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Abstract

This thesis contains an introduction and six papers about the control and estimation
of large and uncertain systems.

The first paper poses and solves a deterministic version of the multiple-model es-
timation problem for finite sets of linear systems. The estimate is an interpolation of
Kalman filter estimates. It achieves a provided energy gain bound from disturbances
to the point-wise estimation error, given that the gain bound is feasible. The sec-
ond paper shows how to compute upper and lower bounds for the smallest feasible
gain bound. The bounds are computed via Riccati recursions. The third paper proves
that it is sufficient to consider observer-based feedback in output-feedback control
of linear systems with uncertain parameters, where the uncertain parameters belong
to a finite set. The paper also contains an example of a discrete-time integrator with
unknown gain.

The fourth paper argues that the current methods for analyzing the robustness
of large systems with structured uncertainty do not distinguish between sparse and
dense perturbations and proposes a new robustness measure that captures sparsity.
The paper also thoroughly analyzes this new measure. In particular, it proposes an
upper bound that is amenable to distributed computation and valuable for control
design. The fifth paper solves the problem of localized state-feedback H, control
with communication delay for large discrete-time systems. The synthesis procedure
can be performed for each node in parallel. The paper combines the localized state-
feedback controller with a localized Kalman filter to synthesize a localized output
feedback controller that stabilizes the closed-loop subject to communication con-
straints.

The sixth paper concerns optimal linear-quadratic team-decision problems
where the team does not have access to the model. Instead, the players must learn
optimal policies by interacting with the environment. The paper contains algorithms
and regret bounds for the first- and zeroth-order information feedback.
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Introduction

At the United Nations Summit 2015, our world leaders adopted 17 Sustainable De-
velopment Goals. Reaching these goals require efficient, reliable, and safe infras-
tructure. For example, Goal 7: Affordable and Clean Energy requires infrastructure
insensitive to the loss of the inertia prevalent in conventional power plants, such as
plants based on coal, gas, and nuclear power. As the nature of consumption and pro-
duction changes, the networks’ structures and underlying control mechanisms must
keep up. Unfortunately, many anticipated changes increase the load and introduce
additional complexity. Examples are micro-producers of electricity, autonomous ve-
hicles in transportation networks, and increased nodes in communication networks.
As complexity can increase by orders of magnitude, controlling these networks re-
quires models at an entirely new scale; manually sustaining accurate models of all
the individual components is infeasible. A solution is to use adaptation and learn-
ing to automatically learn and sustain models, taking care to do so in a reliable and
scalable way.

The overarching topic of this thesis is the control and estimation of uncertain and
large-scale dynamical systems. Our main tools in handling uncertainty are robust-
ness and adaptation. Robustness concerns the resilience to deviations from initial
assumptions, like a mismatch between the mathematical model and reality, on the
system’s behavior. Adaptation in a dynamical system means that past measurements
are used to reduce uncertainty. However, adaptive components in control systems
come with assumptions that may be difficult or impossible to validate and enforce.

Notation

This subsection briefly explains the mathematical notation used in the introduction.
The transpose of a matrix A is denoted AT. For a vector x and matrix symmetric
matrix Q of appropriate dimensions, |x|2Q =x"Qx.



Chapter 1. Introduction

1.1 Estimation

Many interesting quantities cannot be directly measured online, such as the state
of charge in a battery. One could, in principle, cut open the battery and measure
the ion concentration, but that may have adverse effects on its life span. Differential
equations can describe many physical systems, and if those differential equations are
known, we can sometimes estimate the system’s internal states from other observa-
tions and auxiliary quantities. In our battery example, that may be the resistance,
capacitance, energy and temperature. Below we give an account of some estimation
techniques related to this thesis, both for the case where the governing equations are
fully known and when they are not.

The Kalman Filter

A clear majority of the work of estimation in dynamical systems is concerned with
the stochastic framework. Let us recall the celebrated Kalman filter for the problem
with known dynamics. Consider a linear system on state-space form

X1 = Fx; + Gu, + w, (1)
v = Hx; + v;. ’

Here w;, v, are assumed zero mean, i.i.d. random variables, drawn from normal dis-
tributions with covariance matrices Xy, and X, respectively. The initial state is
assumed to be normally distributed, centered around x,, with covariance P,. The
Kalman filter estimate of the state x ; then becomes LX where X, is given by the
recursion

PO = PO
Py =2,+FPF —FPH' (X, + HP,H ) 'HPF'
')?H'] =F)?,+Kt(y,—Hit)+Gu,, .io =)’20
K,=FPH'(Z, + HP,H")™
Here K, is called the Kalman filter gain and defines together with F, H, and G a
state observer. The Kalman filter has numerous desirable properties; we will discuss
some. Firstly, if X is positive definite, then the error dynamics (x; — X,) are sta-
ble [Crassidis and Junkins,|2011]]. Secondly, the estimate X is the minimum-variance
estimate, E[%,] = x, and E[(%, — x,)(%, — x,)"] = P,. Under the assumption of Gaus-

sian noise, X, and x, will be a sum of independent Gaussian variables and is therefore
also normally distributed, or

p(xtly()v ’y[_lauﬂ’ ’u[_]) ~ N(jé[v I)[)

It is also least-squares optimal with respect to the prediction error and for the
“smallest” disturbances that can explain the data. More formally, given an observed
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1.1 Estimation

trajectory (yg, Ug), - .., (Yy—1-Un—1)- We have that, as a function of the final state x,
N-1
. a 12 2 2
E}g |x0_x0|P0_1 + (lwtlQ—l +|Ut|R—1
1=l
N-1
_ _ v |2 v 2
= lxy = Xylp, + Zo VX =il gyt pamyro
1=

where the infimum is taken over arbitrary noise trajectories consistent with the ob-
served data, the dynamics (I.I), and the final state. Note that in this deterministic
setting, the trajectories (w,)t]i 51 , (U,)f\:f 51 consist of real-valued vectors but are other-
wise arbitrary. The claim can be proven by forward dynamic programming [Simon,
20006] or by invoking results of optimal control for the tracking problem [[Athans and
Falb, 2007, Chapter 9.9] and applying them in reverse time.

Nonlinear filtering

The Kalman filter gives the minimum variance estimate for systems with linear dy-
namics and zero-mean disturbances with known covariance matrices. To compute
the minimum variance estimate for a nonlinear system, we would need to propagate
the state mean and variance through the dynamics and obtain the cross-covariance
between the states and the outputs. Propagating distributions through nonlinear func-
tions is quite challenging, so we have to resort to approximations, losing many guar-
antees.

The extended Kalman filter |[Goodwin and Sin,|1984a] (EKF) works by lineariz-
ing around the state estimate at each point in time and applying the time-varying
linear Kalman filter to the obtained dynmics. In essence, we propagate the mean and
covariances through the linearized dynamics.

The unscented Kalman filter (UKF) [Julier and Uhlmann, [2004] works by rep-
resenting the underlying probability distribution of the states by a finite set of de-
terministically chosen points called sigma points. These points are then propagated
through the nonlinear dynamics and can be used to approximate the moments of the
posterior distribution. The UKF is obtained by computing the minimum variance
estimate based on these approximated moments and differs from the particle filter
in that the sigma points are deterministically chosen. In contrast, the particles of a
particle filter are randomly generated.

Joint- and dual Kalman filtering. A popular way to do simultaneous estimation
of states and parameters is to augment the state vector with the uncertain elements
of (F, G, H) and use nonlinear estimation techniques for this (bilinear) estimation
problem. [Ljung,|1979] studies the convergence properties of join estimation using
EKFs and shows that the algorithm can lead to biased estimates and diverge. Global
convergence can be ensured by adding a correction term to the updates. We are

11



Chapter 1. Introduction

unaware of any convergence studies of joint estimation using the UKF, although
there seem to be many successful applications.

Dual Kalman filtering (DKF) was introduced in [Nelson and Stear, [1976|]. The
method works by running two interconnected filters, one for the uncertain parameters
and one for the states. The state estimates are fed into the parameter estimation filter,
whose parameter estimates are fed into the state estimation filter. DKF seems to be
an approach of great practical value, and there are many extensions to nonlinear
dynamics using the EKF [Wan and Nelson, [2000] and the UKF [Wan and Van Der
Merwe, 2000].

Multiple-model estimation

Multiple-model adaptive estimation has been around since the *60s [Magill, 1965}
Lainiotis,|1976] and has been an active research field since. It consists of two parts:
1) design simpler models for a finite set of possible operating regimes. 2) Run a filter
for each model and cleverly combine the estimates. The Bayesian approach to the
Multiple-model estimation problem involves assigning probability distributions to
disturbances (w;,, v;) and models (F, G, H). The estimate is the expected value of z
conditioned on past measurements. The approach easily extends to systems where
the active model can switch (hybrid systems) by matching a Kalman filter with each
possible trajectory. In that case, the number of filters will grow exponentially, which
has sparked research into more efficient methods. Notable numerically tractable and
suboptimal algorithms for estimation in hybrid systems are the Generalized Pseudo
Bayesian [Ackerson and Fu, |1970; (Chang and Athans, |1978]|], and the Interacting
Multiple Model [Blom and Bar-Shalom, |[1988]]. The algorithms have been coupled
with extended and unscented Kalman filters to deal with nonlinear systems [[Akca
and Efe, 2019]], and [Xiong et al.,2015] studied robustness to identification error. In
[Ronghua et al.,|2008]), the authors pointed out that methods based on Kalman filters
are sensitive to noise distributions and proposed an Interactive Multiple Model algo-
rithm based on particle filters to handle non-Gaussian noise at the expense of a 100
fold increase in computation. Recently, machine-learning approaches to classifica-
tion have been combined with the Interacting Multiple Model estimator [Li et al.,
2021al |Deng et al.,[2020]] and showed improved accuracy in simulations.

1.2 Control

Robust control

Robust control emerged in the *70s as a response to the poor utilization and perfor-
mance of the modern “optimal” multivariable control methods of the *60s. We con-
sider a system robust if it is unlikely to fail. We quantify robustness as the ability to
keep stability and performance invariant over a family of systems, usually quantified
by similarity to a nominal one. Robust control has roots in early work on input/output

12



1.2 Control

descriptions by Zames and Sandberg [Zames, |1966], Lur’e problem of absolute sta-
bility [Liberzon, |2001]] and Popov’s hyperstability [Popov and Georgescu, |1973].
Much of the historical development of the theory is nicely described in the histor-
ical accounts [Safonov, 2012} [Dorato, [1987] and in the textbooks [Francis, |1987}
Z/hou and Doyle, |1998} |[Dullerud and Paganini, [2013]].

George Zames initiated the H _ -control problem when he argued for minimiz-
ing the induced norm of the weighted sensitivity function (formulated for Banach
algebras but specialized to the induced L£,-gain setting.) [Zames, |1981]]. The pri-
mary motivation is that the H -norm is an induced norm whose submultiplicative
property can be used to guarantee stability for plants that deviate from a nominal
model. H_, control theory has gone through three major stages: the early frequency-
domain (functional analysis) approach [Francis, 1987} |[Feintuch, [1998]], the Riccati
equations approach [Zhou and Doyle, [1998]] and the linear-matrix inequality ap-
proach [Dullerud and Paganini,2013]]. The Riccati equation approach strongly con-
nects to the theory of dynamic differential games [Basar and Bernhard, |1995}; |Tad-
mor, |1993]]. Game theoretic and passivity-based approaches can be extended to the
nonlinear setting [James, [1995]]. In the nonlinear setting, the Riccati equations are
replaced by partial differential equations.

Critics of H -control claim it is overly conservative. One reason for conserva-
tiveness is that naive applications discard any structural or topological information
about the nature of the perturbations entering the system. To remedy this conser-
vativeness [Doyle, [1982] introduced the frequency-dependent structured singular
value (u) to analyze robustness against structured perturbations, and [Doyle et al.,
1982] extended u to robust performance. These results generalize earlier work [[Sa-
fonov, 1978; Safonov, 1981]]. In the mid-’80s, researchers were concerned with com-
puting upper and lower bounds of y for structured uncertainty where the perturba-
tions are linear time-invariant systems. [Fan and Tits, [1986| reformulated the prob-
lem as a smooth non-convex optimization problem. This reformulation is amenable
to gradient-based optimization methods and always returns the correct value if the
block structure has a size no larger than three. A power method for computing lower
bounds was introduced in [Packard et al.,|1988]] and the case of robustness against
static, mixed real, and complex uncertainties was considered in [Fan et al., |1988}
Fan et al.,|1991]] with power methods for lower bounds in [Young and Doyle, [1990;
Young et al., [1992] [Shamma, |1994] showed that the upper bound with constant
D-scales is necessary and sufficient for LTV perturbations and [Poola and Tikku,
1995]] showed that the upper bound with frequency-weighted D-scales is necessary
and sufficient for “arbitrarily slowly time-varying structured linear perturbations”.
Structured robustness can be further generalized and studied in the framework of
integral-quadratic constraints [Megretski and Rantzer,|1997]], which extends to non-
linear systems.

The ¢ optimal control problem was formulated in [Vidyasagar, [1986], where
the authors solved the case for unstructured perturbations for SISO minimum-phase
systems with at most one RHP zero. The solution is based on Youla-Kucera param-
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Chapter 1. Introduction

eterization to transform the problem into an interpolation problem and considers
both the discrete-time and the continuous-time cases. MIMO systems were consid-
ered in [Dahleh and Pearson, [1987]] and sampled-data systems in [Bamieh et al.,
1993;; |Dullerud and Francis, |1992f]. Robust stability and performance with respect
to structured uncertainty in the #| was introduced in [Khammash and Pearson,|1991]]
and is described nicely in the tutorial paper [[Dahleh and Khammash, [1993]].

Adaptive control

Adaptive control dates back to the control of high-speed aircraft in the *50s. Due
to the wide range of operating conditions, the performance of conventional con-
trollers was unsatisfactory. Therefore, researchers and engineers started to look for
controllers that could adapt to a changing environment online. Nowadays, many
adaptive controller schemes and textbooks exist. We refer the reader to [Astrom and
Wittenmark, |1994]] and [Goodwin and Sin,|1984b]| for an introduction to the subject
and its history. The topics of adaptive control that relates most closely to this thesis
are those of dual control and multiple-model adaptive control.

Dual Control. In dual control [Feldbaum,|[1963], one is tasked with minimizing a
cumulative performance quantity given incomplete information about the dynamical
equations governing the plant and exogenous signals affecting the system. Feldbaum
showed that the optimal control policy will have two purposes and that the optimal
controller is characterized by the solution to a functional equation (often called the
Bellman equation). The first purpose is to excite the dynamics of the system (explore)
in order to increase the knowledge about the system. The second purpose is to ensure
satisfactory behavior of the system, that is, ensure that the performance quantity is
small. In learning theory, this is sometimes called the exploration/exploitation trade-
off.

Although the Bellman equation for the dual control problem is straightforward
to derive, it is generally tough to compute due to the exponential growth of the state
space (curse of dimensionality). Analytical or tractable numerical solutions have
only been found in a few exceptional cases. We refer the reader to the review [Wit-
tenmark, [1995] and [;Xstrt‘)m and Wittenmark, |1994] for a more in-depth discussion
on dual control and its approximations. The example in Paper III concerns an inte-
grator with unknown gain. A similar problem was studied from the perspective of
stochastic dual control in [Astrom and Helmersson, |1986]].

Supervisory— and multiple model adaptive control. Multiple model adap-
tive control (MMAC) originated in the *70s as a way to control uncertain linear
stochastic systems with parameter uncertainty, where the parameter uncertainty be-
longed to a finite set. The framework was tried on equilibrium flight control of an
F-8C aircraft [Athans et al.,|1977|] and STOL F-15 with sensor and actuator fail-
ures [Maybeck and Pogoda, [1989] with mixed results. Each model M was associ-
ated with a corresponding control law u,,(X,,) and a Kalman filter that estimates

14



1.2 Control

the states X, (¢). [Magill, |1965; [Lainiotis, |1976| showed that the conditional prob-
ability, given measured signals, that a specific model is active can be expressed
recursively using the Kalman filter residuals associated with each model. At each
time instant, the control signal u(f) was computed as the average of the ones for
each model u,,(f) weighted by the conditional probability of that model being ac-

Ve P |y(r).... ) (O)uti=1).....u0)- that i

u(t) = Z PMIy(0),.... O u(i—1),....u@) U (D)-
]

It is not a dual control method, the chosen control law coincides with the last
stage in a finite-time dual control problem; it is a myopic controller |Astrom and
Wittenmark, |1994]. In [[Athans et al.,|1977], the authors remark that they could not
find rigorous proof of convergence of the claim that the probability associated with
the actual model will asymptotically converge to unity. The claim is false, as seen by
the following counterexample, which also shows that the MMAC is not necessarily
stabilizing. The claim is, however, true if certain distinguishability conditions are
fulfilled [Silvestre et al., 2020].

EXAMPLE 1—COUNTEREXAMPLE TO CONVERGENCE IN PROBABILITY
Consider the uncertain first-order linear stochastic discrete-time system

x(t+ 1) =ax@®) u(®) + w(),

(1.2)
y(t) = x(t) + v(®).

In (T.2) x(2), u(?), y(r) € R are the state, input and measured output. The process
disturbance w(¥) and v(¢) are two jointly Gaussian uncorrelated white-noise random
variables with E[v(?)] = E[w(f)] = 0 and E[v(t)*] = E[w(f)*] = 1, drawn indepen-
dently and identically distributed at each time ¢. If we assume the initial probability
of each mode to be p,(0) = p_(0) = 0.5, we will choose u(0) = 0. But if we
do not inject any control signal—the residual of the two Kalman filters will be the
same, so p (1) = p_(1) = 0.5. Since u_(y(1), »(0)) = —u_(y(1), y(0)) we have
u(1) = 0.5u,(1) + 0.5u_(1) = 0. By similar arguments, we will have u(t) = 0 for all
tand p, (1) = p_(2) for all ¢, regardless of which model is “true”. O

That careful tuning of the Kalman filters to prevent erroneous estimates and identifi-
cations is required to make MMAC behave reasonably well, is well known [Athans
et al., |1977; [Maybeck and Pogoda, [1989], but even then—the closed-loop system
can exhibit unwanted oscillative behavior [|Greene and Willsky, [1980].

The uncertain system (I.2) is stabilizable in the £ » sense by a periodic controller.
[Khargonekar et al., |1985]] showed that any finite collection of finite-dimensional
controllable LTT systems is stabilizable by periodically circulating dead-beat con-
trollers. For instance, taking u(f) = (—1)’ay(t) stabilizes with finite #, gain.
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Chapter 1. Introduction

This result was extended to finite collections of internally stabilizable linear time-
varying systems in [Khargonekar et al.,|1988]], and [Martensson, |1985] showed sim-
ilar results for continuous sets of parametric uncertainty using an exhaustive dense
search in parameter space. Like [Khargonekar et al.,| 1985; Khargonekar et al.,|1988]],
[Martensson, |1985] did not rely on interpolating among feasible candidates. In-
stead, the results rely on certainty equivalence—using a prerouted search among
controllers that work well for each realization.

Stephen Morse proposed using the predictive performance of each feasible
model to decide which model to use for certainty equivalence control in [Morse,
1996]], and proved that the closed-loop is ¢, stable in [Morse, [1997]]. Morse’s con-
tribution concerned linear time-invariant SISO systems with possibly uncountable
uncertainty sets. It was also assumed that any realization could be satisfactorily con-
trolled by a linear time-invariant controller based on a model from an a priori spec-
ified finite collection of "nominal" models.

Figure [I.T] illustrates a supervisory switched control system. The main differ-
ence between prerouted search amongst controllers and Morse’s adaptive approach
is the supervisor determining the switching sequence o. In the prerouted case, o is a
predetermined function of time, whereas in the adaptive case, ¢ is a function of the
control input u# and the process output y.

The adaptive switching algorithms (supervisors) can roughly be divided into
two categories; those based on process estimation and those based on a direct per-
formance evaluation of each candidate controller. Our work relates the most to the
estimation-based supervisors, and we will focus on them.

The tutorial [Hespanha, [2001] contains much of the development up to 2002.
[Buchstaller and French, |2016a; Buchstaller and French, [2016b] proposed an ax-
iomatic framework providing robust stability and performance bounds for a broad
class of estimation-based supervisory control schemes for MIMO LTI plants and
some classes of nonlinear plants.

Online learning. The learning community became interested in adaptive control
problems not long ago. In particular, learning the linear-quadratic regulator from a
single trajectory received much attention. It seems to have started with [Fiechter,
1997]], who derived a probably-approximately-correct (PAC) bound with an explicit
expression for the number of samples required for the discounted LQR problem.

REMARK 1
The discounted LQR problem entails minimizing the cost functional

J,(xp) =E lz v (|x,|2Q + |”t|§{)] ,
t=0
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1.2 Control

~—
: w
o
. i process y
L . u

A 4

Figure 1.1 Illustration of a supervisory control architecture, recreated from [Hespanha,
2001]

over policies y, subject to the dynamics
X;41 = Ax, + Bu, + w,
u, = u(x,).

Here x; is the state, w; are i.i.d zero-mean noise sequences with [Ew,wf = ¢’T and
y € [0, 1) is an discount factor.

The discount factor is common in the Reinforcement learning literature. It enters
the cost functional similarly to the forgetting factor (1) prevalent in online identifi-
cation algorithms like recursive least squares [Ljung,/1998|]. However, the difference
is that while the discount factor is smaller than 1, the forgetting factor is greater than
one; conceptually, 4 ~ 1/y. The main implication for control is that J,(x) < oo
does not imply stability of the closed-loop for a discount factor 0 < y < 1. [

Regret (the difference between the total cost incurred and the cost of the optimal
policy in hindsight) bounds for this “online LQR”-problem were first considered
in [[Abbasi-Yadkori and Szepesvari, [2011]], based on the Optimism in the Face of
Uncertainty (OFU) principle. The OFU principle dates back to and is a heuristic
method to balance exploration and exploitation in learning systems. It entails con-
tinuously characterizing a high-probability set of model parameters given data and
basing decisions on the parameter values that would give the lowest cost.

The model-free case was considered in [Abbasi-Yadkori et al., [2019]. [[Cohen
et al.,[2018]] and [Agarwal et al.,|[2019b] studied the case where the dynamics are
known, but the cost matrices Q,, R, are time-varying and revealed only after each u,
has been selected. Regret in the setting where disturbances and time-varying convex
loss-functions are chosen adversarially from bounded sets were introduced in [Agar-
wal et al.,[2019a], and extended to unknown dynamics in [|[Chen and Hazan,|2021]].
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Large-scale systems

As systems grow in complexity, new problems arise. Standard methods for controller
synthesis may become computationally intractable; we require synthesis methods
that can handle a large number of states. For standard control , the speed of the elec-
tronics is usually significantly faster (almost the speed of light) than the controlled
system. However, for large systems, the control signals and measurement signals
may have to travel large distances and experience significant delay. Global commu-
nication may be infeasible due to computational tractability, limited transmission
capacity but also for legal- and integrity reasons. Control may be constrained to use
only local information.

