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Popular summary 

Boreal regions play a key role in the global carbon cycle due to the large amounts 
of carbon stored in their vegetation and soils, especially in the form of peat. Carbon 
dioxide (CO2) is the key greenhouse gas driving the current climate change, and the 
uptake and release of CO2 largely define if an ecosystem is a carbon sink or source. 
CO2 is absorbed by vegetation through photosynthesis, and released by plant 
respiration and soil microbes as they decompose organic matter. When forests or 
peatlands are disturbed, for example through limited water availability, fire, insect 
outbreaks, loggings, or other forms of land use change, the stored carbon might be 
released back into the atmosphere as CO2, contributing to climate change. Changing 
climate is expected to increase the frequency and magnitude of disturbances, which 
can create a positive feedback loop accelerating global warming. 

Given the broad extent of the boreal region and the large amounts of carbon stored 
within it, the health and stability of these ecosystems are critical for regulating the 
global carbon cycle and mitigating the climate change. Monitoring carbon uptake 
and release in boreal forests and peatlands can help to preserve the carbon storage 
in these ecosystems through sustainable land use practices and limiting the impacts 
of different disturbances. 

This thesis focuses on modelling and upscaling the carbon uptake by vegetation, 
known as gross primary production (GPP), in Nordic forest and peatland ecosystems 
using satellite remote sensing data. The thesis compiles four papers and aims to 
identify the main drivers controlling carbon exchange in northern ecosystems, 
develop and test various remote sensing-based models to estimate GPP, examine 
the effect of the spatial resolution of the satellite instrument on the accuracy of GPP 
estimation, and finally, to upscale GPP from ecosystems to a larger area. 

The results demonstrated that spectral vegetation indices measured from satellite 
can explain the vegetation carbon uptake well. In general, other environmental 
variables that further helped to improve the results were air temperature, 
photosynthetically active radiation (PAR), and vapour pressure deficit (VPD) that 
expresses atmospheric demand for water. Another finding was that the spatial 
resolution of the satellite instrument had less influence on the accuracy of GPP 
estimates than the model formulation and selection of the input data. The result 
suggested that vegetation productivity can be monitored at various scales with good 
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accuracy. Fine-scale estimates are beneficial when monitoring individual forest 
stands or spatially heterogeneous ecosystems like peatlands. 

We tested various models to estimate GPP with remotely sensed data. The models 
were calibrated using GPP measurements from eddy covariance towers. The 
calibration was done either for a specific site, or by using a single parameter set for 
several sites. The site-specific calibration gave more accurate results but, on the 
other hand, the single parameter set was more useful for upscaling the carbon uptake 
for a larger area. In addition, we found that the plant phenology index (PPI) 
performed well and provided a useful tool for estimation of GPP at local and 
regional scales. Despite the good agreement with the ground-measured GPP, the 
models could be further improved to capture the difference between the sites. Soil 
moisture is a possible variable to be included in the models, as it is an important 
driver of carbon exchange in peatlands, but it could also improve the forest GPP 
models. Finally, we applied a PPI-based model to estimate annual GPP in Sweden’s 
forests and peatlands with a 10-meters spatial resolution.  

In 2018, central and northern Europe experienced a severe drought with persistent 
high air temperatures and reduced water availability. This thesis provides valuable 
information on the responses of different ecosystems to droughts. The analysis 
revealed that the response to the drought varied between the ecosystem classes and 
the regions. Carbon uptake in peatland and forest ecosystems was mostly decreased 
due to the drought, although some sites showed no change or even increased 
productivity due to the longer and warmer growing season. The alternating response 
to the drought emphasize the importance of taking into account the spatial 
heterogeneity of the ecosystems when modelling carbon uptake. The results 
highlight the great potential of Sentinel-2 based high-resolution GPP for monitoring 
changes in vegetation productivity under climate stresses and other disturbances. 

The current global warming greatly influences the environmental conditions in the 
boreal region. Reliable carbon flux estimates are essential for predicting how 
ecosystems response to changing conditions and disturbances, for monitoring the 
carbon sink strength, and for supporting sustainable management practices. 
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Abbreviations 

APAR Absorbed photosynthetically active radiation 

CH4 Methane

CO2 Carbon dioxide

EC Eddy covariance

ER Ecosystem respiration

EVI Enhanced vegetation index 

EVI2 Two-band enhanced vegetation index 

fAPAR Fraction of absorbed photosynthetically active radiation 

GPP Gross primary production 

LST Land surface temperature

LUE Light use efficiency 

MSI MultiSpectral Instrument

MODIS Moderate Resolution Imaging Spectroradiometer 

NDVI Normalized difference vegetation index  

NEE Net ecosystem exchange 

PAR Photosynthetically active radiation 

PPI Plant phenology index 

Tair Air temperature 

VI Vegetation index

VPD Vapour pressure deficit  
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Introduction 

The role of boreal ecosystems in the global carbon cycle 
Boreal land ecosystems play a key role in global carbon cycle. The boreal forest is 
the second largest forest ecosystem covering over 1200 million ha (Keenan et al., 
2015; Tagesson et al., 2020), whereas 80% of Earth’s peatlands are located in boreal 
and subarctic areas in northern hemisphere (Limpens et al., 2008). Together, these 
two ecosystems contain more than 30% of the global terrestrial carbon, most of 
which is located in soil and peat, and the rest in living biomass (Bradshaw & 
Warkentin, 2015; Pan et al., 2011). Boreal ecosystems are not only a big carbon 
storage, but also a potential source of carbon emissions into the atmosphere, 
primarily through natural disturbances (e.g. forest fires, insect outbreaks and 
extreme weather events), deforestation or land degradation by human activity 
(Bradshaw & Warkentin, 2015; van der Werf et al., 2009). Understanding and 
predicting the carbon fluxes between the terrestrial biosphere and the atmosphere is 
important since they have an ability to control the atmospheric carbon 
concentrations and thus, offer a mitigation strategy for the current climate change 
(Beer et al., 2010; Gauthier et al., 2015).  

The carbon balance in boreal land ecosystems is mainly dominated by the uptake 
and release of carbon dioxide (CO2) (Chi et al., 2020), which is also the most 
important driver of anthropogenic climate change (Heimann & Reichstein, 2008). 
Other important components of the carbon balance in a boreal landscape are 
methane (CH4) fluxes especially in peatlands, aquatic exports of dissolved carbon 
and carbon loss via harvest (Chi et al., 2020). A measure representing the CO2 
balance between a land ecosystem and the atmosphere is net ecosystem exchange 
(NEE). NEE is a difference between two reversed fluxes, gross primary production 
(GPP) and ecosystem respiration (ER). GPP is the uptake of CO2 through vegetation 
photosynthesis, and ER is the total release of CO2 by vegetation respiration 
(autotrophic respiration) and microbial decomposition (heterotrophic respiration). 
The carbon that has been assimilated in photosynthesis and not lost through 
autotrophic respiration, is stored as plant tissues, forming plant biomass. Hence, 
GPP drives the vegetation growth and is the basis for food, fiber and wood 
production.  

