

NPE OOB Exn R

UE

F11

F12 F13

CExn

F21 F22 F23

Figure 10: Path-
sensitive variant of the
CFG from Figure 9, used
in IntraJ.

This path sensitivity heuristic gives us increased
precision in exception handling and resource cleanup
code, which in our experience is often more subtle
and less well-tested than the surrounding code. For
unchecked exception edges (NPE, OOB), we follow Choi et
al. [Cho+99], who observe that these edges are ‘quite
frequent’; we therefore funnel control �ow for these
exceptions through a single node UE in the style of
Choi et al.’s factorised exceptions. Each try block pro-
vides one such node through a HOA. Section 6 shows
some of the practical strengths and weaknesses of our
heuristic.

We take an analogous approach for try-with-
resources, which automatically releases resources
(e.g., closes �le handles) in the style of an implicit
finally block. Our treatment di�ers from that of finally only in that we syn-
thesise the implicit code and suitably chain it into the CFG.
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5 Client Analysis
We demonstrate our framework with two representative data �ow analyses: Null
Pointer Exception Analysis (NPA), a forward analysis, and Live Variable Analysis
(LVA), a backward analysis that helps detect useless (‘dead’) assignments. These
analyses are signi�cant for bug checking and therefore bene�t from a close con-
nection to the AST.

We �rst recall the essence of these algorithms on a minimal language that
corresponds to the relevant subset of Java:

e ∈ E ::= new() | null | id | id.f | id = E

v ∈ id ::= x, . . .

An expression e can be a new() object, null, the contents of another variable,
the result of a �eld dereference (x.f), or an assignment x = e. The values in our
language are an unbounded set of objects O and the distinct null. Expressions
have the usual Java semantics. Since IntraJ already captures control �ow (on
top of IntraCFG) and name analysis (via ExtendJ), we can ignore statements
and declarations, and safely assume that each id is globally unique.

5.1 Null Pointer Exception Analysis
In our simpli�ed language, a �eld access x.f fails (in Java: throws a Null Pointer
Exception) if x is null. Null Pointer Exception Analysis (NPA) detects whether a
given �eld dereference may fail (e.g. in the SonarQube NPA variant) or must fail
(e.g. in the Eclipse JDT NPA variant) and can alert programmers to inspect and
correct this (likely) bug.

In our framework, writing may and must analyses requires the same e�ort;
we here opt for a may analysis over a binary lattice L2 in which > = nully
signi�es value may be null and ⊥ = nonnull signi�es value cannot be null.

More precisely, we use a product lattice over L2 that maps each access path

a ∈ A (e.g. x; x.f; x.f.f; . . . ) to an element of L2. Our analysis then follows
the usual approach for a join data �ow analysis [CC77]. Our monotonic transfer
function fNPA : (A → L2)× E→ (A → L2) is straightforward:

fNPA(Γ, v = e) = Γ[v 7→ JeKΓ]
where Jnew()KΓ = nonnull

JnullKΓ = nully
JvKΓ = Γ(v)
Jv.fKΓ = Γ(v.f)
Jv = eKΓ = JeKΓ

We do not need to write a recursive transfer function for assignments nested
in other assignments (e.g., x = y = z), since the CFG already visits these in eval-
uation order.
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<<interface>>
CFGNode

↑trFun : EnvNPA→ EnvNPA
	inNPA : EnvNPA
	outNPA : EnvNPA
↑trFun(Γ) = Γ
	inNPA = {a 7→

⊔
n.	outNPA(a)

| a ∈ A, n ∈ ↑pred}
	outNPA = ↑trFun(	inNPA)

VarAccess

extends Expr. implements CFGNode
↓isDeref : boolean
↑canFail : boolean
↓cu : CompilationUnit [name-api]

↑mayBeNull = (	inNPA(↑decl) = nully)
↑canFail = ↑mayBeNull ∧ ↓isDeref
↑canFail =⇒ this ∈ ↓cu.�NPA

Expr

↑mayBeNull : boolean
↑decl : A [name-api]

↑mayBeNull = false

AssignExpr ::= lhs:Expr rhs:Expr

extends Expr. implements CFGNode

↑trFun(Γ) = if rhs.↑mayBeNull
then Γ[lhs.↑decl 7→ nully]
else Γ[lhs.↑decl 7→ nonnull]

↑mayBeNull = rhs.↑mayBeNull

NullExpr

extends Expr. implements CFGNode

↑mayBeNull = true

Figure 11: Partial implementation of our NPA. We obtain ↑decl and ↓cu from
ExtendJ’s name analysis API.

Our implementation is �eld-sensitive and control-sensitive (i.e., it under-
stands that if (x != null){x.f=1;} is safe), but array index-insensitive and
alias-insensitive. Field sensitivity is reached by considering the entire access
path chain, while control sensitivity is given by de�ning new HOAs representing
implicit facts, e.g., x != null.

Figure 11 shows how we compute environments Γ ∈ EnvNPA = A → L2

that capture access paths that may be null at runtime. We extend CFGNode with
	inNPA, which merges all evidence that �ows in from control �ow predecessors,
and 	outNPA, which applies the local transfer function ↑trFun to 	inNPA. While
NPA is a forward analysis, JastAdd’s on-demand semantics mean that we query
backwards, following ↑pred edges, when we compute	inNPA on demand. 	inNPA

and 	outNPA are circular, i.e., can depend on their own output and compute a
�xpoint.

The attributes for VarAccess show how we use this information. Each
VarAccess contributes to ↓cu.�NPA, the compilation unit-wide collection
attribute of likely null pointer dereferences, whenever ↑mayBeNull holds and
when the VarAccess is also a proper pre�x of an access path and must therefore
be dereferenced (↓isDeref, not shown here).