These issues motivate the search for methods to analyze and control systems us-
ing information from local measurements and information exchange with the clos-
est neighbors. Furthermore, we insist that such controllers should be synthesized
locally—exploiting the computational resources in each node.

Team-theory and quadratic invariance. Team decision problems originate from
economics, where optimal decentralized decisions in organizations were studied in
the papers by [Marschak, [1955]] and [Radner, |1962] under stochastic settings. A
major contribution of Radner was that the case the linear-quadratic case admits a
unique optimal decision policy that is linear in the measurements. In these studies,
the agents in the team know the problem parameters. The agents use the information
of the problem parameters to find the optimal decentralized decision. Decentral-
ized decisions only depend on local measurements of the state of nature, where the
measurements of the agents are typically different. [Gattami et al., [2012] studied
linear quadratic robust team decision problems and showed that optimal decisions
are linear and can be found by solving a convex (in fact, semi-definite) optimization
problem. Team-decision theory has been helpful in understanding distributed con-
trol [Mahajan et al., 2012]. Witsenhausens famous counterexample [Witsenhausen,
1968|| established that linear decisions are not always optimal for distributed LQG
problems and sparked an interest in research of team problems in the control com-
munity. [Ho and Chu, |1972]] showed how linear-quadratic problems with partially
nested information can be rewritten as static team-decision problems and Witsen-
hausen showed that a general class of dynamic team decision problems can be re-
duced to static ones via a change of measures [Witsenhausen, |1988|]. Static reduc-
tions for more exotic information structures is still an active research field [Gupta
et al.,[2014} [Sanjari et al., 2021].

The reduction to static team problems by Ho and Chu is equivalent to Q-
parameterization, a simplification of Youla parameterization [Youla et al., |1976],
and was recently rediscovered in the online learning literature [[Simchowitz et al.,
2020], under the name “nature’s y’s”. The value in the reduction is that the opti-
mal solution, expressed in the Q-parameter, is linear and unique. Intuitively, the
reparametrization subtracts the influence of the other players on each player’s de-
cision, removing the necessity for the player to “guess” the decisions of the other
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‘ 5
‘“‘H
Figure 1.2 Illustration of disturbance localization. A shock 6 entering in the ith node spreads
to the neighbors at most three hops away, where it is completely canceled.

players. It is the estimation of other players’ actions that destroys linearity in dis-
tributed control problems. It is sometimes referenced to as the signaling incentive.
Q-parameterization is an affine parameterization of all achievable stable closed-loop
systems, which sometimes greatly simplifies controller synthesis. In distributed con-
trol, one aims to impose constraints on the controller architecture, that is, restrict the
set of feasible controllers to those that satisfy different types of communication con-
straints. A reasonable attempt to simplify controller synthesis is to translate the com-
munication constraints into constraints on the Q-parameter. Convexity of the feasible
set of Q-parameters was introduced in [Rotkowitz and Lall, 2006] and shown to be
necessary and sufficient for the constraint set of the Q-parameter to be equal to that
of the controller. [Rotkowitz et al.,[2010] showed that communication constraints in
distributed control are quadratically invariant as long as information between con-
trollers propagates at least as fast as the dynamics propagetes between links.
proved that quadratic invariance is both necessary and sufficient for
convexity of the constraint set on the Q-parameter, but noted that there are cases
when the constraint fails to be quadratically invariant. Yet the closed-loop maps are
an affine set. These situations can be handled by System-Level Synthesis.

System-level synthesis. The main idea of system-level synthesis is to optimize
directly over the closed-loop transfer functions from disturbances to states and con-
trol signals. Sparsity constraints on the closed-loop maps can then be translate into
a sparse realization of the controller. The set of closed-loop responses that can be
achieved with causal linear feedback is described as the kernel of an affine map. In
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Figure 1.3 Localization in system-level synthesis

contrast, the celebrated Youla-parametrization characterizes the achievable closed-
loop responses as the range of an affine map. The kernel representation has a number
of advantages over the image representation; we list a few. Firstly, it seems simpler
for unstable systems. Secondly, the kernel description can be decomposed into two
equality constraints, one which is column separable and one that is row separable.
If the control objective and other constraints can be similarly decomposed, one can
use operator splitting methods to synthesize controllers in a scalable manner. Fi-
nally, there exists useful bounds on the degradation when constraints can only be
approximately fulfilled.

Communication constraints among subsystems in the controller are encoded di-
rectly in the closed-loop responses. For example, the disturbance localization re-
quirement in Figure [I.2]implies that no communication has to be sent from the ith
any node further than three hops away. The reason is that whatever happens in the
ith node is constrained not to affect nodes that far away, implying that one can re-
move the signaling incentive by letting subsystem i communicate their decisions to
systems i + 1, i + 2 and i + 3. Similarly, one can encode delayed communication as
requirements on the closed-loop response from disturbances to control action as a
requirement that a shock entering in the ith node at time ¢ should spread “slowly” to
other subsystems, see Figure @}

System-level synthesis started with a series of conference contributions by
Wang, Matni, You, and Doyle between 2014-2017, culminating in the PhD the-
sis [Wang,|2017]]. The research up until 2019 is nicely presented in the review arti-
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cle [Anderson et al.,[2019]]. Since then, system-level synthesis has been combined
with Willem’s fundamental lemma and incorporated into the data-driven frame-
work [Xue and Matni, |2021]],used to study the internal feedbacks prevalent in hu-
man vision [[Lisa Li, [2022]],model-predictive control [Chen et al.,[2020; |Alonso and
Matni, 2020; |Alonso et al.,[2022]], safe statistical learning of controllers [Dean et al.,
2019] and many other control-related questions [Li et al.,[2021b].

All the contributions above employ a finite impulse-response restriction of
the closed-loop dynamics to turn the controller synthesis problem into a finite-
dimensional convex optimization problem. Such optimization problems can be effi-
ciently solved using off-the-shelf software. However, controller synthesis that avoids
the finite impulse-response restriction remains largely unexplored. A notable excep-
tion is [Yu et al., [2021]], where the authors solve the H, optimal control problem
under communication constraints but with instantaneous communication using dy-
namic programming over the impulse responses.

Positivity and symmetry. A tangential question is: “For what systems do the op-
timal centralized solutions have distributed realizations?”. In other words, are there
systems and problem formulations that, without explicit sparsity constraints, have
sparse solutions? The answer is yes [Bergeling, [2019]; positive systems [Rantzer
and Valcher, |2018]] that also fulfill some structural conditions have distributed solu-
tions that are centrally optimal.
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Contributions

Papers I, 11, and III consider uncertain linear systems with uncertain parameters be-
longing to a (known) finite set. These papers are part of an effort to extend minimax
adaptive control [Rantzer, 2020; Rantzer, 2021] to the output feedback case.

Paper I.  O. Kjellgvist and A. Rantzer (2022c). “Minimax adaptive estimation for
finite sets of linear systems”. In: 2022 American Control Conference (ACC), pp. 260—
265. DOI1:|10.23919/ACC53348.2022.9867474,
This paper concerns output prediction in linear dynamical systems with uncertain
dynamics, where the uncertainty belongs to a finite set. We provide a convex pro-
gram that computes an estimate of the output at the next time step, ensuring that the
gain from unmeasured disturbances to the output prediction error is bounded by a
constant, y, provided that y is a feasible gain bound. We also show how to evaluate
online whether y,; is a feasible gain bound.

The problem formulation extends [Basar, [1991]] from the case with known dy-
namics to the case where the dynamics are uncertain.

Paper II. O. Kjellgvist (2023). Fundamental worst-case performance limits for
multiple-model estimation. Submitted to IFAC World Congress 2023,

This paper extends Paper I in two ways. Firstly, we consider strictly causal state
estimation. Secondly, we provide upper and lower bounds on the achievable distur-
bance gains yp (from disturbances to Nth time-step estimation error). The upper
and lower bounds are characterized by one forward Riccati recursion per model and
one backward Riccati recursion per pair of feasible models.

The achievable attenuation level is informative as to whether the set of feasible
models is suitable for state estimation. The conclusion is independent of the esti-
mation procedure. In essence, yp will be large if highly different state trajectories
well explain the same output trajectory for the models. By well explained, we mean
that the noise and disturbance trajectories required to explain the data are small (in
a least-squares sense). The gain will be small if the same output trajectory requires
large disturbance trajectories to be compatible with different state trajectories. We
want to point out that the gain-bound y, can be interpreted as a finite-time perfor-
mance guarantee. By computing the upper and lower bounds for y, for indistin-
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guishable and distinguishable systems, we argue that distinguishability [Silvestre et
al., [2020] alone is neither sufficient nor necessary to guarantee that the estimation
error will be small.

In practical multiple-model settings, one is often interested in detecting which
model has generated the data. For instance, in fault detection, one is interested to
know whether one of the sensors has gone bad. The work in papers I and Il is limited
to the state estimate only and does not consider the ability to identify the underlying
model.

Paper III. O. Kjellqvist and A. Rantzer (2022a). “Learning-enabled robust con-
trol with noisy measurements”. In: Learning for Dynamics and Control Conference.
PMLR, pp. 86-96,

This paper was presented at L4DC 2022 in Stanford and was published in an abridged
form. The version contained in this thesis is an extended version including proofs
that were previously omitted and is published on Arxiv.

0. Kjellgvist and A. Rantzer (2022b). Learning-enabled robust control with noisy
measurements. DOI: |10 . 48550/ ARXIV . 2202 . 08363. URL: https://arxiv.
org/abs/2202.08363.

The main contribution of this paper is the equivalence between the following
two statements for uncertain scalar linear dynamical systems, where the uncertainty
belongs to a finite set.

1. There exists a causal output feedback controller that achieves a closed-loop
¢5-gain bound of at most y from disturbances to errors.

2. There exists a memory-less function of a H, multi observer, so that certain
performance quantities are bounded.

The multi observer consists of one H, observer per feasible model, coupled with a
performance quantity related to how well the model explains the observed data. The
performance quantities can be evaluated recursively using observed signals and the
observer states. We use this result to extend [Vinnicombe, [2004] to the output feed-
back setting, constructing suboptimal controllers for integrators where the gain has
unknown sign. The controllers are of the certainty-equivalence type, which in this
case coincides with a multiple-model adaptive (supervisory) control architecture.

The approach differs from supervisory control and multiple-model adaptive con-
trol in that we start with the desired property (finite £,-gain) and characterize con-
trollers that achieve this property. That is, we do not impose a supervisory structure.
Instead, the resulting controller architecture is a suboptimal solution to the equivalent
problem formulation (2). The literature on supervisory control and multiple-model
adaptive control starts with an imposed architecture and proceeds to prove that the
resulting controller achieves a bounded ¢,-gain.
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Paper IV. O. Kjellqvist and J. C. Doyle (2022). v-analysis: a new notion of ro-
bustness for large systems with structured uncertainties. To appear in IEEE CDC
2022,

This paper argues that the current robustness measures for structured uncertainty are
inadequate to analyze large systems and proposes an alternative, v. The argument is
based on the observation that structured singular values and £ -robustness measures
certify stability against the largest perturbation and cannot distinguish between dense
and sparse perturbations.

The work was motivated by the search for robustness measures compatible with
system-level synthesis for control design. In particular, we were aiming for a convex
and separable quantity, so one can synthesize controllers locally. This work was per-
formed with Lisa Li for a course at the California Institute of Technology given by
John Doyle. In the end, it resulted in two papers. The first paper (this paper) proposes
and analyzes the robustness measure v. The second paper [Li and Doyle,[2022] uses
the results of the first paper to synthesize controllers in an iterative manner, similar
to D-K synthesis.

Paper V. O. Kjellgvist and J. Yu (2022). On infinite-horizon system level synthe-
sis problems. To appear in IEEE CDC 2022,
This paper considers the synthesis of spatially localized controllers with delayed
communication between controllers. The main contributions are twofold. Firstly,
we solve the infinite-horizon state-feedback localized LQR problem with de-
layed communication. Previous results consider finite-impulse response approx-
imations [Wang et al., |2018]] or instantaneous communication [Yu et al., 2021].
Secondly, we combine the state-feedback policy with a localized Kalman filter to
synthesize localized output feedback controllers. These localized controllers are not
LQ optimal but have much smaller memory requirements than the controllers based
on the finite-impulse response approximation.

This work assumes that the problem admits feasible solutions and does not dis-
cuss how to determine the feasibility.

Paper VI. 0. Kjellgvist and A. Gattami (2022). Learning optimal team decisions.
To appear in IEEE CDC 2022,
This work concerns static team decision problems where the models are unknown
to the players. The goal is to minimize the losses incurred by the team as the team
interacts with the environment. We employ online gradient descent to improve the
policy over time. The main findings concern upper bounds for the expected regret
both when each player has access to the gradient and when each player only learns
the total loss incurred by the team after each action is taken (bandit). In the bandit
setting, we use a “zeroth*“-order gradient estimate. The gradient estimate is obtained
by sampling the corners of the unit cube, as suggested in [[Shamir, [2013]]. This sam-
pling strategy is a good idea in distributed settings because the sampling does not
require any coordination between players.

A limitation of this work is that static reduction of [Ho and Chu, |1972]] requires
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knowledge of the problem parameters. Therefore, it needs to be clarified how to apply
these results to sequential team-decision problems, like the control of an unknown
linear system.

Other work not included in this thesis. O. Kjellgvist and O. Troeng (2020).
“Numerical pitfalls in g-design”. IFAC-PapersOnLine 53:2. 21st IFAC World
Congress, pp. 4404—4408. 1SSN: 2405-8963. DOI: https://doi.org/10.1016/
j.ifacol.2020.12.368. URL: https://www.sciencedirect.com/science/
article/pii/S2405896320306522|and

V. Renganathan et al. (2022). “Distributed implementation of minimax adaptive
controller for finite set of linear systems”. arXiv preprint arXiv:2210.00081
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Paper I

Minimax Adaptive Estimation for Finite Sets
of Linear Systems

Olle Kjellqvist Anders Rantzer

Abstract

For linear time-invariant systems with uncertain parameters belonging to a fi-
nite set, we present a purely deterministic approach to multiple-model estima-
tion and propose an algorithm based on the minimax criterion using constrained
quadratic programming. The estimator tends to learn the dynamics of the sys-
tem, and once the uncertain parameters have been sufficiently estimated, the
estimator behaves like a standard Kalman filter.

1. Introduction

1.1 Problem Statement

In this article, we consider output prediction for linear systems of the form

X1 = Fx; + Gu, + w,

1
v, = Hx, +v,, 0<t<N-1, 2

where x, € R", u, € R? and y, € R™ are the states and the measured input and
output at time-step ¢, respectively. w, € R" and v; € R™ are unmeasured process
disturbance and measurement noise. The model, (F, H, G) is fixed but unknown,
belonging to some finite set

{(FI,HI’G1)7 o 7(FK’HK,GK)}'

consiting of of triplets of real-valued matrices. In particular, we are interested in
strictly causal estimation of y,;, such that the gain from disturbance trajectories
(wy, Ut)tji 61 to pointwise estimation error (yn — Hx ) in some weigthed #,-norm
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is bounded by a constant y, > 0. This means that given positive definite matrices
Py € R™", R € R™"™ and Q € R™" and a nominal value of the initial state, %,

PN — HxN|2

a 12 N-1 2 2
|xp — xOlP*I + Z;:{) <|wt|Q,1 + |Ut|R,1
0

) <7y )

should hold for all disturbances and models compatible with the measurement his-
tory (¥;, ut)fi 61. This approach is different from the Bayesian approach to filtering
where one takes the conditional expectation as the estimate y, . The interest in worst-
case gain is motivated by robust feedback-control from estimates. In such settings
instability or lack of performance due to model errors is a larger concern than ro-
bustness to outliers.

1.2 Background

Simultaneous estimation of states and parameters in linear systems is a bilinear esti-
mation problem. The Maximum-likelihood approach leads to estimates which can-
not be put in recursive form and must be obtained by iteration [Bar-Shalom,|1972]. A
recursive method can be obtained by parametrizing the dynamical equations and the
observer and learning the parameters using the sequential prediction error approach.
Alternatively, one can augment the state vector with the uncertain parameters and
apply nonlinear filtering methods such as the Extended Kalman filter [Goodwin and
Sin, [1984]]. Unfortunately, optimality guarantees for such methods are difficult to
obtain. One exception is when the system can be modeled as a finite set of linear
systems and the noise is Gaussian, then the Maximum-likelihood estimates can be
put on a recursive form [Crassidis and Junkins, 2011]].

Solutions based on the multiple-model approach have been tremendously suc-
cessful in modeling and estimating complex engineering systems. In essence, it con-
sists of two parts: 1) design simpler models for a finite set of possible operating
regimes. 2) Run a filter for each model and cleverly combine the estimates. Multiple-
model adaptive estimation has been around since the *60s [Magill, |1965} |Lainiotis,
1976] and has been an active research field since. The estimation approach easily
extends to systems where the active model can switch (hybrid systems) by match-
ing a Kalman filter with each possible trajectory. In that case, the number of filters
will grow exponentially, which has sparked research into more efficient methods.
Notable numerically tractable and suboptimal algorithms for estimation in hybrid
systems are the Generalized Pseudo Bayesian [Ackerson and Fu, |1970; |Chang and
Athans, [1978]], and the Interacting Multiple Model [Blom and Bar-Shalom, [198§|].
The algorithms have been coupled with extended and unscented Kalman filters to
deal with non-linear systems [[Akca and Efe,2019], and [Xiong et al.,[2015]] studied
robustness to identification error. In [Ronghua et al.,[2008]], the authors pointed out
that methods based on Kalman filters are sensitive to noise distributions and pro-
posed an Interactive Multiple Model algorithm based on particle filters to handle
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2 Notation

non-Gaussian noise at the expense of a 100 fold increase in computation. Recently,
machine-learning approaches to classification have been combined with the Inter-
acting Multiple Model estimator [Li et al., |2021; Deng et al., |2020] and showed
improved accuracy in simulations.

The Bayesian approach to the Multiple-model estimation problem involves as-
signing probability distributions to disturbances (w;, v;) and models (F, G, H). The
estimate is taken as the expected value of y, conditioned on past measurements.
If the disturbances are zero-mean and Gaussian, then the conditional expectation
can be computed as the weighted average of Kalman filter estimates (one for each
model), weighted by the conditional probability that its model is active.

It is evident in practice that the estimator’s performance depends on the quality
of the model set. The models must be distinguishable using measured signals, and
the models should accurately describe the operating regimes. Since the estimates can
be susceptible to non-Gaussian noise, it is surprising that deterministic approaches
similar to those studied by the control community in the *80s and *90s have gathered
little attention. Recent progress to minimax adaptive control of linear systems with
uncertain parameters belonging to a finite set [Rantzer, [2021] under the assump-
tion of perfect measurements has inspired this research into compatible estimation
techniques.

1.3 Contribution

In this paper, we formulate the multiple-model estimation problem as a determinis-
tic, two-player dynamic game. In particular, this formulation allows for online com-
putation of the worst-case gain from disturbances to estimation error and tractable
synthesis of suboptimal estimators that minimize the worst-case gain. Determinis-
tic dynamic games have played a key role in solving and understanding H, filter-
ing [Shen and Deng, 1997 Basar and Bernhard, |1995]; our goal in this work has
been to take a first step towards extending the advantages of that framework to the
multiple model setting.

1.4 Outline

The outline is as follows: First, we introduce notation in Section[2} then we introduce
minimax multiple-model filtering and the main results in Section [3] In Section [}
we present a simplified form for time-invariant systems. We illustrate the theory
through a numerical example in Section [5] Section [6]contains concluding remarks,
and supporting lemmata are given in the Appendix.

2. Notation

The set of n X m-dimensional matrices with real coefficients is denoted R™, The
transpose of a matrix A is denoted AT. For a symmetric matrix A € R™", we write
A > (>)0 to say that A is positive (semi)definite. Given x € R” and A € R™",
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x|%2 1= x" Ax. For a vector x, € R" we denote the sequence of such vectors up to
A t q p
time 7 by X' := (xk);c=0'

3. Minimax Multiple Model Filtering

In contrast to the Bayesian approach, our approach is fully deterministic; similarly to
[Shen and Deng,|1997; Basar and Bernhard, |1995]], we do not make explicit assump-
tions on the distribution of the noise trajectories w’ and v’. We will instead construct
a two-player dynamic game between a minimizing player that chooses the estimate,
and a maximizing player that chooses dynamics and disturbances. Recall that we are
interested in characterizing an estimator y, such that the gain from disturbances to
the pointwise estimation error is bounded by y . Le., () holds for all disturbances
consistent with (T) and the data N1, uN —1). Since the disturbances are unknown,
we cannot evaluate @ directly. However, define

JN(YN_I,UN_],f’N) i= sup {UA’N—HXM2

x0.wN-1yN-1(F.G,H)

N-1
-7y (lxo—fcolf,_l + 2 (lw, ot |v,|§_1>) } 3)
0 1=0

where the maximization is performed subject to the constraints (I). Then ) holds
if and only if
InoN LM gy <0,

In this setting, w, = x,,; — Fx, — Gu, and v, = y, — Hx, are uniquely determined
by the states, the measurements and the active model. Inserting into (3), we get

IV uN T p) = sup PN —HXN|2—712V|XO—JA€0|;_1
xN (F,G,H) 0
N-1
2 2 2
—7 Z <|x,+1 = Fx, = Gu 7, + |y, — Hx, R—1>}' 4)
=0

We will call an estimator f/*N a minimax estimator if
inf INONTLUN T ) = IOV LWL ) =0 N LN, )
N

holds, where J are functions of past data y¥ ! and ¥ ~!. This constitutes a two-
player dynamic game and would be linear quadratic if not for the model being chosen
by the maximizing player. The intuition behind (3)) makes sense in the following way.
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3 Minimax Multiple Model Filtering

The minimizing player is penalized for deviating from the true (noiseless) output,
and the maximizing player is penalized for selecting a model which requires large
disturbances w and v to be compatible with the data. As N increases, the penalty
for selecting a model different from the truth grows too large, resulting in a learning
mechanism. It turns out that the cost associated with the disturbance trajectories
required to explain each model corresponds to the accumulated prediction errors
from a corresponding Kalman filter and that the minimax estimate is a weighted
interpolation between the Kalman filter estimates.

