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Popular Summary

This thesis is the culmination of my four and a half years of research in theoretical particle
physics at Lund University (with a short stay at UC Louvain, in Belgium, included). For the
majority of this thesis I describe a new method called chirality flow, which I developed along
with my supervisor and collaborators to calculate the scattering probabilities of colliding
fundamental particles at high energies more efficiently and transparently. Additionally, I
optimised a part of the computer program MadGraph5_aMC@NLO which calculates these
scattering probabilities. But what does this mean? Why did I do this? And how successful
were these methods?

To answer the first two questions, we must first understand the basics of particle physics.
The aim of theoretical particle physics is to find and study the smallest, most fundamental
building blocks which make up our universe. That is, if you were to take an object around
you and break it into ever smaller and smaller pieces, would you eventually find some fun-
damental particle which cannot be further broken up? If so, what would these particles
look like, and how would they behave? To the best of our knowledge so far, it appears as if
everything can be created by a set of 17 distinct particles which interact with each other via
gravity, and at least one of the other three fundamental forces of nature: electrodynamics
(QED), responsible for electricity and magnetism; the weak force, which is partially re-
sponsible for radioactivity and radioactive decay; and the strong force, also called quantum
chromodynamics (QCD), which binds together protons and neutrons in the atom. To-
gether, these 17 particles, their properties, and their interactions, make up the Standard
Model of particle physics.

In the opening paragraph, I said that I calculated scattering probabilities, that is, the prob-
ability of two fundamental particles colliding and creating some final set of particles with
a given set of momenta. Notice that I said scattering probabilities, not the outcome of a
given scattering event. This is because fundamental particles are extremely small and obey
the laws of quantum mechanics. Therefore, they are probabilistic rather than deterministic.
That is, given a single starting point, there are multiple possible things which may happen,
each with a certain probability to occur, rather than one single possible outcome.

To understand what these particles look like and how they behave, we have to first break up
some object to both create them and to make them interact with each other. The best tool
we have to do so today is the Large Hadron Collider (LHC) at CERN, which smashes to-
gether protons at extremely high energy and measures what is created. Since what is created
follows a probabilistic distribution, we need to smash together very many protons to obtain
enough statistics to determine the probability of a certain outcome. Next, we compare this
distribution to the distribution calculated according to the rules of the Standard Model. If
the experimental and theoretical distributions match, we say that the result confirms the
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Standard Model, and if there is a discrepancy, we must find a new explanation, possibly
involving new types of particles.

In order to calculate the theoretical prediction, we calculate the scattering probability of two
protons becoming some final state with some momenta, and repeat this process possibly
millions of times with different random final-state particles and momenta. For complicated
final states, this requires a great deal of (expensive) computer power, and optimising it is
very desirable. In this thesis, we attempted to optimise this task in several ways, including
developing the chirality-flow formalism.

The third question, was how successful were the methods? Using chirality flow with pen
and paper, we were able to do known calculations in less time than using previous methods,
and it became much easier to see what part of the calculation led to what part of the result.
When implementing chirality flow in the computer program MadGraph5_aMC@NLO, we
found significant speed-ups in simulation time, thus proving chirality flow to be a success.
Additionally, I optimised an unrelated component of MadGraph5_aMC@NLO called the
colour sum, successfully making it two times faster than before. This is important, because
the colour sum often uses the most computer resources in a given calculation.

There are five papers in this thesis. In the first two papers, I, along with my supervisor
and collaborators, developed a formalism called chirality flow which requires less work and
is more transparent than standard calculation methods. We developed this for the most
basic approximation possible, known as tree-level. We did the calculations with pen and
paper rather than on a computer, marvelling in the beauty, simplicity, and transparency
of chirality flow compared to standard methods. Then, in paper III, we implemented this
method in the computer program MadGraph5_aMC@NLO, making its QED calculations
up to 10 times faster than before. In paper IV we extended the previous papers, developing
chirality flow for the next-to-most-basic approximation, called one-loop level. Finally, in
paper V, I sped up the leading bottleneck of MadGraph5_aMC@NLO by about a factor of 2,
and while doing so learned enough about the program to complete paper III.

In addition to the work included in this thesis, over the four and a half years of my PhD I
worked on several things not included in this thesis, including talks, seminars, proceedings,
co-supervising a bachelor student, work for the student unions, and representing students
and postdocs in the Monte Carlo network (MCnet) board, a funding agency and interna-
tional collaboration working on simulations in particle physics. I also have ongoing work,
in which I, along with the other authors of paper III and some master students, are working
to implement chirality flow for the rest of the Standard Model in MadGraph5_aMC@NLO.
While not directly a part of this thesis, these works were still an important part of my time
in this PhD.
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Introduction

This thesis is the culmination of over a decade of hard work, and is the crowning achieve-
ment of my work-life so far. Since first learning in high school about the wonderful weird-
ness of special relativity and quantum mechanics, I have wanted to study physics or math-
ematics for a living. To do this, I have worked very hard, first at Monash University to get
both the understanding and the grades required to pursue this dream, and then at ETH
Zürich and École Polytechnique to gather the necessary technical background required to
do high-level research at a good pace. Finally, for the last four and a half years at Lund
University and UC Louvain, I have fulfilled my dream of working as a scientist and getting
a PhD in particle physics.

In my mid twenties, after having travelled to many parts of the world, I also had a dream of
living overseas and trying out a different lifestyle and culture. I am extremely grateful that
through physics, I was able to live in Zürich, Paris, Lund, Copenhagen, Louvain-la-Neuve,
and Malmö, a set of experiences which have helped shape me as a person and enabled me
to meet many great people, see many wonderful sights, and experience many new cultures.
For this, I also want to thank both the universal nature of physics (assuming one can thank
such an inanimate and intangible thing), and those who accepted me into the Master and
PhD programs, allowing me to complete two dreams at one time.

Therefore, this thesis is extremely special to me. While I am aware that the most likely job
of this thesis after I have defended it will be to sit on bookshelves collecting dust, I hope
that it is nevertheless a useful and valuable document to many people. To my friends and
family, I hope that this thesis starts off at such a level that you can roughly understand what
I have been doing for a living so far. To my colleagues, past, present, and future, I hope
that this thesis is a useful collection of background theories and cutting-edge research which
can be used as the basis to understand scattering amplitudes, the spinor-helicity formalism,
chirality flow, MadGraph5_aMC@NLO, colour expansions, and some one-loop techniques.
Finally, to me, I would love for this thesis to take on the function of a photo album, a
collection of memories and experiences in a single tome, that I can pick up from time to
time and remind myself of all of the experiences, positive and negative, that were had in
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my four and a half years as a PhD student.

This thesis is structured as follows: We begin in section 1 with an overview of what particle
physics is, and the role my thesis plays in this vast research field. This first section aims to
be understandable to everyone, no matter their background. We start off with the basics,
understanding length and energy scales, and what we mean by a particle and its properties.
From this, we describe the Standard Model of particle physics, its forces and how we test
them. Finally, we put this thesis into context.

From section 2 onward, we assume some background knowledge of physics. We begin this
section by describing the fundamentals of particle physics, reminding about the Lorentz
group and how it is responsible for a particle’s mass and spin. In particular, we describe
the subgroup of the Lorentz group called the little group, which is responsible for spin.
We briefly remind some of the main ideas of Lagrangians, describe particle wavefunctions
and their properties, and then finish the section with a short discussion on gauge fixing in
propagators.

In section 3, we give an overview of scattering amplitudes, placing the work of this thesis
into sharper context. We begin by reminding about the perturbative expansion and how
we calculate within it. We describe how scattering amplitudes are typically calculated in
textbooks, why the textbook method is inefficient, how to use the spinor-helicity formalism
to improve on this, and link the spinor-helicity formalism to the chirality-flow formalism
of papers I-IV. Finally, we comment on Berends-Giele recursions and how they can also be
used to calculate scattering amplitudes efficiently.

In section 4 we focus on QCD, in particular focusing on calculations of its su(Nc) gauge
algebra. We describe how the colour and kinematics in any calculation are usually separated,
and how to calculate the colour part. We then describe the expansion in the number of
colours Nc used in paper V, and why it is useful. Additionally, we describe colour flow,
which was the inspiration for the chirality-flow formalism developed in papers I-IV.

Section 5 describes the program MadGraph5_aMC@NLO, which is used in papers III and V
to automate some of the scattering-amplitude optimisations described in this thesis. We
provide an overview of the workflow of the program, describe how it calculates amplitudes,
and say which parts of the program were updated in papers III and V.

Next, in section 6, we move from tree level to one-loop level. We describe one-loop integrals
and their challenges, including divergences and how to regularise them, renormalisation,
dimensional regularisation, the FDF formalism we built on in paper IV, and reducing tensor
integrals.

We conclude and give an outlook in section 7. In section 8, all publications listed in this
thesis are described in some detail, while in section 9, we list other work done during the
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PhD which is not included here. Finally, after all of this, are the five papers of my thesis.

1 A General Overview: Particle Physics, the Standard Model, and
the Role of this Thesis within it

The goal of particle physics is extremely simple: to understand the most fundamental build-
ing blocks which make up all of the matter (i.e. stuff) in the universe. By ‘fundamental’ we
mean that, starting from these basic pieces and the laws which describe how they interact
with each other, we can describe everything in the world. Like many very simple questions,
its complete answer is so complicated that we as a society have spent centuries of time and
money trying to answer it. The goal of this thesis is to simplify one important tool used to
find this complete answer.

First, let us discuss the size of these particles. Since we want the fundamental building
blocks from which to create all other matter, we will necessarily be talking about small
objects. In order to put into perspective just how small we really mean by ‘small’, we will
start from the natural scale of our day-to-day lives of about 1m (or O(1m) in scientific
language), and zoom in until we are small enough to see the fundamental building blocks
of nature.

If we zoom in on some everyday object, we will eventually reach the atoms which bind
together to form it. These atoms are typically about O(1 × 10−10m) long. For context,
if we zoomed out by this much instead of zooming in, the combination of the Earth and
our moon would only take up about about the same amount of space in our view as a coin
would on a table.

These atoms are not fundamental, since we know them to be made of protons, neutrons,
and electrons. The protons and neutrons are, however, much smaller than the atom itself,
with a size of O(1 × 10−15m). If we instead zoomed out this much from our everyday
scale of a metre, we would now comfortably fit the entire solar system into about 1/10th

of our field of view, taking up about the same space as a mobile phone would on a table.
Nonetheless, these protons and neutrons are themselves made up of smaller objects called
quarks and gluons, which, together with electrons, are the fundamental building blocks
which make up our daily lives.¹

We consider these fundamental particles to be completely point-like; that is, to take up
a single point in space. To see them, it is easiest to smash together hydrogen nuclei (i.e.
protons) or other atomic nuclei and try to measure the debris created. We then do our best

¹We are of course open to finding out that we are incorrect, and that these building blocks are themselves
made up of even smaller and more fundamental things.
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to ‘see’ which fundamental particles created the debris. To date, our best ‘microscope’ to
do this is the Large Hadron Collider (LHC), which can probe physics occurring at about
O(1 × 10−19m). If we continue our visual of zooming out instead of in, we can now
see all of our neighbouring stars, cannot see the Earth because it is far too small, and only
need to zoom out 10 times more to also see the centre of the galaxy. That is, looking at
these fundamental particles in our day-to-day lives requires a microscope of about the same
power as one which would be used to find a football stadium in a picture of the entire Milky
Way.

Now that we have reached the idea of pointlike particles as our fundamental building
blocks, we instead ask how to define such a particle? That is, what is it about a quark
that makes it a quark, and not an electron, or a photon, etc.? The answer, is that the world
has several symmetries, and each symmetry gives each particle a measurable, unchanging
property called an invariant. If we know the values of all of the different invariants of a
given particle, we have fully defined the particle. One example of a symmetry is Lorentz
symmetry, which says that physics should be invariant, that is, unchanged, under changes
of speed or velocity (called boosts) and rotations. For example, physical processes do not
care if we observe them by sitting still on Earth, or if we observe them while sitting on the
international space station which is moving around the Earth. The physical process will
be the same (though they may look quite different!) to both observers. Another import-
ant symmetry, called translation symmetry, is trivial, but profound. Translation symmetry
says that physics will be unchanged if we move the entire universe a bit to the left (or of
course, in any direction), and its consequences include that energy and momentum must
be conserved. Indeed, combing Lorentz symmetry with translation symmetry, gives rise to
the two invariants of a particle which play the starring role in this thesis, the mass and the
spin of the particle, both of which can be separated into two categories with remarkably
different properties.

For mass, we separate particles whose mass is zero, known as massless, from those which
are massive (mass is non-zero). Massless particles always move at the speed of light, while
massive ones can be stationary, and can never reach the speed of light. Even though only
the photon and the gluon are truly massless, in many situations at the LHC, the particles
move so fast that their mass is negligible, and we can approximate them to be massless.
This is useful, because massless particles are far simpler to use in calculations than massive
ones.

For spin, we separate fermions, defined as particles with half-integer-valued spin, i.e. 1
2 ,

3
2 ,

etc., from bosons, which have integer-valued spin, i.e. 0, 1, etc. The spin is the minimal
angular (rotational) momentum that a particle always has, is measured in units of Plank’s
constant !, and is called spin in analogy with an object spinning on its own axis but being
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Figure 1: The Standard Model of particle physics. The fermions are separated into quarks
(purple) which are colour charged, and leptons (green) which are not. The gauge
bosons (red) mediate the different forces, while the Higgs (yellow) is responsible
for giving each particle its mass. Figure from https://en.wikipedia.org/
wiki/Standard_Model

otherwise still.² No fundamental particle has a spin larger than 2, and in this thesis we only
consider particles with spin 0, 12 , and 1.

To the simplest approximation, the fermions (green and purple in figure 1) make up all of
the atoms in the universe.³ The fermions interact with each other by exchanging gauge
bosons (red in figure 1), which are said to mediate the different forces felt by the fermi-
ons. These forces exist because of a different set of symmetries called gauge symmetries.
However, unlike Lorentz symmetry, they do not have a physically intuitive explanation.
Nonetheless, there are three gauge symmetries about which we know, giving rise to the
three forces of the Standard Model (SM) of particle physics. If a particle interacts through
one of these forces, we say it is charged under that force. The charges and therefore be-
haviour of each particle under these forces, together with their mass and spin, leads to a

²However, this picture is in direct contradiction with the hypothesis that fundamental particles are point-
like, an open paradox which is yet to be solved.

³Specifically, all of the atoms in the universe are made of only three fermions, up quarks, down quarks, and
electrons.
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Figure 2: An example of a Feynman diagram describing an electron e− and an anti-electron
e+ interacting with each other. The photon (wavy line) is considered the force
carrier, and it is the exchange of this photon which means that the electron knows
that the positron is there and vice versa.

full description of a particle. There are 17 such particles we know of today, and these are
summarised in figure 1.

What are these three forces and how do they work? We start with the simplest force,
quantum electrodynamics (QED), responsible for electromagnetism and most of our day-
to-day experiences. All fermions except for the neutrinos are electrically charged and there-
fore interact under QED, and any such QED interaction occurs via the exchange of a
virtual (i.e. not able to be measured) photon. Because of this, we say that the photon is
the mediator of QED. QED interactions are most commonly described and calculated by
using Feynman diagrams, which encode all of the quantum possibilities of going from an
initial state to a final state. For example, by calculating the Feynman diagram in figure 2, we
can calculate the probability of an electron moving close to an anti-electron, exchanging a
photon, and therefore being attracted to the anti-electron. Such a diagram is at the heart of
this thesis, whose first four papers describe a novel method to go from Feynman diagrams
like this one to the probability of the scattering having occurred.

The second main force in the SM is the strong nuclear force (quantum chromodynamics,
or QCD for short), and simplifying QCD calculations is the topic of paper V. Particles
which are charged under the strong force are said to have colour charge, or just colour.
There are three types of colour charge, called red, green, and blue, in analogy with the three
primary colours of visible light.⁴ To make something colour neutral in QCD, we can either
combine a colour with its anti-colour (e.g. red with anti-red), or combine a red, green, and
blue charge together, in analogy to adding red, green, and blue light together to create the
neutral white light.

Similar to the way that electrically-charged objects have QED interactions, colour-charged
objects have QCD interactions. Of the fermions, only the six quarks have colour charge,
and their interactions are mediated by the exchange of a gluon. However, unlike the photon
which is electrically neutral, the gluon is itself colour charged, so can interact with other

⁴Note that this has nothing to do with visible colours though, which come from QED and its photon.
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gluons, meaning that gluons can and do exchange gluons with each other. This is an ex-
ample of a non-abelian force, and the gluon self-interaction is what makes QCD extremely
different to QED. For example, if you look at distances larger than the size of a proton
(O(1 × 10−15m)), all objects will arrange themselves into colour-neutral objects called
hadrons. Therefore, it is impossible to see bare quarks and gluons in our everyday lives, but
instead we see them grouped together as hadrons, of which the most commonly known are
the proton and neutron. On the other hand, at the energies and distances probed by the
LHC, colour-charged objects act as if they are almost free from each other, and it is possible
to distinguish (on average) the individual quarks and gluons rather than their colour-neutral
hadrons. Therefore, at the distances probed in this thesis, we consider quarks and gluons
as the individual particles, not the protons which we smashed together to create them, nor
the sprays of hadrons which we directly measure at the detector.

