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Abstract—Many crucial activities in software development are
linked to gaze and can potentially benefit from gaze-assisted
developer tools. However, despite the maturity of eye trackers
and the potential for such tools, we see very few studies of
practitioners. Here, we present a systematic mapping study to
examine recent developments in the field with a focus on the ex-
perimental setup of eye-tracking studies in software engineering
research. We identify two gaps regarding studies of practitioners
in realistic settings and three challenges in existing experimental
setups. We present six recommendations for how to steer the
research community toward gaze-assisted developer tools that
can benefit practitioners.

Index Terms—eye tracking, gaze behavior, developer tools,
software engineering, mapping study

I. INTRODUCTION

One of the main activities of a software developer is reading
code [1], [2], an activity driven by gaze. Still, research using
eye trackers to study the gaze behavior of software developers
during their day-to-day work is not common [3], [4]. Gaze-
driven tools become even more attractive when considering
the increase in remote work and online collaboration [5].
There are a number of activities in software engineering where
we believe that gaze analysis and eye-tracking data could
contribute to research, e.g., in cooperative work, both in the
same location and geographically distributed, and in code
comprehension.

Eye trackers used to be expensive and required trained
personnel to operate, effectively confining their use to lab
environments. But this is not the case anymore. In the last
decades, rapid technical development has greatly increased
the feasibility of in-situ acquisition of eye-tracking data, both
by the availability of cheap dedicated eye trackers and eye
tracking via commodity webcams. It is reasonable to assume
eye trackers will soon be ubiquitous at developers’ desks,
integrated into monitors, laptops, and cell phones [6]–[8].

Considering research in software engineering, the possibility
of using eye tracking in software development has been
identified [9], [10] and we see an increase in studies that utilize
eye trackers to understand e.g., program comprehension [3],
[4]. Also, it can be utilized as a means for data collection in
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TABLE I
SUMMARY OF STEPS IN MAPPING STUDY

Steps
1. Search in academic database, resulting in 509 papers.
2. All authors review 10% of papers (titles and abstracts), with

Kappa showing strong inter-rater agreement.
3. Updated search in academic database, resulting in 513 papers.
4. First author reviews all papers (titles and abstracts), resulting

in 204 papers.
5. All authors review 10% of papers (full content) in pairs and

agree to keep all papers.
6. All authors develop a data collection scheme together.
7. Joint decision to focus on papers from 2018 and later,

resulting in 136 papers.
8. First author reviews remaining papers (full content), resulting

in 86 papers.
9. First author extracts data according to the data collection

scheme, resulting in 71 papers.
10. Joint analysis of data set and extraction of summaries by the

first and second author.

empirical software engineering research [11]. However, when
considering the experimental setup of eye-tracking studies so
far, we see a dominance of lab studies, with students and
educational material [3]. We see very few studies considering
the day-to-day activities performed in professional software
engineering settings. Yet, there is evidence that experts and
novices have different gaze patterns [12], [13]. How well can
we build tools for practitioners with gaze data from students
in an educational lab setting?

In this paper, we systematically review recent studies utiliz-
ing eye trackers in software engineering research to investigate
recent trends (Section II). We find a persistent lack of eye-
tracking experiments conducted outside of the lab environment
and a dominance of student participants (Section III). With
these results in mind, we discuss challenges in utilizing results
and possible paths forward (Section IV).

II. METHOD

To develop a thorough overview of current use of eye-
tracking in software engineering research and to address the
question: how is eye-tracking used in software engineering
research?, we conducted a mapping study [14] summarized in
Table I. We explain the steps and the limitations of the study



below. Supplementary material with our data set is available
online1.

Mapping Study Steps In step 1, we conducted a search in
Scopus2, an “abstract and citation database” with references to
articles from journals and conferences from established pub-
lishers (e.g., Elsevier, Springer, and IEEE). Scopus was chosen
as a source because we deemed it to provide a representative
view of available literature in the studied research area. We
used the following search string (with line numbers added):

1SUBJAREA ( comp ) AND
2TITLE-ABS-KEY (
3( {debugging} OR {programming} OR
4{source code navigation} OR
5{code browsing} OR {code search} OR
6{code review} ) AND
7( {eye tracking} OR {eyetracking} OR
8{gaze} OR {eye movement} OR
9{gaze estimation} ) ) AND
10( EXCLUDE ( DOCTYPE , "cr" ) )

The first line focuses on the search in the area of computer
science and the last line removes irrelevant documents (e.g.,
book reviews). Line 2 states that we search in titles, keywords,
and abstracts, and the two main areas we require in each article
are stated on lines 2–6 (programming) and 7–9 (eye tracking).
The search resulted in 509 papers (April 22, 2022).