THEOREM 1
Consider matrices Fj, ..., Fx € R™" H,,...,Hy € R™" G,,...,Gx € R™P
and positive definite Q, Py € R™", R € R™". Define P,; according to

PO,i =F
P =0+F(&F,; - P,’iHiT(R + HiPt,iHiT)_lHiPt,i)F}T’

and assume that H; Py ; HIT < 7’12\7 I. Then the cost (@) is equivalent to

N-1  N-1 4 N 2 2
In(y su JIN) = rn[ax { |Pn — HixN,il(I_y—2H,pN HTy1 yNCN,i} . (6
N 1 ST

X ; is the Kalman filter estimate of x y; using the ith model, and ¢, ; are generated
according to

Xo,i = Xo

X = FiX; + Kt,i(yt - Hi’V‘r,i) + Gy,
K= EE,iH,T(R + HiPI,iHiT)_l
Co’i = O

2

t+1,i | i ytl(R+H,-P,_,-H;r)‘1

+¢ e O

Proof. We will perform the maximization over state-trajectories in (@) in two steps.
First over past trajectories (xV~!) and then over the future state x N The right-hand
side of (@) becomes

N 2.2 . s 2
sup § |9y — Hixpn| - N inf {|x0—xolp_1
XN xN-1 0
N-—
2 2
+ Z (Ixp41 = Fix, = G| 5y + 1y = Hixth—l)} ,

=0

1 maxyn {...} = max, - {maxxN_J {...}}.
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where i = 1, ... K is an index for the active model (F;, H;, G;). Apply Lemma [I]to
get

IOV L uN T ) = sup {lj’N - Hpxyl* - 7]2\/VN,i((xN’yN_l)}

XNi

A 2 2 v 2
:sup{|yN—H,-xN| — N <|xN—xN|P_1 +cN,,->}.
N.i

Xy

For fix y and i, the assumption H, ,PN’,-HiT < y12VI guarantees that we maximize a
concave function of x; and we apply Lemma@with A=H;, X=1,Y=Py;to
concludeﬂ

N-1  N-1 & o 2 2

Inly ,u s IN) =miaX|yN _H"xN’il(I—y;zH,-PN,,-H,.T)—l —YNEN- O
REMARK]| 2
Theorem|l1{holds also for time-varying systems, if F; and H; are replaced by F, ; and
H, ;. Further, Py, O and R can be time-varying and differ between models. O
REMARK 3
Equation (6) is monotonically increasing in yy and the smallest yl’fj such that
InON=LuN=1 ) <0 can be found efficiently through bisection. O

The below Corollary follows from Theorem |l| and describes how to compute the
minimax estimator as a convex quadratic program.

COROLLARY 1
With assumptions as in Theorem |1} consider the convex program

minimize ¢

YNt
2
I—yH Py HT)™!

Vi=1..K. O

subject to: [y — H;Xp | - ijch,i <t

The minimizing argument j7, satisfies (3).

REMARK 4
If the model set is a singleton, then jzj’(l =H xj’(l = HXp is the estimate generated
by the Kalman filter, which is a well known result [Basar and Bernhard, [1995]. []

2 The maximizing argument is given by x;\,(ﬁN, i)= (H,.TH,» - yIZVP&li)_l(H’.T)?N - P;,liyfv)‘cNJ)
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4 Stationary Solution

3.1 On cy; and the relation to conditional probability.

It is known (see for instance [Crassidis and Junkins, [2011]]) that if w, and v, are
uncorrelated Gaussian white noise with covariances Q and R, the conditional prob-
ability that the measured output yV has been generated by the model (F,, G;, H;)
and the input u” can be expressed as

—|YN—H;5€N,/|§§N
aNe
N Ny =

. N-1 N-1
1 5 = .

—p(ilyN ", u

a, is some normalization constant independent of 7, and

R T

RN,i = R + HIPN,IHI N
with Py ; as in Theorem E} Taking cy ; as in TheoremE‘]we see that the conditional
probability is proportional to e “N+Li,

N
pGlyN L uN ) « emovL H det(zﬂRt,i)_l/z'
=1

4. Stationary Solution

For a set of time-invariant systems, we summarize a simple version of the filter in
the below theorem.

THEOREM 2
Consider matrices F, ..., Fx € R™" H,,..., Hx € R™" and positive definite
0, Py € R™", R € R™™_Assume that the algebraic Riccati equations

P,=Q+F(P,~ PH(R+H,P,H)'H,P)F],
have solutions H,AP,AHI.T < yJZVI . Then a minimax strategy )7;, for the game defined

by

. ~ 2 2 s 12
min max { |9y — Hixy|” = }’N|x0 - x0|P71
i

In xNi
N-1
2 2 2
N Z <|xt+1 = Fix, - Gi”t|Q_1 + 1y = Hixt|R—1> ’
=0
and (IJ), is the minimizing argument of
minmax § |9y = HiXy,l?_ Ty-1 _szchi :
In i Y-y Hi P H )T ’
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X ; is the Kalman filter estimate of x y; using the ith model, and ¢y, ; are generated
according to

Xo,i = X
X = Fix i+ Ki(y, — HiX, ;) + Gy,
K, = F,P.H'(R+ H,PH)"

Co,i = 0
v 2
¢yt = |Hi%; — y"(R+H,-P,-H.T)*1 + e |
Proof. This is a special case of Theorem I} by replacing P, with P,. O

5. Example

In this example, we compare a minimax estimator synthesized using Corollary [I]
bisecting over yp, to find the estimator ﬁ*N such that ) is satisfied for the smallest
possible y. We compare this to a Bayesian multiple-model estimator [|Crassidis
and Junkins,[2011]] and calculate the corresponding bound y; using Theorem|I]and
bisection. Consider the uncertain linear system

X4 = Fxp +w, Fe(-1,1}
yo=x+v '

The weights in (2)) are chosen to be Q = R = Py = 1. We generate data y"v ~1 by
simulating the system with F = 1 and w;,, v, as independent Gaussian white noise
with intensity 1. For N =5 we find

PS,] = PS,—] = 162,
)%5’1 = —234, 5&5,_1 = 150,

CS,] = 356, CS,—] =8.11.

In Fig. [T} we illustrate (6) for N = 5 and the estimates. Note that y = 1.51
can be guaranteed for the minimax estimator, but not the Bayesian. Fig.[2]contains a
comparison between the smallest y so that (Z)) can be guaranteed for the minimax
estimator and the Bayesian estimator when N =1 ... 20.

6. Conclusions

We stated the minimax criterion for output prediction, where the dynamics belong
to a finite set of linear systems and proposed a minimax estimation strategy. The
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6 Conclusions

Minimax, y5 = 1.51 Tl

| | |
-2 -1.5 -1 -0.5 0 0.5

A

Vs

Figure 1. Ilustration of the optimization problem (6) for N = 5, together with the min-
imax solution and the one given by a Bayesian multiple model estimator for y, = 1.51.
The minimax estimate has a guaranteed worst-case gain bound from disturbances to ob-
server error lower than 1.51, whereas the Bayesian estimator does not. Here J5+ = |5 -

X5, |(21_y_2P5 b1 TG corresponds to F = 1, whereas J;~ (defined similarly) corresponds to
5 s

F =—1.J5=J5(y°,0, 5) is then equivalent to (B).

2
| —e— Minimax |
18l - «- Bayesian |
: | P /maxi{Pi,N}
xz 1.6
~
1.4 3
D
[ “x..*..”..x..x..x..x..x..x...‘..“.“..x..x..x..x..x..x..;g
12 - | | | | | | | i
0 5 10 15 20

N

Figure 2. The smallest y, such that J (yV 1,0, $5) < 0 for the minimax estimator (blue)
compared to the Bayesian multiple-model adaptive estimator (green) for one realization.
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strategy can be implemented as a convex program, and the resulting estimate is a
weighted interpolation of Kalman filter estimates. We showed in a numerical exam-
ple how to apply the theoretical results to compute the worst-case gain from distur-
bances to error for any multi-model estimation algorithm online and how to generate
estimates that minimize the said gain.

By running a minimax estimator in parallel to another estimator, we can mea-
sure the worst-case performance level of the other estimator. A large difference in
performance levels indicates that the nominal estimator may be highly sensitive to
errors in the noise model.

Predetermining the smallest achievable gain from disturbances to estimation er-
rors is still an open research problem, that is, finding necessary and sufficient con-
ditions such that

sup Jy(yV L uNh <o.
yN—l

In future work, we plan to develop a Multiple-model adaptive estimator with a pre-
scribed £,-gain bound from disturbance to error and methods for infinite sets of
linear systems.

Appendix — Supporting Lemmata

LEMMA 1
The cost function

Vi (x N=1y = min X — %02
N,l( N9y ) WN-I | 0 0|P0_]
N-1

+ 21 (x4 — Fix; — Gi”t|2Q_1 + 1y = H,x,@_l) (7
k=

under the dynamics (I)), is of the form

-1 )
Vi y )= |x — x,’ilpﬂ_ +¢
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where P, ; and ¢, ; are generated as
Foi="P
T
P, =0+FP;F
— FPHT(R+ H P H)T H P F]

X0 = Xo

Xy = FiX + K (v — HiX ) + Gy, =
K. = FiPt,iHiT(R + HiPt,iHiT)_l
cp; =0

Ci1,i = |Hi)vct,i - ytl?R+H,~P,,-H[T)_] +¢ e

Proof. The proof builds on forward dynamic programming [|Cox,|1964], and is sim-
ilar to one given in [|[Goodwin et al.,[2005] but differ in the assumption that F; is not
invertible. Further, the constant terms ¢, ; are explicitly computed. The cost function
VNE] can be computed recursively

Vi(xy%) = Ix = xol3, ®)
0
Vier (. y) = min |x — F& - Guy [}y,
+ 1y, — HEL + V(&Y. ©)

With a slight abuse of notation, we assume a solution of the form V;(x) = |x —
X;| p-1 + ¢, and solve for the minimum
t

2

V.., (x) = min |x — Gu,|?
1 (X) ¢ l tlo1 * Ié:lFTQ*IF+HTR*1H+P,‘1

—2(FTQ™' (x = Gu) + HTR™y, + P7%) &+ yil3, + [%] 1.

Assume at this stage S, := FTQ~'F + HTR™'H + P! > 0, then the minimizing
£* is a stationary point
=S FO ' x-Gu)+H'R 'y, + P7'%)

and the resulting partial cost

v 12
+ |xt|PI—1

. 2 _ 2 2
|x — X4 |P;11 +eq = Ix - G”t|Q—1 + |yt|R—1

—|FTO™'"(x = Gu)+ H'R 'y, + P7'x, fg_l +c. (10)
t

3 We relax the index i in this proof
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Since this should hold for arbitrary x and
X=Xy = (X = Gup) = Xy = Guy),
we get
-1 _ -1 -l o-15T -1
P=Q -0 FSFQ
X141 — Gu, = Pt+1Q_1FS;_1(HTR_IYI + P,_I?UC,)

The expression for calculating P, can be further simplified using the Woodbury
identity,

I)t:_l] — (Q+ F(HTR—1H+ I)t—l)—lFT)—l
P, =Q+FPF'-FPH (R+ HP,H" )Y 'HPF",

where we used the Woodbury matrix identity twice. Inserting these expressions into

; < identi 15T -1 pTy-1¢-1
(T0), applying the Woodbury matrix identity to S F'(Q — FS; ' F')™' S +
ST =(S,-FTO'F)™' =(HTRH + P! gives

— _ T p-1 -1y |2 2 v 12
Cr41 = |H R yt+Pz xtl(HTR‘1H+Pt‘1)—1+|yt|R‘1+|xt|Pt‘1+ct

=|H +¢

N 2
AR (R+HPHT)!
Next we show that X can be formulated as a state-observer

X4 — Gu = Pt+1Q_1FS;_1(HTR_1J/t + P,_l’uc)

= P Q' FSTTHTR™ (3, — HX,)
+ P, Q'FSTI(H'R'H + P71%,

Use the matrix inversion lemma (A + BCD)"'BC = A~'B(C + DA~'B)~!.

PO 'FST = ~(=07 + 07 FST FTO )07 FS)!
= —(_Q—l)—l(Q—lF)(St _ FTQ—IF)—I
=FH'R'H+P )L

Insert in to the previous expression and conclude
X = FX, + K,(y, — HX) + Gu,,

where
K,=FPH' (R+HPH")™! 0
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LEMMA 2
For x € R", v, y € R™, a non-zero matrix A € R"™™, positive-definite matrices

X € R™"and Y € R™™, and a positive real number yn > 0 such that
Ty-1 2 y-1
A XTA-yyY T <0,
it holds that
2 2 2
max { [x — AU|X_1 —rnly— U|Y_l }

e A2
=|x Ayl(X—y;,zAYAT)—l'

1)
O

Proof. Expanding the left-hand side of (TT) and equating the gradient with 0 we get

2 2 2
max { |x — AvlS,_, —vyly —vly }

_ 2 2 202 o TaTy=1o 2yl
_m;clx{|U|ATX_1A_y}2vy+|x|X71 Pl = 20T ATX x = Ry Ty
= |x|§(_1 - 712\]|y|§_1 - |ATX_1x_ylz\]Y_lyl(ATx—lA_},JZ\]y—l)—l

= |x|?

X~ 1-X~TAT(AT X1 A=y Y~1)-1 AT X!

2
+ |y|—712\/Y_1_YZNY_I(ATX_IA_YIZ\,Y_I)_IY_Iylzv
-1 -1 2 y—1y=1,_ 2 y—I
X AATX T A - Y ) =R Yy
Y ) T o
B |X|(X—y;[2AYAT)—1 + |Ay|(X—y;[2AYAT)—1 2x (X YN AYA' )" Ay

— _ 2
= |x AyI(X_mzAYAT)_l. O
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Paper II

Fundamental Worst-Case Performance
Limits for Multiple-Model Estimation

Olle Kjellqvist

Abstract

This article provides upper- and lower bounds for the worst-case performance
limit of strictly causal state estimation for uncertain linear systems with uncer-
tainty belonging to a finite set. We quantify performance as the gain from noise
and disturbances to point-wise estimation error. The bounds rely on forward
Riccati recursions, one per feasible model, and backward Riccati recursions,
one for each pair of models in the uncertain set.

1. Introduction

In this article, we consider strictly causal state estimation for uncertain linear systems

of the form
X1 = Fx; + w;

y=Hx+v, 0<t<N-1, D
(F.H)e M

where x;, € R”, and y, € R™ are the states and the measured and output at time-
step t, respectively. w, € R" and v, € R™ are unmeasured process disturbance
and measurement noise. The model, (F, H) € R™" x R™ " is unknown but fixed,
belonging to a (known) finite set

M= {(FI’HI)""’(FK’HK)}'

The state estimate, X, is generated by a strictly causal map from measured outputs
to R” that is agnostic of the model realization.

Xy =uN=1s->Y0)- )
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We make no assumptions about the distributions of w and v. Instead, we employ
a deterministic framework and characterize the achievable worst-case performance.
The worst-case performance is quantified as the smallest gain from disturbance tra-
jectories (wy;, v;) t’i 61 to pointwise estimation error (x ;- — X 7), denoted y]’\*,, that can
be achieved with a strictly causal estimator y. The disturbance norm can be dif-
ferent for every model, i. The norms are defined by the positive definite matrices
Py; € R™", R; € R™ and Q; € R™" and nominal values of the initial state, X ;.
More precisely, y]’\*, is defined as the smallest y 5 for which there exists an estimator,
u, such that for all possible realizations of (T) and (@),

[Xn _XN|2

s 12 N-1 2 2
Xo — X0, + w + |v
| 0 0"|P(;[1 Z,=0 <| tlQi,l | thil>

<7y 3)

We provide a lower and an upper bound for y;]. Both bounds depend on the
pairwise interaction between candidate models and are computed by validating the
positive definiteness of certain matrices appearing in forward and backward Ric-
cati recursions. The Riccati recursions describe the worst-case trajectory given a
minimax-optimal state estimate. This estimator was described in [Kjellgvist and
Rantzer, |2022b]].

1.1 Background

[Bar-Shalom, |1972]] studied simultaneous estimation of parameters and states in lin-
ear systems and showed that the maximum-likelihood approach leads to estimates
that cannot be put on recursive form. One suboptimal approach is to parametrize the
dynamics, augment the state vector with the parameters and apply nonlinear estima-
tion techniques like the extended Kalman Filter. The state and parameter estimates
may diverge [Ljung, [1979], but the algorithm can be tweaked to guarantee asymp-
totic convergence. The resulting algorithm is equivalent to a recursive prediction er-
ror method [|[Goodwin and Sin,|1984]. Unfortunately, optimality guarantees for these
methods are difficult to obtain. However, if we restrict the parameter uncertainty to
belong to a finite set, and the driving noise is Gaussian. Then the conditional prob-
ability of each model having generated the observed trajectory can be expressed
recursively. The conditional probability can then be used to extract the maximum
likelihood estimate, the expected value of the state and other meaningful statistical
quantities.

This multiple-model approach was introduced in the *60s by [Magill, |1965]] and
[Lainiotis,|1976] and has then been adapted to switching systems [[Ackerson and Fu,
1970; |(Chang and Athans, |1978; Blom and Bar-Shalom, [1988]]. The extensions for
switching systems approximate the solution by combining the estimates and model
pruning. The approximation is necessary to avoid the exponential growth of the
feasible parameter trajectories due to switching. [Ronghua et al., [2008]] shows that
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2 Notation

multiple-model estimators are sensitive to deviations from the assumed noise dis-
tributions and proposed an Interactive Multiple Model algorithm based on particle
filters to handle non-Gaussian noise at the expense of a 100-fold increase in com-
putation. [Li et al., 2021; [Deng et al., 2020] combined multiple-model estimators
with machine-learning approaches to classification and showed improved accuracy
in simulations.

Recently, [Silvestre et al.,[2020] introduced the notion of absolute distinguisha-
bility to evaluate the suitability of sets in multiple-model systems. Distinguishability
means that there exists some input sequence such that the different systems generate
different outputs. If the outputs are different for all system inputs, then the systems
are absolutely distinguishable.

The work in this article has been inspired by recent progress in minimax adaptive
control [Rantzer, 2020; Rantzer, 2021} Kjellqvist and Rantzer, 2022aj; Renganathan
et al.,|2022]| and builds on the optimal minimax adaptive estimator for finite sets of
linear systems introduced in [Kjellgvist and Rantzer, 2022b|].

1.2 Outline

The rest of this paper is organized as follows. We establish notation in Section [2}
Section [3| contains the problem formulation and solution. Illustrative examples are
contained in Section @] We give conclusions and final remarks in Section [5} The
proof of the main results are contained in Section [6]

2. Notation

The set of n X m-dimensional matrices with real coefficients is denoted R™". The
transpose of a matrix A is denoted AT. For a symmetric matrix A € R™", we write
A > (>)0 to say that A is positive (semi)definite. Given x € R” and A € R™",
|x|3 := xT Ax. For a vector x, € R" we denote the sequence of such vectors up to
: P t

time 1 by x9.1 1= (X1, -

3. Minimax performance limits
This section studies the minimax performance index

*a N . s 2
Jy(Xp) :=inf sup o Ixy = XNl
[0:T—1]5¢

X0-W[0:7-1]>Y)

N-1
[|w,|2Qfl+|v,|§fl]> . @

where x|o.7) is generated according to (I) with (F;, H;) € M. This is a two-player
game where the adversary picks the disturbance sequences wyy.r_;; and vjg.7_p

2 o 2
-y <|x0_x0,i|P0J +
t=
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and the active model i = 1, ..., K and the minimizing player picks the estimation
policy u. In particular, we are interested in the infimum of y,, denoted y;}, such that
the performance index (@) has a finite value.

The case when the model is known, equivalently when M = (F;, H;), was stud-
ied in [Basar and Bernhard, [1993]]. In that case, the smallest achievable attenuation
level yj’\‘, can be characterized using two Riccati recursions, one forward recursion
and one backward recursion. The Riccati recursions are functions of y,, and one
can evaluate whether y; is greater or smaller than y]’\*, by checking whether certain
matrix expressions occuring in the backward recursion are positive definite. These
criteria are both necessary and sufficient, when the model is fully known.

The remainder of this article is devoted upper- and lower bounds of y;\‘] for uncer-
tain linear systems, where the uncertainty is described by a finite set. These bounds
are characterized using forward and backward Riccati recursions. There is one for-
ward recursions per model, i = 1, ..., K, and one backward recursions for each pair
of models (i, j).

The forward recursions are those of a Kalman filter with zero-mean independent
white noise sequences w;, and v, with covariance matrices Q; and R; respectively,

K,; = F;P H (R + H,P, ;H)™,

- ®
Pi1i=0;+FP;Fi+ K, (R + H;P ;H K, ..

P, ; can be interpreted as the covariance of the initial estimate % ;. The output-error
covariance matrix, R, ;, will play an important role in the backward recursion and is
given by

R — T

R, =R, +H,P H, . (6)
We now state our first condition on y .

PROPOSITION 1
yn 2 vy onlyif Py, <y3 I foralli=1,...,K. O

Let
, KU — [ t
F; - Kt,jHj] LK

Ftij corresponds to the closed-loop of a pair (i, j) of Kalman filters with filter gains
K, ; and K, ;. We will express the necessary and sufficient conditions using the fol-

ij_
F =

[E - Kt,iHi ,i] ) (7)

t.j

lowing Riccati recursions. Given some symmetric matrix Ty € R,

XY = ((K;J)TTg K-y (R + R;j)), (8a)
i _ oyiinel [ iinTii i 2 [ -1 51
LY =T (RITT R 42 R, RH), (8b)

y y o HTR1H. y I
T/ =FNTT! F/—y |70 e | —WDTXILY . (8¢)
t t t+17 1 Hj Rt,j Hj t t 't
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3 Minimax performance limits

For these recursions to be well-defined, the matrix X tij must be invertible. The con-

ditions for bounding y;\} are related to the positive definiteness of X tij and are stated
in Theorems [3land [ below.

THEOREM 3—UPPER BOUND
Given yp such that Py < 7’12v I.Let S € R™" be a positive definite matrix such
that S < I —y~2Py, foralli=1,...,K and

j_ st =5t
-
Tn = [—S—l s ] '

Assume that for all i, j that X tij in is negative definite. Then y} < yy and

. 1T N
X0,i i X0,i
Xo;] 0 %o, O

N 1

THEOREM 4—LOWER BOUND
Given yy such that Py < yIZVI, if X;/ % 0 for some pairi,jand0 <t < N — 1,
where X’ is generated according to the Riccati recursion (8a)—(8c), with

T =

T TV
N

_Tii T ] o TV =@y By + Py )

then y;‘] > yN.Ithij >0,forallz=0,..., N — 1 then

~ T ~
X0,i Tl X0,i
X051 0 [%o, O

We conclude this section with a causal estimator that achieves @).