Ecosystem carbon balance is influenced by several external drivers, depending on 
the ecosystem type, and spatial and temporal scales. Photosynthesis is a light-driven 
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phenomenon, so GPP does not occur at nights or winters in the boreal region due to 
lack of sunlight. Furthermore, air temperature (Keenan & Riley, 2018) and water 
availability (Babst et al., 2019) are considered to be the most important 
environmental variables regulating GPP and ER in boreal ecosystems. The spatial 
variation of GPP and ER in boreal forest ecosystems is mainly related to the leaf 
area index (LAI) (Launiainen et al., 2022; Ueyama et al., 2013). LAI is the one-
sided green leaf area per unit ground area (m2m-2) and determines radiation 
absorption and transmission by the canopy.  

Globally, terrestrial GPP is the largest carbon flux (Beer et al., 2010), but in boreal 
ecosystems ER contributes also greatly to NEE (Lindroth et al., 1998). Boreal 
forests may act either as  CO2 sinks or as sources depending on species 
compositions, stand age and climatic variability (Hadden & Grelle, 2016, 2017; 
Litvak et al., 2003), whereas boreal pristine peatlands are usually CO2 sinks (Yu, 
2012). In both ecosystems, a small change in either GPP or ER might determinate 
whether an ecosystem is a sink or source of atmospheric CO2. Natural disturbances, 
land use changes, and changing environmental conditions due to the climate change 
have a tendency to increase the CO2 release (by increasing ER or decreasing GPP) 
and thus weaken the ecosystem CO2 sink strength (Gauthier et al., 2015; Qiu et al., 
2020). This thesis primarily focuses on studying GPP in boreal forest and peatland 
ecosystems, with some attention to peatland NEE and ER. 

Boreal ecosystems under global change  
Global warming has a major effect on the regional mean temperature, precipitation 
and soil moisture. Due to the feedback mechanisms in the climate system, Artic and 
boreal regions are impacted more than areas close to the equator (IPCC, 2021). 
Depending on the climate change scenario, the mean annual temperature in the 
boreal zone might increase 1.5–6 °C and precipitation 5–30% by 2100, compared 
to the period 1981–2000 (IPCC, 2021). The annual range of precipitation and soil 
water storage is predicted to increase, indicating that wet seasons will become wetter 
and dry seasons drier in northern high latitudes (Wu et al., 2015). 

Overall, increasing temperatures, longer growing seasons and the elevation of the 
atmospheric CO2 concentration are able to enhance GPP and biomass growth in 
forests, but changing climate can also cause contrary effects (Hyvönen et al., 2007; 
Reyer et al., 2017). Warmer and drier summer conditions are expected to increase 
droughts, forest fires and insect attacks, while warmer and wetter winters will lead 
to increasing damage by windstorms, heavy snow loading and pathogens 
(Venäläinen et al., 2020). Peatlands are also sensitive to the rise of temperatures and 
to changes in water table depth. Like in boreal forests, climate change can enhance 
peatland GPP, although the CO2 fertilization effect on plant growth is predicted to 
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be smaller in peatlands than in other boreal ecosystems (Qiu et al., 2020). On the 
other hand, warming temperatures might increase peatland ER due to accelerated 
decomposition and increased soil respiration (Lund et al., 2010). 

Forest management to enhance carbon sink 
Forests in Nordic countries are actively managed, whereas the management in the 
rest of the boreal region (Alaska, Canada, Russia) is less intense. The predominant 
forest management method in the Fennoscandian region is rotation forestry, which 
usually consists of several thinning operations before the clear-cut harvest, followed 
by soil scarification and planting or natural regeneration (Högberg et al., 2021). 
Consequently, this management method can increase spatial heterogeneity at the 
landscape level by creating a mosaic of even-aged forest stands with a distinct age 
class, regeneration phase, growth rate and carbon dynamics (Peichl et al., 2023).  

There is an ongoing debate about alternative forest management strategies (e.g. 
continuity forestry) within the Fennoscandian region to strengthen the carbon sink 
but also enhance other forest ecosystem services like biodiversity. Peichl et al. 
(2023) and Lundmark et al. (2014) emphasize the importance of developing 
strategies that optimize tree biomass production to mitigate the climate change, 
whereas Skytt et al. (2021) suggest that the greatest short-term climate benefits are 
achieved by reduced harvest levels in productive forests. Felton et al. (2020) present 
that mixed-species stands, uneven-aged forest management and longer rotations 
times are potential methods to not only enhance biodiversity but also aid climate 
change adaptation and mitigation. 

Several studies have suggested that the impact of drought on forest can be altered 
by management activities. Schäfer et al. (2019) found that drought-sensitive 
Norwegian spruce benefited from the mixture with more drought-resistant European 
beech trees under drought conditions. On the other hand, Laurent et al. (2003) and 
Cabon et al. (2018) suggested that moderate to heavy thinning can improve the 
resistance of forest stands to drought stress. 

Peatland conservation and restoration 
Boreal peatlands are not regularly managed like forests, but they either remain 
undisturbed or they have been mined or drained for agriculture and forestry. Until 
now, undisturbed peatlands have been persistent carbon sinks, and if they continue 
to absorb and store carbon in the future, conserving pristine peatlands provides a 
simple and inexpensive climate change mitigation method (Qiu et al., 2020).   

Drainage for forestry, agriculture and peat extraction compromise the climate 
regulations that pristine peatlands provide, as it induces CO2 emissions from the 
peat into the atmosphere and usually makes drained peatlands a net source of CO2 
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(IPCC, 2021). Within the boreal region, forestry-drained peatlands may act either 
as a net carbon sink or source (Lohila et al., 2011; Meyer et al., 2013; Minkkinen et 
al., 2018; Ojanen et al., 2013). 

Peatland restoration by rewetting drained peatlands has a substantial potential for 
climate change mitigation (Helbig et al., 2020; Leifeld & Menichetti, 2018). 
Rewetting peatlands might cause a short-term warming effect by increasing CH4 
emissions, but a long-term cooling effect due to assimilated CO2 (Günther et al., 
2020). Since CH4 has a greater warming potential but shorter lifespan in the 
atmosphere than CO2, the cooling effect by CO2 fixation has been considered to 
outweigh the warming effect caused by increased CH4 emissions (Frolking & 
Roulet, 2007; Günther et al., 2020). However, Ojanen and Minkkinen (2020) 
suggest that tropical peatlands and agricultural peatlands in temperate and boreal 
regions have the highest potential for climate change mitigation by rewetting, 
whereas abandoning tree stands may be a more beneficial mitigation method in 
temperate and boreal forestry-drained peatlands.  