The last force is the weak force, which is partially responsible for radioactive decay. All
fermions are charged under the weak force, which is mediated by the W± and Z bosons
(note that the ± in W± implies that the W -bosons are electrically charged and undergo
QED interactions). However, the weak force gives a problem, namely that the symmetry
behind it is inconsistent with particles having a mass. To solve this problem, we introduce
a scalar (i.e. spin-0) particle called the Higgs boson (yellow in figure 1), and use it to (spon-
taneously) break electroweak symmetry, which means that the interactions of the Higgs
boson with other particles gives them a consistently defined mass⁵

Now that we have described the standard model and said something about its interactions,
it is worth describing how one confirms this picture of the world. Loosely speaking, at the
LHC we smash together protons each with about 7 TeV of energy, and count how many
particles are created together with their properties (energy, momenta, charges, etc.). The
number N of observed collisions which have a certain set of properties is given by a very
simple formula

N = σL , (1.1)

where L is the luminosity, i.e. an indication of how many protons we were able to put
into our beam and therefore the amount of stuff which could in theory collide, while
σ is the cross section, and gives the probability of colliding two protons and obtaining
whatever final state you were looking for. The cross section is the square of the scatter-
ing amplitude integrated (think summed) over all possible energies and momenta that the
final-state particles could have. The parameters of the integral itself are theory-independent
(though they depend on the masses of the particles), while the scattering amplitude and its
square are the stars of this thesis, are different for different particles and different theories,
and therefore have to be recalculated for every process you are considering.

⁵Note that the gluon and the photon remain massless. Also, we do not yet know if the neutrinos get their
very small masses in this way or in another way.

7



The original and most common way to calculate the scattering amplitude is to sum all
possible Feynman diagrams for the process at hand. However, there are several ways to cal-
culate and square a set of Feynman diagrams, i.e. to go from the pictures like figure 2, which
represent some mathematical expression, to a set of numbers which can be integrated. The
slowest method is the original method, for which every particle is unpolarised (does not
have a specific spin direction). In this method, the scattering amplitude is a matrix, which
has to be squared before laboriously taking its trace (summing the diagonal elements of the
matrix). In the mid-1980s however, a new method was created called the spinor-helicity
formalism. In the spinor-helicity formalism, each particle has a specific polarisation⁶, and
after some matrix multiplication or algebra, the scattering amplitude is a complex num-
ber which can be squared easily. This made the spinor-helicity formalism ubiquitous in
computer codes simulating particle collisions.

In the first four papers of this thesis, we developed chirality flow, which further simplifies
the spinor-helicity formalism, and removes the need for most of the matrix multiplication
or intermediate algebra. We did this for the full SM in the simplest, and next-to-simplest
class of Feynman diagrams (called tree-level and one loop respectively). Additionally, we
implemented the tree-level method for massless QED in the computer simulation program
MadGraph5_aMC@NLO, allowing for predictions which were up to 10 times faster than
before. Therefore, we are able to both create a conceptually simpler and clearer way to
calculate Feynman diagrams, and to create a faster computer code to calculate scattering
amplitudes and therefore cross sections.

Also, in paper V we explored a new implementation of QCD scattering amplitudes in
MadGraph5_aMC@NLO. This implementation had two parts: first, it used a recursive al-
gorithm called Berends-Giele recursion to bypass Feynman diagrams and calculate the
scattering amplitude more efficiently; and second, it had a new implementation of the
colour charge which was both able to improve the speed of a full QCD scattering amp-
litude, and was able to approximate the amplitude by only calculating part of the colour.
This is important because the colour charge is the main bottleneck in QCD calculations in
MadGraph5_aMC@NLO.

For those readers who are not physicists and have read this far, I would like to thank you
for your effort and hope that this has enlightened you somewhat as to what this thesis
is about. While I will try to start at the beginning, from the next section I will make a
significant (quantum?) leap in expectations of my audience, and will assume a general
physics background.

⁶The polarisation of a massless particles is its helicity, hence the name.
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2 The fundamentals of Particle Physics

We now change from giving an overview, to giving specifics. In this section we will go over
the fundamental physics underpinning particles and high-energy physics

2.1 The Lorentz Group, Mass, and Spin

For most of this thesis, the main symmetry group discussed is the Lorentz group and its
associated little group, together with its conserved quantities of mass and spin/helicity. In
this section we describe each of these objects in some detail.

The Lorentz group consists of all transformations of reference frame obtained by either
changing your velocity or by rotating your coordinate system, with the change of velocity
known as a boost. Restricting ourselves to the minimal required set of transformations (see
e.g. [1,2]), the Lorentz group is the special orthogonal group of rotations in three spatial and
one time direction which preserves the direction of time, SO(3, 1)+ (we can also think of
boosts as a rotation between spatial and temporal coordinates). For simplicity of notation,
we drop the + and from now on understand that writing SO(3, 1) means SO(3, 1)+.

The Lorentz group is an example of a Lie group, which means that we can write a group
element as an exponential of a representation of the group. Every object in the known
universe transforms (i.e. changes its appearance) during a Lorentz transformation based
upon which representation of the group it belongs to. For example, the most intuitive
representation is the vector representation. A (four)vector, for example some position vector
xµ = (t, x, y, z), will transform into x′µ = (t′, x′, y′, z′) based on the equation

xµ → x′µ = Λµ
νx

ν , (2.1)

where µ, ν = 0, 1, 2, 3 are Lorentz indices, Λµ
ν depends on the transformation at hand,

and all repeated indices in this thesis are summed over unless otherwise stated. For example,
for a rotation by an angle θ around the z-axis and a boost by speed v along the z-axis we
have

Λµ
ν

rot
=





1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



 , Λµ
ν

boost
=





γ 0 0 −vγ
0 1 0 0
0 0 1 0

−vγ 0 0 γ



 , (2.2)

where γ = 1/
√
1− v2, and we use natural units in which the speed of light and Plank’s

constant are equal to one.
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It is very useful to think of infinitesimal transformations, writing the transformation as
doing nothing plus doing something incredibly small,

Λµ
ν = δµν −

i

2
(ωρσJ

ρσ)µν +O(ω2) , (2.3)

where we introduce a small parameter ωµν = −ωνµ and the generators of the group Jµν =
−Jνµ. The exact form of the generators of the group depends on the representation which
is being considered. In our example above, the generators of rotations (boosts) around
(along) the z-axis can be found by taking the rotation angle (boost speed) very small and
placing its value into ωρσ, and then subtracting unity:

Jµ
ν

rot
= i





0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



 , Jµ
ν

boost
= i





0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0



 . (2.4)

Using that in this representation we have 4×4matrices and that Jµν = −Jνµ, we conclude
that there are six independent generators of the Lorentz group, three for the boosts along
the x, y, and z axes, labelled Ki for i = x, y, z = 1, 2, 3, and three for rotations around
those three axes, labelled Ji.

Regardless of the representation of the group, these six generators obey the Lie algebra

[Ji, Jj ] = iεijkJk , [Ji,Kj ] = iεijkKk , [Ki,Kj ] = −iεijkJk , (2.5)

where we introduce the commutator [A,B] ≡ AB − BA and the totally antisymmetric
Levi-Cevita tensor εijk.

A key realisation which is utilised repeatedly in this thesis, is to recast the generators of the
Lorentz algebra into two independent sets of generators, NL/R

i , by using

NL
i =

1

2
(Ji − iKi) , NR

i =
1

2
(Ji + iKi) , (2.6)

which have the Lie algebra relations

[NL
i , N

L
j ] = iεijkN

L
k , [NR

i , NR
j ] = iεijkN

R
k , [NL

i , N
R
j ] = 0 . (2.7)

Here, the first two relations say that bothNL andNR obey the su(2) algebra,⁷ and the last
relation states that the two algebras are independent of each other. We have therefore shown
the equivalence of the Lorentz algebra and two copies of su(2), one called the left su(2),
the other called the right su(2), and we classify particles based upon their representation
(jL, jR) of the two su(2)s:

⁷Groups are written with capital letters, and their algebras are written with lower-case letters.
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• (0, 0) are scalar particles

• (12 , 0) are left-chiral, two-component Weyl spinors

• (0, 12) are right-chiral, two-component Weyl spinors

• (12 , 0)⊕ (0, 12) are four-component Dirac spinors

• (12 ,
1
2) are vector particles.

Note that even though we have described the algebra of su(2), the Lorentz group is not
related to the SU(2) group. It is instead given by two copies of the group SL(2,C), whose
algebra sl(2,C) coincides with the algebra su(2).

Another key aspect of any group and its algebra are its invariants; that is, the quantities
which are unchanged when doing a group transformation.

In the vector representation of the Lorentz group, arguably the most important invariants
are the metric and the scalar product which it creates. The metric defines what we mean
by the distance between two objects, and in the vector representation we have

x2 ≡ gµνx
µxν = t2 − x2 − y2 − z2 , gµν = diag(1,−1,−1,−1) , (2.8)

where gµν is the metric and both the metric and x2 will not change during a Lorentz
transformation. Switching to momentum-space, the invariant of a momentum with itself
is the square of its mass, m2, defined as

m2 = p2 = gµνp
µpν = E2 − p2x − p2y − p2z . (2.9)

As discussed in section 1, in this thesis we want to distinguish two cases: either the mass of
a particle vanishes (massless) or it does not (massive). As we will see in the next section, this
distinction leads to different spin quantum numbers and therefore different behaviours of
a particle.

2.1.1 Wigner’s little group

One way to understand the spin quantum numbers of the Lorentz group is by using a soon-
to-be-described definition of a one-particle state, and looking at the action of Wigner’s little
group on that state [1–4]. We extend the Lorentz group to the Poincaré group by adding
translations of spacetime which are generated by the momentum operator⁸ P , whose ei-
genvalue on a state is its momentum p. We use the Dirac ket |p,σ〉 to describe a state of
momentum p and other Poincaré degrees of freedom σ; that is

Pµ|p,σ〉 = pµ|p,σ〉 . (2.10)

⁸We will sometimes write fourvectors without their vector index for brevity.
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Figure 3: Visualising a Wigner rotation. The particle is transformed from the standard
momentum k to the observed momentum p, transformed by Λ to Λp, and then
transformed back to the standard momentum k.

The goal now is to understand what the σ degree(s) of freedom can be. To do this, we start
by rewriting our state of arbitrary momentum p as a Lorentz-transformed state from some
standard momentum k,

|p,σ〉 ∼ U(L[p])|k,σ〉 , (2.11)

where we ignore the overall normalisation since it does not affect our discussion. Here,L[p]
is some Lorentz transformation which takes you from the standard momentum k to the
arbitrary momentum p, and U(L[p]) is that transformation written in the representation
of the particle |k,σ〉. By definition, this boost does not change the σ degree(s) of freedom.

An obvious question is, what is this standard momentum k? Since a Lorentz transformation
cannot change the mass of a particle, nor flip the sign of its energy (see section 2.1), we need
a different k for both massless and massive particles, and need a different k for positive- and
negative-energy particles (and a further k for the vacuum). In this thesis, we only need to
understand the difference between massless and massive particles, and take positive energy
for both simplicity and physical reality. We therefore have

• Massless particles: kµ = (ω, 0, 0,ω). Massless particles are always moving, so we
parameterise them to move along the z-axis with some energy ω.

• Massive particles: kµ = (m, 0, 0, 0). For massive particles, we choose the standard
momentum to equal the rest-frame momentum.

Now that we have the standard momentum, the question is how to understand σ? To
answer this, we act with an arbitrary Lorentz transformation Λ on the state |p,σ〉, multiply

12



by one, then use U(Λ)U(Λ′) = U(ΛΛ′), which holds for any representation:

U(Λ)|p,σ〉 ∼ U(Λ)U(L[p])|k,σ〉 = U(L[Λp])U(L−1[Λp])︸ ︷︷ ︸
1

U(ΛL[p])|k,σ〉

= U(L[Λp])U(L−1[Λp]ΛL[p]︸ ︷︷ ︸
W (Λ,p)

)|k,σ〉 , (2.12)

where in the last underbrace we introduce the Wigner rotation

W (Λ, p) = L−1[Λp]U(ΛL[p]) , (2.13)

which does not change the standard momentum k (see figure 3 for an intuitive picture of
this rotation). Therefore, we have

U(W (Λ, p))|k,σ〉 =
∑

σ,σ′

Cσ,σ′ |k,σ′〉 , (2.14)

that is, that the Wigner rotation does not change the momentum, but may change σ,
transforming the state σ to a linear combination of states with σ′.

The full effect of boosting the state is then

U(Λ)|p,σ〉 ∼ U(L[Λp])U(W (Λ, p))|k,σ〉 =
∑

σ,σ′

Cσσ′U(L[Λp])|k,σ′〉

∼
∑

σ,σ′

Cσσ′ |Λp,σ′〉 , (2.15)

where we again ignore normalisation factors. Eq. (2.15) says that to boost a particle we first
go back to the standard momentum, Wigner rotate and possibly change its σ values, and
then we boost to the new momentum without changing σ.

These Wigner rotations define what is called the little group, and in turn this defines the
spin quantum numbers σ of a particle. We now look at the two different little groups, one
for massless particles, the other for massive ones.

Massless
We begin with the massless little group, and try to find the generators of all of its trans-
formations. To do so, we consider an infinitesimal transformation Λµ

ν = δµν − iωµ
ν , then

use the metric to lower the upper index to get Λµν = gµν − iωµν (this allows us to use
that ωµν = −ωνµ). The effect of the transformation on k is

ωµνk
ν =





0 ω01 ω02 ω03

−ω01 0 ω12 ω13

−ω02 −ω12 0 ω23

−ω03 −ω13 −ω23 0









ω
0
0
ω



 = 0 , (2.16)
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with solution

ωµν = i





0 α β 0
−α 0 θ α
−β −θ 0 β
0 −α −β 0



 = α(K1 + J2)µν + β(K2 − J1)µν + θ(J3)µν ,

(2.17)

where Ji and Kj are the generators of Lorentz transformations from before.

Interestingly, if α and β are non-zero, then θ becomes a continuous variable (see e.g. [1,2]),
and we do not know of any massless particles with continuous spin.⁹ Therefore, we restrict
ourselves to the case α = β = 0, and the little group is restricted to O(2) ∼= U(1), which
has a single eigenvalue, the (quantised) spin along the direction of motion, i.e. the helicity.

We therefore conclude that the generator of the Wigner rotation is the helicity operator,
and that, in the absence of other symmetry groups such as gauge symmetries, all physical
massless particles can be described by their two properties, their momentum and their
helicity σ ≡ h. Note that this implies that a massless particle of any total spin j has only
two spin degrees of freedom h = ±j, often just written as h = ±.

Massive
Massive particles are more straightforward than massless ones. In this case, the Wigner ro-
tations are any rotation in space, the little group is SO(3) ∼= SU(2), and the σ eigenvalues
are the total spin of the particle j and its projection Js along some direction s, with values
Js = −j,−j+1, . . . , j. Therefore, a massive particle can have 2Js +1 values for its spin
eigenvalue, and is fundamentally different to a massless particle.

2.2 Lagrangians

Now that we understand a bit more about symmetry groups, in particular the Lorentz
group, we briefly describe Lagrangians, which encode the physics of a given theory. The
Lagrangian (more properly the Lagrangian density) is the kinetic energy minus the poten-
tial energy of a field, and involves all possible combinations of the fields which correctly
obey the symmetries imposed. For example, all Lagrangians are required to be invariant
under Lorentz symmetry, so the Lagrangian of a scalar field with no further symmetries or
requirements imposed is

L =
1

2
(∂µφ) (∂

µφ)− m2

2
φ2 − λ3

3!
φ3 − λ4

4!
φ4 − . . . , (2.18)

⁹There have, however, been several papers describing the properties of such hypothetical, continuous spin
particles, e.g. [5–8].
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where φ is the scalar field, m the mass of the scalar, λ3,λ4 are couplings, the term with the
derivatives is the kinetic energy, and all terms with a minus sign are the potential energy.

In addition to the Lagrangian, another key concept in physics is the action S, defined as
the integral of the Lagrangian

S ≡
∫

d4xL
(
φ(x), ∂µφ(x)

)
, (2.19)

where we made the x dependence of the field φ explicit. The principle of least action states
that the stationary points of the action, δS = 0, describe how a field evolves from one state
to another. Therefore, we obtain the equations of motion of the field using δS = 0, which
gives the Euler-Lagrange equations

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L
∂φ

= 0 , (2.20)

where in general we have one such equation for each field φ within the Lagrangian.

We pause to make several remarks. First, we note that the action must be dimensionless.
Counting dimensions of energy, the Lagrangian itself must have dimension 4, and therefore
the fields φ and coupling λ3 both have dimension 1, while the four-point coupling λ4 is
dimensionless. This will be important when we look at loop integrals and dimensional
regularisation in section 6.2.

Second, in the Standard Model, the Lagrangian must be invariant under not only Lorentz
symmetry, but also the Standard Model gauge groups SU(3)C×SU(2)L×U(1)Y . How-
ever, the actual form of this Lagrangian is unimportant for this thesis so is not written
here.¹⁰

Finally, the Lagrangian is extremely important in scattering amplitudes, since one is able to
derive all of the rules necessary for calculating scattering amplitudes from the Lagrangian.
Such rules are called the Feynman rules, and are used ubiquitously in this thesis. However,
we will not discuss here how to move from the Lagrangian to Feynman rules, and instead
point to e.g. [1, 2, 9, 10].

2.3 Particle Wavefunctions

A crucial part of this thesis is correctly describing the wavefunctions of particles of a given
spin or helicity. Therefore, we will give a brief overview of the components necessary for
this thesis, but more information can be found in e.g. [1, 2, 9–12].

¹⁰The interested reader can find this Lagrangian in many forms, from the very compact but possibly un-
informative form often written on mugs or t-shirts, to the more complete form written in textbooks such
as [1, 2, 9, 10].
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In the chirality-flow formalism which comprises the majority of this thesis, we simplify the
part of a scattering amplitude calculation which is derived from the spins of the particles.
Our method describes particles of spin 0, 12 , and 1, but since scalar particles have spin 0,
their spin-structure is trivial and there is little to say about them.

