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Popular science summary 

Biological systems have evolved to have a tight control between the internal 
concentrations of vital elements as compared to the external environment as achieved 
by a permeable membrane. These elements are crucial to many substantial biological 
processes. Copper is such element evolved to be involved in various fundamental 
processes such as energy production, metabolism, and immune response within 
organelles and cells as the smallest biological compartments. Such a spectrum of 
function in important biological process makes this element interesting for wide range 
of applications ranging from for example therapeutic interventions to antibiotics in the 
farm industry. 

Concentration of copper in cells is regulated by some proteins in the membranes of 
the cells which act like gates and let the copper in or out depending on the need within 
the cells. For example, in shortage of copper within cells, these copper gates let the 
copper in the cells to increase the internal concentration to meet the amount of copper 
required for the cells. On the other hand, high concentrations of copper within cells 
can be a significant survival threat, and hence these gates let the copper out to reduce 
excessive amounts within the cells. Interestingly, this significant role in regulation of 
copper concentration in cells has been exploited for various clinical and industrial 
interventions. For instance, some anti-cancer agents can be transported through these 
gates to the cells.  In addition, these copper gates can be used as an antimicrobial agent 
in some bacteria which are harmful to healthcare and farms, and thus eliminate them 
through exposure to high concentration of copper. Such interventions are obviously 
the fruit of our understanding from different physical and biochemical properties of 
these gates resulted by decades of comprehensive research, providing the foundation for 
targeted manipulation depending on our needs. However, there are various challenges 
with research on these gate proteins, ranging from technical difficulties to 
understanding physical, and biochemical properties.  

In regards to these challenges, we managed to generate and purify an important type 
of gate protein available in humans and fungi providing the basic grounds for future 
structural and functional studies with higher resolution and details. Additionally, we 
managed to provide a first-ever structural image of one of these protein gates in bacteria 
with high resolution using top-notch technology which gave us the opportunity to 
study the mechanisms of function of this particular protein with a neat method 
resembling its natural environment. Lastly, we managed to overproduce one of these 
protein gates from a human bacterial pathogen in an experimental model and purify it 
in the lab for the first time, paving the way for future structural and function analysis 
of it in more detail. In conclusion, the scientific outcome of the work described in this 
thesis provides a foundation for various types of research which can ultimately lead to 
clinical and industrial interventions depending on the need. 
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Abbreviations 

Cu Copper 
CTR Copper importer protein 
Pco Plasmid-borne copper regulation system 
GUV Giant unilamellar vesicles  
CopB Copper transporter B 
3D Three dimensional  
Fe Iron 
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ATP Adenosine triphosphate  
Cue Copper efflux 
CaCTR Candida albicans copper importer protein  
hCTR  Human copper importer protein  
SsCTR  Salmo salar copper importer protein 
TEV Tobacco Etch Virus 
GFP Green Fluorescent Protein 
His  Histidine  
CHS Cholesteryl Hemisuccinate 
RT  Room Temperature 
DDM  n-dodecyl-β-D-maltoside  
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SEC  Size exclusion chromatography 
F-SEC     Fluorescent size exclusion chromatography  
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Cryo-EM Cryo Electron Microscopy  
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Organisms 
E. coli  Escherichia coli 
S. cerevisiae Saccharomyces cerevisiae  
A. baumannii  Acinetobacter baumannii 
C. albicans  Candida albicans  

Units 
Å Angstrom 
℃ Degrees Celsius 
kDa kilodalton 
mM millimolar 
μM micromolar 
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Introduction  

Cell membrane and membrane proteins  

Every living cell and various organelles are shielded by a biological membrane, which 
shapes them and isolates their inside from extracellular surroundings. Biological 
membranes consist of a lipid bilayer, typically formed by a double layer of 
phospholipids. Phospholipids are amphiphilic molecules establishing nearly 
impermeable barriers to ions and most polar molecules. In addition, membranes 
prevent exchange of essential nutrients and most solutes. These biological lipid 
membranes are also encompassing many proteins, classified into two large groups. The 
first group is known as peripheral membrane proteins, non-covalently bound and 
dissociable from the surface of the membrane. The second group is tightly integrated 
into the membrane, known as integral membrane proteins [1], Figure 1. These integral 
membrane proteins perform selective transmembrane passage of polar molecules and 
ions to maintain life and cellular homeostasis. This group of proteins is further 
subdivided into proteins that span the membranes as α-helices or as β-barrels. The 
former are found mostly in inner membranes, whereas, β-barrels predominantly are 
localized to the outer membranes of gram-negative bacteria and mitochondria [2].  

Previous studies have indicated that in most organisms, 20-30 % of the genome are 
predicted to encode integral membrane proteins emphasizing their vital role in cell 
function [3], and yet only 1572 unique molecular structures are published and available 
[4] which in contrast to their soluble counterparts is highly limited, roughly 
corresponding to 3.5 % of all the structures deposited in Protein Data Bank [5]. The 
reason for the limited structural information is, essentially associated with low 
production levels, protein instability due to its hydrophobicity, and as a result in terms 
of structural biology, difficulties in generating diffraction-quality crystals and samples 
suitable for other complementary high-resolution methods. 

Due to their accessibility to the cellular out- and insides, membrane proteins are 
involved in a wide variety of biological processes and function such as molecular/drug 
transporters signal transduction, energy transduction. Many known human diseases 
such as obesity, Alzheimer’s disease, cancer, and many others are associated with 
membrane proteins misfolding or malfunctioning [6], and currently, membrane 
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proteins are the targets of more than 60 % of drugs in clinical use [7-10]. Knowledge 
of the 3D structure of membrane proteins, including details of how ligands and 
cofactors are bound, are essential for further studies and future drug discoveries. Despite 
their fascinating roles in cell function and their importance in therapeutic 
developments, relatively little is known regarding the structure-function of membrane 
proteins. Hence, structure-function studies on membrane proteins are crucial for 
providing valuable knowledge regarding biological processes, as well as for drug design. 
Structural biology will pave the way towards the understanding of how exactly solutes 
are transferred, their coordination, and involved residues in the transport, which can 
then lead to drug development. The main challenge in biophysical and biochemical 
studies is to maintain the membrane protein stability and function in a lipid-like 
environment, mimicking their physiological lipid environment. 

Membrane proteins are also key players for cellular maintenance of heavy metal 
levels, the latter required for the function of more than one-third of all proteins. Heavy 
metal ions such as copper (Cu), zinc (Zn), and iron (Fe) are poorly soluble and highly 
reactive micronutrients. These trace elements are essential for the function of many 
enzymes and proteins and are involved in cell growth and proliferation. Nevertheless, 
an excessive amount of these metal ions could result in metal toxicity, leading to protein 
degradation, cell malfunctioning, or even cell death [11]. Therefore, all organisms 
developed mechanisms responsible for keeping the ions concentration at a certain level 
[12]. 

 

Figure 1. Molecular translocation over the cellular membrane bilayer. A. Passage of molecules over 
the membrane by passive diffusion. B. Flux of the molecules by channels. C. Transport of the molecules via 
transporters. The figure was generated using BioRender.  
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Copper ion and copper flux 

Various types of metals play critical roles in essential regulatory processes in cellular 
systems. For instance, sodium (Na), calcium (Ca), and potassium (K) which are 
classified as oxidation/reduction (redox) inactive metals may trigger many signaling 
processes through fluctuations in their ion pools [13]. Conversely, other metals such as 
Cu and Fe, when necessary, are protected within active sites of proteins given the risk 
of reactive oxygen species (ROS) production in catalytic activities they are involved 
[13]. Cu, in turn, has become one of the most interesting metals for many studies 
concerning human health given the range of involvement in critical cellular processes. 

One of the major processes Cu is involved in is energy production in mitochondria. 
There, Cu serves as a cofactor in different proteins associated with electron transfer 
chain. For instance, cytochrome c oxidase, as the final member of respiratory electron 
transfer chain, takes advantage of Cu to ultimately form a proton gradient across the 
membrane used as the source of adenosine triphosphate (ATP) production. 
Interestingly, some of the proteins that are involved in scavenging the produced ROS 
such as dismutases utilize Cu as a cofactor to minimize the ROS stress within the cells 
[14].  