In step 2, we conducted a pilot review of the titles and
abstracts of the first 10% of the found papers (51 papers) to
develop an approach for sorting out irrelevant papers based
on only titles and abstracts. We selected the 51 most recent
papers to ensure this approach is based on the most recent
research. All authors then reviewed these separately. The
inclusion criteria we applied were: First, the stimuli must be
code (studies solely with pseudocode stimuli were excluded);
Second, the study must contain experiments with humans (but
studies with children were excluded); Third, the study must be
generating some data rather than entirely reusing preexisting
data. The exclusion criteria we employed were: the paper is
not in English, peer-reviewed, or available in full text. We then
performed a Light’s Kappa analysis of the inter-rater reliability
of multiple raters, and got a Kappa score of 0.86, indicating
that the magnitude of agreement is “strong” [15]. With the
strong agreement, one author could proceed to review the rest
of the papers.

Next, we re-ran the search (step 3, on 27 June 2022) since
some time had passed, and this resulted in 4 additional papers,
i.e., 513 papers in total. Then the first author proceeded with
selecting the relevant papers (step 4), ending up with 204
potentially relevant papers.

In step 5, we selected the first 20 of the included papers
(approximately 10%) to conduct a quality assurance study with
the full text of each paper. We assigned two co-authors to
cross-review each paper. We had six unique pairs which covers
18 of the 20 papers by repeating three times. For the remaining
two papers, we deliberately assigned them to the pairs who

1https://portal.research.lu.se/files/137278187/ICSE NIER 2023
KuangEtAl artifact.xlsx

2https://www.scopus.com

had a relatively low agreement in the prior pilot review. After
this process, we discussed our assessment of the quality of the
papers we read. We unanimously agreed on the inclusion of
17 papers. For the remaining three papers, we used a majority
voting mechanism to decide on the inclusion of two papers; we
also included a paper when there was a tie. After review, all 20
examined papers were included. Since we had an agreement
on which papers to remove and which to keep, we concluded
that one author could review the rest of the papers.

In steps 6-9, we designed a data collection form (step 6) and
used it to conduct pilot data extraction on the aforementioned
papers. The first author also recorded a time estimate for
reading each paper. We discussed and revised the form after
this procedure. Based on review time and the existence of
a previous study covering literature up until 2017 [3], we
decided to limit the investigation to papers from 2018 and later
(step 7). After that the first author reviewed the remainder of
the papers (step 8), resulting in 86 papers, and also extracted
data from the papers (step 9).

In the final step, we coded details about the experimental
setup (the participants, stimuli/artifacts, devices, environment,
and methods). We only considered distinct primary studies.
That is, publications on the same data set were counted only
once and it was the first or original study we considered. In
total, we excluded 15 papers with this criterion, leaving 71
papers to be included in the reported results.

Limitations There are some limitations and threats to
validity in this type of research (e.g., [16]). Even if a structured
process for selecting papers is applied there is a risk, e.g.,
that some papers are rejected falsely. We have carefully
reviewed papers and followed a process where we could reach
a consensus about papers, which we believe increased the
quality of the selection.

Also, it is not possible to get complete coverage of primary
studies. However, we selected a well-known database and care-
fully designed the search string, which we believe increased
the completeness. If very few primary studies were identified
that could be seen as an indication that the selection was too
narrow. However, in this case, we identify not so few relevant
sources (in the magnitude of 15 per year). We compare our
results to trends, but it is impossible to get a complete list
of trends in the broader area. We base our analysis on our
experience from research in the fields and we believe this
experience to be sufficient to identify future paths. To not
miss important perspectives, we spent effort on identifying
and obtaining consensus in the review process.

III. RESULTS

Fig. 1(a) shows the summary of roles of participants in the
studies we found, split into students, practitioners, mixed, and
unspecified. A study was labeled as having mixed participants
when it included participants with more than one role, e.g.,
students and researchers [17], [18]. The data show that while
there was no change in the number of studies using only
students during the years covered by our review, there was
a notable increase in the number of studies using participants

https://portal.research.lu.se/files/137278187/ICSE_NIER_2023_KuangEtAl_artifact.xlsx
https://portal.research.lu.se/files/137278187/ICSE_NIER_2023_KuangEtAl_artifact.xlsx
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Fig. 1. Overview of experiment setup in selected papers split by year. The legends list coding categories for participant roles (a), study context (b) with a
combination of location and material used, and study method. Note Edu=Educational, OSS=Open-Source Software, and CSS=Closed-source software. Mixed
is used in all plots to indicate a combination of roles, contexts, or methods. ∗2022 includes research only up to June 27, 2022.

with more than one role in 2019–2021, compared to 2018.
Across the years, the vast majority of studies (92.96%) used
students. These studies used either only student participants
(61.97%) or used students in combination with researchers
(8.45%, e.g., [17], [18]), practitioners (12.68%, e.g., [19]–
[21]) or both (8.45%, e.g., [22], [23]). Conversely, only
22.54% of studies included practitioners as participants.