Our full Java 7 implementation takes up 142 lines of JastAdd code, excluding
data structures but including control sensitive analysis handling and reporting.
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5.2 Live Variable Analysis
Given a CFGNode n, a variable is live i� there exists at least one path from n to
Exit on which n is read without �rst being rede�ned. An assignment to a vari-
able that is not live (i.e., dead) wastes time and complicates the source code, which
generally means that it is a bug [Rei21]. We can detect this bug with Live Vari-

able/Liveness analysis (LVA), a data �ow analysis that computes the live variables
for each CFG node.

We express LVA as a Gen/Kill analysis, on the powerset lattice over the set of
live (local) variables. Each transfer function adds variables to the set (marks them
live) or removes them (marks them dead). LVA is a backward analysis, starting at
the Exit node with the assumption that all variables are dead (i.e., with the set of
live variables L = ∅). The transfer function thus maps from node exit to entry
and has the form:

fLVA(L, e) = (L \ def(e)) ∪ use(e)

where def (e) is the set of variables that e assigns to, and use(e) is the set of vari-
ables that e reads.

We encode the fLVA using RAGs in a similar way as done in [Söd+13]: Fig-
ure 12 shows our computation where circular attributes	inLVA and	outLVA rep-
resent variables live before/after a CFGNode. Here, 	outLVA reads from ↑succ
nodes, since we are implementing an on-demand backward analysis. VarAccess
and AssignExpr override ↑use and ↑def, respectively. Since the CFG traverses
through the right-hand side of each assignment, this speci�cation su�ces to cap-
ture the analysis of our Java language fragment. Our full implementation for
Java 7 takes up 38 lines of code.

5.3 Dead Assignment Analysis
We use dead assignment analysis (DAA) as a straightforward client analysis for
LVA. Our implementation of DAA re�nes the results of LVA with a number of
heuristics that we have adopted from the SonarQube checker. Speci�cally, these
heuristics suppress warnings in code like the following:

String status = ""; // WARNING: unused assignment
if (...) status = "enabled";
else status = "disabled";

Here, the initial assignment to status re�ects a defensive coding pattern that
ensures that all variables are initialised to some safe default. We (optionally) sup-
press warnings like the above under two conditions: (1) the assignment must be
in a variable initialisation, and (2) the initialiser must be a common default value,
i.e., one of {null, 1, 0, -1, "", true, false}. Our DAA implementation takes up
62 lines of code.
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<<interface>>
CFGNode

	inLVA : P(A)
	outLVA : P(A)
↑def : P(A)
↑use : P(A)

	inLVA = (	outLVA \ ↑def) ∪ ↑use
	outLVA =

⋃
{n.	inLVA|n ∈ ↑succ}

↑def = ∅
↑use = ∅

VarAccess

implements CFGNode

↑use = { ↑decl }

AssignExpr ::= lhs:Expr rhs:Expr

implements CFGNode

↑def = { lhs.↑decl }

Figure 12: Partial implementation of our LVA.

6 Evaluation and Results
We demonstrate the utility of IntraCFG and IntraJ3 by evaluating the client
analyses that we describe in Section 5 against similar source-level analyses from
the Parent-First framework jastaddj-intraflow4 (JJI) and the commercial static
analyser Sonar�be, version 8.9.0.43852 (SQ).

Our evaluation targets DaCapo benchmarks ANTLR, FOP, and PMD [Bla+06],
as well as JFreeChart (JFC), which is a superset of the Chart benchmark. These
benchmarks mostly subsume the ones used by JJI [Söd+13], except for replacing
Bloat by the more readily available and larger PMD. Table 1 summarise key
metrics for the benchmarks and compares CFGs against JJI. Here, IntraJ’s AST-
unrestricted strategy for building CFGs reduces the number of nodes and edges
by more than 30%.

6.1 Precision
To ensure that our analyses yield useful results, we compared them against the
results that JJI and SQ report.

Dead Assignment Analysis JJI and SQ provide subtly di�erent DAA vari-
ants. JJI’s DAA corresponds largely to our LVA (Section 5.2) with minimal �l-
tering, while SQ additionally applies the default value �ltering heuristic from
Section 5.3. We therefore ran two variants of our DAA, the JJI-style IntraJ-NH
(non-heuristic), and the SQ-style IntraJ-H (heuristic). For SQ’s reports, we �l-
tered reports that involved multiple methods (FOP: 24; JFC: 5; PMD: 8), since SQ
can use interprocedural analysis within one �le.

The Venn diagrams in the upper part of Figure 13 show the number of DAA
reports for each project, categorised by their overlap among the di�erent check-

3Based on ExtendJ commit a56a2c2 and JastAdd commit faf36d2
4Using JastAdd2 release 2.1.4-36-g18008bb and JastAddJ-intra�ow commit b0b7c00, restored

with the original authors’ generous help
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LOC Qty IntraJ JJI %

ANTLR
v. 2.7.2 33·737

Roots 2·667 2·329 +14.5
Nodes 76·925 116·523 -39.9
Edges 85·028 136·528 -37.7

PMD
v. 4.2 49·610

Roots 6·215 5·960 +4.26
Nodes 103·739 182·864 -43.2
Edges 108·639 202·842 -46.4

JFC
v 1.0.0 95·664

Roots 9·271 7·889 +17.5
Nodes 219·419 331·368 -33.7
Edges 220·256 363·642 -39.4

FOP
v 0.95 97·288

Roots 11·327 8·921 +26.9
Nodes 239·096 347·125 -31.1
Edges 240·068 379·269 -36.6

Table 1: Benchmark size metrics, LOC from cloc. The rest are CFG sizes. Roots is
the number of intraprocedural CFGs. For IntraJ, this includes static and instance
initialisers.

ers. For each category with 20 or fewer reports, we manually inspected all reports.
For other categories, we sampled and manually inspected at least 20 reports or
20% of the reports (whichever was higher).