The first non-trivial particles with regard to spin are the spinors, which have spin 1
2 and obey

the famous Dirac equations. There are two types of spinors: particles of spin¹¹ Js, whose
momentum-space wavefunction is denoted by uJs(p); and antiparticles of spin Js, with
momentum-space wavefunction vJs(p). Each of these spinors obeys a slightly different
Dirac equation

(/p−m)uJs(p) = 0 , ūJs(p)(/p−m) = 0 ,

(/p+m)vJs(p) = 0 , v̄Js(p)(/p+m) = 0 , (2.21)

where we introduced the Feynman slash /p ≡ pµγµ, the Dirac-conjugated wavefunctions
ūJs(p) ≡ (uJs)†(p)γ0 and v̄Js(p) ≡ (vJs)†(p)γ0, and the Dirac gamma matrices γµ,
defined as obeying the Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . (2.22)

In this thesis, the four-dimensional Clifford algebra, eq. (2.22), is realised using the Weyl,
or chiral, basis

γµ =

(
0 σµ

σ̄µ 0

)
, σµ = (1,-σ) , σ̄µ = (1,−-σ) , (2.23)

where -σ is a vector of the three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.24)

In addition to the four γ-matrices, it is convenient to introduce a fifth γ-matrix, γ5, obeying

γ5 = iγ0γ1γ2γ3 , (γ5)2 = 1 , (γ5)† = γ5 , γ5 =

(
−1 0
0 1

)
, (2.25)

where the matrix representation is only true in the chiral basis, but other relations are basis
independent. γ5 can be used to create the chiral projection operators

PR/L =
1 +− γ5

2
, PR + PL = 1 ,

PRPL = 0 , PRPR = PR , PLPL = PL , (2.26)

¹¹By using spin Js we implicitly imply that these spinors are massive. For a discussion of massless spinors
see below.
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which allow us to separate the left-chiral part of a spinor, transforming under the (12 , 0)
representation of the Lorentz group, from the right-chiral part of a spinor, transforming
under the (0, 12) representation of the Lorentz group (see eq. (2.7) and the discussion below
it). Using that 1 = PL + PR, we explicitly see that a Dirac spinor is simply a sum of
both a left- and a right-chiral Weyl spinor, i.e. that Dirac spinors transform under the
(12 , 0)⊕ (0, 12) representation of the Lorentz group.

It is useful to use different symbols to distinguish a left-chiral spinor from a right-chiral
one. Specifically, we use square bras and kets to denote left-chiral, two-component, Weyl
spinors, and angled bras and kets to denote right-chiral, two-component, Weyl spinors,
writing

uJs(p) =

(
|p1]
|p2〉

)
, vJs(p) =

(
|p′1]
|p′2〉

)
,

ūJs(p) =
(
[p2| 〈p1|

)
, v̄Js(p) =

(
[p′2| 〈p′1|

)
, (2.27)

where the momenta p1 and p2 may be different to p′1 and p′2 and are, for now, left undefined
(see section 3.2 and paper II for their definitions). These two-component spinors will be
used copiously in the first four papers of this thesis.

An important property of Dirac spinors is their spin sums
∑

Js

uJs(p)ūJs(p) = /p+m ,
∑

Js

vJs(p)v̄Js(p) = /p−m , (2.28)

which are required in traditional Feynman-diagram calculations.

Finally for spinors, we comment that when m = 0 the u and v spinors both have the same
Dirac equation and the same spin sum. It can be shown that either the square or angle
spinor vanishes in this case, such that the four-component Dirac spinor instead becomes a
two-component left- or right-chiral Weyl spinor, and that we have

uh(p) = v−h(p) , ūh(p) = v̄−h(p) , (2.29)

where we changed the massive spin quantum number Js to the massless one, the helicity
h.

Next, we consider spin-1 particles. For this thesis, it is sufficient to know that spin-1
wavefunctions involve a polarisation vector εµs (p) of some spin s obeying

εs(p) · ε∗s′(p) = −δss′ , p · εs(p) = 0 , (2.30)

where we use the notation A · B ≡ AµBµ for the first time. This equation gives the
normalisation of the polarisation vectors, as well as the transversality condition, and is
valid for both massive particles (s ≡ Js) and massless ones (s ≡ h).
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2.4 Gauge Fixing

In the previous section we saw the wavefunctions which describe the external particles
of Feynman diagrams and scattering processes. In this section, we will instead describe
the propagators of internal spin-1 particles. We will implicitly assume an abelian gauge
symmetry like QED for simplicity, but, unless otherwise stated, our conclusions will hold
in non-abelian theories like QCD as well.

The massless spin-1 gauge bosons in the Standard Model obey gauge symmetry, which says
that physics is invariant under the following transformation of their fields Aµ:¹²

Aµ → Aµ(x) + ∂µα(x) , (2.31)

where α(x) is an arbitrary scalar function. Eq. (2.31) implies that there is a continuously in-
finite number of physically equivalent fields, and therefore the propagator is ill defined. Ar-
guably the most common solution to this, is to explicitly break gauge symmetry by adding
a gauge-fixing term to the Lagrangian [14],¹³

Lgf = − 1

ξ2
(∂µA

µ)2 , (2.32)

which ensures that there is exactly one A field per physical field. Here, ξ is a free parameter
which helps define the choice of gauge, and this choice of gauge fixing is called theRξ gauge.
The parameter ξ, like any gauge parameter, will show up as an artefact in intermediate
stages of a calculation, however all physical quantities must eventually be gauge invariant
and therefore independent of the choice of ξ.

Having now fixed the gauge, the spin-1 propagator is well defined, and has the form

p
−→µ ν ∼ − i

p2

(
gµν − (1− ξ)

pµpν
p2

)
, (2.33)

which is simplified by choosing ξ = 1. Such a choice is called Feynman or Feynman-‘t
Hooft gauge, and is used almost exclusively in this thesis.

3 Scattering Amplitudes and How to Calculate Them

As was discussed around eq. (1.1), at any collider experiment we count events and use them
to measure the cross section, i.e. the probability that such an event occurs. In this section

¹²For a non-abelian symmetry, we should add an extra term to the gauge transformation, eq. (2.31) [13].
¹³If the theory is non-abelian, this choice will also require the addition of non-commuting scalar particles

called ghosts to the Lagrangian.
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we first relate this cross section to scattering amplitudes, the overarching topic of this thesis,
and then describe the spinor-helicity formalism on which papers I-IV and the chirality-flow
formalism are based. Finally, we discuss Berends-Giele recursions and how they bypass
Feynman diagrams.

The partonic cross section¹⁴ σ̂ for a 2 → n scattering process involving SM particles is
calculated using [17–19]

σ̂ =
1

4F

1

2π3n−4

∫ n∏

i=1

d3pi
2Ei

δ4(pin − pout)|M(a+ b → n)|2 , (3.1)

where F =
√
(pa · pb)2 −m2

am
2
b is called the Møller flux, the product runs over all n

final-state particles i, the Dirac delta function ensures momentum conservation, we in-
tegrate over all possible momenta of the final-state particles, and M(a + b → n) is the
scattering amplitude for the process a+ b → n and is usually summed and averaged over
polarisations and colours (hence the bar). Note that we will use the words scattering amp-
litude, amplitude, and matrix element interchangeably.

In the electroweak theory, and in QCD at energies much higher than 1 GeV, the couplings
involved are small, allowing a perturbative expansion of the cross section in the number of
powers of the coupling (see e.g. [10, 15–17])

σ̂ = σ̂LO + ασ̂NLO + α2σ̂NNLO + . . . , (3.2)

where we have called a generic (squared) coupling α, and made use of the short-hand
notation LO for leading order, NLO for next-to-leading order, etc. Each σ̂i is individually
calculated using eq. (3.1), and the scattering amplitudes need to be calculated separately at
each order of the perturbative expansion.

It is now that we turn to the main object of this thesis, the scattering amplitude. This is
typically calculated by summing Feynman diagrams,¹⁵ which encode all of the ways we can
go from some initial particles to some final particles, and give some mathematical expression
used to calculate the amplitude. For example, using the Feynman rules in paper I, there is
only one possible LO Feynman diagram for the process e+e− → µ+µ−, and therefore its

¹⁴The hat here is to distinguish the partonic cross section from the hadronic cross section. A discussion of
the difference between them and their relation to each other is outside the scope of this thesis. If interested,
see e.g. [15–17].

¹⁵Note that it is also now common to use off- and on-shell recursion relations which alleviate several
problems of Feynman diagrams, especially the scaling with the particle multiplicity. See section 3.3 and
e.g. [11, 12, 20–23] for more.
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(a) Real correction (b) Virtual (loop) correction

Figure 4: Two examples of contributions to an NLO cross section. For both examples, the
left-hand-side represents the amplitude, while the right-hand side represents the
conjugate amplitude. In (a) the NLO contribution is at tree level, while in (b)
we have a loop-level contribution.

amplitude is given by that diagram:

M(e+e− → µ+µ−) =

e−(2)

e+(1)

µ+(3)

µ−(4)

= ie2
[v̄s1(1)γ

µus2(2)] [ūs4(4)γµvs3(3)]

(p1 + p2)2
, (3.3)

where e is the electromagnetic coupling, the spinors u, ū, v, v̄ and gamma matrices γµ are
defined in section 2.3, and we have introduced the shorthand notation i ≡ pi. For simpli-
city, we use Feynman gauge (see section 2.4). How to square the right-hand-side of eq. (3.3)
to get a probability will be explained in sections 3.1 and 3.2. For now, we comment that
the factor ie2/(p1 + p2)2 is trivial to calculate, but the factor [v̄(1)γµu(2)] [ū(4)γµv(3)]
coming from the spin structure requires some effort. In the next few sections, and in the
first four papers of this thesis, we will mainly focus on calculating and simplifying this spin
structure.

Finally, we note that Feynman diagrams can in general have a tree-like structure as in
eq. (3.3) (called a tree-level diagram), or a loop-like structure (called a loop diagram). An
example of each is given in figure 4. Tree-level diagrams are far simpler to calculate than
loop diagrams, because the momentum of every particle involved is determined. In loop
diagrams, there is at least one unconstrained momentum which has to be integrated over,
often yielding infinite results (see section 6).

3.1 Textbook method to Calculate a Scattering Amplitude

Now we are ready to show how to calculate the squared scattering amplitude. The textbook
method to do this (see e.g. [10]) is to square the right-hand-side of eq. (3.3), sum over spins,
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then use the cyclicity of a trace and the spin-sum rules in eq. (2.28) to obtain
∣∣∣∣∣∣∣∣

e−(2)

e+(1)

µ+(3)

µ−(4)

∣∣∣∣∣∣∣∣

2

=
e4

(p1 + p2)4

∑

s1,s2,s3,s4

[v̄s1(1)γ
µus2(2)] [ūs4(4)γµvs3(3)]

× [ūs2(2)γ
νvs1(1)] [v̄s3(3)γνus4(4)]

=
e4

(p1 + p2)4

∑

s1,s2,s3,s4

Tr [vs1(1)v̄s1(1)γ
µus2(2)ūs2(2)γ

ν ]

× Tr [us4(4)ūs4(4)γµvs3(3)v̄s3(3)γν ]

=
e4

(p1 + p2)4
Tr
[(
/1−m1

)
γµ
(
/2 +m2

)
γν
]

× Tr
[(
/4 +m4

)
γµ
(
/3−m3

)
γν
]
, (3.4)

where si is the spin of particle i. To write this as a complex number which can be integrated
over, we need to use the known relations for traces of gamma matrices, e.g.

Tr
[
γµ1γµ2

]
= 4gµ1µ2 , Tr

[
γµ1 . . . γµ2n+1

]
= 0 ,

Tr
[
γµ1 . . . γµ4

]
= 4(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4 + gµ1µ4gµ3µ2) . (3.5)

To simplify the calculation, we will assume that all particles are massless, meaning that
∣∣∣∣∣∣∣∣

e−(2)

e+(1)

µ+(3)

µ−(4)

∣∣∣∣∣∣∣∣

2

=
e4

(p1 + p2)4
Tr
[
/1γµ/2γν

]
Tr
[
/4γµ/3γν

]

=
16e4

(p1 + p2)4

[
1µ2ν − (p1 · p2)gµν + 1ν2µ

]

×
[
4µ3ν − (p3 · p4)gµν + 4ν3µ

]

=
8e4

s212

[
s14s23 + s13s24 +

1

2
s12s34(g

µ
µ − 4)

]
, (3.6)

where we used that gµνgµν = gµµ, and introduced the notation sij ≡ (pi+pj)2 which for
massless momenta simplifies to sij = 2pi · pj . The trace of the metric gµµ is equal to the
number of dimensions of spacetime, so in this case, gµµ = 4 and the last term disappears,
giving

∣∣∣∣∣∣∣∣

e−(2)

e+(1)

µ+(3)

µ−(4)

∣∣∣∣∣∣∣∣

2

=
8e4

s212
[s14s23 + s13s24] , (3.7)
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for the squared scattering amplitude
∣∣∣M(e+e− → µ+µ−)

∣∣∣
2
.

At this point we pause to make a few comments. Firstly, this was the simplest non-trivial
process we can calculate, yet still took about a page of abridged algebra. More difficult pro-
cesses quickly become intractable without the use of a computer, and even with a computer
this method is very inefficient.

Secondly, since the square of the amplitude gives momentum invariants, the amplitudes
themselves should be some sort of square root of these invariants. This will be realised in
the spinor-helicity method in the next section. However, in this method the amplitude was
a matrix, hence it was difficult to square and complete the calculation.

Finally, in four dimensions, the momentum invariants sij we obtain at the end only involve
contractions of momenta from different fermion lines. It is as if the spin structure gives a
momentum which flows through the photon from one fermion line to another, an obser-
vation which the chirality-flow method of this thesis makes very obvious and transparent.

3.2 The Spinor-Helicity Formalism

One way to improve this calculation is by using the spinor-helicity formalism [11,12,24–40].
In this formalism, every particle is given a specific value of its spin quantum number (cf.
section 2.1.1). Importantly, this allows the amplitude to be written in terms of complex
numbers, rather than a matrix, making it easier to square and quicker to calculate on a
computer. Further, the chirality-flow method of this thesis is a simplification of the spinor-
helicity formalism. Therefore, we now go through some of the basic ideas and principles
of the spinor-helicity method¹⁶.

3.2.1 Massless Particles

Before describing the spinor-helicity formalism for massless particles, it is worth discussing
briefly what we mean by a massless particle. If the magnitude of the three-momentum |-p|
of a particle is much larger than its mass m, the energy of that particle is approximately
equal to its three-momentum

E =
√

m2 + |-p|2 = |-p|

√

1 +
m2

|-p|2 ≈ |-p|
(
1 +

m2

2|-p|2

)
≈ |-p| , (3.8)

and therefore the particle is approximately massless. In the context of this thesis, we are
interested in calculations of hard particles which typically have a three-momentum above

¹⁶Note that since paper I includes a fully self-contained introduction to the spinor-helicity formalism, we
only introduce the underlying concepts and a small subset of the mathematical tricks here.
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about 20 GeV. In this case, all Standard Model particles except for the top quark, H,Z
and W± bosons are approximately massless. (The heaviest particle outside of these is the
b quark, which has a mass of about 4 GeV. Therefore, a 20 GeV b quark has energy E ≈
20(1 + 0.02) ≈ 20 GeV according to eq. (3.8), so the approximation is valid for most
purposes.)

The spinor-helicity formalism is particularly useful for calculating Feynman diagrams in-
volving massless particles, especially massless spinors.¹⁷ The main reason is that for massless
spinors, the chirality projection operator PR/L (see eq. (2.26)) projects out not only a rep-
resentation of the Lorentz group, but also a helicity state:

u+(p) = v−(p) =

(
0
|p〉

)
, u−(p) = v+(p) =

(
|p]
0

)
,

ū+(p) = v̄−(p) =
(
[p| 0

)
, ū−(p) = v̄+(p) =

(
0 〈p|

)
, (3.9)

where we use, and will now expand upon, the bras and kets first introduced in eq. (2.27). If
we contract a square (angle) bra with a square (angle) ket, we obtain a spinor inner product

〈ij〉 = −〈ji〉 ≡ 〈i||j〉 , [ij] = −[ji] ≡ [i||j] , (3.10)

where we use the shorthand i ≡ pi, and note that the inner product is antisymmetric in its
arguments, implying that

〈ii〉 = [jj] = 0 . (3.11)

These inner products are well-known complex numbers, being different complex square
roots of the momentum invariant sij = (pi + pj)2 = 2pi · pj :

〈ij〉 = [ji]∗ = eiφij
√
sij , 〈ij〉[ji] = sij , (3.12)

for some phase eiφij which can be calculated from the explicit representations of the two-
component spinors given in papers I and II.

Except for in paper V and the beginning of paper IV, for the remainder of this thesis we
repurpose the Feynman slash notation to mean a vector contracted with a Pauli matrix, and
any such massless slashed momentum can be rewritten as an outer product of spinors

/p ≡ pµσµ
p2=0
= |p]〈p| , /̄p ≡ pµσ̄µ

p2=0
= |p〉[p| , (3.13)

¹⁷It should be noted that one of the big successes of the spinor-helicity formalism is that it can be used to
skip Feynman diagrams entirely, and instead obtain occasionally remarkably simple formulae like the Parke-
Taylor formula [41] for the full amplitude. However, this is outside the scope of this thesis, and the interested
reader should instead see e.g. [11, 12, 42].