Estimating carbon fluxes 

Eddy Covariance measurements 
Accurate accounting of CO2 fluxes (namely, NEE, GPP and ER) in boreal regions 
is essential for understanding the global carbon cycle and the climate change 
impacts on terrestrial ecosystems. The eddy covariance (EC) system mounted on a 
tower (Figure 1) provides direct measurements of NEE and nighttime ER at the 
ecosystem level and those measurements can be subsequently partitioned into GPP 
and daytime ER (Baldocchi, 2003). Thus, EC-derived GPP and ER are actually 
modelled estimates, although they are usually considered to be ground reference 
data for modelled fluxes (Lasslop et al., 2010). Footprint models are an essential 
part of the EC method, as they provide the field-of-view of the tower and reveal the 
area that contributes to the measured fluxes (Schmid, 2002). However, there is only 
limited number of EC sites in the world. Hence, additional measurements and 
modelling are required to extend the spatial coverage of carbon flux estimates, and 
to represent ecosystems with different age classes and species diversity (Lagergren 
et al., 2006). 
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Figure 1. The eddy covariance tower at the Norunda site. Photogprah: Sofia Junttila 

Remote sensing of GPP 
GPP or ER cannot be measured directly by satellite instruments, but there are certain 
biophysical properties of vegetation that can be related to the CO2 fluxes and to 
vegetation spectral properties measured by satellites. Remote sensing-based models 
often rely on empirical relationships between EC-derived fluxes and the spectral 
properties of vegetation or, alternatively, mechanistic models with remotely sensed 
inputs. In general, empirical models are simple yet easy to apply but they lack the 
theory of plant physiology or ecosystem function whereas mechanistic models 
describe physiological processes in detail but are limited by data availability as well 
as temporal and spatial scaling (Feng et al., 2007).  

To estimate GPP with satellite remote sensing, spectral vegetation indices (VI) play 
a key role. These indices usually express the greenness of the vegetation and are 
closely related to biophysical variables such as LAI or the fraction of 
photosynthetically active radiation absorbed by green vegetation (fAPAR). Widely 
used indices, like the Normalized Difference Vegetation Index (NDVI; Tucker, 
1979) and the Enhanced Vegetation Index (EVI; Huete et al., 2002), have a linear 
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or near-linear relationship with fAPAR (e.g. Gitelson, 2019; Xiao et al., 2005), 
whereas the recently-developed Plant Phenology Index (PPI; Jin & Eklundh, 2014) 
is strongly related to LAI. 

The groundwork for remote sensing-based productivity models was laid by Running 
(1986) who applied the light used efficiency (LUE) concept by Monteith (1972). 
The LUE model expresses GPP as the product of photosynthetically active radiation 
(PAR) incident on vegetation, fAPAR, and the efficiency with which vegetation 
convert radiation to carbon.  Currently, one of the most well-established remote 
sensing approaches based on the LUE model is the MODIS GPP/NPP (MOD17) 
product (Running et al., 2004). The MOD17 product uses spectral data from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the 
Terra and Aqua satellites. In addition, it uses a look-up table containing biome 
specific information about the maximum LUE coefficient and the constraining 
functions based on air temperature (Tair) and vapour pressure deficit (VPD). The 
MOD17 is widely acknowledged but it has also been questioned due to the coarse 
resolution meteorological input data and to lack of sufficient flux measurements for 
validation and calibration of the algorithm (Turner et al., 2006; Wang et al., 2013; 
Zhao et al., 2005). For example, the look-up table does not include parameters for 
peatlands. 

LUE-based GPP models assume that the relationship between GPP and absorbed 
PAR (APAR, i.e. incident PAR multiplied by fAPAR) is linear, although it is only 
a partly correct assumption. The GPP-APAR relationship generally has an 
asymptotic shape at the daily time step, but it can be considered as near-linear over 
monthly or annual periods (Falge et al., 2001; Tagesson et al., 2012). Another 
uncertainty of the LUE models is that it does not take into account the spatial and 
temporal variation of the LUE coefficient. LUE varies among vegetation types 
(Madani et al., 2014; Turner et al., 2003), under environmental stresses (Running et 
al., 2004) and between phenological phases (i.e. spring green-up and autumn 
senescence) (Jenkins et al., 2007).  

To overcome these uncertainties in the LUE approach, alternative empirical models 
have been developed. Some of the models are simpler than the LUE model avoiding 
one or more parametrizations of the LUE model, or they rely on site-specific 
relationships and additional data like land surface temperature (LST) (Hashimoto et 
al., 2012; Olofsson et al., 2008; Schubert et al., 2012; Sims et al., 2008). Another 
direction is to estimate GPP with more complex data-driven models, e.g. using 
machine learning (Xiao et al., 2010; Zhang et al., 2017). The underlying assumption 
of the approach is that complex models are more flexible in structure than the LUE 
approach and are able to account for possible nonlinear relationships between 
remotely sensed predictor variables and GPP. The disadvantage is that purely data-
driven models might lack the mechanistic understanding about vegetation 
functioning. An approach that has a strong physiological background and 
accommodates for the nonlinear relationship between GPP and PAR, is the light 



21 

response function (Falge et al., 2001). The light response function parameters can 
be derived from EC-measured GPP and PAR, and then spatially and temporally 
extrapolated in relation to a VI (Tagesson et al., 2017; Tagesson et al., 2021). 

Remote sensing of ER and NEE 
In comparison to GPP, there is significantly fewer remote sensing–based ER 
models. Most of the models are based on the know relationship between temperature 
and respiration (Lloyd & Taylor, 1994). Hence, remotely sensed land surface 
temperature (LST) has been successfully used to estimate ER (Olofsson et al., 2008; 
Schubert et al., 2010). The key challenge in modelling ER is that is a combination 
of aboveground and belowground processes, induced by vegetation and microbes. 
It has been argued that the temperature-based ER model represents mainly the 
heterotrophic respiration, whereas autotrophic respiration could be described by 
adding vegetation productivity data (e.g. GPP or a VI) into an ER model (Gao et al., 
2015). 

It is challenging to model NEE with remote sensing data, as NEE is a difference 
between two large fluxes driven by separated processes with different seasonal 
dynamics. In the boreal region, annual NEE is often close to zero, which can 
generate a high relative error and a weak correlation in the modelled results 
(Olofsson et al., 2008). NEE can be modelled as a difference between modelled GPP 
and ER (Olofsson et al., 2008), with a multiple regression model (Schubert et al., 
2010) or, like most recently, with machine learning techniques (Cho et al., 2021; 
Virkkala et al., 2021). 

Upscaling carbon fluxes  
Remote sensing-based methods are essential for predicting carbon fluxes across 
larger areas (i.e., upscaling), based on small scale measurements. Fluxes can be 
upscaled from the ecosystem level (m2 to km2) to the local (10–100 km2), regional 
(103–106 km2) or global levels (107–108 km2). This dissertation focuses on upscaling 
GPP from the EC sites to the local level, and after that to the regional level covering 
the whole of Sweden. 

In principle, all above-mentioned remote sensing-based models can be used to 
upscale GPP, ER or NEE, if the required data sets are available in the target area. 
The model accuracy and generalizability is the key to ensure the robustness of the 
upscaled flux estimates. In addition, it is essential that the observational data used 
for model training represent the vegetation properties well at the target ecosystem. 
Simple linear models (e.g. the LUE approach) can be a powerful tool in upscaling 
due to their ease of extrapolation and interpretation, whereas nonlinearity in the 
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models limits their scalability. Re-parameterization would be necessary if the 
nonlinear models were to be applied at a different spatial or temporal scale for which 
they were developed. 

One major challenge in upscaling carbon fluxes with remote sensing methods is the 
spatial heterogeneity of vegetation properties across an ecosystem. It is crucial to 
identify what kind of area (and vegetation) is contributing the EC measurements at 
each time and how well the measurements represent the ecosystem as a whole 
(Kljun et al., 2015). Hence, accurate footprint estimation is essential, especially in 
boreal peatlands that show large variability in vegetation species, microtopography 
and hydrology (Lees et al., 2018). 