The Venn diagrams are dominated by two bug report categories: reports from
the intersection of IntraJ-NH and JJI, which are initialisations of variables with
default values, and reports from the intersection of all tools. For these two cat-
egories, we found all inspected reports to be true positives, modulo the DAA
heuristic (Section 5.3). The remaining cases are often false positives: SQ reports
8 and 44 false positives in PMD and FOP that seem to largely stem from impre-
cision in handling try-catch blocks. Meanwhile, JJI reports 9 false positives in
PMD while handling break statements. IntraJ reports two false positives, due to
missing two exceptional �ow edges for unchecked exceptions (Section 4.3). These
do not a�ect JJI (and possibly SQ), since JJI conservatively merges exceptional and
regular control �ow.

Null Pointer Analysis For NPA (lower part of Figure 13), IntraJ detects at
least as many reports as SQ, except for PMD, where SQ is able to exploit path
sensitivity to identify three additional true positives. Similarly, the false positives
reported only by IntraJ are mostly due to the lack of path-sensitivity. Listing 2
shows a simpli�ed example.

We found that most of the false positives in the intersection of IntraJ and
SQ are due to the lack of interprocedural knowledge. Listing 3 gives a simpli�ed
example. The code here checks if rs is null and, if so, calls panic() to halt
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Figure 13: Venn diagram: number of reports shared across checkers, and percent-
age of true positives (unless 100%).

execution. IntraJ and SQ treat panic() as a regular method call and infer that
rs may be null when dereferenced.

void bar(boolean flag){
Object o = null;
if (flag)
o = new Object();

if (flag)
println(o.toString());

}

Listing 2: Simpli�ed false positive
reported by IntraJ

void foo(){
Object rs = getRS();
if(rs==null)

// rs can be null
panic(); //exit(1)

println(rs.toString());
}

Listing 3: False positive due to
intraprocedural limitations

6.2 Performance
We evaluated IntraJ’s runtime performance with the above benchmarks on an
octa-core Intel i7-11700K 3.6 GHz CPU with 128 GiB DDR4-3200 RAM, running
Ubuntu 20.04.2 with Linux 5.8.0-55-generic and the OpenJDK Runtime Environ-
ment Zulu 7.44.0.11-CA-linux build 1.7.0_292-b07.
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We separately measured both start-up performance on a cold JVM (restarting
the JVM for each run) and steady-state performance (for a single measurement
after 49 warmup runs). We measured each for 50 iterations (i.e., 2500 analysis
runs for steady-state) and report median and 95% con�dence intervals for IntraJ,
JJI, and SQ, where applicable.

2 and Table 3 summarise our results. The Baseline column in Table 2, gives the
times for each tool to load each benchmark, without data �ow analyses. For SQ,
we report the command line tool run time, with checkers disabled. For IntraJ and
JJI, this time includes parsing, name, and type analysis. As JJI uses old versions of
JastAdd and ExtendJ (formerly JastAddJ) from 2013, it reports di�erent baselines.
We speculate that the delta is due to bug �xes and other changes to JastAdd and
ExtendJ.

We measured DAA and NPA, as well as CFG construction time, on separate
runs (column An.sys). Table 3 has some missing values since JJI does not provide
an implementation for NPA analysis, and since for SQ, we were unable to trigger
the construction of the CFG only. Further, we could not measure steady state for
SQ, since we ran it out of the box.

For start-up measurements, we then subtracted the baseline timings. DAA
and NPA timings include on-demand CFG construction time. For the CFG mea-
surements, we iterated over the entire AST and computed the ↑succ attribute.

The %JJI and %SQ columns summarise IntraJ’s performance against JJI and
SQ as slowdown (in percent), i.e. IntraJ was faster whenever we report less than
100.

We see that IntraJ is often slower than JJI for small benchmarks, but out-
performs it as the benchmarks grow in size, especially in steady-state. This trend
mirrors the additional overhead that IntraJ expends on computing smaller, more
accurate CFGs: the di�erence between the CFG and DAA timings is consistently
smaller for IntraJ than it is for JJI, and becomes more signi�cant for larger bench-
marks.

For the industrial-strength SQ, we observe that its baseline is longer than In-
traJ’s, and an explanation might be that it includes computations that for IntraJ
would be attributed to the analyses. A strict comparison to SQ is therefore dif-
�cult, but we observe that IntraJ is considerably faster including the baseline,
at most 3.12 times slower for DAA only, and considerably faster for NPA only,
though the latter is likely due to SQ’s more expensive interprocedural analysis.

Overall, our results support that IntraJ enables practical data �ow analyses,
with run-times and precision similar to state-of-the-art tools. Moreover, the re-
sults support that the overhead that IntraJ invests in re�ning CFG construction
over jastaddj-intraflow pays o�: client analyses can amortise this cost, and we
expect this bene�t to grow for analyses on taller lattices (e.g., interval or typestate
analyses).
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Table 2: Measure the baseline execution time and 95% con�dence intervals using
50 data points per reported number.

Benchmark Baseline(s)

ANTLR
IntraJ JJI SQ

2.14±0.01 1.34±0.01 4.91±0.05

PMD
IntraJ JJI SQ

3.56±0.01 2.34±0.02 10.76±0.09

JFC
IntraJ JJI SQ

4.29±0.01 3.14±0.02 10.81±0.11

FOP
IntraJ JJI SQ

4.42±0.00 3.32±0.00 17.20±0.12

Table 3: Benchmark mean execution time (seconds) and 95% con�dence inter-
vals over 50 data points per reported number. We are reporting only con�dence
intervals greater than 0.02.