23



allowing an easy way to show that the spinors in eq. (3.9) solve the massless Dirac equation
(also known as the Weyl equation), e.g.

pµγ
µu+(p) = /p|p〉 = |p] 〈p||p〉︸ ︷︷ ︸

≡〈pp〉

= 0 , pµγ
µu−(p) = /̄p|p] = |p〉 [p||p]︸ ︷︷ ︸

≡[pp]

= 0 , (3.14)

where we used eq. (3.11).

In Feynman diagrams, it is common to find combinations like ūh(i)γµvh(j), manifesting
as

〈i|σ̄µ|j] ≡
√
2〈i|τ̄µ|j] , or [i|σµ|j〉 ≡

√
2[i|τµ|j〉 , (3.15)

where we introduce the differently-normalised Pauli matrices τµ = σµ/
√
2 and τ̄µ =

σ̄µ/
√
2. To remove these Pauli matrices and obtain just spinors and spinor-inner products,

we use the Fierz identities

〈i|τ̄µ|j][k|τµ|l〉 = 〈i|τ̄µ|j]〈l|τ̄µ|k] = 〈il〉[kj] , (3.16)

where we used charge conjugation of a spinor line

〈i|τ̄µ1 . . . τ̄µ2n+1 |j] = [j|τµ2n+1 . . . τµ1 |i〉 ,
〈i|τ̄µ1 . . . τµ2n |j〉 = −〈j|τ̄µ2n . . . τµ1 |i〉 ,
[i|τµ1 . . . τ̄µ2n |j] = −[j|τµ2n . . . τ̄µ1 |i] , (3.17)

where every τ is followed by a τ̄ and vice versa.

Polarisation vectors can also be described in terms of Weyl spinors and a Pauli matrix. We
describe an incoming polarisation vector of momentum p and helicity h = ± using

εµ+(p, r) =
〈p|τ̄µ|r]
[pr]

=
[r|τ̄µ|p〉
[pr]

, εµ−(p, r) =
〈r|τ̄µ|p]
〈rp〉 =

[p|τ̄µ|r〉
〈rp〉 , (3.18)

where the outgoing polarisation vectors (εµ±)∗ are the same as the incoming ones with
the opposite polarisation, i.e. (εµ±)∗ = εµ∓, and r is an arbitrary reference vector which
corresponds to a gauge choice,¹⁸ and satisfies r2 += 0 and r · p += 0. We can show that
these polarisation vectors satisfy the usual normalisation condition from eq. (2.30), namely
εh(p) · (εh′(p))∗ = −δhh′ , by using the Fierz identity, eq. (3.16),

ε+(p, r) · (ε+(p, r))∗ = ε+(p, r) · ε−(p, r) =
〈p|τ̄µ|r]
[pr]

〈r|τ̄µ|p]
〈rp〉 =

〈pr〉[pr]
[pr]〈rp〉 = −1 ,

ε+(p, r) · (ε−(p, r))∗ = ε+(p, r) · ε+(p, r) =
〈p|τ̄µ|r]
[pr]

〈p|τ̄µ|r]
[pr]

=
〈pp〉[rr]
[pr][pr]

= 0 ,

etc. , (3.19)

¹⁸Changing r → r′ changes εµ → εµ + αpµ for some constant α, i.e. changing r we gain a term
proportional to the momentum of the polarisation vector, so this is indeed a gauge choice.
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while their orthogonality to their momentum follows from the Weyl equation, eq. (3.14),

p · ε+(p, r) =
[r|/p|p〉
[pr]

= 0 . p · ε−(p, r) =
〈r|/p|p]
[pr]

= 0 , (3.20)

Since r corresponds to a gauge choice, any gauge-invariant quantity is r-independent, al-
lowing an easy consistency check of a calculation. Further, while there is no ‘correct’ choice
of r, the most useful choice is to set ri = pj for particle j being a particle with opposite
chirality¹⁹ to particle i. This ensures that inner products like 〈ripj〉 = 〈pjpj〉 = 0 as in
eq. (3.11), often allowing to significantly reduce the number of Feynman diagrams under
consideration.

We now return to the example from the previous section, and show how the spinor-helicity
formalism simplifies the calculation. According to the Feynman rules, the fermion-photon
vertex contains either a τ or a τ̄ , each of which changes a left-chiral fermion into a right-
chiral one or vice versa. Therefore, the only helicity configurations we need are those where
both the electron and positron, and the muon and antimuon, have pairwise opposite chir-
alities. Further, QED obeys CP symmetry, so the squared matrix element for one set of
helicities is the same as the squared matrix element when every particle has swapped its
helicity. Therefore, we need to calculate
∣∣∣∣∣∣∣

e−(2)

e+(1)

µ+(3)

µ−(4)

∣∣∣∣∣∣∣

2

= 2

∣∣∣∣∣∣∣

e−R(2)

e+L(1)

µ+L(3)

µ−R(4)

∣∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣∣

e−R(2)

e+L(1)

µ+R(3)

µ−L (4)

∣∣∣∣∣∣∣

2

,

(3.21)

where the Feynman diagrams on the right have explicit chiralities (equivalent to explicit
helicities for massless particles) and are called helicity diagrams.

To calculate each helicity diagram, we use eq. (3.9) for the external spinors, the vertex is
(up to couplings) given by the Dirac matrix γµ, which we write in the chiral basis as in
eq. (2.23), we again use the Feynman gauge (see section 2.4), and use the Fierz identity,

¹⁹We define the chirality of a gauge boson as the chirality of the spinor containing its momentum p in
eq. (3.18). For example, if εµ(p, r) ∼ 〈p|τ̄µ|r], then we think of the photon as having right chirality since 〈p|
is a right-chiral spinor.
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eq. (3.16) to obtain inner products

e−R(2)

e+L(1)

µ+L(3)

µ−R(4)

=
−2i3e2

s12
[1|τµ|2〉〈4|τ̄µ|3] =

2ie2

s12
[13]〈42〉 ,

e−R(2)

e+L(1)

µ+R(3)

µ−L (4)

=
−2i3e2

s12
[1|τµ|2〉[4|τµ|3〉 =

2ie2

s12
[14]〈32〉 . (3.22)

Notice that, as predicted at the end of section 3.1, the amplitude is now written as square
roots of the momentum invariants sij (recall from eq. (3.12) that √sij ∼ 〈ij〉 ∼ [ij]).

Staring at eq. (3.22), we see that the inner products are between spinors with the same chir-
alities, as if the spin structure gave momentum flowing from one chiral spinor to another
of the same type. This extends the final comment of section 3.1, and will be transparent in
the chirality-flow formalism.

To finish the calculation, we use eq. (3.12) to square the amplitudes, obtaining
∣∣∣∣∣∣∣

e−(2)

e+(1)

µ+(3)

µ−(4)

∣∣∣∣∣∣∣

2

= 2

∣∣∣∣∣∣∣

e−R(2)

e+L(1)

µ+L(3)

µ−R(4)

∣∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣∣

e−R(2)

e+L(1)

µ+R(3)

µ−L (4)

∣∣∣∣∣∣∣

2

= 2

[
4e4

s212
s13s24 +

4e4

s212
s14s23

]

=
8e4

s212
[s13s24 + s14s23] , (3.23)

as before, in eq. (3.7). This new calculation was much quicker and easier than before. Cru-
cially, the amplitude was a complex number rather than a matrix, meaning that computer
simulations using this method are much quicker than those using the method of section 3.1.

3.2.2 Massive Particles

The spinor-helicity formalism can also be easily used for massive particles, but, particularly
for massive fermions, it loses some of its useful properties such as the correlation between
helicity and chirality. Nonetheless, it maintains the property that amplitudes are now a
complex number rather than a matrix, meaning that it is copiously used in computer cal-
culations.
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There are two common approaches to the spinor-helicity formalism for massive particles,
The one we used in papers II and IV²⁰ is to choose an arbitrary direction vector q satisfying
(q)2 = 0, which defines (but is not equal to) the spin axis s, and defines a split of the
massive momentum p into two massless momenta [39, 44, 45]

p = p& +
p2

2p& · q
q , s =

1

m

(
p& − p2

2p& · q
q

)
, (3.24)

allowing to recycle results from massless spinor helicity such as

/p = /p
& +

p2

2p& · q /
q = |p&]〈p&|+ p2

2p& · q
|q]〈q| . (3.25)

Spinors now have both their left- and right-chiral parts, with for example

u+(p) =

(
m

[p!q]
|q]

|p&〉

)
, v−(p) =

(
− m

[p!q]
|q]

|p&〉

)
, (3.26)

which smoothly go to their massless limits by taking m → 0 and p& → p. The full set of
spinors is not central to the discussion and is given in paper II, so is not repeated here.

As described in section 2.1.1, a massive vector boson has three spin degrees of freedom,
whereas a massless one has two. While at first this appears to need a strong overhaul to the
polarisation vectors, the transverse polarisation vectors are instead left unchanged compared
to massless ones in eq. (3.18), except for replacing r → q and p → p&, while the third
polarisation vector is equal to the spin direction vector, εµ0 (p, q) = sµ.

With these prescriptions, we have rewritten all massive objects as combinations of massless
spinors, allowing to recycle the massless spinor-helicity formalism. However, we have a
more clunky formalism, and, in contrast to the gauge reference momentum r, the reference
vector q is physical since it defines the spin direction s. Therefore, a spin-amplitude, i.e.
the amplitude for a given set of spins, is dependent on q, and only after summing over all
spins does the dependence on q disappear (compare this to the helicity-amplitude being
independent of the gauge reference choice r).

3.3 Berends-Giele Recursions

In the above sections we have calculated scattering amplitudes using Feynman diagrams.
This is a process which always works and is useful, but which has its flaws. One of the main

²⁰The alternative approach is that proposed in [43], however this approach is not used in this thesis so will
not be discussed here.
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flaws of Feynman diagrams is that their multiplicity grows like a (double) factorial with
the number of external particles [46]. Therefore, calculating scattering amplitudes without
Feynman diagrams can be very advantageous, and there is a whole community finding new
and exciting ways to do so (see e.g. [11, 12] for an overview of such methods).

The oldest, and often fastest [21–23], way to calculate amplitudes without Feynman dia-
grams, is off-shell Berends-Giele (BG) recursion [20]. BG recursion works by building up
off-shell n-particle currents by summing together smaller off-shell currents. This can be
done for any amplitude, involving any number of spinors and bosons, and is most use-
ful for QCD amplitudes since the number of Feynman diagrams is particularly high and
reducing this is important. For this reason, in paper V, we revived an old branch of the
MadGraph5_aMC@NLO event generator (see section 5) which, among other things, aimed
to use these recursions to speed up the amplitude calculation.

The formulae and an explanation of the different BG currents are given in paper V, so we
will not go through them here in detail. Instead, we show the all-gluon recursion to give an
example of how this is different to a Feynman diagram calculation and why it can improve
calculation speeds. The base ingredients of the all-gluon recursion are a polarisation vector,
which acts as the one-particle current Jµ

1 , and a three-gluon vertex with one particle off-
shell, which acts as the two-particle current Jµ

2 :

Jµ
1 (1) = εµ(1) ,

Jµ
2 (1, 2) =

−i

(p1 + p2)2
V µµ1µ2
3 (p1, p2)J1,µ1(1)J1,µ2(2) , (3.27)

where εµ(1) is the gluon polarisation vector with momentum p1, and V µµ1µ2
3 (p1, p2) the

three-gluon vertex, see papers I and II for its form. An n-gluon current is then given by

Jµ
n (1, . . . , n) =

−i

P 2
1,n

×
{

n−1∑

i=1

V µνρ
3 (P1,i, Pi+1,n)Jν(1, . . . , i)Jρ(i+ 1, . . . , n) +

n−2∑

i=1

n−1∑

j=i+1

V µνρσ
4 Jν(1, . . . , i)Jρ(i+ 1, . . . , j)Jσ(j + 1, . . . , n)




, (3.28)

whereV µ1µ2µ3µ4
4 is the four-gluon vertex (see papers I and II), we use the shorthandP 2

1,n =

(p1+ · · ·+ pn)2, and we drop the number of particles n in Jµ
n where convenient. To turn

an n-point current into an (n + 1)-particle amplitude, we need to amputate the off-shell
propagator and multiply by the remaining polarisation vector

M(1, . . . , n+ 1) = εµ(n+ 1)
p21,n
−i

Jµ
n (1, . . . , n) . (3.29)
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Note that, while we use the Feynman rules for the vertices, particles, and propagators in
eqs. (3.27) and (3.28), we build the amplitude very differently. Instead of calculating indi-
vidual Feynman diagrams, at each point of the recursion we sum together multiple partial
Feynman diagrams into a single off-shell current, and then at the end we turn this into an
amplitude using eq. (3.29). Therefore, using eqs. (3.27 - 3.29) to calculate the amplitude can
lead to a decrease in the number of terms required compared to Feynman diagram calcula-
tions.²¹ It also allows to prove some analytical formulae such as the Parke-Taylor formula
for MHV amplitudes [20, 41].

4 QCD and Colour

In Paper V we describe a new algorithm to calculate colour in MadGraph5_aMC@NLO
(MG5aMC), and also use that algorithm to simplify colour calculations by using an ex-
pansion in the number of colours Nc [47]. Additionally, the chirality-flow formalism of
papers I-IV was inspired by the idea of colour flow [48], which uses flow lines instead of
index algebra to do calculations more transparently and quickly in colour space. Therefore,
in this section we briefly describe what the colour algebra is, why we need it, how to do
colour calculations, what an expansion in the number of colours is and why it could be
useful, and what colour flow is and how it is linked to chirality flow.

QCD is a gauge theory obeying the non-abelian symmetry group SU(Nc) with Nc = 3.
Unlike QED, which obeys the abelian U(1) symmetry group, the generators of QCD are
matrices. Therefore, in the Feynman rules of QCD (see papers I and II), vertices do not just
contain the coupling gs multiplied by a constant charge factor, but contain the coupling
multiplied by a generator of the gauge group: either the fundamental generator taij if the
interaction is between a quark and a gluon, or the adjoint generator fabc if the gluons are
interacting with themselves.²²

This implies that any QCD amplitude is a function of the QCD generators of each particle
involved, the momenta of each particle, and their helicities or spins. A common trick is to
factorise the colour part of an amplitude from the kinematics [48–51]

M(su(Nc); p1, h1; , . . . , pn, hn) =
∑

σ

Fσ(su(Nc))Mσ(p1, h1; . . . ; pn, hn) , (4.1)

²¹Note that our implementation of BG currents in paper V was actually less efficient and therefore slower
than the standard implementation of Feynman diagrams in MadGraph5_aMC@NLO, but this was because we
did not properly optimise the code. Other codes have found BG recursion to be the fastest possible method
available [21–23].

²²Here i, j = 1, 2, . . . , Nc are fundamental colour indices, and a, b, c = 1, 2, . . . , N2
c − 1 are adjoint

colour indices.
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where σ runs over all basis vectors of the chosen basis in su(Nc), Fσ is a function of the
gauge algebra su(Nc), and Mσ is the kinematic (colour-ordered) amplitude, which is a
function of the momenta and helicities or spins of the particles, and is usually calculated
using the tools described in section 3. Depending on the basis in colour space, there may
be different forms of Fσ and Mσ.

The squared matrix-element is then given by,

|M(1, . . . , n)|2 =
∑

σ,σ′

Mσ FσF
∗
σ′︸ ︷︷ ︸

Cσσ′

M∗
σ′ , (4.2)

where we have dropped all functional dependence on the right hand side; σ,σ′ are two sets
of colour-orderings; and the product FσF ∗

σ′ ≡ Cσσ′ is often called the colour matrix, and
can be calculated using the following colour-algebra relations:

Tr(ta) = 0 , Tr(tatb) = TRδ
ab ,

ifabc =
1

TR
Tr(ta[tb, tc]) , ifabctc = [ta, tb] ,

δii = Nc , δaa = N2
c − 1 ,

taijt
a
kl = TR

(
δilδjk −

1

Nc
δijδkl

)
, (4.3)

where TR is a normalisation factor. Since in eq. (4.2) we square the colour terms, the
colour matrix contains traces of the generators, and therefore each term of that matrix is a
polynomial in the number of colours Nc. Expanding this matrix in powers Nc is one of
the main topics of paper V, and will be discussed next.

4.1 Expansion in the Number of Colours

The MG5aMC event generator described in section 5 uses the fundamental basis to calcu-
late eq. (4.1). In this basis, the colour matrix Cσσ′ in eq. (4.2) is (depending on the process)
roughly an n! × n! matrix for n ∼ the number of gluons. As the particle multiplicity
increases, the colour matrix quickly becomes the bottleneck in any QCD calculation [52].
Since the current versions of our event generators are incompatible with the proposed com-
puter budget of CERN and its experiments [53,54], alleviating this bottleneck is important
work.

There are several possible solutions to this problem. One possible solution is to change
the colour basis to a diagonal basis such as the multiplet basis [55–58]. Using this solu-
tion is arguably the most pleasing, since it removes a dimension from the colour matrix,
thus making it much quicker to use while also keeping the full accuracy of the scattering
amplitude.
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Another possible solution is an approximate one, and is the option taken in paper V. In
this solution, we reduce the number of terms in the colour matrix by expanding it in the
number of colours Nc, and only keep terms with a high-enough power of Nc [47]. This
approximation is effective because each term in the colour matrix Cσσ′ has the form²³

Cσσ′ = anN
n
c + an−2N

n−2
c + an−4N

n−4
c + . . . , (4.4)

where an, an−2, . . . are constants, and only some terms, called the leading colour (LC)
terms, have an += 0, some other terms called next-to-leading colour (NLC) have an = 0
and an−2 += 0, next-to-next-to-leading colour (N2LC) terms have an = an−2 = 0 and
an−4 += 0, etc. Therefore, this colour expansion is actually an expansion in N2

c , with each
term about 1/N2

c ≈ 0.11 the size of the previous term. Therefore, the colour expansion is
naively about as accurate as the expansion in the strong coupling αs(MZ) ≈ 0.12 [17].