N 1
JK;(X()) > 3

PROPOSITION 2—[KJELLQVIST AND RANTZER, [2022B||
Given yy > 7}, then the infimum in (4) is achieved by

Sk : I Y 2 2
X, = min max Xn — X7 - Cnri (-
N 3 i { | N N,i |(1_}’_2PN,i)_l Y N.,i }

With P, ; and K, ; as in (3)), X ; and ¢ ; are generated according to

Xo, = Xg, ¢o; =0, (9a)

Xop1 = Fix; + K (v — Hi)vct,i)’ (9b)
v 2

Cry1; = [ HiXy; — ytlﬁ—'l +¢ (9c)

1 D
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4. Examples

Figures show upper and lower bounds for y;\‘, for four different scalar systems
computed using Theorem@ andE} Inall cases Q) = 0, = Ry = R, = 1 and Fy;
were taken as the solution to the Riccati equation resulting from removing the time
index in (3. The systems in Fig.[T|are unstable and indistinguishable and the result-
ing attenuation level y]’\‘] grows exponentially in N. This is because very different
state trajectories result in the same output trajectory. Fig.[2]is also indistinguishable,
but here both systems are stable. The minimax attenuation level yl’fj is bounded and
lies somewhere between 2 to 2.5 times that of the case when the model is known.
This is because the systems are BIBO stable, so picking X 5, = 0 results in an estima-
tion error that is bounded by the disturbance norm. Fig.[3|contains two stable systems
that are indistinguishable, but here the minimax attenuation level is not much worse
than in the case where the model is known. This is because even though the systems
are different, and cannot be distinguished from data, state trajectories resulting in the
same output trajectory cannot differ very much. Fig. ] contains two unstable distin-
guishable systems. We see that the minimax attenuation level is a bounded function
of N. Comparing Fig. 4] to Figs.[2]and 3] we see that distinguishability alone is not
enough to guarantee good performance of multiple-model estimators.

5. Conclusions

This article provided an upper and a lower bound for the minimax attenuation level
for uncertain linear systems, where the uncertainty belongs to a finite set. The atten-
uation level provides an alternative to the notion of distinguishability in a priori anal-
ysis of the problem set-up for multiple-model estimation. In the case when similar
output trajectories can come from highly different state trajectories, the gain seems
to be large. If similar output trajectories must come from similar state trajectories,
the gain seems to be small. Interesting directions for future research are:

o H_ -(sub)optimal multiple-model filtering
o Tighter bounds on the minimax gain from disturbances to estimation error.
e Switched linear systems.

e Uncertain linear systems, with the uncertainty belonging to a compact (but
infinite) set.

e Experimental studies.
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Figure 2. Bounds on the minimax gain
from disturbances to estimation error for two
systems where F\ = F, =09, H, = —-H, =
1, P, =P, =148.

YN

Figure 4. Bounds on the minimax gain
from disturbances to estimation error for two
systems where F, = 1.1, F, = 1.2, H, =
-H,=1,P =177, P,=195.
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6. Proofs

The disturbance w, is uniquely determined by F' = F; and (x,,,X;), and v, is
uniquelly determined by H = H;, y, and x,. Thus, we can substitute w, = x,, ; —F;Xx,
and v, = y, — H;x, into (@),

* /a . s 12 2 o 2
JN(XO)=H;14f sup '{|xN—xN| -y |x0—x0’i|P0j
X[0: N]»Y[0: N=1]5! ’
N-1
-y Ix,01 — Fix,)>_ + |y, — Hx,|? (10
14 1+1 i*tlp-1 Vi iXtl g .
=0 ! !

Furthermore, as p is a function of y. y_;;, Wwe can move the maximization over
output trajectories outside of the minimization and minimize directly over the vector
Xy € R Let,

inner s o\
In " OoN-11Xn:Xo) =

s 12 2 IS 2
sup |xn — XN —YN|x0_x0,i|p0.
X[0: Nt .

=

-1

2 2 2
-7 [Ixt+1 - Fix"Qi“ + |y, = HixtIRi_|] } (11)

~
Il
o

Then can be written as

J;,()’(\:()) = Sup lpf J]i\l;ner(y[(]’N_l], ‘)%N’ 52:0) (12)
Yo:N-1] XN

The following proposition shows how to compute the inner optimization prob-
lem (TT)) using K parallel Kalman filters.

PROPOSITION 3
Consider matrices F; € R™" and H; € R™", and positive definite Q;, P,; € R"™"
and R; € R™™ fori = 1,..., K and a positive number y . Let P,; be the solution

to the Riccati recursion (3), If Py ; < y3, 1, then the inner optimization problem (TT)
is equivalent to

T i o s fo) = max {1y = ¥, e, =P (13)

where Xy ; and c ; are generated according to (9). If Py ; % yjzv I for some i, then
the value (TT)) is unbounded. O

Proof. See [Kjellqvist and Rantzer, [2022b]). [

The last statement of Proposition[3] is precisely Proposition
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6 Proofs

6.1 Upper- and Lower bounds of J;}

In this section we develop upper and lower bounds on the objective, @), that we
translate into bounds on y}; via bisection. Substitute (T3) into (T2) to get

* e N _ : . ) 2
Jy(Xg) = sup I;nnmiax { |Xn — stil(I—y—2PN S TN } (14)
Yo:N-1] "N i

As the maximum is greater than the average of any two points, we have that

R N NN .

JE(Re) > sup min={ Ry —XnilP L.

N . 2 U=y Py )
LLYo:N=1] "N ’

2 o v 2 2
YV CN + |xN xN,jl([_y—ZpNyj)—l 4 cN,j}

v v 2
= Sup _{ XN, — Xn -2 -2 -1
LYo N-1] 2 ! 2Ly Py i~y ™* Py j)
— 7oy —rlen | =t max J{ () (15)
Yoeni—vTen =t II}.':}X_N X0)-

Thus yy < y]’:r only if i%(fco) is bounded for all pairs (i, ).
Towards finding a sufficient condition, let S € R™" be a positive definite matrix
such that S <1 — y‘ZP,J foralli=1,..., K. Then

* (g : - v 2 2
J§(Xp) < max min max{|%Xy —xN’,-ls_1 —r%cnit
Yy Xy i

M
y e 2 2
= max max 29i9j|xN‘i—xN,j|S_l/2—y ZG,-CNJ
Y ij i
Smaxmaxl{b?Ni_’V‘NjP_l—J’2(CN,'+CN,')}
i,j y 2 > WJ LS 5 .

=1 max 7 5 (%). (16)
L

Similarly, if 73{, (%) is bounded for all pairs (i, j), then y]’\‘, < 7n- The only difference

between the expressions of J (%) and JY (%) is the weighting matrix of the term
|Xn; — Xn j|. Computing the upper and the lower bound amounts to solving LQR
problems with an indefinite terminal penalty on the state.
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6.2 Indefinite LQR

Define the cost function

u T o
JITy) = sup [’fN”] Ty [i‘N”‘]
N Yi0:N-1] XN.j XN.j

N-1 N-1
2 Y 2 2 % 2
—y Z |Hixt,i_yt|f3t—'l -y Z |Hjxh/‘_y’|1é;.l} 17)
1=0 ! =0 !

The cost (I7) is a standard finite-horizon time-varying linear-quadratic regulator
problem and readily obtained by dynamic programming. We summarize the solution
in the following lemma.

LEMMA 3 - o
Fixi,j € {1,...,K}. Let T;\f € R2™2" be a symmetric matrix. Define Tt”, thj and
L;j fort = 0,..., N — 1 by the Riccati recursions (8). Then Jx(TN, Xg) = +oo if
X, ¥ 0forsomer. If X, <Oforallz=0,..., N — 1, then

o T o
. Xn ii | X
JIJ(T ’5(\: )= I:A0,1:| TlJ I:A0,1:| .
NN R0, 7O [Roy O
REMARK 5 %
— Tl i
The output sequence y, = —L, [u’ !

’ ] maximizes (7). U
x,’ j

Theorems |3| and | follow from applying Lemma [3|to the upper bound 7]{,()%0)
in (T6) and the lower bound J' (%) in (T3).
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Paper III

Learning-Enabled Robust Control with
Noisy Measurements

Olle Kjellgvist Anders Rantzer

Abstract

We present a constructive approach to bounded ¢,-gain adaptive control with
noisy measurements for linear time-invariant scalar systems with uncertain pa-
rameters belonging to a finite set. The gain bound refers to the closed-loop sys-
tem, including the learning procedure. The approach is based on forward dy-
namic programming to construct a finite-dimensional information state consist-
ing of H  -observers paired with a recursively computed performance metric.
We do not assume prior knowledge of a stabilizing controller.

1. Introduction

The great control engineer is lazy; her models are simplified and imperfect, the op-
erating environment may be poorly controlled — yet her solutions perform well.
Robust control provides excellent tools to guarantee performance if the uncertainty
is small [Zhou and Doyle, | 1998]]. If the uncertainty is large, one can perform labori-
ous system identification offline to reduce model uncertainty and synthesize a robust
controller. An appealing alternative is to trade the engineering effort for a more so-
phisticated controller, particularly a learning-based component that improves con-
troller performance as more data is collected. However, for such a controller to be im-
plemented, it had better be robust to any prevalent unmodelled dynamics. Currently,
there is considerable research interest in the boundary between machine learning,
system identification, and adaptive control. For a review, see for example [Matni et
al.,|2019]. Most of the studies concern stochastic uncertainty and disturbances and
assume perfect state measurements. Recently, works connecting to worst-case dis-
turbances have started to appear. For example, non-stochastic control was introduced
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Unmodelled
dynamics

errors B
~ Linear system with |~ noise and
D uncertain parameters | disturbances
noisy

measurements

Learning-Enabled
Robust Controller

Figure 1. For a finite set of linear time-invariant models, the Learning-Enabled Robust Con-
troller minimizes the ¢,-gain from noise and disturbances to errors for any realization of the
unknown model parameters. This gain bound guarantees robustness to unmodelled dynamics.

for known systems with unknown cost functions in [Agarwal et al., [2019]] and ex-
tended to unknown dynamics and output feedback, under the assumption of bounded
disturbances and prior knowledge of a stabilizing proportional feedback controller in
[Simchowitz, 2020]. In [Dean et al.,2019] the authors leverage novel robustness re-
sults to ensure constraint satisfaction while actively exploring the system dynamics.
In this contribution, the focus is on worst-case models for disturbances and uncer-
tain parameters as discussed in [Didinsky and Basar, [1994], [Vinnicombe, [2004]]
and more recently in [Rantzer, 202 1], but differ in that we consider output-feedback.
See Figure[T] for an illustration of the considered problem. Unlike most recent con-
tributions, the approach taken in this paper:

1. does not assume prior knowledge of a stabilizing controller. In particular, we
allow for uncertain systems that a linear controller cannot stabilize,

2. assumes that the measurements are corrupted by additive noise,

3. provides guarantees on the £,-gain from disturbance and noise to state for the
entire control duration.

1.1 Contributions and Outline

We formalize the problem of finding a causal output-feedback controller with guar-
anteed finite £,-gain stability that is agnostic to the realization of the system pa-
rameters in Section [3] Section[]is devoted to characterizing the Learning-Enabled
Robust Controller in known or computable quantities. In Theorem [5] we show that
ensuring finite £,-gain is equivalent to running one 7 -observer for each feasible
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2 Notation

model, checking the sign of the associated cumulative cost and that each cumula-
tive cost can be computed recursively. We show that it is necessary and sufficient to
consider observer-based feedback in Theorem@ In other words, the history can be
compressed to a finite number of recursively computable quantities, growing linearly
in the number of feasible models. In Section[5} we apply these results to synthesize a
controller for an integrator with unknown input sign with a guaranteed bound on the
¢5-gain from noise and disturbances to error. All results in this paper are in discrete-
time and for scalar systems, but sections[3|and[d]are readily extended to multivariable
time-invariant systems.

2. Notation

The set of n X m matrices with real coefficients is denoted R"™. The transpose of a
matrix A is denoted AT. For a symmetric matrix A € R"™" and a vector x € R" we
use the expression lef1 as shorthand for xT Ax. We write A < (<) 0 to say that A
is positive (semi)definite. We refer to the value of a signal w at time ¢ as w(?). The
space of square-summable sequences from {7, T + 1, ..., T} taking values in R
is denoted £, [Ty, Tf]. For a set S, we let #(S) be the cardinality.

3. Learning-Enabled Control with Guaranteed Finite £,
Gain

Given a positive quantity y > 0 and a finite set of feasible models M C R3, we
concern ourselves with the uncertain linear system

x(@+1) =ax@®)+ bu(t) + w), x(0)=x,

y(t) = cx(t) +v(t), t>0 ey

where the control signal u(f) € R is generated by a causal output-feedback control
policy
u(®) = p; (¥(0), ¥(), ..., y(0) . 2
In (I), x(r) € R is the state, y(f) € R is the measurement, the model M :=
(a, b, ¢) is unknown but belongs to M. The noise v and disturbances w satisfy w, v €
?5([0,T]) for all T > 0. We are interested in control that makes the closed-loop
system finite gain, with gain from (w, v) to x bounded above by y. That is,

o) i= Y x@F =7 Y w@) —y Y 0@ = Pyx(07 <0 ()

7<T+1 t<T T<T+1

must hold for all T > 0, any admissible disturbances, initial state and the possible
realizations M of (I). Py, quantifies prior information on the initial state and is taken
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as a positive solution to the Riccati equation
—1 -1
Py = (@ (Py+77 1) 4772 @

In this article, we explicitly construct controllers satisfying the finite-gain prop-
erty and give conditions under which such controllers exist for the case when ¢ = 1
and b = +1.

REMARK 6
The cases b = —1 and b = 1 cannot be simultaneously stabilized by a static feedback
controller when a > 1 |
REMARK 7
P, could be any positive quantity. Our choice leads to stationary observer dynamics,
simplifying the coming sections. O

4. An information-state condition

In this section we will apply a slight modification to the H_ -observer from [Basar
and Bernhard, [1995]] to bound (3)) in a way which leads itself to recursive computa-
tion. We need the following lemma:

LEMMA 4—PAST COST

Given a known model M = (a, b, ¢), a positive quantity y, assume that the Riccati
equation (@) has a positive solution Py, . For fixed u € £,([0,1]), y € ¢,[0,1]) and
x(t + 1) € R, we have that

w,vEL,[0,t],xnER <t <t

sup {Z x(7)? = y? Z (w(®)? + v(®)*) — Px(0)* : subject to @)}
= Py + D) = Fy G+ D) 41+ 1), (5)

The state observer X,,(f), and the past cost /,,(t) are defined by the recursion

ries, X 2@
M Pyt 1 -
Xp @+ 1) =ax@) + bu(t) + Ky (V) — cx(1)) + (1), %X3,0)=0, (6)
(Py s (1) + 72ey()’
Py +72c2 -1
1,,(0) = 0. O

I+ 1) =1y () = Py % (07 — 2 (0(0)* + . ()
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REMARK 8
The observer form (6) makes sense for linear systems where we can design a state-
feedback controller and observer separately and then join them together using the
separation principle in [Basar and Bernhard,|1995]|. The assumptions for the separa-
tion principle are not satisfied in our case, so we find it simpler to use the equivalent
form

Xpr(t+ 1) = aprx(t) + bu(®) + 8 y(0),

where 4, = aPy; /(Py, +y?c* — 1) and §,, = y2ac/(Py, + y*c* = 1). O

Proof Lemma4} The system is equivalent to (6.1) and (6.2) in [Basar and Bernhard,
1995, p. 243] but with D, = [I 0] and E; = [0 I]. Note that the term — Py, x(0)
in (B) ensures that P, = P, = ... = Py, i.e. stationarity. Explicitly computing
I3,(?) requires some extra bookkeeping; in 6.35 the terms independent of & and w is

equivalent to y?| y(t)liHHT)—' + |$c(t)|§,( H= |u(t)|%{ — I(), the notational differences

are (HH') = N, P(t) - K(t) and [(t) — c(t). After application of Lemma 6.2 on
p- 259 we identify

my = =|POXO) + 7> CTHHD) YO, o inmyic—or

+ PO o,y + 1RO = O] = 16)

and conclude [, (t + 1) = —m,. O

Lemma [] lets us express the worst-case accumulated cost compatible with the dy-
namics as a function of the past trajectory (u, y) and the next state x(t + 1), if the
dynamics M of the system (I)) are known. As x(¢ + 1) changes, so does the set of
trajectories w, v that are compatible with x(¢ 4+ 1). In particular, the entire sequence
of a maximizing trajectory will change as x(¢ + 1) is varied. With that in mind, it
is remarkable that the effect to the accumulated cost is captured completely by the
term —P (x(t + 1) — 2(t + 1)*). The second term /(t + 1) contains the terms of the
cost that depend only on past inputs and outputs and is independent of x(¢ + 1).

We will study the value of the left-hand side of (3) for each model separately.
Define for M = (a,b,c) € M, y € £,[0, t] and an arbitrary output-feedback control
policy u the quantities

ay (1) := sup {a(®) : (a,b,c) = M, subject to (I) and @)}  (8)

w,vEL;[0,t],xgER

Then max; a,(¢) is the largest possible value of (@) at time #. In the follow-
ing theorem, we use Lemma [d] to express a,, recursively and construct equivalent
conditions using computable quantities.

THEOREM 5—INFORMATION-STATE CONDITION
Given a causal output-feedback control policyu, a positive quantity y, and an un-
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certainty set M. Assume that for all (a, b,c) = M € M the Riccati equation
2 _1
a -2
Py=\———>+ 9
M <PM+y2c2—1 Y ) ©)
a positive solution P, and let

aPM

iy = =T
M PM+y2c2—1’ M PM+y2c2—1'
Further let

Xpp@+ 1) =ay, %)+ bu(t) + 8, ¥(2), X5,(0) =0, (10)

Py, %as(0) + 72ey(1))?
Lyt 1) = Ly (1) = PySipg (07 = p2y(ep + OO

PM +y2C2 —1

(11)

Then the closed-loop system (I)), (Z) with control 4 is finite gain for any realization
M € Mifandonly if /,(t+ 1) < Oholds forall M € M, t > 0and y € £,([0, f]).
If Py, < 1 for some M, y is not an upper bound of the £,-gain from disturbance to
error. O

Proof. Let a,,(t) be defined as in (§). Then (@) holds for all (w, v,xq), M € M
and T if and only if @y, (T) < Oforall M € M and y € £,[0,T]. We now apply
Lemmato express a,,(?) in the known quantities X, (¢), Py, and [ M(tﬂ

ap (1)

sup sup {x(t)2 7o+ ) x(1)?

x(1),0(ER w,veL5[0,t—1],x)ER o

=77 ) (w@? + v

T<t—1

x4+ 1) = ax(t) + bu(t) + w(t), y(t) = cx(t) + v(?), (a,b,c) = M}

sup {x2 —y2r - Py (x- fcM(t))2 + lM(t)}
xeR,veER

(Parsenr (D) + 72ey®)” /(Pag +72¢2 = 1) = Pyyi2, (1) = 2y + Ly (1)
=1t +1).

Finally, note that if for some M, Py, < 1, then I,(¢ + 1) is strictly convex in
y(¢) and thus unbounded from above. |

I'We let subscript M denote quantities using (a, b, ¢) = M.
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4 An information-state condition

From Theorem we see that the observer states X ,,(f) and cumulative objectives
I34(¢+ 1) contain the information necessary and sufficient to evaluate the finite-gain
condition (3). In other words, we can tell everything we need about the current state
of affairs by running one H, observer and computing /,,(t+1) for each model M in
parallel; but is it sufficient to consider observer-based feedback for control? If so, is
it also necessary?. the next theorem, we show that the observer states and cumula-
tive objectives contain precisely the information required to synthesize a finite-gain
control policy.

THEOREM 6—OBSERVER-BASED FEEDBACK

Given a positive quantity y > 0 and an uncertainty set M € R3. The following are
logically equivalent.

(i) There exists a causal output-feedback control policy u* such that the closed-
loop system (T)) and (@) is finite-gain.

(i) There exist observers (%,s,!,,) for each model m € M generated by (10),
(TT) and an observer-based control policy n*

u(®) = n* { (0, [yt + 1), y®) : me M},
such that/,,(tr+ 1) <Oforallme M,y € £,[0,¢t] and ¢ > 0.
If #* satisfies (ii), the following control policy satisfies (i):

1 (0), y(1) ..., y@) = n* { (Rpr @, Ly + 1, y@®) :me M} (12)
O

REMARK 9

By compressing the past trajectory to a finite set of cumulative performance quan-
tities /4, policies of this type learns the actual dynamics of the system as time goes
on. This leads to a kind of multi-observer controller. The architecture is illustrated

in[2) O

Proof. Theorem@( ii) implies (i) follows from that X ,(¢), [ ; (¢ + 1) depend causally
on y, thus the observer-based control policy is a special case of causal feedback
control policies. By assumption, /,,(T) < 0 for all T, M and y € #,[0,T] for the
controller (TI2), which we know implies that the system is finite gain by Theorem 5]

(i) implies (ii): Assume that the controller x* fulfills (i). By the construction of
(@) the Riccati equations have positive solutions Py, therefore the assumptions of
Theorem [5]are fulfilled and there exist observers X, and [, generated by and
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......................................................

1 1
1 1
1 1
1 1
! »| Observer 1 Gl y :
' > '
] u :
' »| Observer-based '
y n >1 Observer 2 (%2, 15) Controller: f—t—pu
' < n '
[ u [
1 4|—> 1
' '
' »] Observer K Rk lx) :
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. u Causal output-feedback '
ES PR controller; y __ ______ :

Figure 2. Illustration of the controller architecture in Theorem E] for uncertainty sets con-
sisting of K linear models. The controller # only considers the current state of the observers.

(TI). Define the set of feasible generating trajectories given observer states X (1),
[(t) and current measurement y(7):

T {GpO. Iyt +1),3(0) : M € M} 1=
(GO, 240 = 5000, 5T) = 50),

[y (T 4+ 1) =1,,(t +1),(X),., 1) generated by 7 and u(z) = u*(30), ... y(f))}.

Then T {(fc(O), Ly(1),¥0) : M e M} is nonempty since it is compati-
ble with any trajectory of length 1 such that »(0) = »(0). Fix + > 0
and observer states X,,(f),/;,(f + 1) and measurement y(t). Assume that
T {fc MO Ly, ¥(1) - M € M} is non empty. Then there exists a sequence ,
and final time T so that /,(t + 1) = a,(T) with a,(7) as in (8) generated by y and
the controller u(z) = pu*(0), ..., j(r)). By assumption, [,,(t + 1) = a,,(T) < 0.
Taking

n* { Gy, [yt + 1), y@®) 1 M € M} = p* (),

for some y,€ T {(Kp Iy +1),y0) : M € M} ensures that 7 will be
nonempty the next time step. By induction 7 will be nonempty for all T > 0
and thus u is well defined and /,,(T) < Oforall T O
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5 Certainty equivalence control

5. Certainty equivalence control

We will now leverage these results to synthesize a control policy for the case when
the pole a € R is known, b = +1 and ¢ = 1. Emboldened by Theorem [6] we will
construct a simple observer-based supervisory controller in the following way: We
will run two observers in parallel corresponding to the cases b = +1. The supervisor
will monitor the cumulative objectives /_;(¢) and /;(¢) and determine which observer
and model to use for computing the control signal. The policy computes the control
signal as if the selected model were true. Let i € {—1, 1} index the observers. The
Riccati equations (9) reduce to

P=P= %(1 —yia)+ \/;/2(—1 +72) + (2a® — 12 /4. (13)

Construct the observers %; and cumulative objectives /; using (I0) and (TI) with
b, =iand

g ==—20 g—g——yza
P+y2-1 "~ P+y2-1

1

Define the certainty-equivalence dead-beat controller as the function

) {—(afcl(r) +ay0) W LE+ D2+ (14

ax_{(O+ &y L+ D) <I_j@+1).