Benchmark Start-up Steady state
An.sys IntraJ JJI SQ %JJI %SQ IntraJ JJI %JJI

ANTLR
CFG 0.29 0.16 - 181 - 0.05 0.04 125
DAA 0.53 0.43 0.24±0.05 123 220 0.12 0.13 92
NPA 0.90 - 12.35±0.10 - 7 0.27 - -

PMD
CFG 0.28 0.11 - 120 - 0.07 0.06 116
DAA 0.47 0.39 0.18±0.08 120 261 0.12 0.16 75
NPA 0.80 - 12.40±0.13 - 6 0.26 - -

JFC
CFG 0.45 0.45±0.04 - 100 - 0.12 0.12 100
DAA 0.75 1.07±0.03 0.24±0.11 70 312 0.25 0.34 73
NPA 1.62 - 10.71±0.12 - 13 0.60 - -

FOP
CFG 0.36 0.33 - 109 - 0.14 0.17 82
DAA 0.67 0.74 0.34±0.12 90 197 0.26 0.39 66
NPA 1.42 - 19.25±0.14 - 7 0.67 - -
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7 Related Work

Our work is most similar to jastaddj-intraflow [Söd+13], the earlier RAG-
based control- and data �ow framework. As demonstrated, our CFG framework is
more general, leading to more concise CFGs, avoiding misplaced nodes, and han-
dling control �ow that does not follow the AST structure, like initialisation code.
Furthermore, our framework is formulated as a complete language-independent
framework (Fig 2) with interfaces and default equations for all nodes involved
in the CFG computation, and it has a more precise predecessor relation, exclud-
ing unreachable nodes. Our application of the framework to Java is more precise
than the earlier work, making use of HOAs for reifying implicit structure, e.g.,
in connection to finally blocks. Additionally, we implemented the analyses for
Java 7, including complex �ow for try-with-resources, whereas [Söd+13] only
supported Java 5.

Earlier work on adding control �ow to attribute grammars includes a lan-
guage extension to the Silver attribute grammar system [VWK07; Van+10] which
supports that AST nodes are marked as CFG nodes, and successors are de�ned
using an inherited attribute. Data �ow is implemented by exporting data �ow
properties as temporal logic formulas, and using model checking to implement
the analysis. The approach is demonstrated on a small subset of C. No perfor-
mance results are reported, and scalability issues are left for future work.

Other declarative frameworks for program analysis have also demonstrated
�ow-sensitive analysis support. SOUL [De 11] exposes data �ow information for
Java 1.5 from Eclipse through a SmallTalk dialect combined with Prolog, though
we were unable to obtain performance numbers for bug checkers or related
analyses based on SOUL. Like our system, SOUL uses on-demand evaluation.
DeepWeaver [Fal+07] supports data �ow analysis and program transforma-
tion on byte code. Meanwhile, Flix [ML20] combines Datalog-style �xpoint
computations and functional programming for declarative data �ow analysis,
and can scale IFDS/IDE-style interprocedural data �ow analysis to nontrivial
software [MYL16a]. To the best of our understanding, Flix does not connect to
any compiler frontend, and we assume that Flix users rely on Datalog-style fact
extractors to bridge this gap. MetaDL [DBR19] illustrates how to synthesise fact
extractors from a JastAdd-based language, and we expect that it can directly
expose IntraJ edges.

FlowSpec [SWV20] is a DSL for data �ow analysis based on term rewriting.
To the best of our knowledge, FlowSpec has only been demonstrated on educa-
tional and domain-speci�c languages. Rhodium [Ler+05] uses logical declarative
speci�cations for data �ow analysis and transformation, to optimise C code and
to prove the correctness of the transformations.

Other declarative systems that do not handle data �ow include logic program-
ming based techniques [BS09], term rewriting systems [Vis04], and XPath pro-
cessors [Cop05].
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Our work has focused on intraprocedural data �ow analyses [Kil73; KU77;
CC77]. However, existing (IR-based) program analysis tools like Soot [VR+10b],
Wala [FD12], or Opal [Hel+20] include provisions for interprocedural analysis,
too. We currently see no fundamental challenge towards scaling our techniques
to interprocedural analysis and expect only minor changes to the IntraCFG in-
terfaces, for context-sensitivity. Such an e�ort would require additional analy-
ses (call graph, points-to). We hypothesise that our implicit handling of recur-
sive dependencies can eliminate the need for pre-analyses or complex worklist
schemes [LH03], analogously to Datalog-based analyses [SB10]. While we ex-
pect that it is possible to integrate highly scalable data �ow algorithms like IFDS,
IDE [RHS95; SRH96], or SPPD [SAB19] into RAG interfaces, such interfaces may
require a di�erent design than IntraCFG and IntraJ to e.g. accommodate pro-
cedure summaries and to better enforce and exploit the invariants of these more
specialised algorithms.

8 Conclusions

We presented IntraCFG, a RAG-based declarative language-independent frame-
work for constructing intraprocedural CFGs. IntraCFG superimposes CFGs on
the AST, allowing client analyses to take advantage of other AST attributes, such
as type information and precise source information. We validated our approach
by implementing IntraJ, an application of IntraCFG to Java 7, and demonstrated
how IntraCFG overcomes the limitations of an earlier RAG-based framework,
jastaddj-intraflow (JJI), by allowing the CFG to not be constrained by the
AST structure. Compared to JJI, IntraJ can faithfully capture execution order
and improve CFG conciseness and precision, removing more than 30% of the CFG
edges in our benchmarks. We evaluated IntraJ by implementing two data �ow
analyses: Null Pointer Exception Analysis (NPA) and Dead Assignment Analy-
sis (DAA), comparing both to JJI (for DAA), and to the highly tuned commercial
tool SonarQube (SQ) (for DAA and NPA). Our results show that the IntraJ-based
analyses o�er precision that is comparable to that of JJI and SQ. Compared to JJI,
IntraJ pays some overhead for computing more precise CFG but can amortise
this e�ort for larger programs by speeding up client analyses, outperforming JJI.
Compared to SQ, IntraJ’s NPA analysis is substantially faster, although this is
likely due to SQ’s more advanced interprocedural analysis. IntraJ’s DAA anal-
ysis seems slower than SQ’s, but SQ has a much larger baseline, which might
include computations that we would attribute to the analysis for IntraJ. Overall,
we �nd that our results demonstrate that IntraJ-based data �ow analyses are
practical, that IntraJ enables precise data �ow analyses on Java source code, and
that IntraCFG is e�ective for constructing CFGs for Java-like languages. More-
over, we demonstrate for the �rst time how RAGs can build and exploit graph
structures over an AST without being restricted by the AST’s structure.
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1 Abstract
Software corpora are crucial for evaluating research artifacts and ensuring re-
peatability of outcomes. Corpora such as DaCapo and Defects4J provide a col-
lection of real-world open-source projects for evaluating the robustness and per-
formance of software tools like static analysers. However, what do we know about