In the fundamental basis used in paper V, a given colour matrix will typically have the LC
terms on the diagonal, the NLC terms on the diagonal and/or off-diagonal, and N2LC or
higher terms all on the off-diagonal. Keeping only some terms of the expansion is then
equivalent to turning the full n! × n! colour matrix into a sparse matrix, which can be
summed over much quicker. Further, it was shown in [59] that at NLC accuracy, only a
small subset of the rows of the colour matrix is needed when integrating the matrix element
over phase-space, and therefore we can calculate matrix elements far quicker and for a higher
particle multiplicity than if we calculate them at full colour.

Of course this is just an approximation, and a key question to this approximation is how
accurate and precise, and therefore how reliable it is in practice? We were able to answer
these questions in paper V for tree-level QCD processes with at most 8 particles.

4.2 Colour Flow

As described in section 4, to go from some basis to the colour matrix we need to use the
relations in eq. (4.3) over and over until we obtain a polynomial in Nc. While doing
this algebraically with index algebra works, a more conceptual and error-free method was
created [47, 60–62], which was eventually called colour flow [48]. In this method, we first
use crossing symmetry, which allows us to calculate the scattering amplitude for a 0 → n+2
process instead of a 2 → n one. This has the advantage that we have the same number of
quarks and antiquarks, and that all particles are on the same footing so permuting them is
simple. Next, we draw quark lines to represent a fundamental colour index, antiquark lines
to represent a fundamental anticolour index, and draw gluon lines to represent an adjoint
index.

²³Strictly speaking this form of the colour matrix only holds if there are no identical quark lines, in which
case each term is only one power of Nc smaller than the previous one (see paper V).
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Figure 5: Two examples of equations from eq. (4.3) written using colour flow. Note that
we set the normalisation TR → 1.

In a given colour calculation (see figure 5 for examples) we adhere to the following process:

• Draw the colour lines as just described

• Replace structure functions fabc using ifabc = 1
TR

Tr(ta[tb, tc]) until we only have
quark lines with gluon lines joining them

• Use the Fierz identity, taijtakl = TR

(
δilδjk − 1

Nc
δijδkl

)
to remove all adjoint indices

• When squaring, each closed loop is a factor of Nc.

We now have a conceptually simple way to calculate colour factors belonging to a given
(squared) diagram or amplitude. Indeed, we can make this quicker by associating a double
line to each gluon, a single line to each (anti)quark, and joining them in all possible ways
without going through the formal procedure outlined above.²⁴ This procedure can be done
for any su(Nc) algebra. In section 2.1, we explained that the Lorentz algebra could be recast
as two copies of su(2), so we expect that also the kinematic amplitude which comes from
this Lorentz algebra can be calculated using an analogue of this colour flow. Indeed, that is
precisely the main idea of this thesis, underpinning the chirality-flow formalism of papers
I-IV.

5 Automating Scattering Amplitudes using MadGraph5_aMC@NLO

Up until now we have described and shown some examples of how to calculate a scattering
amplitude analytically. In theory, we can take this analytical squared matrix element and

²⁴One has to be careful with minus signs when using this shortcut.
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Figure 6: The workflow of the MG5aMC event generator.

analytically integrate over it according to eq. (3.1) . In practice however, this is not possible.
Instead, we both calculate the matrix element and do the integral numerically, which re-
quires evaluating the (squared) scattering amplitude at possibly millions of different phase-
space points. This is clearly not something which can be done with a pen and paper, so we
use computer programs instead, with some of the most common programs for tree-level
calculations being AlpGen [63], Comix [64], HELAC [65], MadGraph5_aMC@NLO [66],
O'Mega [67], and WHIZARD [68].

In this thesis, we use the MadGraph5_aMC@NLO program (MG5aMC) to calculate scatter-
ing amplitudes in massless QED using the chirality-flow formalism in paper III, and use
it in paper V to calculate QCD amplitudes with BG recursions and an expansion in the
number of colours. Therefore, we dedicate this section to describing the MG5aMC event
generator itself, what it can do, and how it does it.

MG5aMC is a metacode which creates HELAS routines [69] in Fortran²⁵ to calculate either
the squared matrix element (standalone mode) or the cross section (using MadEvent) for
a given process within a given model. The user has full control over the model, which
is written in the UFO format [70]. MG5aMC works out all possible Feynman diagrams
according to the model, and then uses ALOHA [71] to write the output HELAS routine. The
user then runs the output HELAS program to get their desired result. This workflow is
summarised in figure 6.

We will now go through each step in some detail, stressing those points relevant for papers
III and V.

5.1 HELAS

MG5aMC uses the HELAS method to numerically calculate matrix elements. The name
HELAS is an acronym for Helicity Amplitude Subroutines [69], and is a play on the Japan-
ese word helású, which means to decrease, chosen because the program uses caching and
recycling to decrease the amount of work required to calculate a helicity amplitude.

²⁵HELAS routines in C++ and Python can also be created.
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Figure 7: An example of recycling in the HELAS method. All particles, both internal and
external, are drawn as straight lines and given a number to label them. The blob
implies a not-yet-calculated interaction. Particle 9 is common to both Feynman
diagrams and is only calculated once, cached, and recycled for the second dia-
gram. At each point in the calculation HELAS will calculate a local three-point
interaction involving either on-shell (external) or off-shell (internal) particles.
Figure taken from figure 1 in paper V.

e−h2(2)
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(a) Diagram 1

e−h2(2)

e+h1(1)

γh3(3)

γh4(4)

(b) Diagram 2

Figure 8: The two Feynman diagrams in e+h1
(1)e−h2

(2) → γh3(3)γh4(4)

The two main realisations which have made HELAS a success are that helicity amplitudes
allow to square complex numbers, which, as stated in section 3, is faster than squaring a
matrix and then taking its trace; and that external and internal particles such as propagators
are common to multiple Feynman diagrams in a given process. HELAS takes these com-
mon propagators and calculates them only once, caches them, and then uses their result
in subsequent diagrams (see figure 7). This trick is called recycling and is key to the fast
evaluation speed of HELAS.

Perhaps the simplest way to explain how HELAS works is through an example. Imagine
we want to calculate the matrix element for e+h1

(1)e−h2
(2) → γh3(3)γh4(4). We have to
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choose a given helicity configuration h1, . . . , h4 and calculate the amplitude

M(e+h1
(1)e−h2

(2) → γh3(3)γh4(4)) =

v̄h1(1)ieγµε
µ
h3
(3)

i(p2 − p4)ργρ

s24︸ ︷︷ ︸
ψ(5)

ieγνuh2(2)ε
ν
h4
(4)

+ v̄h1(1)ieγµε
µ
h4
(4)

i(p2 − p3)ργρ

s23︸ ︷︷ ︸
ψ(6)

ieγνuh2(2)ε
ν
h3
(3) , (5.1)

where the first line is the Feynman diagram in figure 8a, and the second line is the Feynman
diagram in figure 8b.

HELAS does the calculation in eq. (5.1) by first calculating all external wavefunctions once
only (we can recycle the results for the wavefunction in each diagram), then combining
particle 1 with the vertex factor ieγµ, particle 3, and the propagator in the first diagram,
calling the resultant off-shell particle ψ(5); next combining particles 1 and 4 with and their
vertex and multiplying by the second diagram’s propagator, calling the resultant off-shell
particle ψ(6); then combining particle 5 with particles 2 and 4 to get diagram one, and
combining particle 6 with particles 2 and 3 to get diagram two.

The key here is that each n-point vertex is calculated separately. Either, n − 1 particles
are multiplied by the coupling and the propagator to create a new off-shell particle, or, all
n particles are multiplied by the coupling to create the complex number for this Feynman
diagram. All Dirac matrices and on-shell wavefunctions are given an explicit representation,
and the matrix multiplication is done using brute force. At no point do we do any analytic
simplifications in the same spirit as in section 3.2, since it is considered more efficient to do
the matrix multiplication than the analytic simplification which removes γ-matrices and
obtains spinor-inner products.

One of the big achievements of this thesis is that we have developed chirality flow, which
makes the analytic simplifications almost trivial. Therefore, it should be possible to improve
the speed of the HELAS routine by removing most of the matrix multiplication. In paper
III, we showed that this is indeed true, at least for massless QED calculations, finding an
increase in evaluation speed of up to a factor of 10. At the time of writing this thesis, I am
helping two Master students extend the automation of chirality flow in MG5aMC to the
rest of the (tree-level) Standard Model.

In paper V of this thesis, we updated the HELAS routine in two different ways. One big
update was that it combines off-shell currents into the BG currents of section 3.3, instead
of keeping them separate to calculate separate Feynman diagrams. This procedure can be
thought of as upgrading the recycling, since many currents are combined into one which
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can still be recycled, meaning less work will be done by HELAS.²⁶ The second main update
was to the sum over colours

|M(1, . . . , n)|2 =
∑

σ,σ′

Mσ FσF
∗
σ′︸ ︷︷ ︸

Cσσ′

M∗
σ′ , (5.2)

where we repeated eq. (4.2) here for convenience. It is not shown in the example above,
but in MG5aMC and HELAS the colour matrix Cσσ′ is printed in its entirety before cal-
culating the wavefunctions and whole Feynman diagrams. Then, the Feynman diagrams
are summed together into their kinematic amplitudes Mσ, and the double sum of eq. (5.2)
is done as two Fortran do loops. In paper V, we no longer give a full colour matrix, but
only one row, and update the colour sum so that it is simple to only include those terms
at LC, NLC, etc. Doing this was the main optimisation in paper V and helped reduce the
bottleneck of colour in QCD calculations, even at full colour.

5.2 UFO Models and Diagram Generation

In order to write chirality flow into MG5aMC, we had to create a Universal FeynRules
Output (UFO) model with chiral particles and chiral interactions. In this section we de-
scribe the UFO format and our model in a bit of detail, as this information is skipped over
in paper III.

A UFO model is an abstract Python module which contains all of the information which
is required to calculate a matrix element in this model [70]. The information needed to
specify the (leading order) UFO model is

• A set of particles and their quantum numbers (spin, charges, etc.)

• A set of parameters (e.g. masses, coupling constants, etc.)

• A set of vertices describing the interactions between different particles (coming from
a given Lagrangian).

The abstract module is not tied to any particular event generator, but was designed in
conjunction with MG5aMC as an easy way to generate events in any desired beyond-
Standard Model (BSM) study that the user desires. The user usually provides their BSM
Lagrangian to a tool like FeynRules [72, 73], which outputs the UFO files; however, as in
paper III, we can also write the UFO model directly.

²⁶It should be noted though that our implementation of BG recursion in paper V was sub-optimal and
worse than the native HELAS implementation of MG5aMC. Ways to optimise this are known, but the actual
optimisation was left to future work.
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Figure 9: Building Feynman diagrams in chiral massless QED. A left-chiral fermion inter-
acts with a photon and becomes a right-chiral fermion. However, the off-shell
right-chiral fermion becomes a left-chiral one after propagating to the next vertex
(the blob, which represents the rest of the diagram). Therefore, this interaction
actually took a left-chiral fermion and a photon and created another left-chiral
fermion, rather than outputting a right-chiral one.

Once the user specifies their model and process to generate, MG5aMC tries to create all of
the allowed Feynman diagrams. It does this by combining particles sequentially according
to the Feynman rules; first combining external particles together into a new list of off-shell
internal particles, then combining this new list to create more internal, off-shell, particles,
and so on. It repeats this process until it either completes a Feynman diagram by combining
all remaining particles together, or until the remaining particles cannot be legally combined,
in which case the combination is discarded [66].

In paper III, we created a UFO model with chiral massless QED particles and vertices. Spe-
cifically, we created a new set of chiral leptons and photons with the same set of quantum
numbers and parameters as in the Standard Model, and created two distinct types of chiral
vertices, one with a left-chiral fermion, a right-chiral antifermion, and a photon; and an-
other with a right-chiral fermion, a left-chiral antifermion, and a photon. (The Pauli matrix
connects left- and right-chiral particles, as can be seen in eq. (3.15), so e.g. a left fermion-
left anti-fermion-photon vertex is not allowed.) The problem with this setup is that the
fermion propagator (∼ /̄p = |p〉[p| or ∼ /p = |p]〈p|) changes a left-chiral fermion into a
right-chiral one or vice versa (see eq. (3.13)). In the UFO language, this means that the fer-
mion propagator changes the particle type, something which is not allowed in MG5aMC.
Therefore, after combining the particles together in a given vertex, we had to flip the chir-
ality (change particle type) of the off-shell (anti)fermion before going to the next iteration
of the sequential combination method (see figure 9).

5.3 ALOHA

After MG5aMC has generated the Feynman diagrams for the process, it uses ALOHA²⁷ to
write the HELAS routine which will numerically calculate it (see figure 6). ALOHA is a part of
the MG5aMC program which takes a set of Feynman diagrams and the UFO model which

²⁷ALOHA is an acronym for Automatic Libraries of Helicity Amplitudes.
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built them as input, and outputs a HELAS routine [71]. This is very useful since it automates
the numerical implementation for any possible user-specified model, eliminating the need
to spend time writing your own bug-free HELAS routine with consistent conventions.

Unfortunately for us in paper III, we had to update ALOHA and partially write our own sub-
routines for HELAS. In particular, ALOHA did not know how to create the simplified Lorentz
structures we created in papers I and II, so these had to be put in manually. Additionally,
ALOHA was given an input model where each vertex flipped the chirality of the fermion,
but a set of vertices where the final particles were often of the same chirality (see figure 9).
Therefore, we had to update the UFO model to include these same-chirality vertices before
ALOHA created the HELAS routines.

6 Loop Calculations

So far in this thesis, everything has implicitly been at tree-level unless otherwise stated. In
this section, we move to the one-loop level, where many complications arise which were not
present before. We discuss many of the basic properties of one-loop diagrams, how they are
usually calculated, what physics principles have to be reconsidered when including loops
in a theory, and link these to paper IV in which we developed chirality flow for one-loop
diagrams.

We begin with the fundamental difference between a loop diagram and a tree-level dia-
gram: in one-loop diagrams there is an unconstrained momentum (in this thesis consist-
ently called l) running through the loop, whereas all momenta in tree-level diagrams are
constrained. Since this loop momentum is unconstrained, we must integrate over all of its
possible values, leading to integrals I4i1...ik [N

µ1...µn ] of the following form:

I4i1...ik [N
µ1...µn ] ≡

∫ ∞

−∞

d4l

(2π)4
Nµ1...µn

Di1 . . . Dik
, (6.1)

where we integrate over the entirety of 4-dimensional energy-momentum space, Nµ1...µn

is some numerator which may be a scalar, vector, or general tensor in Lorentz space, and
Di is a propagator momentum of the form p2−m2 where p involves the loop momentum
l. The loop momentum l may also appear in the numerator.

6.1 Divergences

The biggest (naive) problem with eq. (6.1), is that it is often infinite. If the infinity occurs
when l → 0, then it is called an infrared, or IR, divergence, and if it occurs when l → ∞,
then it is called an ultraviolet, or UV, divergence. We now briefly discuss how to remove
these infinities.
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(a) Real correction (b) Virtual (loop) correction

Figure 10: Two possible sources of IR divergences. Either the emitted particle becomes
infinitely soft or collinear to its emitter (a), or the particle in the loop is infinitely
soft (b). The KLN theory ensures that these divergences are equal and opposite
for IRC-safe observables.

IR Divergences
IR divergences can be either more, or less, tricky to remove, depending on the calculation
at hand. In general, removing them is observable dependent. Either the observable is
soft and collinear (IRC) unsafe, in which case IR divergences are a problem, or they are
IRC safe, in which case the Kinoshita-Lee-Nauenberg (KLN) theorem ensures that all IR
divergences of one-loop diagrams are cancelled by an opposite divergence from the emission
of an unobservable real particle (see figure 10) [74, 75].

When doing the integral eq. (6.1), what is often done on a practical level is to first assume
that the IR divergence is taken care of by adding an IR regulator such as a small mass to all
particles, then doing the integral, regulating the UV divergences, and then removing the
IR regulator (see e.g. [76]). IR divergences are not important to this thesis, however, so we
do not discuss them further.

UV Divergences
UV divergences have to first be regulated in the integral, eq. (6.1), and then removed using
renormalisation (see e.g. [10]). Loosely speaking, renormalisation works by recognising that
many parameters in the Lagrangian, Feynman rules, and the UV divergences themselves,
are unphysical. Therefore, we can remove the UV divergences by redefining some of the
other unphysical quantities to have the opposite divergence. After doing this, all physical
observable quantities are rendered finite.

Let us take φ4 theory as a simple example of this. The Lagrangian for φ4 theory is equal to
eq. (2.18) with only the φ2 and φ4 terms remaining,

L =
1

2
(∂µφ0) (∂

µφ0)−
m2

0

2
φ20 −

λ0
4!
φ40 , (6.2)

where we redefined the unphysical quantities of the Lagrangian with a subscript 0 to be
clear that these are unphysical. Such quantities are called the bare parameters of the theory.
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The physical propagator for a scalar in this theory has the form

−→

p

phys
=

iZ

p2 −m2
, (6.3)

where m2 is the physical mass of the particle, and Z an unphysical parameter, which can
be eliminated from the physical propagator by a field redefinition

φ0 = Z1/2φ , (6.4)

giving an updated Lagrangian

L =
Z

2
(∂µφ) (∂

µφ)− Zm2
0

2
φ2 − Z2λ0

4!
φ4 , (6.5)

for a renormalised field φ. Staring at this Lagrangian, we see that Z2λ0 must contain the
physical coupling λ plus some unphysical part, Zm2

0 must contain the physical mass m2

plus some unphysical part, and that Z must be 1 plus some unphysical part

Z = 1 + δZ , Zm2
0 = m2 + δm , Z2λ0 = λ+ δλ , (6.6)

which implies the Lagrangian is

L =
1

2
(∂µφ) (∂

µφ)− m2

2
φ2 − λ

4!
φ4

︸ ︷︷ ︸
usual Feynman rules

+
δZ
2

(∂µφ) (∂
µφ)− δm

2
φ2 − δλ

4!
φ4

︸ ︷︷ ︸
counterterms

, (6.7)

where the unphysical pieces give new Feynman rules called counterterms. In renormalisa-
tion, we calculate the loop diagrams using the usual Feynman rules, obtain infinities, and
then remove these infinities by defining the parameters δZ , δm, and δλ in the counterterms
to have equal and opposite divergence. In this way we have renormalised the theory, re-
moved all UV divergences, and can calculate physical quantities without worry.