The dead-beat controllerE] ensures that for every ¢, either X (¢) or X_,(#) will be zero.
This simplifies the observer dynamics X and the cost associated with the history /.
We summarize the properties in the following proposition.

PROPOSITION 4
With 4, g, P as above, %; and /; as in (T0) and (TI)), and the control signal given by

(1), let

X@+1)=ax@)+28y(1), x(0)=0.

2 The controller is dead-beat for the observer state corresponding to the model with the hightest cumu-
lative cost. The observers themselves are not dead-beat.
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Then the following is true:

Lo d O Thoze o [0 o2 L0
B 0, ifLO <@ 7 0, ifL®) <10,

-

202 .
LG+ _<]1(t)—y2y(t)2+g+5;% if 1,(0) > 1_, ()
! a P2 _ o 2u2 o (PROFZY@)?
Li(@) = PX(0)" —y=y()” + vt if1,(t) < 1_,(0)
2 3 .
£ 2 2 .
I (1‘ + 1) l_l(t) - P)AC(t)2 _ 7/zy(t)z + %, lfll(t) > 1_1(t)
-1 = 2 2 .
110 = Py + 2 i 1,(1) < 1_y(1)
(15)
U

Proof. We start by proving the first claim. Consider the case when /; (r+1) > I_;(t+
1). Then X (t + 1) =0and X_;(t + 1) = a(X,(¢) + X_;(#)) + 28y(¢). The case when
[t + 1) < I_i( + 1) is similar. Taking x(¢) = X(¢) + X_,(t) completes the proof.
To see that the second claim is true, note that if /;(¢) > I_;(#) then X{(r) = 0 and
£_1(®) = (). The claim follows by substitution into (TT). O

5.1 Conditions for finite-gain stability

This section determines sufficient conditions for the certainty-equivalence controller
to guarantee a gain-bound of at most y. We first give conditions on /;(f) and I_;(¢)
such that both quantities are negative for the next time step. We will then give con-
ditions on y so that the negativity conditions hold for all . We summarize the non-
negativity conditions in the following Lemma.

LEMMA 5
Given P > 1,y > 0, () € R, [,(¢) and /_;(?). Assume that max;c(_; 1y [;(r) < 0
and that

min /,(t) < — O
1

P-1

Then with /;(z + 1) as in (I3), it holds that /;(t + 1) < 0 fori € {1,—-1}. O
Proof Lemma 3] full. We will give the proof for the case 0 > [,(t) > [_;(¢). The
case 0 > /_;(t) > I;(?) is similar. Note that /;(# + 1) and /_,(¢ + 1) are concave in
y(¢) if and only if

= P+y2—12y2,
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5 Certainty equivalence control
and we conclude that /; (¢ + 1) and /_; (¢ + 1) are bounded from above if and only if

P > 1. Secondly, we see that [(t + 1) = /,(¢) — cy* < 0 for some positive constant
c. Finally, let X = P 4+ y2 — 1 and consider

max [_;(t + 1) = max {1_1 (1) — PR(1)* —y~2 (y2y(t))2 + (P£(1) + r*y())* /X }
() ()
_ _ 2
= n;(z};( {1_1(t) +(=r 2+ X7 (o)
+2X 1 PRy () — (P — P2 /X)fc(t)}

=1_,(t)— <X_—2P2 +P- PZ/X> £(1)?

—}/_2+X_1
_ P2 /X + PGP —X)- P /X2 -X)_
=1, - 5 x(0)
y-—X
PG> -X)+P>_ ,
=/_(t)— —————x(¢
1) X @)
P(1-P)+P>_ ,
=2 s
~1®) —p O
P .,
=1 t t
—1()+P_1x()
Which is negative if and only if / 1(z‘)<——x(t)2 O

Next we give conditions on y so that the assumptions in Lemma [3] are fulfilled

for all 7. This is illustrated in Figure [3] where subfigure (a) 111ustrates a case where

[yt + 1) and I_;(¢ + 1) cannot simultaneously be greater than —ﬁx(t + 1)? and

subfigure (b) illustrates the case when the condition is not guaranteed to hold for the

next time step. For values of y so that the system behaves as in Figure [3] (a), if the

assumptions are fulfilled for some ¢, then (by induction) they will be fulfilled for all
T > t. This is formalized in the next theorem.

THEOREM 7—CERTAINTY EQUIVALENCE, UPPER BOUND
Given a real number a and a quantity y > 0. Assume that

P= %(1 —7y?a®) + \/;/2(—1 +72) + (y2a2 - 1)2/4 > 1.

If P and y fulfill the curvature condition (16) and strong negativity condition (T7)
below, then the closed-loop system (1)) controlled with the certainty-equivalence
deadbeat controller has gain from (w, v) = x bounded above by y.

P>2y—1 (16)
(P+2/2-1) <P —1-2vp2 - P)2) >(P-D((P+1=42) (17
O
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0 ‘ 0
1) \S -1} .
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Figure 3. [Illustrations of /,(t + 1), /_;(t + 1) and —ifc(t + 1) when [,(t) = 0, I_,(¢) =

—P—x(t)2 The solid lines highlight the values of y(r) where [,(t + 1) > ——x(t + 1)%. We
see that in (a) the solid lines do not overlap, i.e. given that the assumptions of Lemmal5 are
fulfilled for some ¢, they will be fulfilled the next time step as well. In (b) the solid lines
overlap, i.e. there are values for y(¢) so that the assumptions are violated the next time step.

REMARK 10
We can solve with equality restricted to the domain P > 2y — 1. The resulting

y satisfies (|a| + Va? + 1)Va? + 1 <y < 2.1a* + 2, and is shown in Figure@ O

REMARK 11
In [[Vinnicombe, 2004], Vinnicombe studied the state-feedback version of the prob-

lem and found that the bound y = |a| + Va2 + 1 is achieved by the control policy

) {ax(t), if ay(f) < a_, (1)
—ax(t), else,

where a, () = ZTSI—] (x(7 + 1) — ax(7) — bu(z))>. If we apply this control policy to
the noisy measurements y(t) = x(#)+uv(t) we have that x(t+1) = ax(¢)+bu(t)+w(t)+

av(r), and we get [|x[l, < ¥l {1 a] w,v)ll, < (lal + V1+a)V1 + a?||(w, v)llz

which is the lower bound in Figure ]

Proof Theorem|[7} full. By assumption P > 1 is positive so Theorem [5] applies.
We will show that if the curvature condition and the strong negativity condition are
fulfilled, then the assumptions in LemmaE]will hold for all 7. Then, by Theorem@the
observer-based controller is finite-gain for the original system. For t = 0, we have
that /,(0) = 0, X(0) = O and that /;,(f) < — P A(0)2 holds trivially. Fix ¢ > 0, assume

without loss of generality that 0 > [(¢) > l _1(®) and that I_(t) < ——x(t)2 By
LemmaE]max {1;(t + 1)} <0. It remains to show that

min{/,(r + 1)} < —Pli SR+ 12 (18)
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5 Certainty equivalence control

Letz(?) := y(t)— % (#). Then x(r+1) = 2gz(¢) and using Proposmon | letting
X=P+y*-1 wehave

P3(t)
2

2
L+ =10+ (— +y2z(t)> (/X =1/y%

A 2
I+ D) =1_,)+ <% +y2z (r)) /X - <—@ + yzz(r)> /v* = Px(1)?

Curvature: For (I8) to be true for all z(r) € R it is necessary that /;,(r + 1) +
4%gﬂz(z‘)2 is concave in z(¢). This is the case if and only if

P
FA/X =1/ S48 (19)
4 P 1 )
= > —4
PETRTyx -t

Insert § = y?a®/ X to get

P 1 24 P ’X ., 4P

22 4
= = a /[ Xy”.
PoiTx 128 TP oix 28 T O/

Further, insert

2
p=—1 o 4
a’/X +y2 X

1 )
P 4
to get
P 1 R y2-P
2g2—4 2)/4
P-11/X-1)y (P-1)

The concavity condition (I9) simplifies to the curvature condition (16),

(20)

2_
4t

L = (P+1)P24? = P>2y-1.
P17 ( )24y Y

Strong negativity: Define the upper bounds

a 2

L(t+1) = <—PXTO) +y2z(t)> (/X =1/y)
~ 2

I,t+1):= —%fc(t)z + <PXT(” + yzz(t)> /X

B < Px(t)

— +r z(t)) /r? = P2(*.
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AISO deﬁne the sets
i i P - 1 '

and 7; anagolously. Then the inequality (T8) is satisfied if and only if # (Z; N I_;) <

1. Since l > [; we have that 7; C I,, and a sufficient condition is that they intersec-
tion contains at most one point, i.e. # (I NI ) < 1. The reason we allow for the
intersection to contain one point, is that at such a point both /;(t 4+ 1) and I_;(# + 1)
fulfills with equality. We will start with characterizing Z, by looking for the

solutions to /;(t + 1) = —4 P Azz(t)z

Px(t)
T2

PR o N\, PP o
<:>< St Z(t)> =P 1)2(}’ z(1))

= <—@ +y? <1 + 2%) z(t)>
x (-@ 2 (1 - 2@) z(r)) -
We conclude that for positive £(7)
1= li (1 + 2@%.7,(:)2)_1 (1),
P (1 - 2@&@)2)_1 fc(t)] )

+r z(t)) (1/X = 1/7) = 4= g207

2y2

We continue with the solutions to I,(t + 1) = —4%§22(I)2.

I 2
st (04 r220) /x- (204 z(r)) /7 = P30

P 2
=—-4— t
P—lg 20

Using we get
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5 Certainty equivalence control

Y (1242 e 4 (L s L) pr?
y2> <1 4(P_ 1)2> (r°z(0) + <X + y2> Px()y*z(t)

1

X

1(1 1 1 NI
(5 -5) ) eor o

X +9? (P - 1)?

X-y2(P-1-4(2-P)
r__tr__ 1
4 PI11/X—1/42

+
(P—12—-4(>-P)
_ (P+2y2-1)P-1)

= M)’ - P3(yz(1)

(P-1)*P22(0)* =0

2 2 Pi(1)y2
= (r’z() PAIF 4 2(t)y”z(1)

1TP=D*+42P+y* =1 o

4 (P +1)2 —4y2 PR =0

1P+22-D((P=1) . \°
2 (P+1)2—4y2 Px(t))
y?-P

(P +12 - 42)°

= <yzz(t) -

—(P+2y2 =17 P*2(1)?> =0

which has the solutions

=it l%2 yz_PPA(t)
zZ = — - X .
e T (P+ 172 —4p2

Thus for positive X(¢),

i Lipyo2_pnt=t=2 yz_PPA(t)
== - (),
S T (P+ 172 —4y2
P—1+2y/y2-P
L P+ Uy TYO
22 (P+1)2 —4p2

From the definition, it is clear ttlat th_e vertex of / 1 + 1) lies closer to the origin,
than that of I_, (7 + 1). Thus # (I; n I,) < 1 is equivalent to

-1

P Vi -P , 1 5, P—1-24/y2-P

— | 1 -2——y~z(¢ X() £ —=(P+2y~-1 Px(1),
2;/2( p_1 7 0 Q) 2y2( =1 Pr1p—4, ®
which simplifies to (I7). The case when X(¢) is negative is similar. O
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80 T T
60
~ 40 ~

20

1 ¥ 1
0 (|a|‘+\/a2—‘+—l)\/a2‘+l
-1 =05 0 0.5 1
a a

Figure 4. Guaranteed bound on the #,-gain from disturbances to error under feedback with
the certainty equivalence controller with respect to a. We note that experimentally y is lower

bounded by (|a| + Va? + 1)V/a? + 1 and upper bounded by < 2.1a*> + 2. The lower bound
becomes tighter as a increases.

6. Conclusions

This article presents a constructive approach to accounting for worst-case models
of measurement noise, disturbance and uncertain parameters in controller design.
In particular Theorem [6] shows that it is necessary and sufficient to consider feed-
back from the current states of a finite set of observers and cumulative performance
measures. The performance measures compress the history allowing the controller
to learn from past data. In Section [5] we used this constructive approach to extend
the results of [Vinnicombe,|2004] to the case of noisy measurements. We focused on
scalar systems, but Theorems [5|and [6] can easily be extended to MIMO systems. In
particular, we are excited about the potential in extending Minimax Adaptive Con-
trol [Rantzer, |[2021] to the output feedback case.
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Figure 1. Interconnection of the stable system G and uncertainty A considered for robust
stability.

Paper IV

v-Analysis: A New Notion of Robustness for
Large Systems with Structured Uncertainties

Olle Kjellqvist John C. Doyle

Abstract

We present a new, scalable alternative to the structured singular value,
which we call v, provide a convex upper bound, study their properties and
compare them to £, robust control. The analysis relies on a novel result on
the relationship between robust control of dynamical systems and non-negative
constant matrices.

1. Introduction

We consider a system to be robust if it is unlikely to fail. The usual setting to analyze
the robustness of a system is to study how it interacts with uncertainty. Standard
approaches impose structure on the uncertainty and certify robustness against its
size. However, the way we currently measure the size of uncertainty is unsuitable
for large-scale networks.

To see this, consider the standard robust control set-up in Fig.[l| G is a stable
causal linear system with » inputs and outputs. A is unknown but belongs to the set
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2 consisting of diagonal linear time-varying (LTV) systems that are strictly causal,
stable, and have n inputs and outputs. We want to determine which of the following
two systems are most likely to fail:

x4+ 1) =6;x,() x1(t+ 1) =6;x,(t)
. X2(t + 1) = 62X2(t) xZ(t + 1) = 52X3(t)

Pl . . s, Ep oo .
X, (t+ 1) = 6,x,(1) X, (t+ 1) = 6,%x,(1).

P, is a set of decoupled first-order systems with uncertain time constants, and P,
is a delayed ring with uncertain weights. Robustness measures based on structured
singular values [Zhou and Doyle, |1998}; |Dullerud and Paganini, 2010] or ¢ robust
control methods [Dahleh and Khammash, |1993|] agree that both systems are robust
against diagonal uncertainties whose largesﬂdiagonal element is bounded by one. It
is tempting to conclude that P| and P, are equally likely to fail. A more careful study
reveals that destabilizing P, is easy; a constant gain |6, | > 1 for any k will render the
closed-loop unstable. However, all of the uncertainties must simultaneously be large
(I8¢ 11118511 -+ 18,1l = 1 to destabilize P,. In plain words, destabilizing P, requires
large globally coordinated perturbations directly affecting every node.

This article proposes a new robustness measure \E] that captures sparsity in the
uncertainty. v is large for systems that are easily destabilized by sparse perturba-
tions and small for systems that can withstand sparse perturbations. For example,
v(P;) = 1 and v(P,) = 1/n. We focus on diagonal linear time-varying and nonlin-
ear uncertainty in discrete time.

This work is primarily motivated by recent progress to distributed and localized
controller design for large-scale networks [Anderson et al., |2019]], modeling and
analysis of the feedback in neuroanatomy [Stenberg et al., [2022} |Li, 2022} [Sarma
et al.,[2022]] and the need for better control methods for emerging large-scale sys-
tems such as smart-grids and intelligent transportation systems. It is similar in spirit
to [You and Matni, [2015]] where the authors considered a sparse H, analysis, but
differ in that we consider systems in input/output form. Another approach to reduce
conservativeness is to consider stochastic formulations for multiplicative uncertainty
as in [Bamieh and Filo, [2020]).

1.1 Outline

Section [2] introduces notation and gives some background on robust stability for
static and dynamic matrices. We introduce and analyze the new robustness measure
in Section[3|and provide a convex upper bound. Section[d]describes the properties of

'In H_,— and #,-norm respectively
2 The robustness measure v is unrelated to Vinnicombe’s v-gap metric. We apologize for the confusion
caused by overloading v and highlight the need for further research into new Greek letters.
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2 Preliminaries and notation

the upper bound and in Section[5|we show how to compute it and characterize the op-
timal solution. Concluding remarks and directions for future research are contained
in Section[6l

2. Preliminaries and notation

This section contains a brief mathematical background, the reader is referred to the
excellent textbook [Desoer and Vidyasagar, |1975]. Latin letters denote real-valued
vectors and matrices like x € R" and A € R™™. For a matrix A € R™"_ A, ; means
the element on the ith row and jth column, and we refer to the ith element of a vector
x € R" by x;. The p-norm of a vector x € R” is defined by

1 .
i, ie (i) it p e 10,00)
P max; |x;| if p = c0.

For a matrix, A € R"™™  the induced norm from q to p is defined by

|Ax]|
|Al,, = max L.
’ x o xl,
For an infinite sequence x = {x(0), x(1), ...}, x(k) € R", m, = (|x{]|s> "> 1%Xnlo0)

is called the magnitude vector of x and £, denotes the set of all such sequences that
satisfy
Xl := my|o < o0.
We define the truncation operator Pp on £, by
Prx = (x(0),...,x(T),0,...).

By #7 , we mean the extended £ -space: {x € £7 @ (Prx) € £ : T > 0}.
An operator H : 7 — ¢7 is causal if P H = P HP, and time-invariant if it
commutes with the delay operator z~!. We say that H is 7, stable if
Il PHx||
IH[l; :=[H|l,c =sup sup ———— < o0,
: 0 T opxere, NPl
where ||H|| o is called the induced norm on £ . A linear time-varying opera-
tor G is fully characterized by its impulse response (convolution kernel) G(z, 7)
and operates on signals x € 7, by convolution, (GX)(?) = Z;zo G(t, 7)x(7).
Expressed in the elements of its convolution kernel, the induced norm becomes

IGI[; = max; Z;zl sup, Zi:o |G;; (1, 7)|. It will be convenient to express the norm
in terms of the magnitude matrix of G
Gl = 1IGally
Mg:=| i (1
1Gully = NGl

and |G|, = max; 3, M;;.
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Table 1. Summary of matrix induced norms, adapted from [Tropp,2004]]. The norm on the
domain (D) is determined by the column, and the codomain (CD) by the row.

CD\D [ -1y [+ 12 | oo
Bh max; Y1, 1A, NP-HARD NP-HARD
|1, y/max; X 14,12 Z(A) NP-HARD

max;; || 4/ max; Z;l:l |A;;1*  max; E}‘:l [A;;]

2.1 Matrix induced norms and stability of static systems

I leo

Before diving into induced norms for dynamical systems, we explore norms on
constant n-dimensional vectors and square matrices. For a constant matrix M €
R™"robust stability with respect to bounded unstructured uncertainty means that
det(I — AM) is invertible for all |A| < y in some norm. Let % + é = 1, then
det(I — AM) is invertible for all |A[,, < 1 if and only if |[M|, , < 1. See Table
for a table of the most common compatible p-norms.

2.2 Robust stability with diagonal uncertainty
Let & be the set of £ -stable causal linear time-varying operators whose off-

diagonal elements are zero, and D C R™" be the set of diagonal matrices with
positive diagonal entries and define

1

. 2
inf{||Allpo : A €D, (I — GA)~! unstable} 2

Hg(G) =

The following Theorem characterizes robust stability of Fig.[I|as conditions on M;.

THEOREM 8—THEOREM 2 IN [DAHLEH AND KHAMMASH, (1993]]
For A € & with ||Al|, » < 1, the following are logically equivalent :

1. The system in Fig. [I]is robustly stable.

2. p(Mg) < 1, where p(-) denotes the spectral radius.
3. x £ Mgx and x > 0 imply that x = 0.

4. inf pep |[IDMgD ™0 < 1

5. 5y (G) < 1. O
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3 v: Thenew u

3. v:The new u

Inspired by the role of LASSO [Tibshirani,|1996] in favoring sparse solutions to re-
gression problems, we propose using the sum of #; norms, 27:1 [16;1]1- One could
go one step further and study robustness in the £y (number of nonzero §;s) setting.
However, any system that has a nonzero diagonal element can be destabilized by a
local (possibly very large) perturbation and the corresponding robustness measure
will be 1 for almost all systems and not really informative. The new robustness met-
ric, v, hits the sweet spot and is defined as follows:

DEFINITION 1—v

Let 9 be the set of £, -stable causal linear time-varying operators with n inputs
and outputs, whose off-diagonal elements are zero. Given a causal linear system G
with n inputs and outputs

1
inf{Y"_, I6,]l; : A €D, (I — GA)~! unstable} 0

To study the properties of the new robustness measure and its relationship to g,
we require insight into the relationship between that of destabilizing the dynamical
system G and its magnitude matrix M. From Theorem [§] we know that if there
exists a A that destabilizes Fig. |1} then there exists a constant matrix M, with the
same | norm so that I — M, M; is singular, and vice versa. Surprisingly, it turns
out that the bounds on each diagonal entry of A are equal to that of M.

THEOREM 9

Let 9 be the set of £ -stable causal linear time-varying operators with » inputs and
outputs, whose off-diagonal elements are zero. Further, let € C R"™" be the set of
non-negative diagonal matrices. Given upper bounds Eii fori =1,...,nandastable,
causal n X n-dimensional system G, the following are logically equivalent:

1. There exists a A € &, where each diagonal element is bounded from above,
18l < 6;;, such that the system in Fig.is unstable.

00,00 =

2. There exists amatrix M, € €, where each diagonal element is bounded from

above, 0;; < gii, such that I — AM; is singular. O
Proof. We start by showing that the first claim implies the second. Let R, =
Diag(5,, ..., 8,), then A = AR, for some A € 9, [[All;, < 1. As Fig. [1] with
AG = K(R AG) is unstable, we conclude the existence of a diagonal non-negative
matrix M, with |]\?[A|oo’oo <1sothat I — KRAMG is singular. Taking M, = KRA
completes the first part of the proof.

The proof of the converse is identical but starts with M. O
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Theorem@]implies that we can replace the £, norm in (2 with any norm on the
magnitude matrix of A and get yg,(G) = ug(Mg) for free.

Although we do not yet know how to compute v, from Fig.[T|and Theorem 9] we
know that v must be absolutely homogeneous and invariant to similarity transforms
with matrices that commute with &. Furthermore, we can translate the equivalence
relationship between | - |; and | - |, into a corresponding relationship between v and
u. We summarize the above discussion with the following proposition:

PROPOSITION 5
With G, 9, & as in Theorem. (9} let D C R™" be the set of non-negative diagonal
matrices, then the following statements are true:

1. v5(G) = vg(Mg)

2. v5(aG) = |a|v(G) for a € R.

3. vy(DGD™') = vy, (G) for D € D.