these corpora? What do we know about their composition? Are they really suited

for our particular problem? We developed JFeature, an extensible static analysis
tool that extracts syntactic and semantic features from Java programs, to assist
developers in answering these questions. We demonstrate the potential of JFea-
ture by applying it to four widely-used corpora in the program analysis area,
and we suggest other applications, including longitudinal studies of individual
Java projects and the creation of new corpora.

2 Introduction
The impact of our research in computer science is bounded by our ability to
demonstrate and communicate how e�ective our techniques and theories really
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are. For research on software tools, the dominant methodology for demonstrating
e�ectiveness is to apply these tool to “real-life” software development tasks and
to measure how well they perform. Blackburn et al. [Bla+08] outline this process
in considerable detail, highlighting the need for appropriate experimental design

(to construct experiments), relevant workloads (to obtain relevant data from the
experiments), and rigorous analysis (to obtain rigorously justi�ed insights from
experimental data). The strength of our insights is then bounded by the weakest
link in this chain.

Carefully curated, pre-packaged workloads such as the DaCapo Benchmark
suite [Bla+06], Defects4J [JJE14], the Qualitas Corpus [Tem+10], and XCor-
pus [Die+17] can help ensure that we use relevant workloads. However, no
software corpus aims to be representative of all software, and for any given
research question there may not be any one corpus designed to answer that
question, so we must still validate that the corpus we choose is relevant to what
we want to show.

For instance, the DaCapo corpus aims to provide benchmarks with “more
complex code, richer object behaviors, and more demanding memory system
requirements” [Bla+06] than the corpora that preceded it, and it systematically
demonstrates complex interactions between architecture and the Java Run-Time
Environment, whereas Defects4J collects “real bugs to enable reproducible stud-
ies in software testing research” [JJE14]. Despite DaCapo’s focus on run-time
performance and Defects4J’s focus on software testing, both suites have seen
heavy use in research that they were not explicitly intended for, including the
authors’ own work in static analysis [Rio+21; DRS21] (using Defects4J), and in
compilers [EH07b] and dynamic invariant checking [Rei+10] (for DaCapo).

For each of these ostensible mis-uses, the authors selected the correspond-
ing benchmark corpus as the highest-quality corpus they were aware of whose
original purpose seemed su�ciently close to the intended experiments. This di-
vergence between research question and corpus purpose required the authors to
carefully re-validate the subset of the corpus that they had selected by hand.

In this paper, we argue that there is a need for increased automation and deci-
sion support for selecting benchmarks for speci�c research questions, and present
JFeature, a static analysis tool designed to help researchers in this process. JFea-
ture identi�es how often a Java project uses key Java features that are signi�cant
for di�erent types of software tools. JFeature operates at the source code level,
and is capable of identifying not only local syntactic features that may be chal-
lenging to encode in regular expression search tools like grep, but also complex
semantic features that depend on types and libraries. We have implemented JFea-
ture in the JastAdd [HM03] ecosystem as an extension of the ExtendJ [EH07b]
Java Compiler. This implementation architecture gives easy access to types and
other properties computed by the compiler, and also supports extensibility, al-
lowing researchers to adapt the analysis to �t their speci�c needs.

We demonstrate JFeature by running it on several widely-used corpora,
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speci�cally the DaCapo, Defects4J, Qualitas, and XCorpus corpora.
Our main contributions are:

• JFeature as an example of a tool for extracting information about the fea-
tures used in Java source code, and

• An overview over JFeature’s key insights on the DaCapo, Defects4J, Qual-
itas, and XCorpus corpora.

The rest of this paper is organised as follows: Section 3 introduces JFeature
and discusses the design decisions that underpin the tool. Section 4 shows the
results of applying JFeature to the four corpora. Section 5 illustrates how JFea-
ture can be extended to extract new features, taking advantage of properties in
the underlying Java compiler. Section 6 outlines future applications of JFeature.
Section 7 discusses related work, and Section 8 summarizes our conclusions.

3 JFeature: automatic feature extraction
We have designed JFeature as an extension of the ExtendJ extensible Java
compiler. ExtendJ is implemented using Reference Attribute Grammars
(RAGs) [Hed00] in the JastAdd metacompilation system. ExtendJ is a full Java
compiler, feature-compliant for Java 4 to 7 and close to being feature-compliant
for Java 81. In building compilers by means of attribute grammars [Knu68], the
abstract syntax tree (AST) is annotated with properties called attributes whose
values are de�ned using equations over other attributes in the AST. RAGs extend
traditional attribute grammars by supporting that attributes can be links to other
AST nodes. ExtendJ annotates the AST with attributes that are used for checking
compile-time errors and for generating bytecode. Example attributes include
links from variable uses to declarations, links from classes to superclasses, types
of expressions, etc. These attributes are exploited by JFeature to easily identify
AST nodes that match a particular feature of interest.

3.1 Java version features
There are many di�erent features that could be interesting to investigate in a
corpus. As the default for JFeature, we have de�ned feature sets for di�erent
versions of Java, according to the Java Language Speci�cation (JLS). A user can
then run JFeature to, e.g., investigate if a corpus is su�ciently new, or select only
certain projects in a corpus, based on what features they use. If desired, a user
can extend the feature set for a speci�c purpose.