6.2 Dimensional Regularisation

So far in this section we have described the types of divergences we obtain and an outline
of how to remove them. We have not yet, however, given a specific regularisation scheme,
i.e., a way to quantify how much the integral diverges. Dimensional regularisation [77–79]
is the most commonly used method to quantify these divergences, and is used (though not
in the conventional way) in paper IV. Therefore, we briefly describe it here.

Dimensional regularisation works by changing spacetime from 4 dimensions to d = 4−2ε
dimensions. This implies adding an extra subspace QS[−2ε] to the usual Minkowski space
S[4], obtaining

QS[d] = S[4] ⊕QS[−2ε] , (6.8)
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which shows that the extra-dimensional subspace is orthogonal to Minkowski space. Using
eq. (6.8), we see that all vectors are split into its 4d and −2εd components, e.g.,

gµν[d] = gµν[4] + gµν[−2ε] , γµ[d] = γµ[4] + γµ[−2ε] , (6.9)

where we label the dimensionality of an object with a square bracket.

Note that the Lagrangian should be d-dimensional, not 4-dimensional, but we wish to
keep the fields, mass, and coupling in the same dimensions as before, so we introduce a
mass term µ−2ε

DS into the Lagrangian wherever appropriate. The typical one-loop integral,
eq. (6.1), is updated to

Idi1...ik [N
µ1...µn ] ≡ µ−2ε

DS

∫
ddl[d]
(2π)d

Nµ1...µn

Di1 . . . Dik
, (6.10)

where the integration limits are implicit. The new mass µDS will eventually appear in a
logarithm of the form ln (µDS/m) for some physical scale m, and physical observables
will be independent of the choice of µ2

DS, at least up to the next order of the perturbative
expansion.²⁸ We are free to choose which objects are d-dimensional, and which stay 4-
dimensional, with the conventional choice being to make all objects which can lead to
singularities like loop particles d-dimensional, keeping external, non-singular objects in 4
dimensions.

The nicest features of dimensional regularisation are that they keep Lorentz symmetry in-
tact, and that the divergences are given by poles in the extra-dimensional parameter ε.
Taking the 4d limit means taking ε → 0, and the poles can easily be removed by adding
an equal and opposite pole in ε into the counterterms of the theory.

However, one major point of difficulty for dimensional regularisation is chirality and γ5.
In d = 4− 2ε dimensions, we no longer have the nice separation of spacetime into a left-
and a right -chiral part (cf. section 2.1), and γ5 is ill-defined.²⁹ Additionally, there is no
4d representation of the Dirac or Lorentz algebras, which are upgraded to formal algebras
with relations such as

{
γµ[d], γ

ν
[d]

}
= 2gµν[d] , gµ[d]µ = d = 4− 2ε . (6.11)

Therefore, we are unable to use many of the nice tricks from 4 dimensions such as chirality
flow to simplify the spin algebra,³⁰ and calculations instead become more cumbersome.

²⁸This leads to a large amount of physical consequences which are outside the scope of this thesis. If inter-
ested please see e.g. [10].

²⁹It should be stressed that this is not actually a problem per se, and that most loop calculations are success-
fully completed using dimensional regularisation.

³⁰We are hopeful of being able to update the chirality-flow formalism to d-dimensions in future.
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6.3 The FDF Formalism

One way around these difficulties is to modify dimensional regularisation by adding a new
subspace QS[nε] on top of the d-dimensional one, to obtain

QS[ds] ≡ QS[d] ⊕QS[nε] = S[4] ⊕QS[−2ε] ⊕QS[nε] ≡ S[4] ⊕QS[nε−2ε] , (6.12)

where we defined two new spaces, QS[ds] and QS[nε−2ε]. If we take ds → 4 then
QS[ds] is an infinite-dimensional space with total size four. It is fundamentally different
to Minkowski space, exemplified by the fact that its indices can have non-integer values.
Doing this, we have the vector space

QS[ds] = S[4] ⊕QS[nε−2ε] , (6.13)

of the FDF formalism [80] which is used in paper IV to calculate one-loop diagrams with
chirality flow.

In the FDF formalism, all objects (except for loop momenta and integrals) are four di-
mensional, with some multiplied by an additional algebra called the −2ε-selection rules
(−2ε-SRs). The −2ε-SRs are described in paper IV, can be precalculated in any Feynman
diagram, and contribute an overall factor of 0 or ±1 to the amplitude. After doing the
−2ε-SRs algebra, the spin-structure of a Feynman diagram only contains four-dimensional
quantities and an extra mass³¹ µ2 = −l2[−2ε]. This implies that chirality and γ5 are both
well defined, and we can separate spacetime into left- and right-chiral pieces, making the
FDF formalism a good basis to develop chirality flow at one-loop order, as is done in paper
IV.

Despite all of the previous discussion of four dimensions, the loop integrals and loop mo-
menta in FDF are actually d-dimensional. Therefore, after simplifying the Lorentz struc-
ture we will obtain integrals of the form of eq. (6.10), which obey useful properties like shift
symmetries and Lorentz symmetry, and which have well-known solutions. If the integral
contains the extra mass µ2, we use

Idi1...ik [(µ
2)r] = (2π)rId+2r

i1...ik
[1]

r−1∏

j=0

(d− 4− 2j) , (6.14)

to remove the extra-dimensional mass and replace it with a higher-dimensional integral.³²

Finally, we comment that to date the FDF formalism has only been consistently developed
for one-loop diagrams. Therefore, unless this is resolved, we will have to adopt a different

³¹Note that the extra dimensions are spacelike, so l2[−2ε] is a negative number.
³²It is well known how to reduce this back into an integral with 4− 2ε dimensions and no µ2 dependence

[81].
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Figure 11: A generic one-loop scalar Feynman diagram.

regularisation scheme to develop chirality flow beyond a single loop. Further, using the
FDF method for loops with multiple fermion lines gives the correct result, but contains
spurious extra terms which eventually vanish [80].

6.4 Tensor Reduction and Master Integrals

This section deals with solving the loop integral eq. (6.10). The simplest version of this
integral is the scalar integral, defined as

Idi1...ik [1] ≡ µ−2ε
DS

∫
ddl[d]
(2π)d

1

Di1 . . . Dik
, (6.15)

which comes from a Feynman diagram with k legs and a single loop (see figure 11). It is well
known that all scalar one-loop integrals can be reduced to a set of four master integrals [76,
82–89], for example to eq. (6.15) with k = 1, 2, 3, and 4. The master integrals were solved
long ago, are typically functions of logarithms, dilogarithms, and the gamma function, and
there are many programs which can be used to calculate them (e.g. [89–95]).

If the integral eq. (6.10) has a tensor structure, then its solution will have the same tensor
structure, with the tensors being composed of the metric and the momenta in the integral.
For example, two tensor integrals present in paper IV are

µ−2ε
DS

∫
ddl[d]
(2π)d

lµ[d]
(l + 1)2[d](l − 2)2[d]

= C11
µ + C22

µ ,

µ−2ε
DS

∫
ddl[d]
(2π)d

lµ[d]l
ν
[d]

l2[d](l + 1)2[d](l − 2)2[d]
= C00g

µν + C111
µ1ν + C222

µ2ν

+ C12 (1
µ2ν + 1ν2µ) , (6.16)

where we use the shorthand 1µ ≡ pµ1 and 2µ ≡ pµ2 , and we leave the dimension of the
external momenta 1 and 2 undetermined for flexibility. Note that the second integral has
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to be symmetric in µ and ν. The coefficients Ci, Cij are functions of ε and the invariants
in the process, for example 12 or (1 · 2).

To calculate the scalar coefficients of eq. (6.16), we can use e.g. the approaches of Passarino-
Veltman [96] or Davydychev [81]. For example, the coefficients of the first integral can be
calculated by contracting the equation with 1µ and 2µ to obtain an easily solvable set of
linear equations,

C11
2 + C2(1 · 2) = µ−2ε

DS

∫
ddl[d]
(2π)d

l[d] · 1
(l + 1)2[d](l − 2)2[d]

,

C1(1 · 2) + C22
2 = µ−2ε

DS

∫
ddl[d]
(2π)d

l[d] · 2
(l + 1)2[d](l − 2)2[d]

. (6.17)

Using that e.g.

1 · l[d] =
1

2

[
(l + 1)2[d] − l2[d] − 12

]
, (6.18)

we can obtain known scalar master integrals on the right-hand-sides of eq. (6.17), thus
solving the tensor loop integral.

7 Conclusions and Outlook

In this thesis, I, along with my collaborators, explore ways to optimise scattering amplitude
calculations. The main way in which we do this is by introducing and developing the
chirality-flow formalism at both tree-level and one-loop-level, while a further paper looks at
ways to optimise QCD calculations in MadGraph5_aMC@NLO. It is our hope that chirality
flow can become both a widely used and loved analytical tool, and a useful way to optimise
current event generators. (We must optimise our event generators to fit into the proposed
computer budget of CERN and its experiments [53, 54].)

Through this introduction, I have given a rough overview of both particle physics in general,
and the physics involved in each publication. I will now summarise each paper and look
ahead to what else can be done following each paper.

Paper I introduced the chirality-flow formalism and showed how to use it to calculate Feyn-
man diagrams in tree-level massless QED and QCD (see sections 2.1.1 and 3.2.1). We
showed that chirality flow significantly simplified pen-and-paper calculations of Feynman
diagrams. In this paper, we gave a complete and self-consistent set of notation, both in the
spinor-helicity method in general, and for chirality flow. This is done so that anyone can
use our method without worrying about conflicting conventions. The natural next steps
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after this paper were to develop chirality flow for the full Standard Model at tree level and
to implement our findings in a computer program, as done in papers II and III respectively.
In addition, it would be useful to incorporate Majorana fermions into this formalism; while
exploring chirality flow in the context of general amplitude methods, in which Feynman
diagrams are skipped, could be interesting.

Paper II developed the chirality-flow formalism for massive particles (see sections 2.1.1 and
3.2.2), thus extending its validity to the full tree-level Standard Model. We showed that
while the simplifications of massless theories were nicer, chirality flow still helps signific-
antly simplify Feynman-diagram calculations involving massive particles. At this stage, the
obvious next steps were loop diagrams, numerical implementation, higher spins, and Ma-
jorana particles. Additionally, it would be interesting to understand chirality flow in the
context of the new massive spinor-helicity variables proposed in [43].

Paper III implemented chirality flow for massless QED in MG5aMC (see sections 3.2.1
and 5). We found a very significant improvement in computation speed, up to a factor of
10, compared to the native QED implementation in MG5aMC. Due to the success of this
implementation, implementing the rest of the Standard Model in MG5aMC would be very
interesting. However, it should be remembered that the main bottleneck in QCD is not the
kinematics, but the colour [52]. Nonetheless, making the kinematics faster is still desirable,
and pushes the colour bottleneck into an even more prominent position. This extension
is ongoing work, involving the authors of paper III and two master students. Also, our
program only calculates matrix elements for given phase-space points, and extending it to
MadEvent such that it can also calculate cross sections is important for usability. Finally, our
implementation is a toy one, and needs significant work to be user friendly and incorporated
in the main MG5aMC program.

Paper IV developed chirality flow for general one-loop calculations (see section 6). We built
on the four-dimensional formulation [80] of the 4d helicity scheme [97], which allowed
all of the useful properties and simplifications of chirality flow from tree-level to be auto-
matically carried over into loop calculations. We found that the Lorentz algebra and the
tensor reduction is simplified compared to previous methods. An obvious route forward,
is to develop chirality flow for loop calculations using other regularisation schemes such as
conventional dimensional regularisation [77–79], which would improve the flexibility of
the method, and more easily allow it go to multiple loops.

Finally, paper V explored the benefits of using Berends-Giele recursions to calculate kin-
ematic amplitudes, and of using a colour expansion to approximate matrix elements in
MG5aMC (see sections 3.3, 4.1, and 5). We found a speedup of the colour bottleneck of
about a factor 2 even at full colour, and that, for most processes, N2LC was both precise
and accurate. However, we found that our implementation of Berends-Giele recursions
was poor, and can be optimised significantly. Like with chirality flow, there is a large scope
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for possible future projects in this direction. Most simply, the new colour implementation
can be ported into the standard MG5aMC framework to help alleviate its bottleneck, and
the recursion relations can be optimised. Additionally, this paper only calculated matrix
elements, and, like in paper III, extending it to MadEvent and cross-section calculations
may be useful.
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8 Overview of Publications in this Thesis

Here, I briefly summarise each paper in the thesis and specify my individual contributions.

Paper I: The chirality-flow formalism

Andrew Lifson, Christian Reuschle, and Malin Sjödahl
Eur.Phys.J.C 80 (2020) 1006. E-print: arXiv:2003.05877 [hep-ph]
LU-TP 20-16, MCNET-20-10

This paper was based on Malin Sjödahl’s idea that it should be possible to calculate the
kinematic SL(2,C) × SL(2,C) part of a scattering amplitude analogously to the colour-
flow construction of SU(3). This indeed turned out to be possible, and the new calculation
method was dubbed chirality flow.

I did most of the calculations and had key ideas for the implementation and validity of
the method, with guiding help from Malin and Christian. Together, we found a way to
rewrite the Feynman rules as combinations of dotted and undotted lines, allowing a single-
line journey from a Feynman diagram to its spinor inner products. In this paper, we treated
massless QED and QCD at tree-level and presented a complete self-consistent set of con-
ventions. I wrote and checked most of the main relations, and was the primary author of
sections 4 and 6. We all contributed fairly evenly to the editing and checking procedure.

Paper II: The chirality-flow formalism for the standard model

Joakim Alnefjord, Andrew Lifson, Christian Reuschle, and Malin Sjödahl
Eur.Phys.J.C 81 (2021) 371. E-print: arXiv:2011.10075 [hep-ph]
LU-TP 20-51, MCNET-20-25

This paper was a direct continuation of paper I, extending the scope of the chirality-flow
formalism to include massive particles and electroweak interactions, and therefore the full
Standard Model at tree-level.

Together with Malin Sjödahl and Christian Reuschle, I co-supervised Joakim Alnefjord’s
master thesis, during which he did many of the primary calculations in this paper. I in-
dependently checked all of his calculations and did most of the remaining primary work.
I investigated the fundamentally different properties of massive and massless particles un-
der the Poincaré group, allowing to understand the four-dimensional spin operator. I also
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played a large role in determining the structure of the paper and wrote sections 2.3, 2.4, 3.1,
3.2.1, 3.3.1, and 3.4.1, as well as appendices A.2, B, and C. I also edited much of the paper
along with Malin.

Paper III: Automating scattering amplitudes with chirality flow

Andrew Lifson, Christian Reuschle, Malin Sjödahl, and Zenny Wettersten
Eur.Phys.J.C 82 (2022) 535. E-print: arXiv:2203.13618 [hep-ph]
LU-TP 22-19, MCNET-22-05

In this paper we implemented the chirality-flow formalism from paper I for QED in
MadGraph5_aMC@NLO, finding up to a factor of 10 speed increase in evaluation time.

This paper is the culmination of Zenny Wettersten’s master’s thesis, which was proposed by
me, and was supervised by Malin Sjödahl and I. Of the three of us, I was the person with
a background in MadGraph5_aMC@NLO, so I was the main lead on the technical side. The
primary work was mostly shared by Zenny and I, with me being responsible for changing
the diagram generation method to allow fermion propagators to change chirality, updating
the model within the HELAS creation stage so that the correct vertices could be used, fixing
the loop over all processes and chiralities, writing the external photon wavefunctions, and
identifying some bugs in Zenny’s code. Due to time pressure and a pre-planned holiday,
most of the writing was done by my Malin and Zenny while I was away. Instead, I checked
the paper, helped insert references, and wrote some sentences here and there during the
editing stage.

Paper IV: One-loop calculations in the chirality-flow formalism

Andrew Lifson, Simon Plätzer, and Malin Sjödahl
To be submitted to Eur.Phys.J.C. E-print: arXiv:2303.02125 [hep-ph]
LU-TP 23-01, MCNET-23-03

This paper builds on papers I and II by extending chirality flow to the one-loop level. We
did this by using the four-dimensional formulation (FDF) of the four-dimensional helicity
scheme as our regularisation method, an idea I had after doing a literature review of one-
loop methods.

I did the vast majority of the calculations for the paper with guiding help from Malin
and Simon. Together, we showed that it was possible to do one-loop calculations easily
and efficiently by using chirality flow in the FDF scheme. This allowed simpler Lorentz
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algebra and reduction of tensor integrals. I wrote sections 3 and 4, the abstract, half of the
conclusion, and the appendix, which together make up the majority of the paper. I also
edited the introduction, conclusion, and section 2.