4. ug(G)/n < vgy(G) < pg(G). O

The following theorem tightens the lower bound in 4) by zeroing out different
diagonal elements. This result agrees with intuition because we can study how a
system interacts with sparse uncertainty by testing the different sparsity patterns
separately.

THEOREM 10
Given G and 9 as in Definition|l| Let I = (i, i,,...,i,) withm < N and i} # i,
for k # [ be an index tuple, and consider the sub-matrix of M:

M; ;, M; ;.
M, =| : N (3)

Mimil " Mimim
Then vy, (G) > % O
Proof. Assume without loss of generality that i}, = k for k = 1, ..., m. This assump-

tion can always be enforced by renaming the signals. Restrict A by setting &;;, = 0
for k > m. By Proposition [5| v, (G) = vg, (M), so it is sufficient to give the proof
in the constant matrix case. Let A| = Diag(6;y, ..., 6,,,) be the submatrix of A that
is nonzero and partition M into

_ M My,
M = [le M|’

where M|, € R™". Thus I — AMj; is invertible if and only if (I — A\ M) is
invertible, which is equivalent to |A|, , < 1/p(M/). From the fourth property of
PropositionE]we conclude that vg,(G) > p(M)/(m). O
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4 Properties of v.

3.1 An upper bound of v

If the norm on the magnitude matrix of A is one in the upper triangle of Table [T}
then we can use the corresponding dual norm in the lower triangle to construct an
upper bound.

Although the induced norm from oo to 1, in general, is NP-hard to compute, it
coincides with the absolute sum for diagonal matrices. To see this, consider

n n
|Als = sup D 18,x,1 = Y\ 16,l. )
[xleo=1 =1 i=1

Thus, if Mg} o < 1/|A], then I — AMg is non-singular. As vg, is invariant
under similarity transformations with D € D, we suggest the following upper bound:

V5 (G) :=Ii)r€1fD|DMGD‘1|Loo (5)

The 1 to co norm is the maximum absolute element of a matrix, see Table[T] and
can be computed for large-scale connected systems by local evaluation and commu-
nication with the closest neighbors.

We end this section by noting that for positive systems, the H,-norm is achieved
by a stationary input [Rantzer, |2015; |(Colombino and Smith, 2016], so robustness
analysis can be done entirely on positive matrices in that case too. We suspect one
can derive similar results for positive systems as those in this article.

CONJECTURE 1

For positive systems, there exists a similar convex upper bound for a robustness
measure against a causal, diagonal, linear time-varying uncertainty A bounded in
the following norm [|A]| = [[6;]ls + 182lleo + =+ + |6, l oo - O

4. Properties of v.

The lower bound in Theorem shows that if the maximum absolute value is
achieved on the diagonal of M, then the upper bound coincides with the lower
bound and is exact. These types of systems are called diagonally maximal and merit
a formal definition.

DEFINITION 2—DIAGONALLY MAXIMAL

A Matrix A € R™" is diagonally maximal if the maximum absolute element of A
appears on the diagonal. A dynamical system G is diagonally maximal if its magni-
tude matrix M is diagonally maximal. |

The following important corollary follows from applying Theorem [I0]to each
diagonal element.
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COROLLARY 2

If the matrix DMGD‘1 is diagonally maximal for some D € D, then vg(G) =

Going back to the systems P and P, in the introduction, we see that P, is diag-
onal and hence diagonally maximal and vg,(P;) = v (P) = 1. However, for P, the
upper bound is conservative. Indeed, 1/n = vg (P,) < vg(P,) = 1. The following
theorem describes the gap between v and v.

THEOREM 11

With v, G and 9 as in Definition|1{and v as in (3)), it is true that 1 < v, (G)/vg(G) <
n. Furthermore, the lower bound is achieved by systems G that are diagonally max-
imal under some similarity transform D that commutes with <. Pure rings achieve
the upper bound. |

Proof. By construction Vg (G) > vg(G), and by Corollary [2| the upper bound is
exact for systems that are diagonally maximal under some similarity transform that
commutes with .

By IMgli e < |Mgls.o and Proposition [5| we have that Vg, (G) < ug(G) <
nvg (G). It remains to show that the upper bound is achieved for pure ring systems.
After scaling, balancing, and relabeling the signals, a pure ring system is of the form

xl(t + 1) = 511x2(t)’ ey, xn(t + 1) = 5nnx1(t).

By Proposition [5} v, (G) = vg (M), so we will study the null space of I — MgA.
I — M A has a nontrivial null space if for some non-zero w € R",

Wy — Sy,
I-McADw=0 < |27 :533‘”3 =0.
w, — 611w,

If w; = 0, then by substitution we must have w = 0. So assume without loss of

generality that w; = 1. Then we have that I — M ;A has a nontrivial null space if
and only if

511 6nn =1 (6)

We proceed to lower bound Y7, §;; by minimizing it subject to (€). Substitute

Opn =1/ H:’;ll 0;; into the sum to transform the constrained optimization problem

into a convex optimization problem over 6;; > 0 with the solution min;_ Z?:l oy =

n. Substitute the lower bound on a destabilizing A into Definition [1|to get vy (G) >

nvg(G) as vg(G) = 1. Since the upper bound is equal lower bound, we conclude
that the bound is achieved. [l

By the discussion in this section it is clear that even though v bounds v, the
gap can be pretty significant. It stands to reason that v is exact for some class of
disturbances.
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5 Computing v

CONJECTURE 2
v is exact for some class of norm-bounded disturbances. O

We conclude this section by studying 2 X 2 matrices.

4.1 A closed-form formula for 2 x 2 matrices

Consider without loss of generality, matrices M € R>*? of the form

x 1
M= [1 y].
If x > 1 or y > 1 we know that v, (M) = max{x, y} soonly the case 0 < x,y < 1

remains. We begin by parameterizing all destabilizing A in §,,. Setting the determi-
nant to zero we get

1 1
51,
det(M) (y Tz det(M)622> 1

Thus v (M) = 611(05y) + 69, 1s convex on the domain [0, 1] and the minimum is
achieved either on the boundary or at a stationary point. For 0 < x,y < 1 we have

that
y—1 x—1 det(M)

M)’ V%(M) =

8 = —\ =2 _— 7
7 det(M)” "2 det x+y-2 )

In Fig. [2 we compare the new robustness metric v, the upper bound v and u for
2 x 2-matrices. We see that v is exact for and only for matrices that are diagonally
maximal under some D € D and conclude that even for diagonally maximal sys-
tems, v and p can be very different. As the closed-loop maps generated by system-
level synthesis often seem to be diagonally maximal, we conclude that for a large
class of relevant systems, computing both v and y gives additional information into
the nature of destabilizing disturbances even for this class of systems. Based on this
observation we state the following conjecture.

CONJECTURE 3
V(M) = vg(M) only if DM D! is diagonally maximal for some D € €. O

5. Computing v

5.1 The convex approach

This section explains how to formulate v as a linear program. Let M € R™" be a
positive matrix. We want to compute

d.
inf max{Mij—'}. 3)
DeD ij dj
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2 o®® 0 |
()
2
3 1.5+ a
1, .
| | |
1 1.5 2
v/v

Figure 2. Comparing the £,-robustness metric 4, the new metric v and the upper bound v
. w . —

for matrices of the form M = [;‘) y] for x, w, y € [0, 1]. The matrices along the v/v = 1

line are the diagonally maximal matrices. In the bottom left corner we have the identity matrix,

in the top left corner we have the matrix [i i] and in the top right corner we have [(1) (l)] .

As the logarithm is strictly increasing, (8) is equivalent to
min Q?x{IOg(M,-j) + log(d;) — log(d))},
where we use the convention that log(0) = —co. Let §; = log(d;), then (8) is equiv-

alent to the following linear program that can be solved efficiently using simplex or
interior-point methods [Todd, [2002]:
minimize y
PER" yeR (9)
subject to:  log(M;;)+ p; — f; < 7.

5.2  Characterizing the solutions of the upper bound

We will relax the positivity assumption of d, ..., d, (8) to allow d;s to be zero.
Consider the function
d .
M. L ifM.>0
GgM.ijy=q T4 (10)
0 it M;; =0.
Then (8] is equivalent to
inf M,i,j). 11
dl’.{ﬂdnzon}?x $a(M.,i,j) (11)

The following theorem shows that if for some D € D, the maximizing indices
of DM D~! only consists of loops, then D minimizes (TT).
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THEOREM 12—SUFFICIENT CONDITION FOR OPTIMALITY
Given a non-negative, non-zero matrix M € R™" and non-negative constants
dy,...,d,. With ¢ as in (T0), let T be the set of maximizing indices of (8}, i.e.

1= {(k,l) oMLk, 1) = maxqbd(M,i,j)}.
ij

If for all (k,!) € 1 it holds that

$a(M, k1) = max ¢q(M., 1, j). 12)

Then dy, ..., d, is an optimal solution to (8). [

Proof. First, we show that T must contain at least one loop. Let (j,,j;) € I, and
let ji be the smallest integer such that ¢, (M, ji, jii1) = max; ¢,(M, jy, j). By
induction (ji, ji4+1) € I. Furthermore, as » is finite, and the selection rule for j
is unique given j, thereisa K > Oanda T > 1 so that j,_ r = j, forall K > K.
We denote the limit set containing such points by I, = {j, : k > K}.

Assume towards a contradiction that there are d {, .., d) sothatmax;; ¢, (M, i, j) <
max;; ¢,(M, i, j), and let (jo,j;) € Z,. Assume without loss of generality that
dj’.1 > d;, otherwise multiply every dl.’ by a positive constant so that the assump-
tion holds true. Let j, = argmax; ¢,(M, j, j). By assumption, it must hold that
d}z >d; d’ /d; . Continuing, we have that

)27
! d
’ Jk+T-1 Jk
Jk+T Jk+T d. Jk+T d.
Jk+T-1 Jk
However, since j, 7 = j, we have that d; > d; which is a contradiction. O

By the above theorem, we know that if the maximum is achieved on a loop, then
the solution is optimal. It turns out that an optimal solution must contain a loop. This
is because if the maximum is achieved on a chain, we can perturb the scales at the
end of the chain to make that value smaller, making the chain shorter. Repeating this
process reduces all the elements in the maximal chain. We formalize this statement
in the following Lemma:

LEMMA 6
Let d, ..., dy be an optimal solution to (TI)), and let Z be the set of maximizing
indices as in Theorem[I2] Then T contains at least one loop. O

Proof. 1f the optimal value is zero, all diagonal elements must be zero, and (i, i) €
T implies that 7 contains a loop. Assume towards a contradiction that 7 does not
contain a loop and that the optimal value is greater than zero. Let (j,, j;) € I, and
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let ji be the smallest integer such that ¢, (M, ji, jii1) = max; ¢4(M, jy, j). By
assumption there is a k such that

Da(M. > Jer1) < max ¢y (M. 1, ji) 13)

This means that there is a d ,’( > 0 that decreases the right hand side of (T3)) so that the
inequality still holds for j,, but also holds for j,_;. By induction, this must hold for
1,..., k. Repeating for any other chain in 7, we conclude that max;; by(M,i,j) >
max;; ¢ (M, i, j), contradicting optimality. O

Theorem [12]and Lemma [6]indicate a relationship between solving (TT) and bal-
ancing the matrix M in the maximum absolute element norm. The following theo-
rem strengthens that connection and shows that we can always find a solution to (TT))
by balancing M.

THEOREM 13
For any non-negative matrix M € R™", there exists a non-negative solution

dy,...,d, to (1)) such that
max ¢p,(M,r, k) =max¢,;(M,k,c), Vk=1,...,n (14)
r#k c#k O

Proof We begin by proving the existence of a solution. Assume there is a sequence

iy, such that M; ; .M, ; #O0fork =1,...,m. Then (§) is bounded below
by mln{ M; Js M;;} and @ is equlvalent toa hnear program with a bounded solution
and the mlnlmum is achieved by some dy, ..., d,,. If the assumption is false, we can

take d = 0 and the optimal value is zero. If M is a diagonal matrix, then the claim
holds trivially. Assume M is not diagonal and let M be the matrix where M =M,

for i # j and M;; = 0. Then d, ..., d, are optimal for M if and only if they are
optimal for M. Note that (T4) holds for a maximizing loop of M. Let d,, ..., d, be
an optimal solution to (8] for M. By Lemma @ the set of maximizing indices 1
contains at least one loop. Remove the rows and columns pertaining the loop from
M to get the smaller matrix M. By recursion on M, we end up with a new set
d;,...,d}’q so that (T4) is true. |

5.3 An algorithm for balancing the magnitude matrix

We end this section with a simple heuristic algorithm for computing (8) that results
from enforcing (I4) coordinate-wise in Algorithm [T} The algorithm is similar to
Osborne’s algorithm for balancing matrices in the Frobenius norm [Osborne, |1960)],
but balances a matrix in the maximum absolute-element norm and can be computed
using local information and communication with the closest neighbors. We show
some empirical convergence properties in Figs. [3] and 4} We remark that naively
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Algorithm 1 Heuristic algorithm for solving (8)

Require: Non-negative M € R™" 9 € (0,1), T.
di[1] < 1foreachk=1,...,n
fort=1,...,T do
fork=1,...,ndo
_ \/Max,.x M, d,.[t]
di[t+1]1 < (1 = 0)d, 1]+ 9——max#k AT

end for
end for

Iterations / N

10° 10! 1072 1073 1074
Relative Tolerance / €
Figure 3. The largest number of iterations N required to reach a relative tolerance level for

500 randomly generated non-negative matrices M € R!ZX128 with respect to tolerance. 6
ranges from 0.2 (light) to 0.9 (dark).

taking # = 1 may cause the algorithm to fail to converge. Consider the matrix,

0 1
w=]e o

Then d(2) = x and d,(2) = 1/x, leading to DQ)M D 1(2) = MT and the iteration
will continue to oscillate back and forth. This is because we are updating each coor-
dinate simultaneously, which is desirable for localized computation. Introducing the
interpolation 6 € (0, 1) seems to solve this issue. Based on the numerical resultsE|
we conjecture that our algorithm is guaranteed to converge.

CONJECTURE 4
Algorithm |1|always converges. Moreover the number of iterations required to reach
a given tolerance is of O(n) for a fixed €, and O(V e~ !) for fixed n. O

3 A Julia implementation of Algorithm [I| can be found at https://github.com/kjellquist/
NuSynthesis.jl,
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Iterations / N

Size / n

Figure 4. The largest number of iterations N required to reach a relative tolerance level of
1072 for 500 randomly generated non-negative n X n-dimensional matrices with respect to
dimension #. 6 ranges from 0.2 (light) to 0.9 (dark).

6. Conclusions

This work introduced and analyzed a new robustness measure v that reasonably han-
dles sparsity. We provided a convex upper bound v, characterized its sub-optimality,
and gave simple ways to compute it in a distributed way. The companion paper, [Li
and Doyle, |2022]] shows how to compute robust controllers for large-scale systems
using u and v. Throughout this article, we gave four conjectures representing im-
portant research topics. We conclude with a final conjecture on the computation of
2

CONIECTURE 5
There exists a polynomial-time algorithm to compute v within arbitrary precision.[]
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Paper V

On Infinite-horizon System Level Synthesis
Problems

Abstract

System level synthesis is a promising approach that formulates structured op-
timal controller synthesis problems as convex problems. This work solves the
distributed linear-quadratic regulator problem under communication constraints
directly in infinite-dimensional space, without the finite-impulse response re-
laxation common in related work. Our method can also be used to construct
optimal distributed Kalman filters with limited information exchange. We com-
bine the distributed Kalman filter with state-feedback control to perform lo-
calized LQG control with communication constraints. We provide agent-level
implementation details for the resulting output-feedback state-space controller.

1. Introcution

In recent years, control design for networked dynamical systems has seen tremen-
dous interest and progress. An important problem is to impose structures on the
controllers, such as sparsity for distributed or localized control [Lessard and Lall,
2012;|Wang et al., 2014], and communication delay constraints [Wang et al., 2014;
Feyzmahdavian et al., 2012]. Such control design problems are challenging due to
the non-convex nature of the problem [Rotkowitz and Lall,|2005].

Lately, researchers have focused on novel controller parameterization that admits
convex formulation [Wang et al., |2019; [Furieri et al., 2019; [Sabuau et al., 2021]],
with System Level Synthesis (SLS) emerging as a promising and unified framework
for structured controller synthesis [|Anderson et al., [2019]]. A vital feature of the
SLS framework is that both the synthesis and the implementation of the structured
controller can be done locally, thus scaling favorably with the number of subsystems
in a network.

All current SLS-based control methods require both the parameterization and
implementation to have finite impulse responses (FIR), with the exception of [[Yu et
al.,[2021}; [Fisher et al., [2022]]. This is because optimal controller synthesis, despite
the choice of convex reparameterization, is an infinite-dimensional non-convex op-
timization problem over dynamical systems. The current method of choice to relax
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the problem into a tractable finite-dimensional optimization problem is to restrict the
optimization variable to having a finite impulse response. Such relaxation technique
is required for many parameterizations other than SLS [Zheng et al.,[2022]]. Although
previous work almost exclusively uses FIR approximations, we emphasize that FIR
is not a requirement for SLS, but rather a convenient way to use off-the-shelf opti-
mization software. Therefore, lifting the FIR constraint will render SLS applicable
to detectable and stabilizable systems.

An exception is [Yu et al., |2021]], where the authors showed that a class of the
infinite-horizon state-feedback SLS problem has natural connections to the Riccati
solution for linear quadratic regulator (LQR) problems. The resulting SLS controller
has a state-space form that significantly reduces the required memory compared to
the FIR SLS controllers.

It is a natural next step to investigate the correspondence between infinite-
horizon output-feedback SLS and the linear quadratic Gaussian (LQG) control
[Kalman et al.,[1960; [Wonham, [1968]].

Contribution. This paper generalizes a previous result on infinite-horizon state-
feedback SLS problem, and investigates a class of infinite-horizon output-feedback
SLS problems. In particular, we study an output-feedback SLS problem that corre-
sponds to a class of LQG problems with structural constraints expressable as convex
sparsity constraints under the SLS parameterization. Our contribution is three-fold.
(1) We generalize the result on the infinite-horizon state-feedback SLS solution [Yu
et al., 2021] to scenarios where communication delay constraints among subsys-
tems in a network can be incorporated into controller synthesis and implementation.
(2) We provide a suboptimal solution to a class of infinite-horizon output-feedback
SLS problems. Our solution leverages an analogous separation principle for SLS pa-
rameterization, where the proposed generalized infinite-horizon state-feedback SLS
solution is used. A key advantage of our approach is the ability to compute the pa-
rameters of each subsystem locally in one swoop using local information without
iterations or communications among subsystems, which were required by previous
methods. (3) We demonstrate an internally stabilizing output-feedback controller
that is distributed and localized based on the proposed suboptimal solution. The
proposed state-space controller has a fixed, low memory requirement, unlike exist-
ing FIR-based SLS controllers where the length of the memory grows linearly with
the FIR horizon.

Paper Structure. We introduce the infinite-horizon SLS problems and related
concepts in Section [2] Section [3] proposes a generalized approach that solves the
infinite-horizon state-feedback SLS problems with communication delay and local-
ization constraints. In Section[d] we construct a suboptimal solution to the infinite-
horizon output-feedback SLS problem using the proposed optimal state-feedback
solution. In Section[5] we show the implementation of the state-space controller as-
sociated with the constructed suboptimal solution. Section[6]demonstrates numerical
simulation that corroborates with the theoretical results.

Notation. Bold font x and G denote signals x = {x(t)}fi0 with x(r) € R",
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and proper transfer matrices G(z) = Z;’io z~!G[i] with convolution kernels G[i] €
R™" The j standard basis vector is denoted as e ;- For amatrix A, A(i, j) refers to
the (i, /)™ element, A(i, :) to the i row and A(:, j) to the j™ column. Non-negative
integers are denoted as N, . We write A > B (A > B) to mean that A — Bis a
positive (semi)definite matrix. We use RH, for the space of all proper and real
rational stable transfer matrices and denote F' € éIRH00 if and only if zF € RH .

2. Preliminaries

We consider the following dynamical system

x(t + 1) = Ax(t) + Bu(?) + w(t)

ey
y() = Cx(1) + v(0),

where w(t) ~ N'(0, W), and v(t) ~ N(0,V) are respectively state and measure-
ment noise independently and identically drawn at each time from the zero-mean
Gaussian distributions. Here W and V are positive definite matrices. The general
control design objective is to synthesize a linear controller K such that control ac-
tion computed as u = Ky stabilizes the closed-loop system while optimizing over a
quadratic cost J(x,u) := limy_ E Z,T=o x(t)" Rx(t) + u(t)" Qu(t), with Q, R > 0
. This is known as the linear quadratic Gaussian (LQG) problem, where the opti-
mal controller is given by the combination of a state-feedback controller and a state

observer[Kalman et al.,|1960]].
In this paper, we investigate a distributed variant of the LQG problem, where
(T is constructed from a network of heterogeneous subsystems with dynamical cou-
pling. In particular, we aim to design a stabilizing output-feedback controller that re-
spects communication delays and localization constraints. For detalied discussions
of such constraints, we refer interested readers to [Yu et al.,2021;|Wang et al., 2018]).

2.1 System Level Synthesis

The SLS theory approaches the constrained output-feedback control design prob-
lem described above by characterizing all achievable closed-loop mappings (CLMs)
from w, v to X, u under an internally stabilizing controller K. Then, using any achiev-
able CLMs, SLS provides an implementation of the controller K that realizes the
prescribed CLMs. This is made precise in the following result.

THEOREM 14— [ ANDERSON ET AL., 2019]|
D D

XX° C XYy’ Cuxe

Strictly proper linear CLMs ® P, € iRHm can be achieved by a
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linear internally stabilizing controller K if and only if

[ ()
I-A -B||. > Y| =|I 0 (2a)
CEVEE ] ool BT .
o, D |zI-Al |1
o 2 [ =) »

. X
where @, , (I>xy, LR (I)uy maps w,Vv to X, u under a controller K, i.e., [u] =

[q)x" Dy ] [W] . In particular, K can be implemented as the following, which is
L (I>uy v
illustrated in Figure [T}

~

Zﬂ = (I)xxﬁ + (I)xyy

~ 3
u=>o, f+P,y,

where (f)xx = z(I — z®, ), (i)ux =z®,, &)xy = —z®,,, and f is the controller
internal state. O

Further, it was shown in [Wang et al.,[2019] that (2)) is equivalent to stabilizability
and detectability of (I). Therefore, (3)) parameterizes all internally stabilizing linear
controller K for ().