Another limitation for accurate GPP estimations is the mismatch of spatial 
resolutions between remote sensing data and the flux tower footprint, since 
vegetation dynamics have traditionally been monitored by satellite sensors with 
relatively low spatial resolutions (hundred meters to kilometres) (Balzarolo et al., 
2019; Huang et al., 2022). The new Sentinel-2A and 2B satellites with the 
MultiSpectral Instrument (MSI) provide a great opportunity to study GPP in 
heterogeneous landscapes with 10 m spatial resolution and with 2-3 days’ revisit 
frequency at high latitudes. However, the LST data, that is important for estimating 
ER, is limited by coarse spatial and temporal resolutions. MODIS provides LST 
with 1 km spatial and 1-2 days temporal resolutions, whereas Landsat has 60 m and 
16 days resolutions, respectively. 

Coarse resolution GPP, ER or NEE estimates are practical when studying the carbon 
balance at the global level. However, high resolution CO2 flux estimates are 
beneficial especially at the local and regional scales. Upscaling flux tower 
measurements to landscape level increases the feasibility of the data for carbon 
assessments and modelling, and potentially improves the accuracy of national 
carbon emissions accounting. Local-scale remote sensing data may become 
important in assessing effects of different forest management regimes or peatland 
conservation. Overall, the extended geographical coverage of the flux estimates 
improves our understanding of the spatial patterns and regional budgets of terrestrial 
ecosystem CO2 fluxes. 
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Aims 

The principal aim of this thesis is to improve the methodology for estimating and 
upscaling local-scale CO2 fluxes in boreal ecosystems. The dissertation focuses on 
estimating ecosystem gross primary production (GPP) in Nordic peatland and forest 
ecosystems using satellite remote sensing data.  

The specific objectives of the thesis are:     

• To identify the major biophysical drivers controlling temporal and local-
scale variability of the carbon fluxes in northern regions and to examine if 
these drives can be determined using remote sensing data.  

• To assess the influence of the spatial resolution of the satellite instrument 
on the accuracy of carbon flux estimations. 

• To evaluate the performance of various model formulations and spectral 
vegetation indices to explain carbon fluxes. 

• To upscale GPP to local and regional levels and to demonstrate the 
applicability of the upscaled GPP estimates. 
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Methods 

Paper I 
This study investigates the potential of high resolution Sentinel-2 MSI data to 
improve the accuracy of GPP estimation across northern land ecosystems, in 
comparison to the MODIS-derived estimates. Sentinel-2 provides data with 10 m, 
20 m and 60 m spatial resolutions and with 2-3 days temporal resolution in high 
latitudes. In this study, we used 10 m spectral data to calculate the two-band 
Enhanced Vegetation Index (EVI2; Jiang et al., 2008). EVI2 was also calculated 
from the MODIS reflectance data with 250 m and 500 m resolutions. MODIS 
measurements are available with 1-2 days temporal resolution. In addition, we used 
EC-derived GPP, Tair, PAR and VPD at eight Nordic sites, including four coniferous 
and one deciduous forest sites, two peatland sites and one agriculture site. Figure 2 
shows the locations of all the sites that have been used in this thesis. We analysed 
data from 2016 to 2017. We evaluated if the spatial resolution of the satellite data 
effects the performance of the GPP estimate, and additionally, how much EVI2 and 
the biophysical variables contribute to the EC-derived GPP.  

The EVI2 data from both instruments were gap-filled and smoothed using the 
TIMESAT software system (Jönsson & Eklundh, 2004) to produce smooth daily 
time series for each of the sites. We applied a different method to select the pixels 
that contributed to the GPP measurements for each remote sensing data set. For the 
500 m MODIS data, the pixel matching the tower location was used to represent 
each site. For the 250 m MODIS data, maximum four pixels around the tower were 
used to calculate daily average of EVI2. For the Sentinel-2 data, we modelled the 
annual EC flux footprints using the Flux Footprint Prediction (FFP) model by Kljun 
et al. (2015). Then, we calculated weighted averages of the pixels that contributed 
to 80% of the annual footprint. The EC-derived data was averaged with a 7-day 
moving window to match with temporal scale of the remote sensing data.  

To estimate GPP, we tested linear regression models following Schubert et al. 
(2012) with various combinations of the input data: 𝐺𝑃𝑃 = 𝑎 × 𝐸𝑉𝐼2 × 𝐸 + 𝑏 (1) 
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where EVI2 is the daily averaged EVI2 either from Sentinel-2, 250 m MODIS or 
500 m MODIS. E is an environmental variable: PAR, Tair, VPD or a product of 
them. 

Figure 2. Eddy covariance sites used in this thesis. 



27 

Paper II 
In Paper II, we develop models for estimating peatland CO2 fluxes (NEE, GPP and 
ER) using satellite remote sensing data. EC-data from five Nordic peatlands 
between 2017 and 2019 was used to calibrate the empirical regression models 
(Figure 3). 

We used data from Sentinel-2 to calculate EVI2 with 10 m spatial resolution and 
NDWI (Normalized Difference Water Index; Gao, 1996) with 20 m resolution. 
NDWI was used to calculate a water scalar to represent the variations of moisture 
conditions interannually and between the sites. The MODIS products MOD11A1 
and MYD11A1 provided LST data with 1 km spatial resolution.  

The remote sensing data was gap-filled and smoothed using a spline function in 
TIMESAT (Jönsson & Eklundh, 2004) to create daily products of EVI2, NDWI and 
LST for each site. The EC data was also smoothed with TIMESAT. For the Sentinel-
2 data, we used the Flux Footprint Prediction (FFP) model (Kljun et al., 2015) to 
create the daily flux footprint and to calculate weighted averages of the pixels within 
the 80% footprint area. Due to the coarse resolution of the MODIS data, we 
extracted LST values from the pixel where the EC tower was located at each site. 

Our GPP model was based on previous work by Schubert et al. (2010). We 
investigated how satellite-derived EVI2, LST, and the NDWI-based water scalar 
along with site-measured environmental variables (Tair, PAR, water table depth and 
annual precipitation) were contributing to EC-derived GPP. Based on the analysis, 
EVI2, the water scalar and LST were included into the GPP model.  𝐺𝑃𝑃 = 𝑎 × 𝐸𝑉𝐼2 × 𝐿𝑆𝑇 × 𝑊௦௖௔௟௔௥   (2) 

The ER model was based on work by Gao et al. (2015) and included daytime LST 
and EVI2. We also tested whether using EVI2 and NDWI scalars, as well as 
modelling the dormant and growing season separately, improved the ER model fit. 
We modelled NEE in two ways, by subtracting modelled ER from modelled GPP 
and by parameterizing the ER and GPP models together. 

The GPP, ER and NEE models were first parameterized for each site individually 
and then an average model parameter set was acquired using leave-one-out-cross-
validation based on the data from all the sites. Therefore, we could evaluate how 
well an empirical model with averaged parameters was able to predict the fluxes 
and explain the differences between the sites. 
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Figure 3. Reproduced from Paper II, a general overview of the stydy estimating GPP, ER and NEE in 
five northern peatlands. 