More recent findings on Cu during recent years has broaden our understanding of 
its biological role beyond metabolism. For example, direct interaction of Cu with 
kinases in regulation of signaling pathways has been reported in relation to cancer [15]. 
Additionally, an inhibitory role of Cu has also been shown in other biological processes 
such as lipolysis, a cellular process of degrading fat, where signaling activities are 
interrupted in presence of Cu [16]. Similarly, negative regulation of potassium channels 
in some immune cells mediated by Cu has been shown to have a suppressor effect on 
activation on such immune cells [17].  

The wide range of Cu involvement in cellular process highlights this metal as a 
ground for many therapeutic interventions. Interestingly, higher Cu levels in inflamed 
and malignant tissues mediated by inflammatory cytokines such as interleukin 17 (IL-
17) have been noted [13]. Such observations have paved the way for application of 
therapeutic agents such as Cu-chelators, as such agents have been shown to have 
antitumor effects in murine models [15].  

Copper has a redox potential that can be useful for biochemical reactions [18]; this 
redox property assist copper to serve as a cofactor in many biological processes such as 
respiration, iron metabolism, the formation of connective tissue, free radical 
destruction, however, they can generate damaging free radicals [19, 20]. Therefore, 
understanding how copper homeostasis and regulation is handled in the cell is critical 
for both basic and translational sciences, and hence more insight into the molecular 
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level details is required. In the end, although the majority of studies in this context are 
focused on identification of biological roles of Cu, the question addressing the 
regulation of Cu in cells has been challenged less so far and this is the area this thesis is 
trying to contribute to. 

Copper homeostasis 

The double-edged nature of copper has resulted in development and evolution of 
regulatory mechanisms which provide a tight control on its concentration in 
prokaryotes and eukaryotes [21]. In fact, such mechanisms and pathways ensure 
contribution of copper to homeostasis and keep the organism from its toxicity which 
may be generated by uncontrolled accumulation of copper in cells. These regulatory 
systems are somewhat different among less advanced forms of life such as prokaryotes 
as compared to more advanced such as eukaryotes. However, in general, the optimal 
concentration of copper across all organisms is achieved through various regulatory 
mechanisms including extra/intracellular sequestration, enzymatic detoxification, and 
metal removal [21, 22]. 

Copper homeostasis in bacteria 

Although some recent works on model bacterial strains have suggested copper 
importers in such organisms, uptake of copper is known for most of the bacteria to 
occur through passive diffusion across the cell membrane along its gradient [23]. In this 
context, electrostatic sequestration of extracellular copper mediated by polysaccharides 
appears to be one of the mechanisms hampering copper diffusion into the cells [24].  

On the other hand, other aspects of Cu homeostasis is orchestrated by several sets of 
proteins. Among the multiple systems for copper handling in Escherichia coli (E. coli) 
two regulatory pathways are present, the Cus system and Cue system for Cu-resistance 
and Cu-efflux [25]. The Cue operon encodes two Cu-resistance proteins, CopA, a P1B-
type ATPase pumping Cu (I) ions into the periplasm from the cytoplasm [26], and 
CueO, a periplasmic multicopper oxidase which oxidizes Cu (I) to less toxic Cu (II) 
[27]. Together, these two proteins act as the first response against Cu stress, keeping 
the cytoplasm free of unbound Cu ions [25, 26, 28-30]. 

Copper and antibiotics have been used as growth promoters in pig diets for at least 
45 years [31]. Some E. coli strains possess additional plasmid-encoded genes. These 
genes were first isolated from a plasmid, pRJ1004, from the gut flora of pigs fed a high 
Cu diet [32]. The pco gene cluster (plasmid-borne copper resistance) has been 
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demonstrated to enable bacteria to survive in higher Cu concentrations, compared to 
the wild-type strain without the Pco system, which accumulates less Cu internally and 
exhibits higher Cu efflux [32-34]. Homologs of the Pco proteins are often present on 
chromosomes of other bacteria and were also shown to increase Cu tolerance. However, 
there is growing evidence for the Pco proteins to be also involved in Cu uptake [33, 
35], which hint at a possible contradictory role. 

The Pco system in E. coli consists of seven genes, pcoABCDRSE [36]. The PcoRS is 
a two-component regulatory system, analogous to CusRS, sensing the periplasmic Cu 
concentrations [36]. PcoE is a periplasmic protein able to bind multiple Cu ions, acting 
as a ‘molecular sponge’ and thus decreasing the free Cu concentration in the periplasm 
upon Cu shock [37]. PcoCD was suggested to act together and be responsible for Cu 
uptake since the expression of only those two proteins leads to Cu hypersensitivity [38]. 
Indeed, PcoCD is often present in genomes as one fusion protein: a Bacillus subtilis 
protein YcnJ is highly homologous to PcoCD, and deletion of this protein leads to 
impaired growth in media with limited Cu concentrations [33].  

Similar to PcoCD often acting as one unit, PcoAB was suggested to work together 
and be the primary actors in pco-dependent Cu resistance [39]. PcoA is a multicopper 
oxidase, distantly related to CueO, which can also be functionally replaced [40]. PcoB 
is an outer membrane protein (OMP), known to serve as a Cu-specific porin in bacteria 
[36, 41, 42]. It was suggested to prevent Cu uptake in the outer membrane [43], 
however, since the inner membrane Cu-ATPase CopA is necessary for Pco-dependent 
Cu resistance, PcoB is generally believed to be a Cu-specific porin seizing Cu(II) from 
the extracellular side [43]. Homologs of PcoAB are often encoded together in genomes 
of other Gram-negative bacteria, and whereas PcoA is sometimes found alone, PcoB is 
always accompanied by PcoA, suggesting the interaction between the two and that 
PcoB requires PcoA for Cu-transport function [44]. For instance, expression of PcoB 
alone in the absence of PcoA in Caulobacter crescentus ΔpcoAB strain did not rescue the 
Cu-sensitive phenotype [45]. However, PcoC was also shown to be needed for full 
resistance, and to interact with PcoA, possibly serving as a periplasmic Cu-chaperone 
[40], Figure 3 A.  

As the main mechanism of cytoplasmic detoxification of copper in many bacterial 
strains, ATPases, which export copper from cytoplasm to periplasm, appear to be 
another strategy in regulation of copper resistance. This strategy is likewise considered 
to be conserved among majority of Gram-negative bacteria as their genomes contain at 
least one Cu (I) -ATPase [21]. This notion is further supported by extra copies of such 
genes in genome of opportunistic and pathogenic bacteria dealing with copper-driven 
burdens [46].  

Even though it remains unclear how the Pco proteins regulate Cu homeostasis in 
Gram negative bacteria, this renders them fascinating targets to study their structure 
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and their importance as antimicrobial targets. Remarkably, recent studies in E. coli 
demonstrated that when bacteria are exposed to copper surfaces it causes DNA 
degradation by inhibition of respiration, increasing the interest in use of copper as an 
antimicrobial in healthcare and agriculture [47-50]. Metals as antimicrobials are vital 
in healthcare and agriculture [49, 50], and copper containing surfaces in hospitals 
showed an efficient decrease in environmental contaminations [51, 52]. 

Regarding Gram negative bacteria and their copper regulation as an antimicrobial 
target, Acinetobacter baumannii (A. baumannii) is an opportunistic human pathogen 
[53], predominantly found in hospitals [49, 50]. Their antimicrobial resistance is 
increasing significantly, leading to restriction in treatments [54-56], and increasing the 
interest in new therapeutic drugs to treat these multidrug-resistant strains through their 
outer membrane copper conducting proteins.  

In addition to the above mentioned systems for copper ion handling in bacteria, 
CopB was also introduced as an outer membrane protein dealing with periplasmic 
copper resistance [41]. Despite the fact that little is known on how exactly CopB 
protein in A. baumannii is mediated, homologous proteins have been genetically 
identified [47, 57]. 

Copper homeostasis in eukaryotes 

Existence of cellular compartment in eukaryotes which require copper for their 
biological processes posed an additional evolutionary burden to such cells. Additionally, 
emergence of multicellular organisms which mandated allocation of copper to specific 
tissues heightened the evolutionary burdens, necessitating more strictly regulated 
mechanisms both at the intra and the intercellular level [58].  