Finding 1: The vast majority of studies (92.96%) used
students in eye-tracking experiments, with 61.97% using only
students. 22.54% of studies used practitioners.

Fig. 1(b) shows in what context (setting & material) the
reviewed studies were performed, split into 12 combinations
of setting and material. The categories with the “mixed”
prefix indicate studies that were conducted in more than one
setting, usually involving different participant roles, e.g., Lab
for Students and Workplace for Researchers/Practitioners [21],
[24].

We notice that laboratory studies using open-source soft-
ware as the source of stimuli were more common in 2019
(e.g., [25], [26]) and 2020 (e.g., [18], [27], [28]) than the
other years. Only two studies were done in the workplace
with closed-source software [29], [30].
Finding 2: A majority of studies (84.51%) were conducted
in a laboratory setting, either with educational materials
(70.42%) or with materials adapted from open-source soft-
ware (14.09%).

Fig. 1(c) shows what research methods were used by
studies across the time period we reviewed. As the studies
we examined all utilize eye tracking, the research method
they adopted was either quantitative or mixed. Among these
mixed studies, 68.75% (15.49% of all studies) used post-
test/retrospective interviews to complement the quantitative
analysis of eye movement data; the rest used either think-
aloud, verbal Q&A, or a combination of the two.

Moreover, ten distinct studies adopted other sensors/de-

vices, e.g., fMRI (functional Magnetic Resonance Imaging,
e.g., [27], [31]), fNIRS (functional Near Infrared Spectroscopy,
e.g., [28], [31]), EEG (electroencephalogram, e.g., [32], [33])
and HRV (heart rate variability, e.g., [22], [34]), either simul-
taneously or subsequently with eye trackers. Two studies used
VR eye trackers instead of screen-based eye trackers to collect
gaze data [35], [36].
Finding 3: A majority of studies (77.46%) used Quantitative
research method while 22.54% adopted a Mixed approach.

IV. DISCUSSION

Our data combined with previous data [3], suggests a clear
increase in research studies involving eye-tracking in the area
of software engineering. We ended up with 71 papers in our
study, which constitutes an average of 15.78 papers per year
(71/4.5), while in the previous survey by Obaidellah et al. [3]
they found 2.33 papers per year over the range 1990-2017,
with 6.4 papers per year for the last 5 years in their data
set (2012-2017). We see this as an encouraging development
toward the utilization of gaze in developer tooling, but we also
see gaps in the areas covered by this research and challenges
in how to conduct research in this space.

Gap: Gaze behavior of practitioners. The study partici-
pants are predominately students (Finding 1), a finding that
aligns with previous surveys of the field [3], [4]. Although the
argument can be made that students in some cases can be seen
as representatives of junior engineers [4], this still leaves a gap
regarding the gaze behavior of more experienced practitioners.

Gap: Gaze behavior in realistic setups. Studies primarily
take place in a lab or classroom setting, with mainly edu-
cational material and occasionally with material from open-
source (Finding 2). While we acknowledge efforts to bring in
more realism, with stimuli from open-source, and of course the
few gems studying practitioners in the workplace (e.g., [29],
[30]), there is generally little knowledge about gaze behavior
in realistic software development settings. This aligns with



previous surveys where ”most of the experiments reported
in relation to programming were conducted in an institution
for higher learning” [3] (Section 3.4) with 75% of studies
being carried out with students, teachers or researchers with
a connection to programming courses and often with ”source
code, texts, or models that can fit on one screen” [4] (Section
5.5.3).

Challenge: Task incentive. Besides the realism of the
setting and the stimuli, there is also something to be con-
sidered regarding the incentives of participants, which is not
mentioned in earlier work [3], [4]. The incentive for doing a
task may have an impact on the gaze behavior and thus create
bias in findings. It is reasonable to assume that there could be
a big gap between knowing that not finding a bug will have no
severe consequences vs. knowing that not finding a bug (and
fixing it) will affect thousands of users.

Challenge: Characterizing participant expertise. While
it is plausible to divide participants into different groups and
contrast them for studies, we observe the line researchers
use to draw between novices and experts is not consistent
in the literature. While freshman students are typically treated
as novices and practitioners as experts, senior and graduate
students may be treated as intermediate, advanced, or novices.
Variation in role assignment makes it difficult to compare and
replicate studies. While previous surveys show that studies of
differences between novices and experts are common [3], [4],
they do not list this challenge.