Paper III 
The aim of Paper III was to evaluate various satellite remote sensing-based GPP 
models in eleven forest sites in northern Europe in 2017–2020. We compared six 
purely empirical models, a light use efficiency model, and a light response function 
model. All models were based on either EVI2 or PPI, both derived from Sentinel-2 
spectral data with 10 m spatial resolution. EC-derived GPP, PAR, Tair and VPD were 
used to parametrized and evaluate the models. 

The EC data was smoothed and averaged to daily values using a 7-day moving 
average with a 1-day time step. The vegetation indices were smoothed and gap-
filled with a combined double-logistic and spline function in TIMESAT (Jönsson et 
al., 2018). We used the Flux Footprint Prediction model to create the daily time 
series of the remote sensing data in the same way as in Paper II. 

The light use efficiency model was based on the MOD17 algorithm by Running et 
al. (2004), but in our model, EVI2 was used as a proxy for fAPAR instead of NDVI. 
The light response function model parameters were first estimated with EC-derived 
GPP and PAR, following work by Tagesson et al. (2021), and then upscaled using 
EVI2. Preliminary we tested nine empirical regression model formulations fitted 
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between GPP and PPI, EVI2 and PAR using all available site-years. For the final 
analysis we included three EVI2-based models and three PPI-based models. 

The models were parametrized separately for evergreen needleleaf and deciduous 
broadleaf forest ecosystems with a leave-one-out cross validation. The GPP 
estimates were constrained with Tair and VPD functions (following the MOD17 
algorithm) in order to take into account the main environmental drivers limiting 
GPP. 

Paper IV 
The aim of the Paper IV was to upscale forest and peatland GPP to the whole of 
Sweden, and to demonstrate the applicability of the upscaled GPP estimates. We 
wanted to study the spatial and temporal patterns of estimated annual GPP in 
Sweden from 2017 to 2021, and investigate the vegetation response to the drought 
events in 2018 and 2019. 

We applied a novel high-resolution phenology data set, which is based on Sentinel-
2 –derived PPI across European ecosystems. PPI was found robust for GPP 
estimation in Paper III. We therefore used the sum of all daily PPI values during a 
growing season and converted it into GPP units with a linear regression model and 
EC-derived annual GPP measurements. Thus, we obtained the estimated annual 
GPP at a 10-m spatial resolution across Swedish forest and peatland ecosystems 
from 2017 to 2021. The annual GPP was average for four large regions in Sweden 
to study the variability of GPP at a regional level. Furthermore, we calculated the 
percent difference of estimated GPP for each year using the average of the whole 
study period GPP as the reference. Then we were able to quantify annual GPP 
variation between the years in the four regions, and also between the ecosystems 
types. In addition, we calculated the standardized precipitation-evapotranspiration 
index (SPEI; Vicente-Serrano et al., 2010) at a scale of 3 months (SPEI3) and 12 
months (SPEI12) to reveal the drought severity in the different years and across the 
Swedish regions.  
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Results and discussion 

Relationships between GPP and explanatory variables 
In remote sensing-based studies, a vegetation index is usually the main variable to 
explain GPP. We used two indices in this thesis project: the 2-band enhanced 
vegetation index (EVI2) was used in Papers I-III, and the plant phenology index 
(PPI) was used in Papers III and IV.  

In Paper I, daily EVI2 from Sentinel-2 MSI and MODIS showed linear relationships 
with EC-derived GPP giving the coefficient of determination (R2) between 0.45 and 
0.93. The differences were found between the study sites and ecosystems, rather 
than the satellite instruments. A similar range of R2 was found in Paper II for four 
peatlands sites (R2 = 0.61), as well as in Paper III for eleven forest sites (R2 = 0.57–
0.78), both derived from a linear relationship between daily mean EVI2 from 
Sentinel-2 and EC-derived GPP. The linear relationship between PPI and GPP in 
forest sites in Paper III gave a similar agreement, R2 = 0.62–76. Vegetation 
productivity, in general, is easier to model in deciduous broadleaf forest or in 
agriculture, as these ecosystems have distinct seasonal dynamics (leaf emergence, 
leaf senescence and leaf fall or harvest), that can be accurately captured by remote 
sensing data (Yuan et al., 2014). The leaf phenology in evergreen coniferous forest, 
on the other hand, is subtler (Xiao et al., 2004). 

In Paper IV we compared the sum of daily PPI over growing seasons and the 
growing season sum GPP from EC sites. The three studied ecosystems (coniferous 
forest, deciduous forest and peatland) gave similar agreements, R2 = 0.54–0.64. The 
number of data points is significantly smaller when studying annual sums in 
comparison to daily values, which makes the relationship sensitive to outliers. The 
overcome the issue, we used a robust linear regression instead of the ordinary least-
squares linear regression. The iteratively re-weighted least squares method assign a 
weight to each data point which makes it less sensitive to outliers (Bañuelos-Cabral 
et al., 2017). 

PAR, Tair and VPD are the most common environmental variables to include in 
remote sensing –based GPP models with a vegetation index, as light, temperature, 
and water availability widely control the vegetation photosynthesis. In Paper I we 
found that GPP correlated well with Tair at most of the sites, whereas PAR showed 
high agreement with GPP only in southern sites. This can be explained by the large 
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latitudinal range (55–68 °N), as in the northern part of the Nordic area the growing 
season begins when the temperature exceeds the temperature limit, which occurs 
well after the amount of light has reached sufficient levels for photosynthesis. When 
comparing the ecosystem types, we found that PAR seems to be more important in 
forest sites (Papers I and III) than in peatlands (Papers I-II) to describe GPP.  

Peatlands are unique ecosystems due to their high water table, and several studies 
have suggested that water table depth and temperature are the variables that most 
widely affect peatland GPP (Harris & Dash, 2011; Lund et al., 2012). Therefore, in 
Paper II we included remotely-sensed LST and NDWI-based water index into the 
GPP model to improve the accuracy of GPP estimations. However, NDWI is a 
spectral index expressing the influence of soil moisture on the vegetation rather than 
an actual soil moisture index, and it did not fully capture the seasonal variations in 
water table depth at sites. Further studies are needed to establish a method to capture 
variations in water table depth or soil moisture in remote sensing-based models. For 
example, Huang et al. (2020) assimilated regional soil moisture network data, 
remote sensing data, and high-resolution land surface parameters to develop an 
empirical soil moisture model.  

Soil moisture data could also be used in forest GPP models in addition or instead of 
VPD. In Papers I and III we found that VPD did not contribute to GPP as much as 
PAR or Tair, although remote sensing-based GPP models commonly assume that 
VPD is able to capture the effect of water deficit on GPP (Running et al., 2004; Zhao 
& Running, 2010). Several studies (e.g., Stocker et al., 2019; Tagesson et al., 2021) 
have suggested, instead, that soil moisture is a critical variable constraining 
vegetation productivity, and should be taken into account in GPP modelling. 
However, Zhang et al. (2022) questions the quality of the soil moisture data 
currently available, especially at high latitudes. 