A considerable fraction of our today-knowledge on homeostasis of copper in 
eukaryotes comes from decades of study on eukaryotic model organisms such 
Saccharomyces cerevisiae (S. cerevisiae), where a group of channels and transporters are 
found to have vital contribution to copper homeostasis. In this context, copper-specific 
ATPases play a major role in copper homeostasis as in bacteria. However, unlike 
prokaryotes in which copper-ATPases are harbored at the plasma membrane, these 
proteins are often located to intracellular compartments either transporting cytosolic 
copper to the lumen of organelles in eukaryotic cells or transferring it copper-binding 
proteins for functional maturation [59, 60]. For instance, they have been reported to 
be present in Golgi network delivering copper to some copper-dependent oxidases in 
S. cerevisiae [61]. It has also been reported and established that copper-ATPases may 
relocate from Golgi apparatus to plasma membrane through plasma membrane-fusing 
vesicles and help as exporting pumps under high intracellular copper stress in 
mammalian cells [62-64]. 
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Copper transporters (CTRs) which have at least six members among eukaryotes are 
family of proteins with major contribution to copper homeostasis [65]. These proteins 
which are not present in prokaryotes has provided adaptive features for eukaryotes. 
Current models describe that one of the members of the family, namely CTR1, imports 
Cu (I) ions into the cells [66]. Cu (I) ions are then captured by copper-binding 
chaperones and distributed among different organelles or various biological pathways 
where they are required [67]. For instance, Atox1 has been identified to transfer Cu (I) 
ions to copper-specific ATPases in Golgi apparatus as those mentioned above for 
downstream functional maturation processes [66]. 

 

Figure 2. A. Schematic topology of human CTR1 (hCTR1) Paper I, showing only two of the monomers 
for clarity. The extracellular N-terminus contains several methionine-rich motifs colored in yellow and pink, 
presumably responsible for Cu (I) binding and uptake. The Cu (I) selectivity filter establishing methionines 
reside on TM2 adjacent to the extracellular membrane interface. Two Cu (I) ions, interacting with the 
selectivity filter, are shown as blue spheres. The structurally important GXXXG motif of TM3 is pinpointed. 
The C-terminus is located on the intracellular side of the cell. It contains a conserved HCH motif, another Cu 
(I) binding site, perhaps forming an intracellular gate and/or being responsible for Cu (I) passage to 
intracellular chaperons. The schematic topology of hCTR1 was generated using Adobe Illustrator. B. 
Sequence alignment of the three targets. Metal-binding residues at the N-terminus are highlighted in 
yellow and purple. Selectivity filter methionines of TM2 and the GXXXG motifs of TM3 are shown in dark 
red. The conserved HCH motif of the C-termini is pinpointed in red. Secondary structure elements are shown 
above the alignment, based on the determined structure of AsCTR1 [68]. Alignments were carried out using 
the multiple sequence alignment tool ‘Clustal Omega’ with default settings.  

Ag (I) shares common characteristics to Cu (I) and showed inhibition of CTR1. 
However, divalent metal ions were ineffective to provide inhibition in CTR1, therefore, 
transport of reduced form of copper was suggested to be mediated by CTR1 [69]. 
Moreover, CTRs are ATP-independent for copper transport and are concentration 
driven, lacking ATP utilization domain; it was early demonstrated that CTR-mediated 
Cu flux is not eliminated by ATP synthesis inhibition [70], and the published structure 
of salmon CTR1 showed no ATP-binding features rather agreeing with features of 
channels [68]. 
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Despite structural similarities, different CTR members may play a different role such 
as stability or affinity for copper [65]. For instance, S. cerevisiae has been reported to 
have two high-affinity CTRs and one low-affinity CTR which may be regulated 
differently according to survival challenges [71-73]. In this context, presence of two 
high-affinity CTRs in S. cerevisiae has been hypothesized as an evolutionary measure 
considering that more stable CTR3 appears to be a backup for fast-recycling CTR1, 
ensuring continuous uptake of copper in low-copper environments [65].  

In spite of low sequence homology in the CTR family and variable length, they likely 
share a global overall architecture with common structural features, Figure 2 B. The 
monomer consists of three transmembrane helices (TM), and multiple metal-binding 
residues [74-76], Figure 2 A. A low-resolution Cryo-Electron Microscopy (Cryo-EM) 
structure of human CTR1 (hCTR1) and 3 Å X-ray structure of atlantic salmon (Salmo 
salar) CTR1 (SsCTR1) confirmed that it forms a homo-trimer in the membrane [68, 
77]. These structures together delivered details of the architecture and function. There 
is a highly conserved selectivity filter on the extracellular side of TM2, formed by a 
MxxxM motif [68, 77], which is crucial for copper coordination [78]. There is a GxxxG 
(GG4) motif that resides on TMH3 responsible for TMs packing and oligomerization 
[75, 79]. Interestingly, there is another conserved motif (HCH) at the C-terminus [80]. 
It is suggested to form an intracellular gate the channel responsible for copper 
regulation and Cu (I) transition to cytosolic chaperones [68, 77, 81]. This motif is not 
found in all the CTR family members, implying diversity in function in CTRs, Figure 
2 A. Regardless of the available structural information, due to the diversity of the 
CTR family in regulation and function, still, how exactly copper regulation and 
transport is achieved among CTR members remains to be elucidated [65]. hCTR1 is 
a high-affinity copper importer from which copper enters the cells and is localized in 
the plasma membrane [82, 83]. Human CTR2 (hCTR2) is a homolog of hCTR1 
having a shorter N-terminal and lacking CHC motif at its C-terminal, low-affinity 
copper transporter, localized to endosomal membranes [84-86]. The exact role of 
hCTR2 is elusive, however, recent studies suggested that it could function in hCTR1 
regulation in presence of excess copper, and releasing copper from intracellular copper 
stores [84, 87]. Another target of the study was Candida albicans CTR1 (CaCTR1), a 
homolog to hCTR1, with longer N-terminus. C. albicans is an opportunistic human 
pathogen, and CaCTR1 has been selected to be studied due to its possible importance 
as an antifungal drug target. Therefore, three members of the CTR family have been 
selected in this study, hCTR1, hCTR2, and CaCTR, to be produced and purified for 
further structural-functional studies, Figure 2 B. 
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Figure 3. Copper homeostasis in gram negative bacteria and eukaryotes. A. E. coli is equipped with 
multiple systems for copper homeostasis. CopA is the chromosomally expressed central component for 
removal of excess Cu (I) from cytoplasm and CueO component is responsible for detoxification in periplasm. 
At high copper concentration CusABCF system appears to export copper directly from cytoplasm via CusABC 
and from periplasm through CusF. Another system identified in some bacteria is plasmid-borne copper 
resistance (pco) system ensuring survival in environments with elevated levels of copper. PcoB is responsible 
for removal of Cu (II) from extracellular. PcoA is the counterpart of multi-copper oxidase CueO. PcoC binds 
both Cu (I) and Cu (II) and functions with inner membrane protein PcoD responsible for import of Cu (I) to 
the cytoplasm. PcoE is located in periplasm and functions as molecular sponge to sequester excess copper in 
the periplasm. B. Eukaryotic cell copper homeostasis. Cu (II) is reduced to Cu (I) in extracellular and 
transferred to cytoplasm via high affinity copper transporter CTR1. Once in it is delivered to copper requiring 
proteins via chaperons. ATP 7A/B are P-type copper transporters transporting copper to the lumen of Golgi 
via receiving it from Atox1. When intracellular copper level is high, P-type ATPases export copper to the 
extracellular. Low affinity CTR2 is located at the intracellular and may function to release copper from 
lysosome. The figure was generated using BioRender.  

 

A. B. 
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PcoB & CopB - aim of the study 

The Pco proteins are important for bacterial copper tolerance and hence highly 
attractive targets for therapeutic antimicrobial studies. Pco homologues are present in 
many bacteria, and are also often encoded chromosomally, suggesting a more 
widespread role in Cu homeostasis. Whereas the functions of the most Pco components 
have been established, PcoB remains the least studied of the Pco proteins. Therefore, 
this work, set out to elucidate the function of the outer membrane protein PcoB. 