In recent years there have been several new releases of the Java language.
Currently, Java 18 is the latest version available. However, most projects utilise
Java 8 or Java 11, both of which are long-term support releases (LTS).

1https://extendj.org/compliance.html

https://extendj.org/compliance.html
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Feature Kind
Syn Sem

Java 1.1 - 4, 1997-2002 – [Java; Javb; Javc; Javd]
Inner Class X
java.lang.re�ect.* X
Strictfp X
Assert Stmt X

Java 5, 2004 – [Javg; Jave]
Annotated Compilation Unit X

Annotations Use X
Decl X

Enum Use X
Decl X

Generics

Method X
Constructor X
Class X
Interface X

Enhanced For X
Varargs X
Static Import X
java.util.concurrent.* X

Java 7, 2011–[Javf]
Diamond Operator X
String in Switch X
Try with Resources X
Multi Catch X

Java 8, 2014– [Javh]
Lambda Expression X
Constructor Reference X
Method Reference X
Intersection Cast X
Default Method X

Table 1: Major changes in the Java language up to Java 8.

Table 1 summarises the main features introduced in each Java release after the
initial release (JDK 1.0) up to Java 8. We have classi�ed the features into either

• Syntactic: can be identi�ed using a context-free grammar, or

• Semantic: additionally needs context-dependent information such as nest-
ing structure, name lookup, or types.



3 JFeature: automatic feature extraction 85

While most features are syntactic, there are several features that are semantic, and
where the attributes available in the compiler are very useful for identi�cation of
the features.

Given any Java 8 project, JFeature collects all the feature usages, grouped by
release version. By default, JFeature supports twenty-six features2, but users may
extend the tool and add their own. We have chosen these features by looking at
each Java release note [Java; Javb; Javc; Javd; Javg; Jave; Javf; Javh]. We included
features that represent the most signi�cant release enhancements, i.e., libraries or
native language constructs whose use signi�cantly impacts program semantics.
In particular, we included the usage of two libraries, java.util.concurrent.* and
java.lang.reflect.*, because their usage may be pertinent for the evaluation of
academic static analysis tools.

3.2 Collecting features
To collect features, JFeature uses collection attributes [Boy96; MEH07b], also sup-
ported by JastAdd. Collection attributes aggregate information by combining
contributions that can come from anywhere in the AST. A contribution clause

is associated with an AST node type, and de�nes information to be included,
possibly conditionally, in a particular collection. Both the information and the
condition can be de�ned by using attributes.

For JFeature, we use a collection attribute, features, on the root of the AST.
The value of features is a set of objects, each de�ned by a contribution clause
somewhere in the AST. The objects are of type Feature that models essential
information about the extracted feature: the Java version, feature name, and ab-
solute path of the compilation unit where the feature was found.

Figure 1 shows an example with JastAdd code at the top of the �gure, and
below that, an example program and its attributed AST. The features collection
is de�ned on the nonterminal Program, which is the root of the AST (line 1). Then
two features are de�ned, Strictfp and String In Switch (lines 3-5 and 7-9).

Strictfp is a syntactic feature that corresponds to the modi�er strictfp. In
ExtendJ, modi�ers are represented by the nonterminal Modifierswhich contains
a list of modi�er keywords, e.g., public, static, strictfp, etc. To �nd out if
one of the keywords is strictfp, ExtendJ de�nes a boolean attribute isStrictfp
for Modifiers. To identify the Strictfp feature, a contribution clause is de�ned
on the nonterminal Modifiers (line 3), and the isStrictfp attribute is used for
conditionally adding the feature to the collection (line 5). The absolute path is
computed using other attributes in ExtendJ: getCU is a reference to the AST node
for the enclosing compilation unit, and path is the absolute path name for that
compilation unit (line 4).

String In Switch is a semantic feature in that it depends on the type of
the switch expression. It cannot be identi�ed with simple local AST queries or

2The complete implementation can be found at https://github.com/lu-cs-sde/JFeature.

https://github.com/lu-cs-sde/JFeature
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coll HashSet<Feature> Program.features();

Modifiers contributes
new Feature("JAVA2", "Strictfp", getCU().path())
when isStrictfp() to Program.features();

Switch contributes
new Feature("JAVA7", "StringInSwitch", getCU().path())
when getExpr().type().isString() to Program.features();

Program

MethodDecl
<bar>

Modifiers
<strictfp>

...

MethodDecl
<foo>

ParamDecl
<String color>

Switch

VarAccess
<color>

Block

Case
<"RED">

BreakStmt

...

features() strictfp void bar(){
...

}

void foo(String color){
switch(color){

case "RED":
break;

...
}

}

Collection A�ribute

Contributor Node

AST Node

Contribution

Figure 1: Example de�nitions of features.

regular expressions. Here, the contribution clause is de�ned on the nonterminal
Switch, and the feature is conditionally added if the type of the switch expression
is a string. ExtendJ attributes used here are type which is a reference to the
expression’s type, and isString which is a boolean attribute on types.

4 Corpora Analysis
We used JFeature to analyse four widely used corpora, to investigate to what
extent the di�erent Java features from Table 1 are used. We picked the newest
available version of each of the corpora.

4.1 Corpora Description

DaCapo Benchmark Suite

Blackburn et al. introduced it in 2006 as a set of general-purpose (i.e., library),
freely available, real-world Java applications. They provided performance mea-
surements and workload characteristics, such as object size distributions, allo-
cation rates and live sizes. Even if the primary goal of the DaCapo Benchmark
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Table 2: Corpora Analysis. Each entry represents the total number of projects
utilising the respective feature.
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Table 3: Corpora Analysis. Each entry represents the total number of projects
utilising the respective feature.
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Suite is intended as a corpus for Java benchmarking, there are several instances
of frontend and static analysers evaluation. For evaluation, we used version 9.12-
bach-MR1 released in 2018.