Spatial resolution and footprint modelling 
In Paper I we compared remote sensing data at three spatial resolutions for 
estimating GPP: 10 m resolutions Sentinel-2 MSI, 250 m resolutions MODIS and 
500 m resolutions MODIS. It was expected that the higher spatial resolution would 
improve the accuracy of the GPP estimation (Gelybó et al., 2013). However, we 
found that there was almost no difference in the results generated from Sentinel-2 
MSI data and MODIS data sets. The main reason for this might be the homogeneity 
of the vegetation surrounding the EC measurement towers (which is a requirement 
for establishing an EC site) in combination with the large footprints especially at the 
forest sites. In addition, the time series smoothing and gap-filling might reduce the 
differences between the remote sensing data set even more. Hence, in Paper I we 
concluded that the model formulation and the selection of the additional input data 
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might play more important roles than the spatial resolution of the remote sensing 
data. Similar performances of Sentinel-2 and MODIS data sets is encouraging as the 
instruments together are able to create a coherent data set for estimating vegetation 
productivity.  

However, in Paper I we also found a topic to further develop regarding the footprint 
modelling. In Paper I, we use the Flux Footprint Prediction (FFP) model with half-
hourly EC-derived data as input to obtain annual flux footprint climatology contours 
and contribution weights in the 10 m grid matched to Sentinel-2 pixel. To further 
improve the match between EC-derived data and remote sensing data, we applied 
daily rather than annual footprint climatologies in Papers II and III. In general, the 
accurate selection and weighting of the remote sensing imagery pixels is more 
important when studying spatially heterogeneous ecosystems, like peatlands. The 
footprint modelling might be less essential e.g. in large homogeneous forest areas, 
but is still recommended if there is micrometeorological data available.  

GPP model formulation 
In Papers I-II and IV we used a linear regression model to estimate GPP, whereas 
Paper III focused on developing and testing a set of different GPP models for forest 
ecosystems. Linear GPP models (often following the light use efficiency approach) 
are widely used within the remote sensing community due to their scalability. 
However, several studies have also investigated nonlinear models between observed 
GPP and an explanatory variable to find even closer relationships (Noumonvi & 
Ferlan, 2020; Verma et al., 2015).  

The results in Papers I and II showed that a linear regression model can be a simple 
yet effective approach to estimate GPP. The linear model with Sentinel-2 input and 
site-specific parametrization in Paper I gave strong agreement with EC GPP: the 
root square mean error (RSME) was 1.23 g C m-2 day-1, and R2 = 0.84 was an 
average for all the sites. Similar results were found with the GPP model in Paper II 
with site-specific parameters, RMSE = 0.49 µmol m-2 s-1, normalized RMSE 
(NRMSE) of 10% of the maximum flux, and R2 = 0.83 on average for all the sites. 
In Paper II we also parameterized the GPP model using the leave-one-out cross 
validation method. The goodness-of-fit statistics gave slightly poorer results in 
comparison to site-specific parameterization (RMSE = 0.68 µmol m-2 s-1, NMRSE 
= 14%, R2 = 0.70), but, on the other hand, we obtained more general model 
parameters that can be used in upscaling.  

Leave-one-out cross validation was also used in Paper III, where we tested several 
different GPP modelling approaches. We found that no single model was clearly 
superior to the others but several models provided good performances at daily level 
(up to RMSE = 1.96 g C m-2 day-1, NRMSE = 9%, R2 = 0.78) and annually (RMSE 
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= 246 g C m-2 year-1, NRMSE = 16%, R2 = 0.74 at the best). Paper III highlighted 
what was also observed in Paper II: applying an averaged parameter set for a range 
of ecosystems is suitable for some sites and unsuitable for others. Both 
underestimation and overestimation of modelled GPP occurred, although the 
models were generally able to capture the seasonal dynamics of GPP well. In Paper 
III, the underestimation of daily GPP tended to be more common than 
overestimation, especially during the peak growing season. A fundamental issue 
causing underestimation in GPP estimates is pervasive cloud cover in the boreal 
regions. It has been observed that diffuse light under cloudy conditions can enhance 
the photosynthesis in comparison to direct radiation (Chen et al., 2021; Knohl & 
Baldocchi, 2008). However, optical satellite remote sensing provides information 
about vegetation characteristics only under cloud-free conditions, and gaps in the 
data caused by cloud cover are filled using cloud-free observations. This may lead 
to underestimation of GPP of more than 20% in coniferous forest (Choudhury, 
2001). The difference between cloudy and sunny conditions have also been 
observed at the leaf level. Chen et al. (2020) suggest that the bias of modelled GPP 
is larger in more clumped canopies (i.e. forests) than less clumped canopies due to 
high portion of shaded leaves. Therefore, the portions of sunlit and shaded leaves in 
the canopy should be considered for more accurate GPP estimation at regional scale. 

In Paper II and III, we also noticed that the GPP-VI relationship varied between the 
phenophases i.e., the spring green-up phase and the senescence phase. The 
hysteresis is derived from the variability of the light use efficiency across seasons 
that has been widely observed (Jenkins et al., 2007; Madani et al., 2014). Therefore, 
modelling GPP separately for the spring green-up, growing season peak and 
senescence phases is suggested. Our initial testing in Paper II, however, revealed 
that separating the modelling between the seasonal phases was not straightforward, 
as the level of hysteresis varied between sites and years, causing difficulties to 
model especially the peak season accurately. Hence, we decided to use a single 
model for the whole year in Papers II and III, but we recommend that further studies 
should be undertaken to resolve the challenge. 

Observed nonlinear relationships between GPP and explanatory variables provided 
a reason to test several model formulations, both linear and nonlinear, in Paper III. 
We concluded that several models were able to capture the seasonal dynamics of 
GPP well, but none of the models showed clear superiority to others. However, the 
choice to use a specific model to estimate GPP could depend on the aim of the use, 
the target ecosystem type and what input data is available. The main disadvantage 
of nonlinear models is the scale dependency, which limits their applicability. A 
nonlinear model should be applied at the same spatial and temporal scale for which 
it has been parameterized. Linear models, on the other hand, might simplify the 
relationship between GPP and a vegetation index, but still provide a convenient tool 
for estimating GPP. For instance, the simplest model in Paper III, a linear regression 
model with PPI, performed well besides the more complex models. A scalable 
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model with a low number of input datasets, yet reasonable accurate, would provide 
a feasible tool for operational remote sensing, e.g. for forest management or 
peatland conservation purposes.  

Upscaling GPP 
In this thesis, upscaling simply means applying a model on larger spatial scale for 
which it has been developed. In Paper II, we demonstrated the applicability of the 
carbon flux models by upscaling GPP beyond the EC flux footprint area. Figure 4 
shows similar results, but applying the linear PPI model from Paper III for the forest 
site Norunda (SE-Nor) from 2017 to 2020. Such maps can be used to assess the 
spatial variability of the carbon fluxes within and beyond the EC flux footprint, 
locate hotspots of carbon fluxes and evaluate how well the flux footprint represents 
the ecosystem a whole.  