In 2017 World Health Organization (WHO) provided a list of antibiotic-resistant 
priority pathogens, in which Gram-negative bacteria represent some of the most 
troublesome organisms to human health, due to their therapeutic challenges and as an 
multi-drug resistance [88, 89]. Considering the importance of copper and its role as an 
antibacterial agent and that copper sulfate showed the best bactericidal effect, the 
interest in new therapeutic drugs makes the PcoB and CopB protein from E. coli and 
A. baumannii attractive targets for basic and applied studies. The aim of these studies 
was structural determination and structural-functional analysis required for poorly 
biochemically characterized PcoB and CopB to enhance our knowledge of these outer 
membrane proteins and how they operate in the cells. This represents a key aim for this 
thesis, and such work may eventually permit efforts to combat drug-resistance among 
Gram-negative bacteria. 

CTRs - aim of the study 

Since structural information is limited to a single structure of one specific CTR member 
and due to the diversity of the CTR family in regulation and function, it remains 
unresolved how copper regulation and transport to, across the membrane, and from 
CTRs is achieved among different members of the family [65]. The aim of this study 
was to isolate CTR targets for downstream structural and functional characterization 
efforts. This has historically represented a key obstacle in the field, by the lack of 
structures of the human and many other relevant CTR members, and by the fact that 
copper facilitated flux has never been demonstrated in vitro (using purified protein) for 
a single CTR member! 

A comprehensive structural and functional understanding of CTR members together 
with processes regulating them under different copper stimuli may also open for 
therapeutic interventions given their significant role in copper homeostasis. This 
highlights the need for further in-depth studies of different CTR members. Such 
structure-function efforts all rely on availability to purified protein, which was the 
second key purpose of this thesis. 
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Methodology 

Cloning and protein overproduction  

In order to understand and study the nature and function of proteins for many aspects 
of human life, including pharmacology, food and biotechnology industry, tools such as 
recombinant DNA technologies and protein overproduction emerged [90, 91]. One 
major bottleneck in protein chemistry is obtaining the desired protein in terms of both 
quality and quantity for the downstream structural-functional studies. However, 
recombinant DNA technology provides a platform to overcome these problems. 

In this thesis, genes encoding hCTR1, hCTR2 and CaCTR, as well as bacterial outer 
membrane PcoB and CopB were cloned and expressed. The gene of interests were 
codon optimized for their respective host cells and purchased. The genes were amplified 
by PCR and cloned into appropriate vectors for expression in Saccharomyces cerevisiae 
(S. cerevisiae) and E. coli.  

For expression of the CTR targets homologous recombination in S. cerevisiae was 
exploited. DNA for the gene of interest, a TEV-GFP-His8 PCR fragment and the 
expression vector pEMBLyes4, double digested with BamHI and HindIII, were 
transformed to PAP1500 strain [92]. Transformant cells were grown on synthetic 
minimal media plate (SD) containing lysine,  leucine and confirmed by sequencing.  

The expression vector for the bacterial outer membrane targets (PcoB and CopB) 
was generated through cloning for a bacterial expression platform. Amplified genes 
were double digested with restriction sites and ligated into pET22b vector. After 
transformation of the vector harboring the gene of interest into the expression host C43 
(DE3), cells were grown on Luria Broth (LB) media plate containing Ampicillin and 
confirmed by sequencing.  
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Figure 4. Cloning flow chart for E. coli (showing in green) and S. cerevisiae (yellow). 

Recombinant protein expression in Saccharomyces cerevisiae 

There are various expression systems for overproduction of membrane proteins 
including, mammalian cells, insect cells, cell-free expression system, E. coli and yeast 
[93-98]. Among all these platforms, bacterial and yeast systems are the favorite choice 
for many protein chemists as they provide high protein yields in a cost-effective manner 
[99]. However, eukaryotic soluble proteins often can be expressed in bacterial 
platforms.  Lack of post-translational modification machinery, crucial for folding and 
function of eukaryotic membrane proteins, renders yeast-based platforms preferred for 
eukaryotic proteins [99, 100]. Although, there are several advanced host sources, such 
as insect and mammalian cell lines, plants, and different yeast organisms. Among these 
systems, yeast is considered a relatively simple and low-cost system. Moreover, between 
two commonly used yeast species, Pichia pastoris and S. cerevisiae, S. cerevisiae is well 
studied genetically and more strains are available to test. Hence, S. cerevisiae was 
selected as a production host for the CTRs, aiming at high protein quality and quantity 
for downstream applications. 

Yeast expression platforms are single cell microorganisms that can be simple to 
handle in terms of genetic manipulation to perform homologues recombination, with 
low nutrition requirement and rapid growth. Yeast platforms are also known to perform 
many post-translational modifications [101, 102]. A novel yeast expression platform of 
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S. cerevisiae was developed in 2013 [97] and proved delivering high yield of many 
membrane proteins, including aquaporins, channelrhodopsin-2 (ChR2), human TRP 
channels and ion channels [97, 103-107]. The yeast strain, PAP1500, together with 
the expression plasmid pEMBLyex4, possesses Galactose 4 (Gal4) yeast transcription 
activator, known to be limiting for expression by galactose regulated promotors 
respectively [108]. Therefore, to overcome this a hybrid galactose inducible gene of 
GAL10-GAL4 was fused to the yeast strain, increasing the expression level of GAL4 
protein used for induction of the CYC-GAL promotor (CG-P), by binding to the 
region UASgal , Figure 5 A [109, 110].  

In addition to the above mentioned plasmid features, it stimulates cells to obtain an 
ultra-high plasmid copy number due to the presence of a poorly expressed leu2-d gene 
in combination with absence of leucine in the media [111]; prevention of plasmid-loss 
as a result of presence of URA3 and leu2-d selection markers [97]. Moreover, green 
fluorescence protein (GFP) is fused C-terminally to the target gene for assessment of 
localization, folding marker, solubilization screening, quality and quantity of the target 
protein. Additionally, gene was tagged with eight histidines in order to facilitate the 
protein purification, Figure 5 B.  

Full length transformed CTR targets were selected on SD media containing lysine 
and leucine. Single colony of the transformed cell was grown in 5 mL SD media 
supplemented with lysine and leucine at 30 ℃ for 18 hours. To ensure the high copy 
plasmid number over leucine starvation, cells were grown in 100 mL SD media 
supplemented with Lys at 30 ℃ for 30 hours. Next, cultivation was continued in 800 
mL SD media supplemented with 0.5 % glucose, 3 % glycerol, 1x Lund dropout (-
Iso/-Ura) at 30 ℃ for 18 H. The protein expression was induced later by lowering the 
temperature to 25 ℃ and adding 200 mL induction media (1 x YNB, 3 % glycerol, 1 
x dropout, 2 % galactose). Protein production and localization was monitored by 
fluorescence microscopy and cells were typically harvested after 72 hours.  
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Figure 5. Overproduction platform for CTR targets in S. cerevisiae. A. The production strain PAP1500 
overexpress the Gal4 transcriptional activator in the presence of galactose. Expression of CTRs is controlled 
by the same system and initiation of expression of Gal4 is resulting in expression of CTRs. B. Schematic view 
of pEMBLyex4 vector. The vector consists of a galactose inducible promotor (CGP), poorly expressed leu-2d 
gene and URA3 selection marker for the prevention of the plasmid loss, high plasmid copy number in media 
lacking leucine and GFP fusion for assessment of localization and solubilization. The figure was generated 
using BioRender and Adobe Illustrator.  

Recombinant protein expression in Escherichia coli (E. coli) 

Protein expression in bacteria is straightforward and hence E. coli is one the most 
frequently used and well-characterized expression platforms for production of 
recombinant proteins. E. coli expression is swift, cost-effective and robust and there are 
established protocols available for production of diverse range of protein targets and for 
labelling for structural studies [112, 113]. In this work one of the commonly used E. 
coli expression platforms was used for the overproduction of bacterial outer membranes. 
However, as each target is different, it requires optimization and different strategies to 
acquire successful large scale protein production.  

The pET22b vector having strong bacteriophage T7 promoter, and E. coli C43 
(DE3) strain, broadly used for membrane protein expression [114], were used for 
overproduction. Full length truncated and mutants of PcoB and CopB were selected 
on Luria Broth (LB) media containing Ampicillin (Amp) as a selection marker. A single 
colony of the transformants was grown in 5 mL LB media supplemented with Amp at 
37 ℃ for 18 h. Next, 1 L LB media containing Amp was inoculated for 18 h and 
incubated first at 37 ℃ for around 3 - 4 h (until the optical density at absorbance 600 
nm reached 0.5), subsequently the temperature was reduced to 25 ℃ and induction 

A. B. 
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was applied by adding 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). 
Finally, cells were harvested by centrifugation. 