A special case of Theorem [I4]is when the controller is state-feedback, i.e.,u =
KXx. In this scenario, the SLS CLMs reduce toonly ®,,, : w - xand®,,, : w > u
with the following variation of Theorem[14]

THEOREM 15— [WANG ET AL.,[2019]
For the dynamics (I) with C = I and v(r) = 0, CLMs ®,,,, and ®,,,, can be achieved
by a linear internally stabilizing controller K if and only if

[z -A -B| [$XW] =1, ®, P, € %IRHOO. “)
uw
O

2.2 System-level Constraints (SLCs)

In this paper, we consider a networked system (T)) composed of N subsystems, where
each subsystem i has the following dynamics

X+ =Y (Ayx;(0)+ Byu,) + w,(0) (5)
JEN ()
y,-(t) = ij,‘(t) + Uj(t) (6)

where we denote j € JV;I:I (i) if the states and control actions of subsystem j af-
fect those of subsystem i in k time steps through the open-loop network dynamics.

102



2 Preliminaries
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Figure 1. Output-feedback controller architecture. Here, &)xx =z(I — z®,,), (i)ux =z®,,
and ®, = —z®, . The controller is internally stable; the closed-loop maps from perturba-
tions (8,. 8,, 8,, 6,) to internal signals (x,y, u, B) are stable.

Analogously, we write i € N, Okut( Jj) when the states of subsystem i are affected by
subsystem j via dynamics in k time steps.

For such systems, it is common to impose structural constraints such as localiza-
tion requirement and communication delay for control design. A large class of such
structural constraints can be characterized as convex constraints on CLMs. This is
called the system-level constraints (SLCs) [Wang et al., 2019]]. Examples of SLCs
include sparsity constraints on the Youla parameter, QI subspace constraints on con-
troller K, and FIR constraints on the closed-loop responses to noises.

In this paper, we consider the family of SLCs that can be formulated as sparsity
constraints on the CLMs. This family includes disturbance localization and com-
munication delay constraints considered in [Yu et al., 2021]]. We denote any such
sparsity constraints as S := {S[k]}l‘;"=1 where each S[k] € {0, 1} are binary
matrices specifying the sparsity of the kernels of CLMs. Specifically, we consider
the localization SLCs, which specifies how disturbances at each subsystem must be
localized to a neighborhood.

DEFINITION 3—LOCALIZATION SLCS
AnSLC S = {S[k] ]‘f:l is called the localization SLC if S[k] for all k are the same
binary matrices. |

In addition to disturbance localization which assumes instantaneous information ex-
change within a localization neighborhood, one may wish to incorporate communi-
cation delay SLC&{H Let Sp(-) denote the support of a matrix.

!'Such delayed localization pattern corresponds to scenarios when communication delays allow dis-
turbances to propagate through dynamics, before subsystems are able to completely attenuate and
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DEFINITION 4—D-DELAYED LOCALIZATION SL.CS

For a fixed integer d > 1 and sparsity pattern of the dynamics A := Sp (A), adelayed
localization SLC is such that S[k] = Sp (A¥) for k < d and S[k] = Sp (A4) for all
k>d.

This is sometimes called the (A, d)-sparsity [Wang et al.,|2014] and generalizes the
localization SLCs. We say ®, € S if @ [k] has the same sparsity pattern as S[k]
for all k € N,. For the rest of paper, we consider d-delayed localization SLCs for
structured controller synthesis. We assume that any given SLCs are feasible for the
underlying system.

2.3 The State-feedback and Output-feedback SLS Problem

Given d-delayed localization SLCs S, and S, specifying the state and input closed-
loop sparsity respectively, we now state the output-feedback (OF) SLS problem

[Wang et al., 2019].
o2 o |[@, @,][W'/? o0
0 RZ2||l®, D 0o vz

ux uy

min
DeiRMH,,
s.t. Constraints (2),
@, [k], Dy, [k] € S,[K] for k € N, (OF-SLS)
O, [k], D, [k] € S, [k] for k €N, .

2

where we used @ to collectively refer to the tuple ((I)xx, DD, (I)uy) to reduce
notation. Control problem is similar to the classical LQG problem but
differs in the additional constraints on the system responses that corresponds to dis-
turbance localization and information delay.

As a special case, the state-feedback (SF) SLS problem is

% e fo]

0 R7Z||®,, "

s.t. Constraints (@) (SF-SLS)
@ [kl € S [k], ®,,[k]€E S,[K]forkeN,.

min

xw7q)uw

D

In this section, we derive the optimal solution to (SE-SLS). This generalizes [Yul
et al.,[2021]] to account for the delayed localization constraints. This solution allows
the subsequent output-feedback controller synthesis.

localize them. For ease of exposition, here we consider a communication delay pattern among sub-
systems that matches the dynamics. The results in this paper can be generalized to broader classes of
communication patterns.
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Because is column-wise separable [Wang et al.,[2018]], we will syn-
thesize the closed-loop maps one column at a time so that each subsystem can syn-
thesize the columns corresponds to its local states, in a parallel fashion. Such paral-
lel synthesis scales favorably with the number of subsystems in the network. From
here on, everything will be seen by the ith subsystenﬂ Let ¢, := P, (:,i) and
@, = ®,,(:,i) with kernels ¢ [k] and ¢,[k] for k € N_, respectively corre-
sponding to the ith column of @, and ®,,,. Furthermore, we use s, [k] and s,[k]
denote the ith column of .S, [k] and .S, [k] respectively. Each corresponding column
problem to be solved locally by subsystem i becomes

min Y ¢,[k]' 0@, [k] + ¢,[k]" Rg,[K]

PoPu T

st. @lk+1]= Ag,[k] + Bo,[k] (7a)
ox[01=0, ¢,[l]=¢
oxlk] € s,[kl, @,lk] € s,[k]. (7b)

This new problem is a constrained linear quadratic optimal control problem, and
would be a standard infinite-horizon LQR problem if not for the sparsity con-
straints (7b). We will show how to transform this problem to a finite-horizon LQR
problem with time-varying dynamics.

3. Derivation of the Optimal Solution

Let n,[k] be the number of nonzero elements in the n-dimensional vector s [k] and
n,[k] be the number of nonzero elements in s,[k]. Then there exists a surjective
matrix M, [k] € RO=kDX" and an injective matrix M, [k] € R™ "kl such that
is equivalent to

M, [klo k] =0, @,[k] = M,[k]q[k], ®)

where g[k] € R”[* becomes the new variable. In particular, one can construct
M [k] by horizontally stacking standard basis vectors with nonzero positions cor-
responding to the positions that are zero in ¢, [k]. On the other hand, M,,[k] can be
obtained similarly but with basis vectors corresponding to the nonzero positions in
@,lk]. Since @, [k + 1] is uniquely determined by ¢, [k] and ¢, [k], substitution of
() into yields

M, [k + 1]Ap, [k] + M, [k + 1]1BM,[k] q[k] = 0. C))

g

Flk]

2 To reduce notation, we assume each subsystem has scalar dynamics. One can alleviate this assumption
by running the algorithm for multiple columns per subsystem.
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The solutions to (9) can be expressed as
qlk] = FIk1" M [k + 11A@,[k] + N p[klr[k], (10)

where Np[k] € R7ulkIxm k] §g bijection onto the nullspace of F[k]. The vector
rlk] € R is now our new unconstrained optimization variable. Substituting
@ k] = M,[k]q[k] and (T0) into the optimal control problem we get the equiv-
alent time-varying LQR problem

. T A
r[kgﬁ%kl k; ((Px[k] Olklo,lkl+
21k Z o, [K] + r[k]TR[k]r[k])
s.t. @[k + 1] = Ag, [k] + Blk]r[k] (11)

9,01 =0, o,[l]l=c¢;,
where

k[k] = M, [K]F[k]' M [k + 1]A

Z[k] = Np[k]"M,[k] Rx[k], O[k] = Q + «[k]" Rx[k]

R[k] = (M,[KIN p[k])T RIKIM,[KIN (k] (12)
Alk] = A - Bk[k], B[k] = BM,[k]Ng[k].

Finally, we note that for k > d + 1, the localization patterns are constant, implying
that the dynamics matrices of the transformed problem are static for k > d + 1. Stan-
dard dynamic programming arguments allow us to first solve the Riccati equation
for the time-invariant problem for k > d + 1 to get the positive definite solution X,
and the feedback gain K, , and then to solve a finite-horizon time-varying problem
by replacing the cost function of each column problem (IT) with equivalent cost
function

d
J=y ((px[k]TQ[k](pX[k] +2r[k]" Zop, [ K] + r[k]TR[k]r[kJ)
k=1
+o.ld + 11" X, o.[d + 1]. (13)
To obtain X, and K,, we invoke the results in [Yu et al., 2021] for the time-
invariant problem for with staic localization pattern. Finally, the solution to the time-

varying finite-horizon problem (1)) with cost is given by the Riccati iteration
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3 Derivation of the Optimal Solution

with X[d + 1] = *,and fork=1,...,d,

X[k] = Olk] + A[k]" X[k + 1]A[k]—
(Atk1" X[k + 11B[K] + Z[K])
- (RIK] + BUkT" Xk + 11BIKk1) ™ (BIKI" X[k + 11A[K])
Rkl = (RIK] + BIKI Xk + 11B[K]) ™
- (BUK"X [k + NA[K] + Z[K]") . (14)
Substituting r[k] = IZ[k](px[k] into (T0) and further into (@), one can obtain the

solution to the original problem (7). We formally state the optimality of the proposed
solution.

THEOREM 16

Fix delayed localization SLCs S, and S,,. The optimal solution to the infinite-horizon
state-feedback SLS problem in is given, in a column-wise fashion, by

Ai Bi Ai Bi
F x oo - .
( l) - [ C’ 0 :|’ (I)uw(-,l) = [ Ké]: 0 ] s (15)
where
0 0
A Acp 11 0 0
Agp = 0 Ac21 O 0
0 0 - i i :
Acpld]  Acp xi
i T
BISF:[e-l!— 0 ..0] :[[ TI... I]
KéF = [ 1[1] K1[2] K,[d] K*,i , (16)

(]

with K;[k] and Acy ;[k] := A[k] — B[k]K[k] computed using (T2) and (T4) for
the ith column problem. Matrix ACL % and K*, are given by the infinite-horizon
solution with static localization SLCs S, = S,[d] and S, = S, [d] using the method
in [Yu et al.,[2021], Section IV.A].

Proof. The optimality follows directly from the column separable property of
(SF-SLS), and the equivalent transformations between and (TI). The finite-
horizon LQR problem with cost (T3] is equivalent to (IT) by Bellman’s optimality
principle. It is straightforward to verify that (I3) is a state-space realization of the
solution to by substituting the optimal solution r[k] via into (10). |
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Compared to [Yu et al.,[2021]], the state-space realization of the optimal CLMs given
by our approach has a higher order because of the first d-delay pattern. If we let the
first d delay sparsity pattern to be the same as the localization pattern, then our
approach subsumes the results in [Yu et al.,[2021].

Given the column-wise state-space description of the optimal CLMs @ (:,i)
and <I>;‘ (&51), we can adopt the same state-space agent-level controller proposed in
[Yu et al., {2021} Section IV.B] by simply replacing the state-space implementation
of the CLMs with the ones presented here.

3.1 Structured Kalman Filter Design

Theorem([I6]can be used to solve the dual problem of optimal structured Kalman filter
design with delayed localization SLCs for (T)) [Wang et al.,[2013]). In particular, the
optimal structured infinite-horizon CLMs that map w and v to state estimation error
e under a linear observer L with respect to the mean estimation error is given by the
solution to the dual problem of as shown below:

W1/2 0 ] [(DT ]
min e 17
D, D, €L RH H[ 0 iz @, H,
subject to (@, @,] [ZI_ _CA] iy (18)

®,, €S, P, eS8,

Readers are referred to [Wang et al., [2015] for detailed derivation. We highlight
the resemblance between constraints @) and (I8)), and (2). In what follows, we will
use the optimal solutions from the state-feedback and Kalman-filter SLS problem to
construct a suboptimal solution to the output-feedback SLS problem.

4. A solution Inspired by Separation Principle

It is well known that for a linear system, observer-based feedback is always stabi-
lizing if the observer error dynamics are stable and the feedback gain stabilizes the
state-feedback case. In [Wang et al., |2019]], the authors pointed out that a similar
property holds for CLMs from state-feedback and Kalman-filter SLS problems de-
scribed in Section[3

THEOREM 17— ANDERSON ET AL., 2019]|

Assume there exist stable and strictly proper transfer matrices ®5F = (®SF ®SF)
xXw uw
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5 Local Controller implementation

Figure 2. Controller implementation of Fig. after plugging (T9) in the controller (B).

KF — (@pKF PpKF) caticfyi
and @ = (@, , @) satisfying

ew’

PdSF
[z1-A -B| [ q;%}f] I,

I.

KF kr) |2 — A
[(I)ew (I)eu [ _C ]
The transfer functions

@, =0 + ok — @FF (21 — A)DKF
D, =D —®F (21 - A)DKF

19)
@, , = O — @ (21 — HDKF
D, = - (zI - A)DET
are strictly proper and satisfy (2)). O

Then, output-feedback controller (3) can be constructed using CLMs from (T9)
to stabilize (T)) while respecting the prescribed localization and communication delay
constraints.

5. Local Controller implementation

This section describes Algorithm 2] which summarizes the local implementation of
the global controller (3)) in Fig. [Tusing the localized state-feedback controllers and
Kalman filters of Section[3and Theorem [17]

Globally, the controller after plugging (T9) in the controller (3)) is shown in Fig. 2]
Consider the intermediate signals in Fig.[2]
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v v
——t
— SF KF KF
{=-@ (zI -A)D,'y+ @,y

— SF KF
0 =~ WL - APy 0

> =

w
s r ~ — =
F KF KF
a=®F (Bl - AP p)+ oKP'p,
SF KF
y=@,,8-cI-AD, p).

With these intermediate signals, we can compute the controller internal state f and
the control signal u in Fig.[I|from zf = —z(Aa + B,y) — z{, and u = zy + 6.

Locally, due to the communication constraints specified in Section[2.2] one can
not carry out the computation described above in a centralized way. In particular,
the local computation of each signal in (20) involves delayed and locally available
information. We now describe the information exchange among subsystems and how
they compute (20). Recall that the state-feedback solution @5F and Kalman-filters
®XF from (T3)) are synthesized to respect the communication constraints expressed
as d-Delayed localization SLCs. Denote

AL | B!
(i) = l e ] . @1
I |0

Then ®5F (2, i) = CL®5F(:, i) and DSF (2, i) = KL DSF(:, i) where C{ and K,
are from (I6). Computing the local components of & and f requires only one real-
ization of (Ir:’UF as they can share the same copy of the states within each subsystem.
An analogous statement holds true for ¢ and 6. Denote the two realizations of 1)
as d)ifa and (I)i;Fg' During each time step ¢, every node observes its local output y;(¢)
and goes througil four stages of computation and communication with its neighbors
leading to an update to the internal controller states and the application of the actua-
tor signal u;(t). This is summarized in Algorithm 2| with subroutines describing
these computations in detail.

Control signal computation at subsystem i begins by receiving the measurements
from neighbors j at most d steps away (line[8) and computing the ith element of the
internal signals O(f + 1) and (¢ + 1) via Subroutine which is illustrated in Fig.
Here the function step(G, ) means that the internal dynamics of the system G is
propagated one time-step with the input u.

In the second stage, the node receives ﬁj(t) and 0 j(t) from its closest neigh-
bors (line [I0) and computes the outgoing components of (20). The computations
are outlined in Subroutine 2] and illustrated in Fig. 4]

In the third stage, which is demonstrated in Fig. [5] the node receives the com-
ponents pertaining to its element of the signals in (I9) from other nodes a distance
at most d steps away with delayed information (line[T2)) and sums them to compute
the ith element of each signal in (20). This step is described in Subroutine 3]
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5 Local Controller implementation

Al

gorithm 2 Local computation of controller signals

10:
11:

1
2
3
4
5:
6
7
8
9

: for Eachnodei=1,..., N do

Input @5 (:,0), @3 (:,0), DEEC, D), @EF(:0)
Initialize §;(0) < 0, w;(#) < 0, v;(#) < 0

: end for

fort=0,1,...do

Observe y; (1)
Receive f;() and y; () from j € N (i)
subroutinel()
Receive ;(1) and 0;(7) from j € M}l(i)
subroutine2()

from j € ./\/'iﬁ(i).
subroutine3()
Receive a;(r + 1) and y;(t + 1) from j € N} (i)
subroutine4()
Apply u;(1)
end for
end for

for Eachnode i = {1,..., N} do > parallel

Receive aWVou (7 + 1), ENeu(1 4 1), 7Nou (¢ 4+ 1) and §New()

Subroutine 1 Compute &;(f + 1) and 7;(¢ + 1)

Receive f; (1) and y; (1) from j € N (i)
Biavaan@® < vee(f;, @), ... f;, (1)
Y[_/\/iﬁ(,')](t) - Vec(yjl ®, ..., yj'm(t))
W;(t + 1) < step(z®5E (i, ), By Ny ()
Di(t+ 1) « step(ztl)ng(i, D, y[j\fii(i)](t))

— [ —C)

Yivdan

00 ¢

Figure 3. [Illustration of subroutine 1. The computation of i is similar.
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G Z(N;u,u))

J1
. Wge =2 —Cw)
: P E(Nn‘u,u)) EWJU.(D) :
_.o—>@—>| i : >Coud)
v, AW G) :

Vil
YO
i g

; n
—
§<N‘ ()]

out!

00

Figure 4. Illustration of subroutine 2.

Subroutine 2 Compute the outgoing components of (20)

@[Afi:‘(m(t) - vec(@j1 @, ..., @jm ®))
6[M}1(i)](t) < vec(D; (1), ..., 0; (1)
Wi(1) = Pi(t) + AWy yp1 (1) = W;(t + 1)
Bi(1) = AD 1 () = D, + 1)

At +1) < sl:ep(tl)ifa(: ,0), e;10;(1))
&t + 1) < step(@ (2, 1), ¢;0;(1))
aWau(t + 1) « CL At + 1)
ENwD(t 41) « CL &t + 1)
PNGOD(@ 4 1) KL 4 + 1)
BN D (1) — K& 1+ 1)

SWNowG)

:E,

S WNouw(®)

: AN owlUn))
>——

Figure 5. Illustration of subroutine 3.
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Subroutine 3 Compute the local elements of (20)
52 A(Nom(n)

at+1) < w;t+1)+
na+ <3, A<Nom<1>>(t )

AL
G+ <+ 1)+ 3, N

0,0) < 3,8

@+1)

t+1)

In the final stage (Subroutine the node receives a;(t+ 1) and y;(7 + 1) from its
closest neighbors (line and computes f;(¢ + 1) and ;(¢). We conclude that the
node has now received information from nodes at most 2d + 2 steps away.

Subroutine 4 Compute ;(¢) and §;(t + 1)

Ayt + 1) < vee (@ (+ 1,8, @+ 1))
Yt + 1) < vee <7/jl(t +1),.07, 0+ 1))
Bt + 1) = = AG, Dt (t+ 1)
=BG, Dypiy+ D -G+

u(t) <« 7, + 1)+ 6,0

We summarize the stability properties of Algorithm 2]in the following theorem:

THEOREM |1

Algorithm 2| with ®5F as in 1), ®@XF and ®KF as in Section 3|internally stabilizes
system (T). Moreover if ®@5F, ®XF and ®XF are d-localized, the closed-loop is at
most 2d + 2-localized. [l

Proof. By Theorem [I7]the closed-loop maps satisfy (2Za) and (2b). Concatenating
¥;» B; and u; we get precisely the signals in Fig. [I| which is internally stable [An-
derson et al., [2019], we need to show that the closed-loop is internally stable for
perturbations entering in the intermediate steps outlined in Subroutines [TH4] Note
that a perturbation entering at any of the intermediate signals can be modeled as
a disturbance entering as 8,, 8, or 8 pre-filtered through a stable linear system.
Similarly, probing any of the internal signals can be represented as probing y, u or
p post-filtered through a stable system. We conclude Algorithm []is internally sta-
ble in feedback with System [I] Finally, as d-localization is closed under addition,
and composition of a d- and a k-localized operator is at most d + k-localized, (T9)
implies that the closed loop is at most 2d + 2-localized. |
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Figure 6. The infinite-horizon SLS solution achieves the optimal cost.

6. Numerical simulations

Consider a bi-directional scalar chain network parameterized by « and p:

X[t + 1] = p(1 = 2a)x'[t] + pa Z X [t] + ' [f] + w'[1]
je{ixl}

where a is a coupling constant and p is the spectral radius of the global state-
transition matrix A, with p > 1 being unstable. We first verify the optimality of

the infinite-horizon state-feedback solution given in Section E} In this simulation,
we choose the number of scalar subsystems to be 15, « = 0.6 and p = 1. For the
quadratic cost matrices, we let Q = I and R = 300 - I. For SLCs, we let the de-
layed localization parameter be d = 3. The result is shown in Figure [6] where the
optimality of our approach is clear. Due to the high penalty on the control actions,
the performance degradation under FIR approximation can be significant.

Next, we investigate the optimality gap between the suboptimal infinite-horizon
output-feedback solution proposed in this work against the FIR output-feedback so-
lution computed numerically with a fixed FIR horizon of 20. We let all other param-
eters remain the same as before, and change the number of subsystems to 10 in this
simulation. First, we study how the d delayed localization parameter influence the
optimality gap. This is illustrated in Figure[/] As expected, the more localized the
output-feedback problem is, the bigger the optimality gap is between the constructed
solution using separation principle and the direct FIR output-feedback solution. As
the delayed localization pattern becomes more global, the proposed output-feedback
solution becomes more optimal. When the delayed localization SLCs become non-
binding (for d > 6), we see that the proposed infinite-horizon output-feedback so-
lution actually becomes optimal and achieves lower cost than the FIR solution. This
is due to the separation principle of centralized LQG.

Next, we investigate how the optimality gap grows with the number of subsys-
tems in the network. Here we have fixed the delayed localization parameter to be
d = 3. As can be seen in Figure [§] we observe that the optimality gap grows ap-
parently linearly in the number of subsystems. However, we highlight the numerical
efficiency and stability of our approach despite the suboptimality. When the number
of subsystems exceeds 12 with FIR horizon of 20, the FIR solution solved in MAT-
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varying SLC delayed localization parameter d.
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LAB using CVX renders NaN due to numerical instability (total of 11520 variables).
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Paper VI

Learning Optimal Team-Decisions

Abstract

In this paper, we linear quadratic team decision problems, where a team of
agents minimizes a convex quadratic cost function over T time steps subject
to possibly distinct linear measurements of the state of nature. We assume that
the state of nature is a Gaussian random variable and that the agents do not
know the cost function nor the linear functions mapping the state of nature to
their measurements. We present a gradient-descent based algorithm with an ex-
pected regret of O(log(7T")) for full information gradient feedback and O(\/ET ))
for bandit feedback. In the case of bandit feedback, the expected regret has an
additional multiplicative term O(d) where d reflects the number of learned pa-
rameters.