To verify the accuracy of the upscaled maps, they need to be validated against other 
data source than EC data. Chamber measurements could be suitable for hotspot 
measurements of carbon fluxes for relative small areas (Schrier-Uijl et al., 2010), 
whereas other remotely sensed variables provide the information at ecosystem or 
landscape level. An alternative way to estimate either GPP or the ecosystem light 
use efficiency, is to use the remotely sensed solar induced fluorescence (SIF) 
(Mohammed et al., 2019). Currently, SIF is available only with coarse spatial 
resolution, but it will be generated at the ecosystem scale in future from the 
forthcoming Fluorescence Explorer (FLEX) satellite mission by ESA. Another 
approach to estimate LUE using remote sensing methods is the photochemical 
reflectance index (PRI; Gamon et al., 1997). PRI alone is not a good GPP estimator, 
but it provides added explanation value to GPP models (Hilker et al., 2008). 
However, the wavelength bands to calculate PRI are not available with Sentinel-2, 
but only with coarser resolution satellite instruments. Unfortunately, small scale 
variations in Sentienel-2 derived GPP or LUE cannot be validated with current PRI 
or SIF products due to their coarse spatial resolution. 
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Figure 4. Upscaled annual GPP based on the linear PPI model from Paper III at the Norunda (SE-Nor) 
site in 2017-2020. The black line shows the 80% of the annual EC flux footprint climatologies. The 
reference image is an aerial photography recorded in 2013 by Lantmäteriet (the Swedish Land Survey). 

 

In Paper IV we upscaled annual GPP to Sweden from 2017 to 2021 (Figure 5). The 
study focused on coniferous forest, deciduous forest and peatlands in Sweden. Other 
vegetated ecosystems like agriculture, grassland and shrubland were excluded due 
to lack of EC data for the model calibration. As the estimated GPP has not been 
validated beyond the EC flux footprints, there are still uncertainties on the accuracy 
of the results. Therefore, the maps are suitable for studying relative changes within 
an area or making comparisons between areas. 

We noticed that GPP in coniferous forests and peatlands increased gradually from 
north to south, which is expected due to the span of climatic conditions across 
Sweden. The deciduous forest class, however, showed only small variability across 
the regions as well as between the years. Peatland GPP was decreased in 2018, 
which was a severe drought year in Sweden. Coniferous forests, on the other hand, 
showed declined GPP in 2018 and even more so in 2019. The effects of drought on 
forest and peatland carbon fluxes are further discussed in the next section.   
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Figure 5. Reproduced from Paper IV, estimated annual GPP in Sweden’s forests and peatlands in 2021 
at a 10-m spatial resolution. 

Effects of drought on forest and peatland GPP 
In the summer 2018 northern Europe experienced a severe drought as a result of a 
heatwave and reduced precipitation (Sjökvist et al., 2019). The drought induced 
water stress and reduced GPP at several northern peatland (Rinne et al., 2020) and 
forest sites (Lindroth et al., 2020). The summer 2019 was also dry in Europe, 
although the 2019 drought was centered on eastern Europe (Blauhut et al., 2022). 

In Paper II, we modelled GPP, ER and NEE at five Nordic peatlands. The study 
period (2017-2019) was strongly influenced by droughts. We found some variations 
showing that the peatlands were affected by the 2018 drought. EC-derived NEE was 
decreased in 2018 in comparison to 2017 and/or 2019 at three sites, Abisko-
Stordalen (SE-Sto), Degerö (SE-Deg) and Siikaneva (FI-Sii), but not at 
Lompolojänkkä (FI-Lom). Rinne et al. (2020) made the same observation that 
Lompolojänkkä was less sensitive to the 2018 drought than other northern 
peatlands, probably due to local hydrological characteristics. The decrease in NEE 
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was mainly originated from reduced GPP, although increased ER in 2018 was also 
observed at Siikaneva. Modelling GPP was challenging at Degerö in 2019, which 
was a dryer than average year decreasing GPP and ER at the site. However, the dry 
conditions did not correspond to the spectral properties of vegetation. Observed 
EVI2 in 2019 was at the same level as in 2017, which was a normal year regarding 
the weather. EC-derived GPP, on the other hands, was similar in 2019 as in the 
drought year 2018. This mismatch caused an overestimation of modelled GPP in 
2019. It is also possible the 2018 drought has a legacy effect in 2019, i.e., the 
vegetation did not fully recover from the drought in the previous year, and therefore 
both GPP and ER were low in 2019 at Degerö. Another site with slightly poorer 
performance was Mycklemossen (SE-Myc). Mycklemossen experienced droughts 
both in 2017 and 2018 (Rinne et al., 2020), and was also the southern-most site in 
Paper II. Sites in southern Sweden have higher temperatures than more northern 
sites and are more light-dominated, as we noticed in Paper I. These aspects may 
partly explain why our GPP, ER, NEE models with the average parameters 
performed poorest there. Overall, it is difficult to draw strong conclusions about the 
temporal variations of the fluxes with only two or three years of data, especially if 
a severe drought has been experienced at a site. 

In Paper III, we also found some differences between the forest sites regarding the 
responses to the drought events. The largest effect of drought can be observed at the 
deciduous beech forest sites Sorø (DK-Sor) and Hainich (DE-Hai). At both sites, 
EC-derived GPP decreased drastically during the 2018 growing season. Although 
the vegetation indices EVI2 and PPI did not decline as much, the VPD-based scalar 
helped to model GPP well at these sites. The effect of the 2018 drought on GPP at 
coniferous forest sites seemed to be milder than at deciduous forest sites. An abrupt 
decrease and fast recovery of GPP was observed at Hyltemossa (SE-Htm) and 
Norunda (SE-Nor) during the peak growing season 2018, but none of the models 
were able to detect this variation. On the other hands, the warm temperatures in 
2018 also lead to increased annual GPP at Norunda, probably due to a longer 
growing season. None of the models, however, were able to capture the lengthened 
growing season, but all models underestimated the annual GPP 2018 at Norunda. 

In Paper IV, we studied the drought effects at regional level instead of individual 
ecosystems. The drought index at a 3-months scale (SPEI3) showed clearly 
increased drought severity in 2018 all over Sweden, emphasizing the southern part 
of Sweden. SPEI3 did not suggest large drought severity in 2019, but a slightly 
increased situation in 2020, especially in central Sweden. The relative variations in 
the estimated annual GPP in forest and peatland ecosystems, however, showed 
slightly different patterns. The estimated annual GPP in peatlands declined clearly 
in 2018 in all regions, but more in central and northern Sweden than in southern 
Sweden, although the SPEI3 indicated the most severe drought in the southernmost 
part of Sweden. Slightly positive difference in peatland GPP was also found, mainly 
in northern Sweden, indicating that not all peatlands suffered from the 2018 drought. 
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Other studies have notices that the sensitivity of peatland GPP to drought is also 
rather complex and depends on several factors, including timing and severity of the 
drought, peatland type, vegetation composition and mean water table depth (Laine 
et al., 2019; Lund et al., 2012) . GPP might decrease during the drought due to water 
stress or increase because of the higher oxygen and nutrient availability to plant 
roots in drier conditions (Aurela et al., 2007; Laine et al., 2019).  