Membrane protein solubilization & Detergent screen 

Cell disruption is an important step for downstream processes to release cellular 
material such as DNA, RNA and proteins by breaking the cell membrane. The method 
for cell lysis is influenced by the cell type and the target molecules of study. To break 
resilient plasma membrane and cell wall of bacteria typically mechanical methods like 
sonication (high-power ultrasound at low frequencies) or presses (high-pressure) with 
high-pressure are employed. For yeast cells with more robust cell wall, mechanical 
methods such as high-pressure homogenizers and glass beads have been shown efficient, 
particularly after multiple applications. 

Whilst the biological membrane is ruptured, to study the desired individual 
membrane protein it needs to be isolated in their native and stable form from the 
membrane. In order to study structural and functional characterization of integral 
membrane proteins, the step is traditionally achieved by detergents to maintain the 
proteins in a water-soluble state. Detergents are amphipathic molecules consisting of a 
polar hydrophilic head and a non-polar hydrophobic tail [115]. Due to the nature of 
these amphiphilic molecules by increasing the detergent concentration, hydrophobic 
tails disrupt the lipidic membrane and extract integral membrane proteins, forming 
water-soluble detergent-lipid-protein complexes that can be used downstream 
structural studies. However, the approach of using detergents is challenging; it is a time 
consuming and requires a costly screening approach to identify the right detergent type, 
maintaining the protein structure and function. It can disrupt interactions within 
protein itself resulting in aggregation [116]. Additionally, importance of lipid has been 
reported in the function/crystallization of some membrane proteins, e.g., transporters 
and GPCRs [117-120]. Furthermore, lipid removal by detergents may cause the loss of 
lateral membrane pressure having an impact on protein function [121].  

To combat above mentioned issues regarding the application of detergents, new 
approaches capable of membrane protein stabilization and extraction were developed; 
e.g., styrene maleic acid (SMA) polymer [122], amphipols [123], nanodiscs [124] and 
others. However, while these new methods are attractive complements to detergents for 
extraction of membrane protein extraction and purification and enhancing the protein 
stability, detergent still represent the first choice for many structure-function studies of 
membrane proteins. 
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As variety of commercially different detergents are available. Therefore, screening is 
required for making the right choice for solubilization and purification of the desired 
membrane protein. For membrane proteins N-dodecyl-β-D-maltoside (DDM) is the 
most used detergent for purification and crystallization [125, 126]. Another used 
detergents is lauryldimethylamine-N-oxide (LDAO) and its application has grown as 
the first membrane protein structure was solubilized and solved in this detergent [127]. 
Octyl-β-D-glucoside (OG) is another choice considering the fact that it forms small 
protein-detergent complex suitable for crystallization [126]. A review on top ten 
detergents used for membrane protein purification and crystallization has been reported 
previously and detergents used in this study were selected based on those studies [128]. 

Importantly, the selected detergent efficacy in solubilization is assessed by extraction 
efficiency on the target protein and not necessarily stabilizes the protein, therefore 
further screening and optimization is required. Moreover, as observed for many other 
membrane proteins, addition of cholesteryl hemisuccinate (CHS) throughout the 
solubilization and purification can considerably increase the solubilization efficiency 
[129]. Consequently, CHS has been included for screening and solubilization 
procedure in this work. 

Fluorescence detection size exclusion chromatography 

In order to assess the solubilization screening, the gene of interest can be fused to GFP 
and initial detergent screening solubilization efficiency can be verified through 
measurement of the total GFP signal to the remaining GFP signal after removal of 
insolubilized material. Upon successful solubilization and identification of suitable 
detergents, it is necessary to examine the monodispersity in the selected detergent and 
condition of the protein of interest, indicative of the stability for structural 
characterization of the target [130]. Size exclusion chromatography (SEC) is one of the 
most well-founded methods to screen for this parameter. Typically, well-behaved, 
stable and monodisperse protein sample yields a single symmetrical peak after SEC, 
whereas unstable and polydisperse sample elutes as multiple, asymmetric or aggregated 
peaks. 

Additionally, the GFP-tag allows for quantification of the target membrane protein 
and localization by live cell imaging, and it functions as a folding reporter [131]. 
Combination of SEC and such a fluorescent tag permits fluorescence-detection size-
exclusion chromatography (F-SEC), which allows for small scale SEC analysis using 
minute amounts of sample [132]. 
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Protein purification 

Following expression and solubilization, other proteins important for cellular function 
are also expressed and solubilized. Therefore, it is crucial to isolate the protein of interest 
from impurities and the most common approach is protein purification through 
chromatography. Proteins are having different characteristic features and can be 
separated from each other based on their size and shape, solubility, charge and binding 
affinity [133]. The most commonly purification techniques are column 
chromatography such as, affinity chromatography and SEC. 

Affinity chromatography is the most effective and efficient technique among all and 
immobilized metal affinity chromatography (IMAC), is an one of the most employed 
affinity chromatography method. In this method proteins are typically tagged with to 
6-8 histidine residues (His-tag) with highly specific interaction mechanism to divalent 
metal ions, such as cobalt and nickel in the resin. This method is frequently performed 
as an initial step of the protein purification. SEC is a fundamental tool in protein 
biochemistry and separates molecules based on their size. Additionally it can be used 
for buffer exchange, on column refolding and detection of changes in protein structure 
molecules including non-homogeneity and aggregation [134]. SEC often serves as a 
polishing step and to indicate if the quality of the protein sample suitable for further 
experiments and downstream structural-functional studies. 

In this thesis proteins were initially purified using pre-packed nickel columns. 
Afterward, GFP-His-tag fusion were removed via TEV protease treatment. Non-pure 
samples and un-cleaved proteins were further purified by a powerful purification 
strategy, reverse Ni-affinity purification. Subsequently, to acquire a homogenous 
protein sample and to remove aggregations and contaminations, samples were subjected 
to SEC purification and analysis with SDS-PAGE and Coomassie staining for further 
structural-functional investigations. 

Crystallization 

Unravelling the three-dimensional (3D) structure of membrane proteins is a key factor 
for further structural-functional studies and for downstream drug discoveries. 
Currently, X-ray crystallography, nuclear magnetic resonance (NMR) and cryo-
electron microscopy (cryo-EM), are three main methods being used for 3D structural 
determination. NMR is commonly used to study targets with molecular weight below 
50 kDa and it requires labelling of the protein [135]. On the other hand, cryo-EM is 
another powerful tool to determine the 3D structure of proteins in their near native 
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condition which has become more widely applicable and increased the pace of 
membrane protein structural determination [136]. Cryo-EM is capable of resolving 
structures of large protein complexes that were difficult to crystallize and it came with 
the detection threshold of 100 kDa and in the last few years its size limit was enhanced 
to around 50 kDa [137-139]. Despite of all the advantageous and disadvantages of 
NMR and cryo-EM techniques, X-ray crystallography remains applicable and powerful 
to study a broad range of 3D structure of the proteins specially membrane proteins.  

X-ray crystallography remains one of leading technique for structural determination 
and to generate atomic models of proteins [140]. The process of crystallization for 
obtainment of well-diffracting crystals to yield high resolution structures is highly 
variable and time consuming, and this notion is further underscored for membrane 
proteins. The major bottlenecks for membrane protein crystallography are associated 
with; a) poor overexpression levels making it difficult in generating milligrams of pure 
protein and with high monodispersity, b) extraction and solubilization difficulty, c) 
instability and loss of function, and d) generation of well-diffracting crystals [141, 142].  

The intension is formation of 3D membrane protein crystals and two basic types of 
membrane protein crystals can be formed, type I and type II [141]. In crystal packing 
type I, mainly produced during crystallization in meso (lipidic cubic phase (LCP)), 
ordered 2D crystals are stacked where lipid-protein and protein-protein interactions are 
assembled. On the other hand, crystal packing type II is formed from detergent 
solubilized samples (in surfo) using vapor diffusion or batch. These crystals are 
produced by polar protein-protein interactions which protrude from the detergent 
micelle [1, 141, 143]. 