Paper V: Improving colour computations in MadGraph5_aMC@NLO and ex-
ploring a 1/Nc expansion

Andrew Lifson and Olivier Mattelaer
Eur.Phys.J.C 82 (2022) 1144. E-print: arXiv:2210.07267 [hep-ph]
CP3-22-42, LU-TP 22-58, MCNET 22-16

This paper was the result of my short-term studentship at Louvain-la-Neuve. We revived
an old branch of MG5aMC which calculates the kinematics of tree-level amplitudes us-
ing Berends-Giele recursions, and calculates the colour using an expansion in the number
of colours. This allowed for a study of the accuracy, speed, and precision of the colour
expansion and the new recursions.

I did the majority of the work in this project, which started with Olivier reviving the old
branch. After fixing an initial bug, we tested the speed and found that the branch was too
slow. Therefore, I proposed and implemented an alternative technical implementation of
the code. Once we had passed an optimisation threshold, we explored the physics of the
colour expansion. In this stage, I tested the accuracy, precision, and speed of the colour
expansion. For the manuscript, I proposed the outline and wrote the initial draft for all
parts except for the Conclusions and Appendix C. I also created all of the plots and helped
in editing.

9 Overview of Work not in this Thesis

In addition to the five papers included in this thesis, I made additional contributions
that are not included in this thesis. I wrote several talks and co-wrote a few conference
proceedings (papers VI - VIII); I gave many seminars and conference talks; I taught a
MadGraph5_aMC@NLO tutorial at the 2022 MCnet school; I continued my master thesis
work and helped edit the resulting paper (paper IX); I proposed a bachelor project on the
little group for Samyak Parmar, which I co-supervised; I was on the MCnet student and
postdoc committee, during which I helped organise a few conferences, and initiated an
online journal club and computer club to help young particle physicists network and learn
from each other; and I helped propose and supervise two ongoing master-student projects
in which we are extending the chirality-flow implementation in MadGraph5_aMC@NLO in
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paper III to include the full Standard Model, officially co-supervising one of them.

In addition to all of this I was active in Lund’s doctoral student unions, being the chair and
vice chair of NDR (Natural Science Doctoral Student Union), on the election committees
of NDR and LDK (Lund’s Doctoral Student Union), on the docent committee for NDR,
in the general assembly of LDK (its highest decision-making body), and a co-chair of the
PhD council at the Department of Astronomy and Theoretical Physics. These were all
rewarding roles which gave me invaluable experience.

On the physics side, a summary of the publications not included in this thesis is the fol-
lowing:

Paper VI: A brief look at the chirality-flow formalism for Standard Model amp-
litudes

Joakim Alnefjord, Andrew Lifson, Christian Reuschle, and Malin Sjödahl
PoS LHCP2021 (2021) 160. E-print: arXiv:2110.04125 [hep-ph]
LU TP 21-46, MCNET-21-13

This conference proceedings refers to an online talk I gave at LHCP 2020 on the chirality-
flow formalism. I wrote the full first draft of the proceedings, which was checked and edited
by my collaborators.

Paper VII: Introducing the chirality-flow formalism

Joakim Alnefjord, Andrew Lifson, Christian Reuschle, and Malin Sjödahl
Acta Phys.Polon.B (2020) 51.

This is the proceedings of a conference talk Malin Sjödahl gave at Epiphany 2020. I helped
edit the proceedings paper.

Paper VIII: The chirality-flow formalism for Standard Model calculations

Joakim Alnefjord, Andrew Lifson, Christian Reuschle, and Malin Sjödahl
LT-14 (2022). E-print: arXiv:2204.12324 [hep-ph]
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This is the proceedings of a conference talk Malin Sjödahl gave at LT-14 in 2021. I helped
edit the proceedings paper.

Paper IX: Calculating the primary Lund Plane density

Andrew Lifson, Gavin P. Salam, and Gregory Soyez
JHEP 10 (2020) 170. E-print: arXiv:2007.06578 [hep-ph]

This paper is the result of my master thesis, which I continued part time in the first year of
my PhD. I did a version of most of the calculations in section 3 and helped edit the paper.

51



References

[1] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge
University Press, 6, 2005.

[2] M. Maggiore, A Modern introduction to quantum field theory. Oxford University
Press, September, 2005.

[3] E. P. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz Group,”
Annals Math. 40 (1939) 149–204.

[4] V. Bargmann and E. P. Wigner, “Group Theoretical Discussion of Relativistic Wave
Equations,” Proc. Nat. Acad. Sci. 34 (1948) 211.

[5] P. Schuster and N. Toro, “On the Theory of Continuous-Spin Particles:
Wavefunctions and Soft-Factor Scattering Amplitudes,” JHEP 09 (2013) 104,
arXiv:1302.1198 [hep-th].

[6] P. Schuster and N. Toro, “On the Theory of Continuous-Spin Particles: Helicity
Correspondence in Radiation and Forces,” JHEP 09 (2013) 105, arXiv:1302.1577
[hep-th].

[7] P. Schuster and N. Toro, “A Gauge Field Theory of Continuous-Spin Particles,”
JHEP 10 (2013) 061, arXiv:1302.3225 [hep-th].

[8] P. Schuster and N. Toro, “Continuous-spin particle field theory with helicity
correspondence,” Phys. Rev. D 91 (2015) 025023, arXiv:1404.0675 [hep-th].

[9] R. K. Ellis, W. J. Stirling, and B. Webber, “QCD and collider physics,” Camb.
Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1–435.

[10] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.
Addison-Wesley, Reading, USA, 1995.
http://www.slac.stanford.edu/~mpeskin/QFT.html.

[11] L. J. Dixon, “Calculating scattering amplitudes efficiently.” Arxiv:hep-ph/9601359v2,
1996.

[12] H. Elvang and Y.-t. Huang, “Scattering Amplitudes,” arXiv:1308.1697
[hep-th].

[13] C.-N. Yang and R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge
Invariance,” Phys. Rev. 96 (1954) 191–195.

[14] L. D. Faddeev and V. N. Popov, “Feynman Diagrams for the Yang-Mills Field,” Phys.
Lett. B 25 (1967) 29–30.

52

http://dx.doi.org/10.2307/1968551
http://dx.doi.org/10.1073/pnas.34.5.211
http://dx.doi.org/10.1007/JHEP09(2013)104
http://arxiv.org/abs/1302.1198
http://dx.doi.org/10.1007/JHEP09(2013)105
http://arxiv.org/abs/1302.1577
http://arxiv.org/abs/1302.1577
http://dx.doi.org/10.1007/JHEP10(2013)061
http://arxiv.org/abs/1302.3225
http://dx.doi.org/10.1103/PhysRevD.91.025023
http://arxiv.org/abs/1404.0675
http://www.slac.stanford.edu/~mpeskin/QFT.html
http://arxiv.org/abs/1308.1697
http://arxiv.org/abs/1308.1697
http://dx.doi.org/10.1103/PhysRev.96.191
http://dx.doi.org/10.1016/0370-2693(67)90067-6
http://dx.doi.org/10.1016/0370-2693(67)90067-6


[15] A. Buckley et al., “General-purpose event generators for LHC physics,” Phys. Rept.
504 (2011) 145–233, arXiv:1101.2599 [hep-ph].

[16] P. Skands, “Introduction to QCD,” in Theoretical Advanced Study Institute in
Elementary Particle Physics: Searching for New Physics at Small and Large Scales,
pp. 341–420. 2013. arXiv:1207.2389 [hep-ph].

[17] Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle
Physics,” PTEP 2022 (2022) 083C01.

[18] C. Møller, “General Properties of the Characteristic Matrix in the Theory of
Elementary Particles I,” D. Kgl Danske Vidensk. Selk. Mat.-Fys. Medd. 23 no. 1, (1945)
48.

[19] M. Cannoni, “Lorentz invariant relative velocity and relativistic binary collisions,”
Int. J. Mod. Phys. A 32 no. 02n03, (2017) 1730002, arXiv:1605.00569 [hep-ph].

[20] F. A. Berends and W. Giele, “The Six Gluon Process as an Example of Weyl-Van Der
Waerden Spinor Calculus,” Nucl. Phys. B294 (1987) 700–732.

[21] M. Dinsdale, M. Ternick, and S. Weinzierl, “A Comparison of efficient methods for
the computation of Born gluon amplitudes,” JHEP 03 (2006) 056,
arXiv:hep-ph/0602204.

[22] T. Gleisberg, S. Hoeche, F. Krauss, and R. Matyszkiewicz, “How to calculate
colourful cross sections efficiently,” arXiv:0808.3672 [hep-ph].

[23] S. Badger, B. Biedermann, L. Hackl, J. Plefka, T. Schuster, and P. Uwer,
“Comparing efficient computation methods for massless QCD tree amplitudes:
Closed analytic formulas versus Berends-Giele recursion,” Phys. Rev. D 87 no. 3,
(2013) 034011, arXiv:1206.2381 [hep-ph].

[24] P. De Causmaecker, R. Gastmans, W. Troost, and T. T. Wu, “Multiple
Bremsstrahlung in Gauge Theories at High-Energies. 1. General Formalism for
Quantum Electrodynamics,” Nucl. Phys. B 206 (1982) 53–60.

[25] F. A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans, and T. T. Wu, “Single
Bremsstrahlung Processes in Gauge Theories,” Phys. Lett. B 103 (1981) 124–128.

[26] F. A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans, W. Troost, and T. T. Wu,
“Multiple Bremsstrahlung in Gauge Theories at High-Energies. 2. Single
Bremsstrahlung,” Nucl. Phys. B 206 (1982) 61–89.

[27] P. De Causmaecker, R. Gastmans, W. Troost, and T. T. Wu, “Helicity Amplitudes
for Massless QED,” Phys. Lett. B 105 (1981) 215.

53

http://dx.doi.org/10.1016/j.physrep.2011.03.005
http://dx.doi.org/10.1016/j.physrep.2011.03.005
http://arxiv.org/abs/1101.2599
http://dx.doi.org/10.1142/9789814525220_0008
http://arxiv.org/abs/1207.2389
http://dx.doi.org/10.1093/ptep/ptac097
http://dx.doi.org/10.1142/S0217751X17300022
http://arxiv.org/abs/1605.00569
http://dx.doi.org/10.1016/0550-3213(87)90604-3
http://dx.doi.org/10.1088/1126-6708/2006/03/056
http://arxiv.org/abs/hep-ph/0602204
http://arxiv.org/abs/0808.3672
http://dx.doi.org/10.1103/PhysRevD.87.034011
http://dx.doi.org/10.1103/PhysRevD.87.034011
http://arxiv.org/abs/1206.2381
http://dx.doi.org/10.1016/0550-3213(82)90488-6
http://dx.doi.org/10.1016/0370-2693(81)90685-7
http://dx.doi.org/10.1016/0550-3213(82)90489-8
http://dx.doi.org/10.1016/0370-2693(81)91025-X


[28] CALKUL Collaboration, F. A. Berends, R. Kleiss, P. de Causmaecker, R. Gastmans,
W. Troost, and T. T. Wu, “Multiple Bremsstrahlung in Gauge Theories at
High-energies. 3. Finite Mass Effects in Collinear Photon Bremsstrahlung,” Nucl.
Phys. B 239 (1984) 382–394.

[29] G. R. Farrar and F. Neri, “How to Calculate 35640 O (α5) Feynman Diagrams in
Less Than an Hour,” Phys. Lett. B 130 (1983) 109–114. [Addendum: Phys.Lett.B 152,
445–445 (1985)].

[30] R. Kleiss, “The Cross-section for e+e− → e+e−e+e−,” Nucl. Phys. B 241 (1984) 61.

[31] F. A. Berends, P. H. Daverveldt, and R. Kleiss, “Complete Lowest Order
Calculations for Four Lepton Final States in electron-Positron Collisions,” Nucl.
Phys. B 253 (1985) 441–463.

[32] J. F. Gunion and Z. Kunszt, “FOUR JET PROCESSES: GLUON-GLUON
SCATTERING TO NONIDENTICAL QUARK - ANTI-QUARK PAIRS,” Phys.
Lett. B 159 (1985) 167.

[33] J. F. Gunion and Z. Kunszt, “Improved Analytic Techniques for Tree Graph
Calculations and the G g q anti-q Lepton anti-Lepton Subprocess,” Phys. Lett. B 161
(1985) 333.

[34] R. Kleiss and W. J. Stirling, “Spinor Techniques for Calculating p anti-p —> W+- /
Z0 + Jets,” Nucl. Phys. B 262 (1985) 235–262.

[35] K. Hagiwara and D. Zeppenfeld, “Helicity Amplitudes for Heavy Lepton
Production in e+ e- Annihilation,” Nucl. Phys. B 274 (1986) 1–32.

[36] R. Kleiss, “Hard Bremsstrahlung Amplitudes for e+e− Collisions With Polarized
Beams at LEP / SLC Energies,” Z. Phys. C 33 (1987) 433.

[37] R. Kleiss and W. J. Stirling, “Cross-sections for the Production of an Arbitrary
Number of Photons in Electron - Positron Annihilation,” Phys. Lett. B 179 (1986)
159–163.

[38] Z. Xu, D.-H. Zhang, and L. Chang, “Helicity Amplitudes for Multiple
Bremsstrahlung in Massless Nonabelian Gauge Theories,” Nucl. Phys. B 291 (1987)
392–428.

[39] S. Dittmaier, “Weyl-van der Waerden formalism for helicity amplitudes of massive
particles,” Phys. Rev. D 59 (1998) 016007, arXiv:hep-ph/9805445.

[40] C. Schwinn and S. Weinzierl, “Scalar diagrammatic rules for Born amplitudes in
QCD,” JHEP 05 (2005) 006, arXiv:hep-th/0503015 [hep-th].

54

http://dx.doi.org/10.1016/0550-3213(84)90254-2
http://dx.doi.org/10.1016/0550-3213(84)90254-2
http://dx.doi.org/10.1016/0370-2693(83)91074-2
http://dx.doi.org/10.1016/0550-3213(84)90197-4
http://dx.doi.org/10.1016/0550-3213(85)90541-3
http://dx.doi.org/10.1016/0550-3213(85)90541-3
http://dx.doi.org/10.1016/0370-2693(85)90879-2
http://dx.doi.org/10.1016/0370-2693(85)90879-2
http://dx.doi.org/10.1016/0370-2693(85)90774-9
http://dx.doi.org/10.1016/0370-2693(85)90774-9
http://dx.doi.org/10.1016/0550-3213(85)90285-8
http://dx.doi.org/10.1016/0550-3213(86)90615-2
http://dx.doi.org/10.1007/BF01552550
http://dx.doi.org/10.1016/0370-2693(86)90454-5
http://dx.doi.org/10.1016/0370-2693(86)90454-5
http://dx.doi.org/10.1016/0550-3213(87)90479-2
http://dx.doi.org/10.1016/0550-3213(87)90479-2
http://dx.doi.org/10.1103/PhysRevD.59.016007
http://arxiv.org/abs/hep-ph/9805445
http://dx.doi.org/10.1088/1126-6708/2005/05/006
http://arxiv.org/abs/hep-th/0503015


[41] S. J. Parke and T. R. Taylor, “An Amplitude for n Gluon Scattering,” Phys. Rev. Lett.
56 (1986) 2459.

[42] M. L. Mangano and S. J. Parke, “Multiparton amplitudes in gauge theories,” Phys.
Rept. 200 (1991) 301–367, arXiv:hep-th/0509223 [hep-th].

[43] N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang, “Scattering amplitudes for all
masses and spins,” JHEP 11 (2021) 070, arXiv:1709.04891 [hep-th].

[44] M. Bohm, A. Denner, T. Sack, W. Beenakker, F. A. Berends, and H. Kuijf,
“Electroweak Radiative Corrections to e+ e- —> W+ W-,” Nucl. Phys. B 304 (1988)
463–499.

[45] S. Weinzierl, “Automated computation of spin- and colour-correlated Born matrix
elements,” Eur. Phys. J. C45 (2006) 745–757, arXiv:hep-ph/0510157
[hep-ph].

[46] R. Kleiss and H. Kuijf, “Multi - Gluon Cross-sections and Five Jet Production at
Hadron Colliders,” Nucl. Phys. B 312 (1989) 616–644.

[47] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B 72
(1974) 461.

[48] F. Maltoni, K. Paul, T. Stelzer, and S. Willenbrock, “Color Flow Decomposition of
QCD Amplitudes,” Phys. Rev. D 67 (2003) 014026, arXiv:hep-ph/0209271.

[49] M. L. Mangano, S. J. Parke, and Z. Xu, “Duality and Multi - Gluon Scattering,”
Nucl. Phys. B 298 (1988) 653–672.

[50] V. Del Duca, A. Frizzo, and F. Maltoni, “Factorization of tree QCD amplitudes in
the high-energy limit and in the collinear limit,” Nucl. Phys. B 568 (2000) 211–262,
arXiv:hep-ph/9909464.

[51] V. Del Duca, L. J. Dixon, and F. Maltoni, “New color decompositions for gauge
amplitudes at tree and loop level,” Nucl. Phys. B 571 (2000) 51–70,
arXiv:hep-ph/9910563.

[52] O. Mattelaer and K. Ostrolenk, “Speeding up MadGraph5_aMC@NLO,” Eur. Phys.
J. C 81 no. 5, (2021) 435, arXiv:2102.00773 [hep-ph].

[53] HEP Software Foundation Collaboration, T. Aarrestad et al., “HL-LHC Computing
Review: Common Tools and Community Software,” in 2022 Snowmass Summer
Study, P. Canal et al., eds. 8, 2020. arXiv:2008.13636 [physics.comp-ph].

[54] A. Collaboration, “ATLAS Software and Computing HL-LHC Roadmap,” tech.
rep., CERN, Geneva, 2022. http://cds.cern.ch/record/2802918.