Defects4J

introduced by Just et al., is a bug database consisting of 835 real-world bugs from
17 widely-used open-source Java projects. Each bug is provided with a test suite
and at least one failing test case that triggers the bug. Defects4J found many uses
in the program analysis and repair community. For evaluation, we used version
2.0.0 released in 2020.

�alitas Corpus

is a set of 112 open-source Java programs, characterised by di�erent sizes and
belonging to di�erent application domains. The corpus was specially designed
for empirical software engineering research and static analysis. For evaluation,
we used the release from 2013 (20130901).

XCorpus

is a corpus of modern real Java programs with an explicit goal of being a target for
analysing dynamic proxies. XCorpus provides a set of 76 executable, real-world
Java programs, including a subset of 70 programs from the Qualitas Corpus. The
corpus was designed to overcome a lack of a su�ciently large and general corpus
to validate static and dynamic analysis artefacts. The six additional projects added
in the XCorpus make use of dynamic language features, i.e., invocation handler.
For evaluation, we used the release from 2017.

4.2 Evaluation
Methodology

To compute complete semantic analysis with JFeature and ExtendJ, all dependent
libraries and the classpath are needed for each analysed project. Unfortunately,
di�erent projects use di�erent conventions and build systems, making automatic
extraction of this information di�cult. Therefore, for our study of the full cor-
pora, we decided to extract features depending only on the language constructs
and the standard library, but that did not require analysis of the project depen-
dencies. This way, we could run JFeature on these projects without any classpath
(except for the default standard library).

Table 2 and Table 3 show an overview of the results of the analysis. For each
corpus, we report the number of projects that use a particular feature from Ta-
ble 1. More detailed results, including the results for all 26 features, and counts
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for each individual project, are available at https://github.com/lu-cs-sde/J
Feature/blob/main/features.xlsx.

For standard libraries, like java.lang.reflect.* and java.util.concurrent.*,
we count all variable accesses, variable declarations, and method calls whose
type is hosted in the respective package.

While ExtendJ mostly complies to the JLS version 8, its Java 8 type inference
support diverges from the speci�cation in several corner cases. As Table 2 and
Table 3 show, these limitations did not a�ect DaCapo, but they did surface in 43
method calls in 9 projects (2 projects in Defects4J that we manually inspected to
validate our �ndings).

Corpora overlap

Corpus
Projects

Mock Asm Derby Junit Tomcat Xerces JRep Jmeter
1.1 2.0 3.3 5.2 10.14 10.9 4.10 4.12 6.0 7.0 2.8 2.10 1.1 3.7 2.5 3.1

DaCapo X X X X X
Defects4J X
Qualitas X X X X X X
XCorpus X X X X X X

Table 4: Projects used in the corpora with di�erent versions.

Figure 2 shows the overlap between the four corpora as two Venn diagrams where
each number represents a project. In the left diagram, two versions of the same
project are counted as two separate projects. In the right diagram, we only con-
sider the project name, disregarding the version. From the left diagram, we can
see that Defects4J does not overlap with any other corpus analysed. As expected,

16

42664

611

TOT:145
1 14

3964

1

6

36

2

1

TOT:137

DaCapo Defects4J �alitas XCorpus

Figure 2: Project overlap. In the left diagram, two projects with the same name
but di�erent versions are counted as distinct—the diagram to the right shows
overlap when versions are disregarded.

https://github.com/lu-cs-sde/JFeature/blob/main/features.xlsx
https://github.com/lu-cs-sde/JFeature/blob/main/features.xlsx
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most of the projects are shared across Qualitas and XCorpus as XCorpus was built
as an extension of Qualitas. From the diagrams, we can see that eight projects
(145-137) are used among the corpora, but with di�erent versions. Table 4 details
these projects and versions.

Discussion

Table 2 provides insight into the features utilised by each project. Using Quali-
tas Corpus as an illustration, we see that strictfp is only used in four projects.
Similarly, in DaCapo, fewer than �fty percent of the projects use concurrency
libraries. With JFeature, we can achieve a �ne-grained classi�cation of the prop-
erties. We can, for instance, distinguish between uses and declarations of annota-
tions, and when it comes to generics, we can distinguish between the declarations
of generic methods, classes, and interfaces, providing the user with a better com-
prehension of the corpus. It is apparent that most projects utilise only Java 4 and
Java 5 features. With the exception of Defects4J, few projects employ Java 7 and
Java 8. Indeed, this table reveals that Defects4J is the most modern corpus, as
nine of the fourteen assessed applications utilise at least one of the observed Java
8 features.

5 Extensibility
Extensibility is one of the key characteristics of JFeature. Users can create new
queries to extract additional features, making use of all attributes available in the
ExtendJ compiler. We illustrate this by adding a new feature, Overloading, that
measures the number of overloaded methods in the source code. Listing 1 shows
the JastAdd code for this: we de�ne a new boolean attribute, isOverloading,
that checks if a method is overloaded. We then use this attribute to conditionally
contribute to the features collection, only for overloaded method declarations.
The attribute isOverloading is de�ned using several ExtendJ attributes: the at-
tribute hostType is a reference to the enclosing type declaration of the method
declaration. A type declaration, in turn, has an attribute methodsNameMap that
holds references to all methods for that type declaration, both local and inherited.
If there is more than one method for a certain name, that name is overloaded.