Once membrane proteins are purified and solubilized in detergents, crystals are 
obtained with standard crystallization techniques as their soluble counterparts and 
vapor diffusion by sitting/hanging drop is most frequently applied [1, 144]. Vapor 
diffusion method is based on evaporation of the water or any volatile component. The 
protein solution is mixed with low concentration of precipitant and placed above the 
solution with higher concentration of precipitant and crystal formation is achieved as 
water diffuses from the droplet, increasing the concentration of the protein yielding in 
protein crystals [145], Figure 6 A. Well-ordered crystals formed by vapor diffusion are 
typically type II crystals and very fragile due to the presence of detergent micelles and 
their large solvent content [145]. 
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Figure 6. Schematic representation of vapor diffusion crystallization and LCP crystallization. A. 
Detergent solubilized protein sample is mixed with crystallization buffer and crystallization drops are set 
either as hanging drop or sitting drop. B. Detergent solubilized protein sample is mixed with lipid using 
two Hamilton syringes and a coupler and afterward protein-lipid mixture drop is set overlayed with buffer 
on a glass sandwich LCP plates. The figure was generated using BioRender.  

To overcome the obstacles associated with detergent solubilized membrane proteins 
crystallization another method providing more native-like membrane environment was 
specially developed and introduced in 1996,  LCP or in meso crystallization [146] and 
many GPCR structures have been solved using this technique [147]. In this method 
detergent solubilized membrane protein is mixed at a certain lipid-protein ratio and 
temperature to form regular bi-continuous bilayers and as the protein concentrates 
crystal growth happens [1, 145], Figure 6 B. Crystals formed in LCP are type I 3D 
crystals, small but relatively well-diffracting [148]. 

Unfortunately, there is not a universal platform for crystallizing all membrane 
proteins, and each membrane protein has unique characteristics and a wide screening 
must be performed for each target. 

In this study, targets were subjected to both in surfo and in meso crystallization. N-
terminally truncated PcoB crystals were obtained in 0.4 % C8E4 detergent by hanging 
drop vapor diffusion, which diffracted to 2 Å. In addition, full length detergent purified 
CopB target was subjected to LCP and in situ hanging drop vapor diffusion in deterrent 
detergents. Samples solubilized in 0.5 % OPOE detergent resulted in small crystals by 
hanging drop vapor diffusion, which diffracted to 3.5 Å. 
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Functional characterization 

Beside structural determination of membrane proteins, study at the molecular level and 
how exactly these macromolecules are contributing to cellular homeostasis is both of 
great interest and hampered due to the complexity of the biological membrane. One of 
the most effective way of studying membrane proteins’ function is to keep them in a 
membrane-like environment to retain their structure and function. Thus, focusing on 
membrane proteins’ reconstitution into artificial lipid environment serves as an 
essential tool to analyze the function, and structure-based models of mechanisms. 

A variety of membrane mimics have been developed and incorporation of detergent 
purified membrane proteins into lipid vesicles has allowed for detailed functional 
studies [149]. The most studied membrane model systems are Small spherical 
liposomes (0.1 – 0.2 μm) and giant unilamellar vesicles (GUV) (10 – 100 μm) that 
have been widely used recently to study the function of integral membrane proteins 
[150, 151]. Liposomes are multilayer lipid bilayers and relatively small, whereas GUVs 
are observed using optical microscopy and their size correlates to that of biological cells 
(1 – 100 μm) [152].  

In this work, PcoB was evaluated functionally in liposomes and GUVs. 
Traditionally, Cu (II) flux assays are measured using fluorophores such as Fluozin-1 or 
-3, which are being activated by addition of Zn (II) and quenched by addition of Cu 
(II). Consequently, detergent purified PcoB forms were reconstituted in vesicles with 
trapped fluorophore dye. Subsequently, the flux of copper across the liposomes was 
assessed through addition of buffer containing Cu2+ that quenched the dye inside the 
liposomes, Figure 7. 
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Figure 7. Schematic view of PcoB reconstitution into liposomes. Liposomes are formed with 
fluorophore dye trapped inside. PcoB is reconstituted into liposomes and through addition of Cu2+ containing 
buffer, quenching of the dye is measured as a result of Cu2+ import via the PcoB channel. The figure was 
generated using BioRender. 
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Results and discussion 

Paper I 

The first part of the program cantered on the overproduction of the eukaryotic CTR 
family. The objective was successfully established using a S. cerevisiae platform with 
yield, homogeneity, and purity appropriate for downstream structural efforts.  

CTRs were first identified and characterized in a study on iron deficiency of S. 
cerevisiae [153]. CTR1 is present in all eukaryotic organisms [82]. CTR1 is known as 
the only high-affinity copper uptake in eukaryotes, localized to the plasma membrane 
[154]. CTRs are not directly linked to human diseases, nevertheless, embryonic 
lethality of CTR1 knockout in mice indicated that CTR1 is an important factor for 
human health [155-157]. Moreover, CTR1 is also an important factor for the uptake 
of Cisplatin or cis-diamminedichloridoplatinum (II) (cis-Pt(NH3)2Cl2), a platinum-
based anticancer drug, across the cellular membrane [158-160]. 

In this study, a low-cost, and efficient S. cerevisiae overproduction platform was 
employed for CTR targets. The approach of the study was production, localization test, 
solubilization screen, and protein purification of challenging CTR targets. Sequences 
were codon-optimized for S. cerevisiae and constructed in high copy number plasmid 
fused to TEV protease, four glycine, and one serine (G4S) linker, GFP-8His tag, to 
facilitate localization, quality control, and purification of CTR channels. Imaging of 
live yeast cells expressing CTR targets fused to GFP fluorescence visualized the protein 
expression and accumulation in the plasma membrane and intracellular membranes. 
To identify proper detergents and conditions to extract the proteins from crude 
membrane, a detergent screen was performed utilizing six different detergents with and 
without CHS, 4°C, and room temperature (RT) for solubilization. The results 
presented in Figure 8 A, indicate effective solubilization in n-dodecyl-β-D-maltoside 
(DDM) – 4 °C, lauryldimethylamine Oxide (LDAO)-RT, DDM: CHS-RT, for 
hCTR1, hCTR2, and CaCTR respectively. Next, the monodispersity of the solubilized 
samples was examined using F-SEC as previously described [161], Figure 8 B.  

Even though, with the plenty of data in the F-SEC analysis the intention with the 
F-SEC analysis was not to in detail assess all conditions, but rather find indications of 
conditions that may be suitable for the large-scale efforts and accordingly, the above 
mentioned conditioned were selected for each target.  
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Figure 8. Detergent screen of hCTR1, hCTR2, and caCTR. A. The membrane of the cells was solubilized 
for 2 hours with six different detergents at 4 degrees and RT and estimated by GFP fluorescence. B. FSEC 
analysis of the solubilized samples. Effective conditions among all for each target, are indicated. 

Subsequently, samples were subjected to affinity-based protein purification. The G4S-
GFP-8His tag was cleaved off followed by reverse affinity chromatography to remove 
the protease and the tag. Then, samples were evaluated using SEC, and the quality of 
the samples was analyzed by SDS-PAGE, Figure 9.  

The multimeric state of membrane proteins can be difficult to elucidate, and may 
even vary in a reversible manner along the purification procedure. In general, the SEC 
profiles revealed peaks with shoulders, perhaps representing the oligomerization state 
of the proteins, congruent with the trimers and tail-to-tail dimer-of-trimers previously 
detected for CTRs [162, 163]. CTRs are known to display monomers, dimers, trimers 
and even dimer of trimers [77, 164]. In order to separate trimers from dimer of trimers 
1 mM DTT was supplemented to the purification buffer and in Figure 9 panel B, I 
and II represent dimer of trimers and trimers, respectively. This is not the case in Figure 
8 were only solubilization of the targets were assessed. Finally, the investigated samples 
are also rather different in respect to sample purity. Based on these earlier studies on a 
CTR target later successfully employed for structural studies, we expect the main 
fractions indicated with dotted lines in Figure 9, to represent trimers. 