55

http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://dx.doi.org/10.1016/0370-1573(91)90091-Y
http://dx.doi.org/10.1016/0370-1573(91)90091-Y
http://arxiv.org/abs/hep-th/0509223
http://dx.doi.org/10.1007/JHEP11(2021)070
http://arxiv.org/abs/1709.04891
http://dx.doi.org/10.1016/0550-3213(88)90638-4
http://dx.doi.org/10.1016/0550-3213(88)90638-4
http://dx.doi.org/10.1140/epjc/s2005-02467-6
http://arxiv.org/abs/hep-ph/0510157
http://arxiv.org/abs/hep-ph/0510157
http://dx.doi.org/10.1016/0550-3213(89)90574-9
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1103/PhysRevD.67.014026
http://arxiv.org/abs/hep-ph/0209271
http://dx.doi.org/10.1016/0550-3213(88)90001-6
http://dx.doi.org/10.1016/S0550-3213(99)00657-4
http://arxiv.org/abs/hep-ph/9909464
http://dx.doi.org/10.1016/S0550-3213(99)00809-3
http://arxiv.org/abs/hep-ph/9910563
http://dx.doi.org/10.1140/epjc/s10052-021-09204-7
http://dx.doi.org/10.1140/epjc/s10052-021-09204-7
http://arxiv.org/abs/2102.00773
http://dx.doi.org/10.5281/zenodo.4009114
http://dx.doi.org/10.5281/zenodo.4009114
http://arxiv.org/abs/2008.13636
http://cds.cern.ch/record/2802918


[55] S. Keppeler and M. Sjodahl, “Orthogonal multiplet bases in SU(Nc) color space,”
JHEP 09 (2012) 124, arXiv:1207.0609 [hep-ph].

[56] M. Sjodahl and J. Thorén, “Decomposing color structure into multiplet bases,”
JHEP 09 (2015) 055, arXiv:1507.03814 [hep-ph].

[57] M. Sjodahl and J. Thorén, “QCD multiplet bases with arbitrary parton ordering,”
JHEP 11 (2018) 198, arXiv:1809.05002 [hep-ph].

[58] J. Alcock-Zeilinger, S. Keppeler, S. Plätzer, and M. Sjodahl, “Wigner 6j symbols for
SU(N): Symbols with at least two quark-lines,” arXiv:2209.15013 [hep-ph].

[59] R. Frederix and T. Vitos, “The colour matrix at next-to-leading-colour accuracy for
tree-level multi-parton processes,” JHEP 12 (2021) 157, arXiv:2109.10377
[hep-ph].

[60] P. Cvitanovic, “Group theory for Feynman diagrams in non-Abelian gauge theories,”
Phys. Rev. D 14 (1976) 1536–1553.

[61] P. Cvitanovic, P. G. Lauwers, and P. N. Scharbach, “Gauge Invariance Structure of
Quantum Chromodynamics,” Nucl. Phys. B 186 (1981) 165–186.

[62] P. Cvitanovic, P. G. Lauwers, and P. N. Scharbach, “The Planar Sector of Field
Theories,” Nucl. Phys. B 203 (1982) 385–412.

[63] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, “ALPGEN, a
generator for hard multiparton processes in hadronic collisions,” JHEP 07 (2003)
001, arXiv:hep-ph/0206293.

[64] T. Gleisberg and S. Hoeche, “Comix, a new matrix element generator,” JHEP 12
(2008) 039, arXiv:0808.3674 [hep-ph].

[65] A. Cafarella, C. G. Papadopoulos, and M. Worek, “Helac-Phegas: A Generator for
all parton level processes,” Comput. Phys. Commun. 180 (2009) 1941–1955,
arXiv:0710.2427 [hep-ph].

[66] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower
simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].

[67] M. Moretti, T. Ohl, and J. Reuter, “O’Mega: An Optimizing matrix element
generator,” arXiv:hep-ph/0102195.

[68] W. Kilian, T. Ohl, and J. Reuter, “WHIZARD: Simulating Multi-Particle Processes
at LHC and ILC,” Eur. Phys. J. C 71 (2011) 1742, arXiv:0708.4233 [hep-ph].

56

http://dx.doi.org/10.1007/JHEP09(2012)124
http://arxiv.org/abs/1207.0609
http://dx.doi.org/10.1007/JHEP09(2015)055
http://arxiv.org/abs/1507.03814
http://dx.doi.org/10.1007/JHEP11(2018)198
http://arxiv.org/abs/1809.05002
http://arxiv.org/abs/2209.15013
http://dx.doi.org/10.1007/JHEP12(2021)157
http://arxiv.org/abs/2109.10377
http://arxiv.org/abs/2109.10377
http://dx.doi.org/10.1103/PhysRevD.14.1536
http://dx.doi.org/10.1016/0550-3213(81)90098-5
http://dx.doi.org/10.1016/0550-3213(82)90320-0
http://dx.doi.org/10.1088/1126-6708/2003/07/001
http://dx.doi.org/10.1088/1126-6708/2003/07/001
http://arxiv.org/abs/hep-ph/0206293
http://dx.doi.org/10.1088/1126-6708/2008/12/039
http://dx.doi.org/10.1088/1126-6708/2008/12/039
http://arxiv.org/abs/0808.3674
http://dx.doi.org/10.1016/j.cpc.2009.04.023
http://arxiv.org/abs/0710.2427
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/hep-ph/0102195
http://dx.doi.org/10.1140/epjc/s10052-011-1742-y
http://arxiv.org/abs/0708.4233


[69] H. Murayama, I. Watanabe, and K. Hagiwara, “HELAS: HELicity amplitude
subroutines for Feynman diagram evaluations,”.

[70] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, “UFO
- The Universal FeynRules Output,” Comput. Phys. Commun. 183 (2012) 1201–1214,
arXiv:1108.2040 [hep-ph].

[71] P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, and T. Stelzer, “ALOHA:
Automatic Libraries Of Helicity Amplitudes for Feynman Diagram Computations,”
Comput. Phys. Commun. 183 (2012) 2254–2263, arXiv:1108.2041 [hep-ph].

[72] N. D. Christensen and C. Duhr, “FeynRules - Feynman rules made easy,” Comput.
Phys. Commun. 180 (2009) 1614–1641, arXiv:0806.4194 [hep-ph].

[73] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, “FeynRules 2.0 -
A complete toolbox for tree-level phenomenology,” Comput. Phys. Commun. 185
(2014) 2250–2300, arXiv:1310.1921 [hep-ph].

[74] T. Kinoshita, “Mass singularities of Feynman amplitudes,” J. Math. Phys. 3 (1962)
650–677.

[75] T. D. Lee and M. Nauenberg, “Degenerate Systems and Mass Singularities,” Phys.
Rev. 133 (1964) B1549–B1562.

[76] G. Heinrich, “Introduction to Loop Calculations,” 2010.
https://www.ippp.dur.ac.uk/~gudrun/teaching/ILC.pdf.

[77] C. G. Bollini and J. J. Giambiagi, “Dimensional Renormalization: The Number of
Dimensions as a Regularizing Parameter,” Nuovo Cim. B 12 (1972) 20–26.

[78] G. ’t Hooft and M. J. G. Veltman, “Regularization and Renormalization of Gauge
Fields,” Nucl. Phys. B 44 (1972) 189–213.

[79] P. Breitenlohner and D. Maison, “Dimensional Renormalization and the Action
Principle,” Commun. Math. Phys. 52 (1977) 11–38.

[80] R. A. Fazio, P. Mastrolia, E. Mirabella, and W. J. Torres Bobadilla, “On the
Four-Dimensional Formulation of Dimensionally Regulated Amplitudes,” Eur. Phys.
J. C 74 no. 12, (2014) 3197, arXiv:1404.4783 [hep-ph].

[81] A. I. Davydychev, “A Simple formula for reducing Feynman diagrams to scalar
integrals,” Phys. Lett. B 263 (1991) 107–111.

[82] D. B. Melrose, “Reduction of Feynman diagrams,” Nuovo Cim. 40 (1965) 181–213.

57

http://dx.doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/1108.2040
http://dx.doi.org/10.1016/j.cpc.2012.05.004
http://arxiv.org/abs/1108.2041
http://dx.doi.org/10.1016/j.cpc.2009.02.018
http://dx.doi.org/10.1016/j.cpc.2009.02.018
http://arxiv.org/abs/0806.4194
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1063/1.1724268
http://dx.doi.org/10.1063/1.1724268
http://dx.doi.org/10.1103/PhysRev.133.B1549
http://dx.doi.org/10.1103/PhysRev.133.B1549
https://www.ippp.dur.ac.uk/~gudrun/teaching/ILC.pdf
http://dx.doi.org/10.1007/BF02895558
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1007/BF01609069
http://dx.doi.org/10.1140/epjc/s10052-014-3197-4
http://dx.doi.org/10.1140/epjc/s10052-014-3197-4
http://arxiv.org/abs/1404.4783
http://dx.doi.org/10.1016/0370-2693(91)91715-8
http://dx.doi.org/10.1007/BF02832919


[83] W. L. van Neerven and J. A. M. Vermaseren, “LARGE LOOP INTEGRALS,” Phys.
Lett. B 137 (1984) 241–244.

[84] Z. Bern, L. J. Dixon, and D. A. Kosower, “Dimensionally regulated one loop
integrals,” Phys. Lett. B 302 (1993) 299–308, arXiv:hep-ph/9212308. [Erratum:
Phys.Lett.B 318, 649 (1993)].

[85] Z. Bern, L. J. Dixon, and D. A. Kosower, “Dimensionally regulated pentagon
integrals,” Nucl. Phys. B 412 (1994) 751–816, arXiv:hep-ph/9306240.

[86] T. Binoth, J. P. Guillet, and G. Heinrich, “Reduction formalism for dimensionally
regulated one loop N point integrals,” Nucl. Phys. B 572 (2000) 361–386,
arXiv:hep-ph/9911342.

[87] G. Duplancic and B. Nizic, “Reduction method for dimensionally regulated one
loop N point Feynman integrals,” Eur. Phys. J. C 35 (2004) 105–118,
arXiv:hep-ph/0303184.

[88] W. T. Giele and E. W. N. Glover, “A Calculational formalism for one loop integrals,”
JHEP 04 (2004) 029, arXiv:hep-ph/0402152.

[89] R. K. Ellis and G. Zanderighi, “Scalar one-loop integrals for QCD,” JHEP 02
(2008) 002, arXiv:0712.1851 [hep-ph].

[90] R. Mertig, M. Bohm, and A. Denner, “FEYN CALC: Computer algebraic
calculation of Feynman amplitudes,” Comput. Phys. Commun. 64 (1991) 345–359.

[91] G. J. van Oldenborgh, “FF: A Package to evaluate one loop Feynman diagrams,”
Comput. Phys. Commun. 66 (1991) 1–15.

[92] A. van Hameren, “OneLOop: For the evaluation of one-loop scalar functions,”
Comput. Phys. Commun. 182 (2011) 2427–2438, arXiv:1007.4716 [hep-ph].

[93] H. H. Patel, “Package-X: A Mathematica package for the analytic calculation of
one-loop integrals,” Comput. Phys. Commun. 197 (2015) 276–290,
arXiv:1503.01469 [hep-ph].

[94] H. H. Patel, “Package-X 2.0: A Mathematica package for the analytic calculation of
one-loop integrals,” Comput. Phys. Commun. 218 (2017) 66–70,
arXiv:1612.00009 [hep-ph].

[95] V. Shtabovenko, “FeynHelpers: Connecting FeynCalc to FIRE and Package-X,”
Comput. Phys. Commun. 218 (2017) 48–65, arXiv:1611.06793
[physics.comp-ph].

58

http://dx.doi.org/10.1016/0370-2693(84)90237-5
http://dx.doi.org/10.1016/0370-2693(84)90237-5
http://dx.doi.org/10.1016/0370-2693(93)90400-C
http://arxiv.org/abs/hep-ph/9212308
http://dx.doi.org/10.1016/0550-3213(94)90398-0
http://arxiv.org/abs/hep-ph/9306240
http://dx.doi.org/10.1016/S0550-3213(00)00040-7
http://arxiv.org/abs/hep-ph/9911342
http://dx.doi.org/10.1140/epjc/s2004-01723-7
http://arxiv.org/abs/hep-ph/0303184
http://dx.doi.org/10.1088/1126-6708/2004/04/029
http://arxiv.org/abs/hep-ph/0402152
http://dx.doi.org/10.1088/1126-6708/2008/02/002
http://dx.doi.org/10.1088/1126-6708/2008/02/002
http://arxiv.org/abs/0712.1851
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/10.1016/0010-4655(91)90002-3
http://dx.doi.org/10.1016/j.cpc.2011.06.011
http://arxiv.org/abs/1007.4716
http://dx.doi.org/10.1016/j.cpc.2015.08.017
http://arxiv.org/abs/1503.01469
http://dx.doi.org/10.1016/j.cpc.2017.04.015
http://arxiv.org/abs/1612.00009
http://dx.doi.org/10.1016/j.cpc.2017.04.014
http://arxiv.org/abs/1611.06793
http://arxiv.org/abs/1611.06793


[96] G. Passarino and M. J. G. Veltman, “One Loop Corrections for e+ e- Annihilation
Into mu+ mu- in the Weinberg Model,” Nucl. Phys. B 160 (1979) 151–207.

[97] Z. Bern and A. G. Morgan, “Massive loop amplitudes from unitarity,” Nucl. Phys. B
467 (1996) 479–509, arXiv:hep-ph/9511336.

59

http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1016/0550-3213(96)00078-8
http://dx.doi.org/10.1016/0550-3213(96)00078-8
http://arxiv.org/abs/hep-ph/9511336






Faculty of Science
Department of Physics

 
ISBN 978-91-8039-588-5 9

78
91

80
39

58
85

N
O

RD
IC

 S
W

A
N

 E
C

O
LA

BE
L 

30
41

 0
90

3
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

23


	Tom sida
	340277_nr5_G5_Andrew.pdf
	Acknowledgements
	List of publications
	Popular Summary
	Introduction
	A General Overview: Particle Physics, the Standard Model, and the Role of this Thesis within it
	The fundamentals of Particle Physics
	The Lorentz Group, Mass, and Spin
	Wigner's little group

	Lagrangians
	Particle Wavefunctions
	Gauge Fixing

	Scattering Amplitudes and How to Calculate Them
	Textbook method to Calculate a Scattering Amplitude
	The Spinor-Helicity Formalism
	Massless Particles
	Massive Particles

	Berends-Giele Recursions

	QCD and Colour
	Expansion in the Number of Colours
	Colour Flow

	Automating Scattering Amplitudes using MadGraph5_aMC@NLO
	HELAS
	UFO Models and Diagram Generation
	ALOHA

	Loop Calculations
	Divergences
	Dimensional Regularisation
	The FDF Formalism
	Tensor Reduction and Master Integrals

	Conclusions and Outlook
	Overview of Publications in this Thesis
	Overview of Work not in this Thesis

	The chirality-flow formalism
	Introduction
	Color flow
	The basics of the spinor-helicity formalism
	Spinors and spinor inner products
	Four-vectors
	Polarization vectors

	Building the chirality-flow picture
	A simple QED example
	Proof for QED
	Proof for QCD
	QCD remarks

	Chirality-flow Feynman rules
	Vertices
	Propagators
	Application

	Examples
	e+e- -> mu+mu-
	e+e- -> mu+mu- photon
	q1qb1 -> q2qb2g
	qqb -> gg
	gg -> gg

	Conclusion and outlook
	Conventions and identities
	Pauli matrices
	Spinors and spinor inner products
	Four-vectors and bispinors
	Tables with QED and QCD conventions and Feynman rules


	The chirality-flow formalism for the standard model
	Introduction
	Massless chirality-flow
	Weyl spinors
	Massless fourvectors
	Polarization vectors
	Linking objects

	The chirality-flow formalism with massive particles
	Spin and helicity
	Massive fourvectors
	Helicity and the eigenvalue decomposition

	Dirac spinors from massless Weyl spinors
	Helicity eigenstates

	Polarization vectors
	Helicity eigenstates


	Chirality-flow Feynman rules with massive particles
	Vertices
	Triple vertices
	Four-boson vertices

	Propagators
	Chirality-flow arrows and signs
	Application

	Examples
	e+e- -> gamma gamma
	e+e- -> Zh 
	qq -> qqh

	Conclusion and outlook
	Dirac spinors
	Conventions and the chiral representation
	Relativistic spin operator for massive spinors

	Weyl spinors
	Explicit representations of spinors and their inner products
	Useful Identities

	Tables with conventions and Feynman rules

	Automating scattering amplitudes with chirality flow
	Introduction
	Chirality flow
	MadGraph implementation
	Results
	Conclusion and outlook

	One-loop calculations in the chirality-flow formalism
	Introduction
	Introduction to chirality flow
	FDF
	Flowing loops
	Reduction of tensor integrals
	Abelian gauge theories
	Non-abelian gauge theories
	QCD
	Other non-abelian theories


	Conclusion
	Additional chirality-flow rules

	Improving Colour Computations in MadGraph5_aMC@NLO and Exploring a 1/Nc Expansion
	Introduction
	Background Theory
	Colour Ordering and the 1/Nc Expansion
	Colour Ordering in the Fundamental Basis
	1/Nc Expansion

	Berends-Giele Recursions

	Technical Implementation
	The MadGraph5_aMC@NLO Event Generator
	Implementation of Colour Computation
	Implementation of Berends-Giele Recursion
	Sources of Speed Differences

	Validation and Results
	Accuracy and Precision of Colour Approximation
	Speed Gain

	Conclusion
	Manual
	Accuracy and Speed of Additional Processes
	Subprocess Cross-Sections in Multi-Jet Production
	Modified Colour Expansion for Multiquark Amplitudes

	Tom sida
	Tom sida