Listing 1: De�nition of the Overloading feature
MethodDecl contributes
new Feature("JAVA1", "Overloading", getCU().path())
when isOverloading() to Program.features();

syn boolean MethodDecl.isOverloading()
= hostType().methodsNameMap().get(getID()).size() > 1;
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Projects ∼ KLOC Number
of Methods

Overloaded
Methods %

antlr-2.7.2 34 2081 358 17,2
commons-cli-1.5.0 6 585 76 13
commons-codec-1.16-rc1 24 1812 422 23,3
commons-compress-1.21 71 5359 571 10,7
commons-csv-1.90 8 716 93 13
commons-jxpath-1.13 24 2030 167 8,23
commons-math-3.6.1 100 7229 1779 24,6
fop-0.95 102 8317 666 8,01
gson-2.90 25 2289 125 5,46
jackson-core-2.13.2 48 3687 839 22,8
jackson-dataformat-2.13 15 1122 161 14,3
jfreechart-1.0.0 95 6980 1000 14,3
joda-time-2.10 86 9324 1257 13,5
jsoup-1.14 25 2556 408 16
mockito-4.5.1 19 2054 318 15,5
pmd-4.2.5 60 5324 1021 19,2

Table 5: Results from the Overloading feature.

For the computation to work, it is necessary to supply the classpath, so that Ex-
tendJ can �nd the class�les for any direct or indirect supertypes of types in the
analysed source code. We analysed 16 distinct projects for which we successfully
extracted the classpaths and dependencies required for ExtendJ compilation. The
results provided by JFeature for the sixteen projects are summarised in Table 5.
As can be seen, each project has overloaded methods. In some cases, such as
commons-codec, commons-math, and jackson-core, more than one �fth of the
methods are overloaded.

Overloading is a good example of a feature that requires semantic analysis—
it can not be computed by a simple pattern match using regular expressions or a
context-free grammar.

6 Use cases for JFeature

We already discussed two possible use cases for JFeature: corpus evaluation (Sec-
tion 4), and extending JFeature to identify speci�c features (Section 5). In this
section, we discuss two additional use cases: longitudinal studies and project
mining.
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6.1 Longitudinal Study
JFeature can be used to conduct longitudinal studies, i.e., changes occurring over
time. As an example, we conducted a study on Mockito and its evolution on
the adaption of Java 8 features over time. Mockito is one of the most popular
Java mocking frameworks and has an extensive history with over 5,000 commits.
Java 6 was utilised by Mockito until version 2.9.x. With version 3.0.0, Java 8 was
adopted.
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Figure 3: Usage of Lambda Expressions and Try With Resources in Mockito
over time.

The evolution of the occurrences of Lambda Expressions and Try With
Resources is depicted in Figure 3. As can be seen, at commit number 52693, there
is a substantial increase in utilisation of try with resources, whereas at commit
number 56964, there is a signi�cant increase in the use of lambda expressions.

6.2 Project mining
Contemporary revision control hosting services (GitHub5, GitLab6, bitbucket7)
o�er uniform interfaces to the source code of millions of software projects. These
interfaces enable researchers to “mine” software projects at scale, �ltering by
certain prede�ned properties (e.g., the number of users following the project or
the main programming language). For example, the GitHub Java Corpus [AS13]
collects almost 15,000 projects from GitHub, �ltered to only include Java projects
that have been forked at least once. Combining JFeature with these query
mechanisms allows researchers to select projects by more detailed syntactic
and semantic features. For instance, a corpus suitable for answering questions

3Commit: b3fc349.
4Commit: 6b818ba.
5https://github.com
6https://gitlab.com
7https://bitbucket.org

https://github.com
https://gitlab.com
https://bitbucket.org
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about race detection [Li+14] could select projects that make explicit use of
java.util.concurrent.*, while an exploration of functional programming pat-
terns [Cok18] could select projects that use Lambda Expressions and Method
References.

7 Related work
Existing tools for code metrics are usually focused on code quality metrics, rather
than what language features are used, and typically analyse the intermediate rep-
resentation rather than the source code. One example is the CKJM tool [Spi05] for
the Chidamber and Kemerer metrics [CK94]. Another example, that more closely
resembles ours, is jCT, an extensible metrics extractor for Java 6 IL-Bytecode, in-
troduced by Lumpe et al. [LMG11], in 2011. Like us, they evaluated their tool on
Qualitas Corpus; however, because jCT works only on annotated bytecode and
not on source code, the number of features that can be extracted is limited. A
signi�cant amount of information is lost during the compilation of Java source
code to Java bytecode. For example, enhanced for statements, diamond opera-
tors and certain annotations, such as @Override, are not present in the bytecode.
For XCorpus, the authors analysed the language features used, and a summary
was presented in their paper [Die+17]. They also analysed the bytecode, which
was implemented using the visitor pattern.

A way to improve the user experience would be to integrate JFeature with a vi-
sualisation tool like Explora [MLN15]. The idea behind Explora is to provide to the
user a visualisation tool designed for simultaneous analysis of multiple metrics in
software corpora. Finally, JFeature may be enhanced by incorporating automated
dependency extractors, such as MagpieBridge’s JavaProjectService [LDB19], to in-
fer and download libraries automatically. Currently, JavaProjectService infers the
dependencies for projects using Gradle or Maven as build system.

8 Conclusions
We have presented JFeature, a declarative and extensible static analysis tool for
the Java programming language that extracts syntactic and semantic features.
JFeature comes with twenty-six prede�ned queries and can be easily extended
with new ones.

We ran JFeature on four widely used corpora: the DaCapo Benchmark Suite,
Defects4J, Qualitas Corpus, and XCorpus. We have seen that, among the corpora,
Java 1-5 features are predominant. This leads us to conclude that some of the
corpora may be less suited for the evaluation of tools that address features in
Java 7 and 8.

We have illustrated how JFeature can be extended to capture semantically
complex features by writing the queries as attribute grammars, extending a full
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Java compiler. This allows powerful queries to be written that can make use of
all the compile-time properties computed by the compiler.

We discussed several possible use cases for JFeature: evaluation of corpora,
mining software collections to create new corpora, and longitudinal studies of
how projects have evolved with regard to the use of language features. We also
note that for some features to be analysed, the full classpath and dependencies
are required. An interesting future direction is therefore to combine JFeature with
recent tools that support automatic extraction of such information from projects
that follow common build conventions.
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