Lastly, conventional yield and purity for downstream structural-functional analysis 
were obtained. The yields are compatible with in vitro liposome studies, however 
assessment of Cu (I) flux or transport is notoriously difficult and challenging. 
Conversely, the quality of the samples is suitable for downstream cryo-EM studies.  
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Figure 9. Purification of the studied CTR proteins. Blue and orange profiles indicate the relative 
absorbance at 280 nm and 500 nm (the latter is a signal for GFP). A, C, and E. Affinity protein purification, 
performed using immobilized metal ion affinity chromatography (IMAC). IMAC profiles for the eluted 
proteins and corresponding percentage of imidazole concentrations used for elution (in gray). The peaks are 
labeled on the corresponding chromatograms and SD-PAGEs with Roman numbers. The desired protein is 
shown with dotted blue lines on the chromatogram and SDS-PAGEs. B, D and F. Size-exclusion 
chromatography (SEC) profiles of the three targets in their selected solubilization condition and detergents. 
Coomassie-stained SDS-PAGE of the indicated monomeric peaks (shown using dotted lines in the 
chromatograms and SDS-PAGEs) of the SEC purification indicating efficient yield and quality of the samples. 
Different oligomerization states are shown with Roman numbers on the chromatograms and their 
corresponding SDS-PAGEs.  
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Papers II & III 

The second intention of the PhD project was the structural determination of PcoB, 
with complementary functional analysis. The main focus here was to shed light on the 
overall architecture and to demonstrate how the ion flux is established and pinpointing 
structurally and functionally significant residues in the pore. The PcoB gene was 
synthesised and codon optimized. The N-terminal His tag followed by a TEV protease 
cleavage site were introduced into the PcoB gene after signal peptide to facilitate the 
protein purification. The protein was overproduced and extracted from E. coli outer 
membrane with a two step extraction. Afterward, however, the full-length purified 
PcoB yielded poor diffraction crystals and therefore the N-termini truncation PcoB Δ27-

81 was cloned and purification resulted in reasonable yields and homogeneity after SEC 
purification for outer membrane protein expression.  

 

Figure 10. Structure of PcoB. A. Structure of PcoB showing a β-barrel architecture and a pore through the 
channel (salmon). B. Electrostatic surface in accordance with extracellular copper uptake (negative surface 
on the outside). C. Side view of the structure and proposed Cu selectivity filter (and gate) shown in stick 
representation. The figures were generated using PyMol and Adobe Illustrator. 

Three-dimensional crystals of purified PcoB protein were produced in different 
detergents but the crystals diffracted to limited resolution. After wide-ranging screening 
and optimization, structure of PcoB Δ27-81 protein in C8E4 detergent in Cu (II)-free 
state at 2 Å resolution was determined. Initial attempts to solve the PcoB structure by 
molecular replacement using different β-barrel structures failed. In order to solve the 
phase problem, mutations were generated for selenomethionine (SeMet) labelling 
protein expression. The SeMet-based single wavelength anomalous diffraction data set 
was collected SeMet-based single-wavelength (0.9798 Å) anomalous diffraction (SAD) 
experiment was performed to solve the phase problem and the structure was achieved 
using X-ray crystallography.  
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Figure 11. The surface charge distribution of the protein. The charge distribution in the surface map is 
displayed in red and blue. Negatively and positively charged electrostatic surfaces are shown in red and blue 
respectively. A. Highly negatively charged pore (in red) and structurally important residues along the pore. 
B. Extracellular side of the channel and C. Periplasmic side of the channel. Figures are generated using PyMol 
and Adobe Illustrator.  

We revealed PcoB is an outer membrane porin consisting of a 12-stranded antiparallel β-barrel, having N- and C-termini located in the periplasm, Figure 10 A. Strikingly, 
the pore is highly electronegative, suggesting that electrostatics might play a key role in 
the Cu passage, Figure 10 B & 11 B & C. The structure revealed that two highly 
conserved pairs of negatively charged residues, E130-E223 and D97-E207, are forming 
possible gates of the protein in the pore Figure 10 C & 11 A.  

To investigate the functionality of PcoB we were additionally able to demonstrate 
Cu flux across the membrane through reconstitution of PcoB into Giant unilamellar 
vesicles (GUVs) and liposomes. This approach facilitates Cu homeostasis investigations 
and overcomes the established difficulties with assessing flux of Cu across biological 
membranes. Evaluation of Cu-flux is a difficult matter, due to rapid delivery of heavy-
metals, bursting proteoliposomes, and toxic metal effects. Nevertheless, we developed 
two separate protein copper flux assays, one using protein reconstituted in GUVs, 
Figure 12 C & D, and one with protein in liposomes, Figure 11 A & B. The experiment 
was designed in a way that, a fluorescence membrane-impermeable dye was trapped in 
the reconstituted lipids. Hence, it indicated that PcoB facilitates Cu (II) flux and in 
order to identify functionally and/or structurally important residues along the pore, 
open and close mutations were subjected to a proteoliposome assay. A wide range of 
screening on structurally important residues was applied and several point mutations 
were grown and purified. After extensive screening from growth to purification and as 
well as successful reconstitution, D97-E207 was mutated to K97-E207 to form a salt 
bridge and hinder the Cu flux as a close mutation. Additionally, a double mutation of 
E187A-Q179A was applied at the periplasmic side of the protein, which was illustrated 
to be open in silico. The data demonstrated that a double mutated protein at the gate 
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region showed an entirely open channel, whereas a single mutation showed an entirely 
closed channel, not allowing the passage of the ions, Figure 12 A & B. 

Concurrently, we were able to reconstitute the protein in GUVs, based on the prior 
knowledge of other membrane protein reconstitution in artificial vesicles. We managed 
to obtain high quality vesicles in 5-20 μm size. Incorporation of the protein into the 
vesicles was assessed by labeled PcoB to Pacific Blue NHS ester and showed effective 
incorporation. The principle here was akin that of the liposome assay that, a 
fluorescence membrane-impermeable dye was trapped in the GUVs and Cu (II) flux 
was measured by the quenching of the dye-Zn complex over addition of Cu containing 
buffer whereases in control samples, GUVs with no protein, a slight decrease of the FL 
was observed. We employed the E252A mutant as non-conducting control for GUVs 
measurements, Figure 12 C & D. 

Nevertheless, as the conclusion in regards of the details in flux and Cu delivery in 
GUVs was not satisfactory, microfluidic delivery of Cu was established. This method 
is characteristically used in microbiological assays, however we managed to apply the 
technique for Cu flux measurement of an ion channel protein. The method requires 
low volume of the sample less than 50 μl and enables the reliable measurement of 
different Cu concentrations. It is beneficial for Cu flux studies as the Cu containing 
buffer is pumped slowly via a syringe, thereby reducing Cu precipitation issues and 
uneven Cu concentration, and providing smooth Cu delivery resulting in accuracy of 
the measurement. Taken together, our results propose a neat and feasible method for 
study membrane proteins link to Cu (II) handling.  
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Figure 12. Copper flux assays using proteoliposomes and GUVs. A. Proteoliposomes containing PcoB 
(WT), open and close mutants. Reconstituted protein facilitates passive Cu flux and exhibited Cu-channel 
function. B. Bar diagrams of the relative activity of the investigated PcoB mutants with wild type PcoB-
containing. C. GUVs showing quench of the fluorescence dye due to flux of copper ions into the GUVs. D. 
PcoB-containing GUVs (black circles), PcoB mutant E255A containing GUVs (red circles), and control vesicles 
(gray) are shown. 
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Later, a growth study of the cells harboring wild-type PcoB in media containing high 
Cu concentration showed sensitivity towards Cu ions in comparison to its control 
(vector without PcoB). Subsequently, to indicate the defense mechanism of the desired 
protein, the entire Pco system conferring all Pco genes, was studied in vivo. This 
indicated a change in the morphology of the cells, suggesting the sequestration of excess 
copper in the periplasmic part of the cells, Figure 13. 

 

Figure 13. Electron microscopy of the cells harboring the entire Pco system at high copper 
concentration. Showing copper sequestration in the periplasmic region of the Pco genes expressed 
cells. 