Forest ecosystems in Paper IV showed only slightly decreased GPP in 2018 at 
regional level, yet more declined GPP was observed in the whole Sweden in 2019. 
The impact of drought on forest is complex and modulated by local conditions, e.g. 
soil type, moisture and elevation (Adams & Kolb, 2005; Rehschuh et al., 2017). 
Lindroth et al. (2020) found large variations in forest GPP during the 2018 drought 
in Northern Europe. They observed large to minor decrease in GPP in most of the 
sites, although two northern forest sites benefitted from the warmer weather 
conditions and showed increased annual GPP in the drought year. The delayed 
impact on the modelled GPP may be related soil moisture that allowed trees to 
sustain moisture during the dry summer but made them vulnerable during the bud-
setting period towards the end of the season (e.g., Meier & Leuschner, 2008), thus 
affecting next year’s growth. It has been observed that many coniferous trees have 
a response time to moisture deficiencies of up to a year, however, varying with site 
conditions and physiology of the trees (Lévesque et al., 2013; Vicente-Serrano et 
al., 2013). It has also been observed that remote sensing based models often 
underestimate drought impacts on photosynthesis, most likely due to lack of soil 
moisture data (Stocker et al., 2019). 
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Future perspectives 

Satellite remote sensing is able to provide information about vegetation 
characteristics that can be converted into a carbon uptake estimate. Robust estimates 
are essential for predicting how ecosystems will respond to future environmental 
change. However, there are several issues that need to be considered in order to 
further improve the accuracy of GPP models.  

As discussed before, the accuracy of GPP estimations could be improved by 
separating the model parameterization for different phenophases (e.g., spring green-
up, peak growing season, and senescence), including soil moisture or the portion of 
sunlit and shaded leaves into the model, or improved selection of validation data. 
Paper II and III highlighted that model parameterization based purely on the 
ecosystem type (i.e., peatland, coniferous forest, and deciduous forest) is not 
necessarily sufficient. Other possible indicators taking into account the spatial 
variability could be forest stand age, LAI, soil type, soil fertility, latitude or 
elevation (Marushchak et al., 2013; Tagesson et al., 2017; Virkkala et al., 2021).  

Currently, most remote sensing-based models do not consider the fertilization effect 
of increasing atmospheric CO2 concentration, although it has been observed to 
enhance vegetation productivity. The effect of understory vegetation is not usually 
addressed in remote sensing-derived GPP models, although it as it can notably 
contribute to the spatial and temporal variability of forest carbon exchange (Chi et 
al., 2021; Martínez-García et al., 2022) and, furthermore, affects spectral reflectance 
and estimates of LAI in northern forests (Eriksson et al., 2006). The influence of 
understory vegetation on GPP modelling can be significant especially at the 
beginning and the end of the growing season, when lack of leaves is able create 
optimal light conditions at the forest floor (Palmroth et al., 2019). 

Similarly, in peatlands the mixture of mosses and vascular plants with different 
spectral properties can complicate the carbon exchange modelling. Huemmrich et 
al. (2010) recommends to treat peatlands as a two-level environment with a moss 
understory and a vascular canopy, and to separate their contributions in remote 
sensing models. The vegetation assemblages and dominating species are strongly 
related to the peatland type (i.e., bog or fen), which can influence the relationships 
between remote sensing vegetation indices and peatland CO2 fluxes (Kross et al., 
2013). In addition, bogs and fens have also been shown to respond differently to 
changes in water table and air temperature (Helbig et al., 2019; Sulman et al., 2010). 
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Hence, future studies could focus on modelling the carbon fluxes separately for bogs 
and fens. 

Improved accuracy and robustness of the model are important for moving towards 
operational monitoring and prediction of forest and peatland carbon uptake. 
Currently, Sentinel-2 MSI data with a 10-m spatial resolution enables monitoring of 
vegetation productivity in spatially heterogeneous ecosystems (e.g. peatlands) or 
landscapes (e.g. mosaic of even-aged forest stands). Models in Paper II provide a 
foundation for monitoring peatland carbon fluxes across northern Europe. The same 
models could be applied for evaluating the carbon sink strength in restored 
peatlands. Hence, re-parameterization with data from a rewetted peatland would be 
required in addition to water table depth or soil moisture data. Models for estimating 
forest GPP (Papers I, III and IV) provide a useful tool for evaluating the effect of 
different forest management activities on forest productivity and could be routinely 
applied as part of forest management operations in future. 
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Conclusions 

Studying carbon exchange in terrestrial ecosystems is essential for understanding 
and quantifying the response of the biosphere to climate change and human activity. 
Reliable estimates of carbon fluxes can help to offset increasing CO2 emissions and 
thus to mitigate global warming. In addition, they can support decision-making 
regarding the management and conservation of natural resources. This doctoral 
thesis has contributed to environmental studies by developing methods to model 
gross primary production (GPP) across forested landscapes and regions using 
satellite remote sensing data and by widening the understanding of the factors 
driving and constraining carbon exchange in boreal forest and peatland ecosystems. 

This thesis has demonstrated that the seasonal dynamics of vegetation carbon uptake 
can be well captured using satellite instruments with different spatial resolutions. 
The comparison between Sentinel-2 MSI instrument at 10-meters spatial resolution 
and MODIS at 250 m and 500 m spatial resolution showed only small differences. 
The consistent results suggested that vegetation productivity can be monitored at 
various scales depending on the purpose of study. Sentinel-2 is able to provide 
detailed GPP estimation across the boreal region, which is a benefit for monitoring 
spatially heterogeneous ecosystem or landscapes. 

In the thesis, several model formulations have been developed and tested, 
specifically for northern European coniferous forest, deciduous forest and peatland 
ecosystems. The empirical models performed better when the model parameters 
were estimated separately for each site in comparison to the average parameters 
acquired with a leave-one-out cross validation. However, a single parameter set per 
model is more appropriate approach for upscaling GPP to regional level, although 
it also led to underestimation of the peak growing season GPP at some sites and 
overestimation at other sites. The results suggested that a model based purely on the 
ecosystem type is not able to fully capture the spatial variability among the sites, 
indicating a need for additional factors to explain the variability. Soil moisture is a 
possible variable to further improve the model accuracy, as it is an important driver 
of carbon exchange in peatlands, but it could also benefit forest GPP models.  

A simple linear regression model with the plant phenology index (PPI) performed 
well, suggesting PPI as a convenient tool for a local and regional scale GPP 
estimation. A simple model with reasonable accuracy yet low number of input 
datasets is a crucial step towards predicting how ecosystems response to changing 
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conditions and disturbances. The 2018 drought in Europe affected ecosystems 
strongly and thus provides an opportunity to study how high air temperature and 
reduced water availability impacted on the vegetation carbon uptake in the boreal 
ecosystems. The analysis revealed that the ecosystem response to the drought varied 
between the ecosystem classes and the regions. Carbon uptake in peatland and forest 
ecosystems was mostly decreased due to the drought, although some sites showed 
no change or even increased productivity due to the longer and warmer growing 
season. The alternating response to the drought emphasizes the importance of taking 
into account the spatial heterogeneity of the ecosystems when modelling carbon 
uptake. 

The current global warming greatly influences the climatic conditions in the boreal 
region. Therefore, robust models and reliable carbon flux estimates are essential for 
monitoring the carbon sink strength in northern ecosystems and supporting 
sustainable management practices. 
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