1. Introduction

Team decision problems originate from economics, where optimal decentralized de-
cisions in organizations were studied in the papers by Marschak [Marschak, [1955]],
and Radner [Radner, [1962]] under stochastic settings. In these studies, the agents in
the team know the problem parameters. The agents use the information of the prob-
lem parameters to find the optimal decentralized decision. Decentralized decisions
only depend on local measurements of the state of nature, where the measurements
of the agents are typically not identical. Gattami [Gattami et al.,[2012]] studied linear
quadratic robust team decision problems and showed that optimal decisions are lin-
ear and can be found by solving a convex (in fact, semi-definite) optimization prob-
lem. Team-decision theory has been helpful in understanding distributed control
research [Mahajan et al., [2012]]. Witsenhausens famous counterexample [Witsen-
hausen, | 1968|] established that linear decisions are not always optimal for distributed
LQG problems and sparked an interest into research of team problems in the control
community. Ho and Chu [Ho and Chu,|1972] showed how linear-quadratic problems
with partially nested information can be rewritten as static team-decision problems
of the type in this paper and Witsenhausen showed that a general class of dynamic
team decision problems can be reduced to static ones via a change of measures [Wit-
senhausen, |1988|]. Static reductions for more exotic information structures is still an
active research field [|Gupta et al.,|2014; |Sanjari et al.,[2021]].
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In this article, we study learning of optimal decentralized decisions with linear
information constraints and quadratic cost functions in the stochastic setting, with-
out the knowledge of the problem parameters. We consider learning with gradient
feedback and bandit feedback. We study expected regret against the optimal policy
in hindsight. Our key contributions are:

e We propose a first and a zeroth-order algorithm to learn optimal decentral-
ized decisions with linear information constraints and quadratic cost functions
through repeated interactions.

e We extend the regret analysis of online gradient descent to the case with a
possibly unbounded gradient oracle that has bounded second-moment.

e We show that our algorithms have expected regret bounded by O(log(T)) if

the gradient is observed and O( ﬁ ) if only the incurred loss is observed in
each step.

1.1 Outline

We give some background and establish notation in Section [2] and formalize the
learning problem in Section [3} Section []is devoted to properties of decentralized
stochastic team-decision problems. Section [5] contains our extension to the regret
analysis of online gradient descent and its application to the stochastic team-decision
problem. In Section [7] we summarize our conclusions and give directions for future
research.

2. Preliminaries

2.1 Notation
We denote the space of n-dimensional real-valued vectors by R” and real-valued

matrices with m rows and n columns by R™". For a vector x € R”, ||x], = VxTx
denotes the Euclidean norm and AT denotes the transpose of a matrix A. Tr M de-
notes the trace of a square matrix M. For matrices A, B € R™ " we denote the
operator norm of A as ||A|l, = max =1 ||Ax||,, the Frobenius inner product as
(A, B) = Tr AT B, and the Frobenius norm as || A = 1/(A, A) z. We denote the
smallest singular value of a matrix A € R"™" by o6,,;,(A). The set of real-valued
nx n-dimensional symmetric matrices is denoted as S". S, and S’} | refer to the sets
of n X n-dimensional of positive semi-definite and positive definite matrices, respec-
tively. For a matrix A € RU++m)X0n+-+ny) 4] € RMXM++1v) denotes
the ith block row and [A];; € R™*"; denotes the block element of A in position
(i, j). The matrix derivative of a differentiable function f : R™" — R is denoted

aixf(X), where [%f(X)] o= af(X)/dX,-’j. The projection of a variable y € Y
ij
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2 Preliminaries

Algorithm 3 Online Gradient Descent

Input: Convex set X, T, x; € X step-sizes {7, }
fort=1toT do

Play x,, observe f; and pay f,(x;))

Update and project x,, | = l:vl(x, - Vfi(x)

end for

onto a set X C Y is denoted by I);I( ¥). L, means the space of square-integrable ran-

dom variables with the associated inner product (-, -) Ly and semi-norm || - || Ly The

set of Gaussian variables with mean m and covariance X is denoted N (m, X) and
[E[-] denotes the expectation operator.

2.2 Online Convex Optimization

The online convex optimization setting is a repeated leader-follower game between a
minimizing player and an adversary. At each time-step ¢, the minimizing player first
makes a decision x; from some compact convex set X'. The adversary then observes
x, and selects a convex loss function f, that is uniformly bounded and has bounded
gradients. The minimizing player pays f,(x;) and learns the entire function f,. The
goal is to minimize the sum, Zz;l f+(x;) over an arbitrary sequence of loss functions
Fisfoseoos fre

Recently, online convex optimization has seen an increasing number of
applications across different fields including generator scheduling in smart
grids [Narayanaswamy et al., 2012], thermal management of multiproces-
sors [Zanini et al., 2010], demand steering via real-time electricity pricing [Kim!
and Giannakis, [2014] and on-policy learning of optimal control policies with linear
dynamics [Li et al.,[2021; |Chen and Hazan, |2021; Hazan et al., 2020; |Cohen et al.,
2018].

The performance measure is regret against the optimal policy in hindsight,

T T
R(T) = Y fi(x) = min 3" f,(x).
t=1

=1

Online gradient descent, introduced by Zinkevich [Zinkevich, 2003], is a sim-
ple, general yet efficient algorithm that applies to many online convex optimization
problems and is given in Algorithm[3] Online gradient descent attains the asymptotic
lower bounds Q(DG ﬁ) and O(log T') for convex functions and a-strongly convex
functions respectively. D bounds the diameter of the feasible set, and G bounds the
norm of the gradient.

We will be working with matrix-valued variables and strongly convex functions
for the team decision problem, using the below definition of strong convexity.
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DEFINITION 5—STRONG CONVEXITY, MATRIX CASE
We say that the differentiable function f : X C R™? — R is strongly convex with
coefficient a if for all X,Y € X,

SO0 = < (S FO0.X=1)) =l -

An equivalent characterization is to require that the function X — f(X) — %llX ||?p
is convex, [[Bubeck, [2015]]. We refer the reader to [Hazan,|2019|] for more details on
online convex optimization.

2.3 Bandit and Zeroth-Order Optimization

The minimizing player observes only the incurred cost f,(x,) after each round in the
bandit setting, rather than the gradient. This necessitates exploration to learn prop-
erties of the loss functions, such as gradients, to accelerate optimization. Derivative-
free methods have a long history in stochastic optimization. Tight convergence rates
for strongly convex functions were obtained in [Rakhlin et al., 2012] in the first-
and [Shamir, 2013]] in the zeroth-order setting. Bandit feedback was introduced to the
online convex optimization setting in [Flaxman et al., 2004]] where the authors used
a one-point gradient estimate. Their method has asymptotic regret upper bounded
by O(T3/%).

2.4 Stochastic Team Decision theory

The stochastic team-decision problem, is to solve
minimize E[|z(13]
H

subjectto: z = Hx + Du )
yi=Cx+v;
w=u(y;), i=1..,N.
In (1), x ~ N(0,V,,) and v ~ N'(0,V,,) are independent Gaussian variables

taking values in R” and R? respectively. u; € R™ denotes a player, and the players
uy, ..., up make up a team. The function u(-) : R? — R” represents the decision
function of the team, that is, u(Cx) = [,ul(yl)T yl(yN)T]T. We further as-
sume that DTD € S%, where m = m; + -+ + my. Radner [Radner, 1962] showed
that the optimal decision functions 4 are unique and linear in y;. This motivates
the search over linear policies in our problem set-up.

3. Problem Formulation

We aim to learn the optimal decision policy through repeated interactions with the
environment. At each time-step ¢, each team-member will decide on a decision policy

120



3 Problem Formulation

K l’ , receive a noisy partial observation of the system state, y? , play the decision uf =
K!y'. The team incurs the loss /,(K,) = ||z,||2, generated by
171

= Hx, + Du,, yi=Clx+10)

. 2
u?:Kity;, i=1,...,N.

The objective is to minimize the sum of the losses, J = Zthl 1,(K,), while maintain-
ing K, € K, learning good policies locally. K is the set of real-valued block-diagonal
matrices of appropriate dimensions,

= (K : K =Diag(K;. ..., Ky), K, € R"*?i}, A3)

We summarize the interaction in Algorithm [ Going forward we make the fol-
lowing assumptions.

ASSUMPTION 1
x, and v, have finite covariance matrices E[x; xT] = V. and E[v,0, 1 =V, and
bounded fourth order moments so that [E[(xt x )2] <k, and El(v, U,)z] <k, [

ASSUMPTION 2

Umin(DTD)(amin(CVxxCT) + O-min(Vvu)) > 0. D

Assumptlon [I]is motivated by the fact that the variance of an estimator of the
derivative ﬁ J(K) will contain fourth-order moments. ASSUInpthIllS to the losses
being strongly convex in expectation, which is summarized in Proposition[7] Finally,
we restrict our search to policies with an apriori supplied bound.

ASSUMPTION 3
A bound bg on || K|, is supplied by an oracle. [l

Let K* be the best policy in hindsight,

T

K* = argmin Zl,(K). 4)
KeL || K|l <bk ;=1

We measure performance as expected regret,

E[R(T)] = lZl (K,) - Zz (K* l (5)
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Algorithm 4 Learning with repeated interactions.
fort=1toT do
Sample x;, ~ N(0,V,,) and v, ~ N'(0,V,,)
Agents 1,2,..., N observes y’1 e ytN as in (2)), respectively.

The agents play K/, ..., KJ’\,, respectively, and incur a loss /,(K,) := ||z,
with z, as in ().
Each agent i observes either

e the partial derivative, %(z,)th, in the gradient-feedback setting,

e or the incurred loss, ||z,||2, in the bandit-feedback setting

The agents update their policies K'*'.
end for

4. Properties of Stochastic Team Decisions

The losses /, are differentiable with respect to K, everywhere. In particular, the
derivative with respect to agent i can be viewed as a product of the information
available to the agent y;, and their contribution to the overall cost, [DT];z.

PROPOSITION 6
[, is differentiable with respect to K; and the derivative is

i[E[l,(K)] = E[[2[D"];z,0!)"] .

oK, O

Proof. By dominated convergence, we can exchange expectation and differentia-
tion[T]

0 T [a T ]
—F =E|—(Hx+ DKy)"(Hx + DK
3K [z Z] aK( x + ) (Hx + »)

=E[2Dzy"].
Identifying the local components 0/dK; completes the proof. O

The phenomenon that certain large changes to the optimization variable can have
(almost) negligible effects on the value can make optimization difficult. The right
way to quantify this effect on convergence is through strong convexity, a property
we can exploit to get better regret bounds in online convex optimization [Hazan,
2019]. In our regret terms, a lower bound on the strong convexity parameter will
show up directly as a divisor. The following proposition shows that E[/,] is strongly
convex as a function of K.

' We drop the time-index for readability
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4 Properties of Stochastic Team Decisions

PROPOSITION 7
E[/,] is a-strongly convex with constant

a= 26min(DTD)(o-min(CVxxCT) + Gmin(I/UU))‘ D

Proof. We will verify that E[/,](K)— g [| K |I% is convex. E[/,] is a quadratic function
of K and

EL,1(K) = | HxIIZ, +2(Hx, DKy)., + I DKYIIZ, .
Which is convex if and only if ||DKy||%2 > g||K||i,. Consider,
a
IDKYIZ, 2 0min(DT DIIKCx + Kulz, 2 ZIKI O

To apply online optimization algorithms to learn the optimal policy through repeated
play, we must bound the second and fourth moments of z as we must bound the
variance of our derivative estimates. We get the following bounds on the second and
fourth order moments of z by Assumptions|[I]and[3]

PROPOSITION 8
For || K||, < bk, the loss [,(K) in Algorithm{is bounded from above in expectation,
E[/,1(K) £ b;, where
bi = (I1Hl + I DIl Cllpbk)* Tr Ve + I DISbY, Tr V.
Furthermore, [E[(thz,)2 < k] where
4
K, = (||H||2 + 1D, IIClI2bx + ||D||2b1<) X (Kx +TrV,  TrV,, + Ku) (6)

(]

Proof Proof of Proposition|§| We start with bounding the value function. Let ||| c,
be the £, norm, then

E[/I(K) = ||(H + DKC)x + 1)1<u||2L2
= |(H + DKO)x||7 + I DKvI7 .

as x and v are independent. By the triangle inequality
ICH + DKO)x|17, < (1H I + DI I K lICI)1x11Z,.
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Treating the term ||DKU||£2 similarly and substituting || K||, < bg and ||x||% =
2
Tr V,,, completes the proof. To prove the second claim, consider

]

<|[# +pkC DK ||z E[(xTx + 0T 0)?]

El(zT2)?] = E l [H + DKC DK]| [’lj]

4
< (1=l + IDILIICll2bk + I DIl,bg )
X (Kx +TrV,  TrV,, + K'U) O

5. Learning Optimal Team Decisions

This section describes how to learn the optimal team decision policies using on-
line gradient descent. Due to the stochastic nature of our problem, we cannot hope
to bound the objective function or the gradient for an arbitrary realization. We will
modify the analysis to give results when these properties hold in expectation. This
means our guarantees hold in expectation and are well suited to analyze stochas-
tic problems. We summarize the upper bound for expected regret for strongly con-
vex functions in Theorem @] The bound is what one would expect; the standard
result [Hazan, |2019, Theorem 3.3] for strongly convex functions holds in expecta-
tion against an adaptive adversary.

THEOREM 19
Let /,,...,Ip be independent random functions /, : R™" — R such that E[/,]
is a-strongly convex for all + = 1,...,T. Let V, be a derivative oracle that is

consistent F[V,] = aiK[E[lt(K)] and has bounded variance E [llV,llZF] < (b)?
for all K € K, where K is convex and compact. Set the step size , = i Let

K* = argminggy Zthl 1,(K). Online Gradient Descent, Algorithm has expected
regret
T 1 T b2
14
E lz (L(K) - l,(K*))] <S3X (7)
=1 =1 0

The proof follows the outline in [Hazan, 2019], but involves some extra book-
keeping:

Proof. Let F, = o(Jy,...,J,_1). Then K, is a stochastic sequence adapted to F,.
Define for simplicity V, = %[E[l,([(,)]. By strong convexity

2E [1(K) — [(K®)IF,] <2V, K, — K*)p — al|K* = K, |13
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Algorithm 5 Learning with partial gradient information

Input: initial guess K, bound by, step-sizes {#,}
T _ t
Each agent plays } = Ky}
The team incurs cost /,(K,) = z, z,
fort=0toT —1do
fori=1to N do
Observe the partial gradient G/ = 2D,.T z,(y:)T
t+1 _ t t
Update L;™" = K; — n,G;
if |L*'l, > by then
1 1
K™ =L /by
else
t+1 _ pt+l
Kt =1L
end if
end for
end for

To bound (V,, K, — K*), consider

E (Kt = K* 317 = E[I0CK, - 1,90 = K*I2I7]

<K, = K*|1% + 26> = 2n,(V,, K, — K*) .

Taking 7, =  and defining L = 0, we get 2E [2; (l,(K,)—l,(K*))] <
s O

t=1 ot
We are now ready to apply online gradient descent to learn distributed team
decisions.

5.1 Learning Team Decisions with Partial Gradient Information

We assume that the designer is aware of a lower bound on the strong convexity
parameter, A, and upper bound on the operator norm of the optimal policy bg. The
resulting algorithm, Algorithm[5} is a direct extension of online gradient descent. Its
behavior is summarized in Theorem 201

THEOREM 20—PARTIAL-GRADIENT FEEDBACK

Assume that Assumptionsandhold. Then, Algorithmwith step-size #, = %
for any 0 < A < a, where a is the strong-convexity parameter in Proposition [/} has
bounded expected regret against the optimal policy K* defined in @). The bound is

given by
2

I b
2 El(K) = [ (K*)] < 521+ log(T)). ®)
t=1
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The constant b in (8) is given by

b, = 4IIDISUH Iy + b IDIL(ICH, + DY*(ICH, + D?
(ke +2Te Ve, TrV,, +x,) [

The regret bound is equivalent to that of online gradient descent in the convex
optimization setting, where b, takes the place of the bound on the gradient. The
difference is that the bound holds in expectation and that bé, is a bound on the second
moment of the gradient estimator. Before proving Theorem[20]we need the following
lemma to characterize the gradient estimate.

LEMMA 7

For ||K|l, < bk, the gradient estimate G := 2[D'];z(y)" is consistent:
[E[Gf] = %[E[II(K)], and has bounded variance: E [llG,lli] < bzG, where G, =
Diag(G, ..., Gﬁv) and b; satisfies

b = 4IDIZUH NIy + b IDILIC I, + 1)A(IC], + 1)?
(ky +2Tr Vi eV, + k). (9)
O

Proof Proof of Theorem 20]. Since all agents have the same loss functions, the par-
tial gradient update is equivalent to a full gradient update. The result thus follows
directly from Theorem[I9|with the covariance-bounded gradient oracle in Lemmal(7]
and the strong convexity coefficient from Proposition |

5.2 Learning Team Decisions with Bandit Feedback

Towards constructing an estimator for the derivative, in addition to requiring the es-
timate to be consistent and have bounded variance, we insist that each agent must
be able to compute her estimate independently. The last requirement invalidates the
one-point estimate used in [Flaxman et al., 2004]] as sampling from the unit sphere
would require communication between agents. In [Shamir, 2013]], the authors found
that sampling uniformly and independently from the unit hypercube leads to consis-
tent and bounded estimators for quadratic problems. Sampling from the hypercube
reduces to sampling independent Rademacher variables coordinate-wise and can be
done in a distributed fashion. Algorithm[6]is constructed by applying a matrix ver-
sion of the estimate from [Shamir, [2013]] and shrinking the exploration parameter ¢,
each time-step. The regret properties of Algorithm[6]is summarized in Theorem 2T}

THEOREM 21—BANDIT FEEDBACK

Assume that Assumptionsandhold. Then, Algorithm@with step-sizes , = lt
for any 0 < A < a where a is the strong-convexity parameter in Proposition [/} and
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Algorithm 6 Learning with bandit feedback

Input: initial guess K,, bound b, step-sizes {#, } and exploration parameters {¢; }
fort=1to T do
fori=1to N do
Sample R} € {—1, 1}"*?i ~ Uniform
Play u} = (K] + Ri&))y] where & = —L=
end for
The team incurs loss /,(K, + R'E") = thzt
fori=1to N do
Observe loss [, = thzt
Set gradient estimate G! = [, Ri(€))™!
Update L'*! = K! — 4,G"
if |L*'l, > by then
Kil+1 — L;+1/bK
else
Kl_z+1 _ Lf“
end if
end for
end for

—1/4
exploration parameters ¢, = ¢~/ <21]il ml2 pf) has bounded expected regret

against the optimal policy K* defined in (@). The bound is given by

T M N 1/2
ZE[lt(I?,)—lt(K*)]52<M1+72> <Zm?p?> VT.  (10)

=1 i=1
In (T0) K, = K, + R,&, is the policy played by the agents at time-step . The
problem-dependent constants M; and M, are given by
My = IDI5 (ICII5 Tr Vi + Tr V)
4
M, = (|[H|ly + IDlla(bg + D(ICll, + 1))
X (ke +2TrV, TrV,, + k). O

To prove [21] we need the following lemma, which states that the gradient esti-
mator used in Algorithm [f]is consistent and has bounded variance.

LEMMA 8—VARIANT OF LEMMA 2 IN [[SHAMIR, 2013||
Let R; € {—1, 1}™>Pi be independent random variables following uniform distri-

butions. Let R = Diag{ Ry, ..., Ry}, and €& = e Diag{I/\/mp;, ..., I //mNDN}.
Define the zeroth-order gradient estimator

G :=1,(K+RE)RET,
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and let G, := Diag{G', G~3V} Under assumptions , G, is consistent:
Erro [GY] = (%J(K) and has bounded variance Er ., [IIG,[I%] < bZ. The

bound, b; can be taken as
= 4
bg; = (I1H Iz + I Dllp(bk +eNICIl, + D)

N
X (ko +2Tr Vo TrV,, +1,) Y mipl/e?. (1)
i=1 D

Note that the bound BG is decreasing in the exploration parameter €,, leading to an
exploration/exploitation trade-off. The choice of €, minimizes the regret asymptotic
upper bound.

Proof Proof of Theorem 21). We will first quantify the added loss due to the per-
turbation term R.&;. Let K, = K; + R,&;, then

ELL,(R)) = E [IlHx, + D(K, + R,&)CylI3]
= E[IlHx, + DKy, I3+ DR &,

+2(Hx, + DKy) RE, y,] .

By the first property of Lemma [9] we know that E[R,] = 0. Applying the fifth prop-
erty we conclude that

ElL(K)] < E[L(K)]+ €2 IDI5 (ICI5 Tr Vi + T V) -
Combining this with Lemma[I9] we get

(05, a
+ Ml 62.
At b

t
=1

T T
D E(K) - (KM <Y,
t=1 t=1

Substituting €, into E’G from Lemmaand the inequality th—l % < 2ﬁ completes
- t
the proof. O

6. Numerical example

In Fig. [I] we apply the algorithms to [Gattami, 2007, Example 4.1] for two players,
where C; = C, = 1, x, vy, v, ~ N'(0,1) and
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7 Conclusions and Future Research

103 /’—

D 2
gﬂ 10~ |
&~ 10! —— Gradient feedback
—— Bandit feedback
100 * * *
10° 10! 102 103

Step / ¢t

Figure 1. The average (solid lines) + one standard deviation (shaded area) from 1280 sim-
ulations of Example 4.1 in [Gattami, 2007]] using Algorithm [5 (gradient feedback, blue) and
Algorithm 6| (bandit feedback, red).

Regret is bounded for Algorithm [5] by 46000(1 + log(r)) and for Algorithm [6] by

1.42 - 1084/T. The results from the 1280 simulation in Fig. indicates far better
performance.

7. Conclusions and Future Research

We have proposed algorithms that efficiently learn optimal team decisions in a de-
centralized manner without knowing the problem parameters. The exploration re-
quired with bandit feedback gives worse asymptotic regret, both with respect to
time and the number of parameters to be learned. Our work gives a first approach,
and there are several interesting open questions to answer. Interesting directions for
future research include learning when the covariance matrices change over time,
applications to feedback control of dynamical systems, and empirical convergence
studies.

8. Appendix

LEMMA 9

Let R; € {—1, 1}™%Pi for i = 1, ..., N be independent random variables following
uniform distributions, and take R = Diag{ R, R,, ..., Ry }. Define m = m; + --- +
my and p = p; + -py. Define the set

I = {(i,k,l)eN3 cie{l,....NLkel{l,...m}.le {1,...,pi}}.

Let (i, k, 1), (i’ k',1") and (i, k, ) € Ig. Them the following hold

2 For a Julia implementation, See https://github.com/kjellqvist/
LearningTeamDecisions. jl
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1. E[R;(k,D] =0,
2. E[R;(k, DRy (k' 1) = 8; 4 iy=ci it 11y»

3. E[R;(k,)Ry(K',I")R;(k,D)] = 0,

4. E [Tr(ARTR;| = [A], for all A € R™?,

5. ”Ri”F:=\/”HMH O
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