All in all, our data indicated that PcoB is an outer membrane protein facilitating Cu 
(II) flux and involved in bacterial Cu tolerance. The Pco system was suggested to be a 
defence mechanism and PcoB was suggested to be an efflux membrane channel. 
However, considering the fact that the structure was solved in its closed state and 
molecular electrostatics surfaces showed that the channel is narrowed at the periplasmic 
side, and less negatively charged, suggesting PcoB can attract and import copper ions 
using electrostatic forces. Conversely, there is a notion that Pco system works as 
periplasmic Cu defense mechanism [26] and our results were in line with that notion 
in a sense that cells harboring pco operon showed somehow copper tolerance, Figure 
13.  
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Paper IV 

Moreover, the third objective was related to a protein with homology (72 % similarity) 
to PcoB, the outer membrane protein CopB from A. baumannii, which has been 
suggested to serve as a copper pore [165]. This is relevant considering the importance 
of copper and its possible role as an antibacterial target. There is no structural and 
functional information available on CopB, therefore, the focus was on production and 
crystallization to eventually characterize the structure and function.  

The gene was ordered and cloned into a pET22-b plasmid using the NdeI and XhoI 
restriction sites and with the PcoB signal peptide followed by 6x Histidine and a TEV 
cleavage site at its N-termini. The plasmid was transformed into the E. coli C43 (DE3) 
expression strain using the heat shock transformation method. Following cultivation, 
cells were harvested, disrupted, and the protein was extracted from the crude membrane 
and solubilized in 2 % Elugent. Next, affinity-based purification in 0.04 % LDAO, 
followed by TEV cleavage, and reverse affinity chromatography was applied. 
Subsequently, to increase the likelihood of generating crystals, detergent exchange and 
screening were applied to the sample. The protein displayed satisfactory mono-
dispersity in five different detergents on small scale (0.1 mg protein), Figure 14. 

The well behaved and monodisperse samples were obtained in OPOE, NG, C8E4, 
Cymal-6 and LDAO, whereas the other detergents appeared to have higher amount of 
aggregation. Consequently, OPOE, C8E4, Cymal-6 and LDAO were reproduced in 
large-scale (1L) purifications protein.  
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Figure 14. Size-exclusion detergent screen chromatograms of CopB in nine detergents. Each graph 
shows a detergent and its solubilization condition. All graphs are set to the same scale. The Y-axis shows the 
relative absorbance 280 and the X-axes the volume (mL). 
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Well behaved protein samples in OPOE, Cymal-6, LDAO and C8E4 were subjected 
to crystallization using different commercially available membrane protein 
crystallization kits, using vapor diffusion and LCP methods. Particularly, OPOE, 
LDAO and C8E4 are commonly used for outer membrane protein crystallization 
[166]. After an extensive amount of crystallization in different detergents and 
conditions, initial crystals were obtained in 0.5% OPOE detergent, 0.35 M NaCl, 0.1 
M Tricine pH=8.5, 28% w/v PEG1000, which diffracted to 6.5 Å, Figure 15 B & C. 
Further optimization of the conditions was performed using additive screens. Well-
formed crystals, still small, were obtained in the same condition containing 0.1 M 
manganese (II) chloride tetrahydrate.  

The purified samples were of high purity congruent with downstream functional 
studies, such as the liposome assay developed for PcoB. This will be critical considering 
that the Cu flux of CopB protein is poorly characterized. Moreover, further 
optimization of crystals will be required for structural determination. 

 

Figure 15. A. Initial crystals of CopB in 0.05% OPOE, obtained in hanging drop, MemPlus screen. B and 
C. Diffraction pattern of initial crystals which was diffracted to 6.5 Å. D and E. Optimized crystals in 
additives. 
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Concluding remarks and outlook 

The work in this thesis provides a valuable foundation for downstream efforts on 
copper conducting proteins in the membranes of bacteria, yeast and human, and 
supports the use of structural and functional characterization methods to study copper 
transport mechanisms. 

We revealed principles to recover and purify eukaryotic Cu importers (CTRs), 
opening up for downstream structural determination efforts on human and pathogenic 
targets. The core issue relates to the molecular mechanism underlying the copper flux 
and how the conductance is regulated which is largely unknown today. 

It has been suggested that the C-termini of CTR1 blocks the copper import in 
response to excess copper through conformational changes. Moreover, the extracellular 
histidine- and methionine-rich N-termini is essential for function and form metal-
binding domains, which also have been proposed to control the function through 
gating [167]. However, the structural basis for these mechanisms, if at all present, 
remain to be elucidated. Additionally, another unsettled topic to be studied is how 
copper donating and accepting proteins associate with CTRs. It has been suggested that 
at the C-termini there is a conserved motif, HCH, serve as an intracellular gate and 
involved in copper passage [68, 167]. This motif is missing in hCTR2, nonetheless, 
this is one of many aspects of the basic function of CTRs that remain poorly 
understood. A detailed understanding of the copper delivery to and from CTRs 
necessitates high-resolution structures of full-length versions of these proteins with and 
without interacting copper donors/acceptors. 

The latter point requires functional assessment of the purified targets, however, it is 
notoriously difficult to assess Cu flux or transport across cellular membranes in vitro, 
and even more for the reduced form, Cu (I) [168]. In fact, still no functional 
assessments of CTR mediated Cu (I) conductance has been demonstrated in vitro, 
despite a low-resolution structure of hCTR1 and a high-resolution structure of SsCTR.  

Highlighting the significance of our findings, the behavior of our CTRs is the same 
or even better than the few CTR targets that have been structurally characterized [68, 
77]. Interestingly, a single high-resolution structure is available from Salmo salar, but 
no high-resolution structure is present for the human members. Therefore, X-ray 
crystallography or cryo-EM high-resolution data of the studied CTRs in this thesis in 
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the absence or presence of copper and in complex with interacting proteins will further 
increase the understanding of their physiological function. The recent finding that 
CTRs are linked to human diseases further highlights the importance of this particular 
protein family [169] and successful overproduction and purification of CTRs presented 
in this this work makes a contribution to this end.  

Additionally, in this work we successfully crystallized the Cu-specific outer 
membrane porin PcoB, and determined its structure to 2 Å resolution. Moreover, 
despite the established complications in the assessment of Cu flux across biological 
membranes, we managed to detect and quantify PcoB-facilitated Cu passage using 
GUVs and liposomes. However, while our findings illustrated structurally important 
residues responsible for shuttling Cu through the protein, further studies on the 
directionality of the copper flux of PcoB are required. It is also poorly understood why 
full resistance and Cu-transport of the Pco system may depend on the presence of two 
other components PcoC and PcoA along with PcoB [40, 44]. Possible methods to study 
these protein-protein interactions are for example pull-down assays, MST or Far 
Western Blot. Collectively, high-resolution structures of full length PcoB with 
interacting proteins, open structure of PcoB, and open/close mutants will shed further 
light on function and regulation of the Pco system. These studies could potentially be 
done with cryo-EM or X-ray crystallography.  

Similar to other β-barrel channels the function and mechanism of the PcoB is still 
under debate and it remains its physiological and basic function remain debated. Is 
PcoB an antiporter? What is the directionality of the PcoB function? More importantly, 
how a Cu channel, historically known to be involved in defence mechanism through 
exporting activity, is hypothesized by our data to have importing activity remains as an 
interesting question for future structural and functional studies. 

Moreover, in this study another outer membrane protein CopB from A. baumannii, 
a homolog to PcoB, was successfully produced, and resulted in initial crystals that 
diffracted to 6.5 Å resolution. Sequence alignment of CopB to PcoB shows that 
important residues differ structurally and comparison of PcoB to CopB Alpha fold 
suggests differences in the architecture within the pore. Unveiling the first high-
resolution structure of CopB, is thus a key to the fundamental research questions related 
to how copper homeostasis in A. baumannii is conducted through the protein; how Cu 
regulation is achieved and in what way copper is accepted and donated to the two sides 
of the outer membrane. The strategy to address these questions will center on X-ray 
crystallography and biochemical characterization of this protein. In this regard, 
optimization of the CopB crystals (presented in this work) by changing protein 
concentration, seeding or temperature of the set ups have the potential to contribute to 
this shortage. To shed further light on the functional characteristic of this target, 
liposome studies and investigation of Cu flux could be of interest, however only low 
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CMC detergents are compatible with liposome assay, and hence not all the studied 
detergents in this work are suitable for such applications. 

In conclusion, our findings on the studied proteins in this work significantly increase 
our understanding of the structural and functional basics of Cu homeostasis proteins 
and provides a foundation for further structure-function studies. The obtained 
knowledge may thus open new avenues for more in-depth studies of the investigated 
proteins as a contribution to the ultimate drug discovery goal. 
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