Beyond the immediate challenges in the current practice in
expertise characterization, the notion of expertise is by nature
very difficult to measure and context-dependent. Expertise,
proficiency, and task difficulty are intertwined and interact
with each other. Expertise can vary between languages; an
expert in C can be a novice in JavaScript. Past language
experience matters; being a novice in your fifth language is not
the same as the first time you learn to program [37]. Expertise
may also vary within a language; solving the same problem for
the fifth time is not the same as the first time. Lastly, expertise
can also degrade over time; 20 years of experience in C may
not be the same after spending 5 years developing in Python.

Challenge: Building cross-study knowledge. Eye tracking
research deals with massive amounts of data [4] and a high de-
gree of attention and rigor is required when using eye trackers
to generate valid data. In addition, processing and analyzing
eye movement data is also challenging. There has been a
lack of guidance in the field [3], [4], resulting in variation in
experimental setups and problems with replication (e.g., [38],
see also [39]). Variation in the meta-data of gathered data sets
further makes it difficult to compare results and to combine
results into larger data sets, to open up for automated pattern
recognition via machine learning.

A. Toward gaze-assisted developer tools

With the presented gaps and challenges in mind, we present
recommendations for how to drive the research in this area
toward gaze-driven developer tools for practitioners.

Recommendation: Find paths to practitioners. While
we acknowledge that it may be difficult for researchers to
get access to practitioners [4], we still advocate for more
studies with practitioners and preferably conducted in their
natural work environment, a point also made by others [40].
We encourage researchers to take on the challenge of finding
paths to practitioners, perhaps by considering other research
methods or adaptions to their experimental setups. Are there
ways to move to practitioners rather than moving practitioners
to the lab? Are there ways to find a mutual benefit to their
participation?

Recommendation: Let expertise be more complex. The
current practice of characterizing expertise is to use years
of programming, years of using a certain programming lan-
guage, self-reported proficiency/confidence, and perceived task
difficulty. While all these metrics are valid and relevant, we
encourage researchers to consider alternative ways of charac-
terizing expertise, capturing more of the nuance. Perhaps by
capturing experience along more dimensions, for instance, past
experience in different programming languages, and recent
development activities.

Recommendation: Provide realistic incentives. In order
to increase the validity it has been argued that not only
expertise is important, but also the incentives for conducting
tasks in experiments [41]. Incentives are probably clearer in
an industrial setting, but incentives can be seen as orthogonal
to subject experience, e.g. there may, to some extent, be clear
incentives also in tasks that are part of student projects. We
encourage researchers to obtain realistic incentives also with
students as subjects.

Recommendation: Tee up for machine learning. As the
field matures, practical guides for how to conduct eye-tracking
experiments are emerging [40], as well as efforts to share data
sets [42], [43]. High-quality data sets with gaze data open the
door for machine learning and the incorporation of such tech-
niques into developer tools for improved developer assistance.
To enable this development, we encourage researchers to take
on the challenge of creating larger data sets with gaze data
from practitioners in realistic settings.

Recommendation: Characterize gaze in development.
While shared gaze data sets enable the training of machine
learning models, an important factor that makes such data sets
useful lies in the richness of the meta-data that describe them
(see also [44]). Describing the space where gaze plays a role
in software development, is more complex than describing the
space of an introductory programming course. While a course
is simplified (e.g., typically focuses on one language and
construction of small applications), software development is
multi-faceted and complex (e.g., editing of multiple languages,
remote collaboration with pair programming, code review, and
whiteboard design discussions). We encourage researchers to
take on the challenge of characterizing this ”gaze space” in
software development to enable knowledge building and gaze-
driven tooling for software developers.

Recommendation: Involve participants in design. Soft-
ware development is not only a cognitively-demanding task



but can also be an emotion-draining task. Gaze data, along
with other bio-sensors, open up possibilities to detect part
of a developer’s emotional state [40]. This data can poten-
tially enrich the existing services of developer tools and also
create new ones focused on emotional user experiences [45].
However, there is a risk that the cost of sharing bio data
may outweigh the benefit of the assistance. We recommend
researchers consider participatory design methods [46] in
exploring such services.

V. CONCLUSIONS

To investigate how eye-tracking is used in software engi-
neering research, we carried out a systematic mapping study.
We focused on the experimental setups in the last 5 years
and found that the majority of experiments are carried out
with students, in a lab setting and with educational material as
stimuli. We identify gaps in terms of studies with practitioners
in realistic settings, and we identify challenges in existing
studies regarding task incentives, characterization of expertise,
and variation in the practice around data gathering. To address
these gaps and challenges, we present six recommendations
aimed at steering the research community toward gaze-assisted
developer tools useful for practitioners.
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