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A Proactive Cloud Application Auto-Scaler using Reinforcement

Learning

Albin Heimerson, Johan Eker, Karl-Erik Årzén

Abstract

This work explores the use of reinforcement learning to
design a proactive cloud resource auto-scaler that is able
to predict usage across a distributed microservice appli-
cation. The focus is on serving time-sensitive workloads,
e.g., industrial automation, connected XR/VR (eXtended
Reality/Virtual Reality), etc., where each job has a dead-
line and there is some cost associated with missing a dead-
line. A simple workload model, as well as a microservice
application model, is presented. A reinforcement learning
agent is trained to identify workloads and predict needed
utilization for identified service chains. The results are
compared to standard purely reactive techniques.

This work was supported by Vinnova grant ITEA3-
17002 (AutoDC).

1 Introduction

Today, the use of cloud services has become an integral,
and increasingly invisible part of our daily routines, e.g.,
helping us navigate the Internet, stream multimedia con-
tent, and buy groceries. The large public cloud providers
have become major players in both shaping and enabling
the way modern society function and providing services
with impressive availability and reach. What we are cur-
rently witnessing is a second wave of cloud services that
goes beyond web storefronts and IT systems and includes
the digitalization of industrial systems. Automation and
time-sensitive systems, that until recently have been con-
fined to the factory floor and hidden from the external
world, are now taking their first steps towards the cloud.
Other emerging time-sensitive systems are XR/VR ap-
plications and different kinds of conversational video sys-
tems.

The digitalization of timing-sensitive automation sys-
tems holds the promise to improve efficiency and resource

utilization through data-driven innovations.

However, providing end-to-end timing guarantees with
state-of-the-art technologies is typically not possible.
There are numerous challenges pertaining to determinis-
tic virtualization technologies, virtualized real-time net-
working, etc. In addition, there are control plane issues
related to how resources are allocated in a timely fashion.
The hypothesis explored in this paper is that we can use
reinforcement learning (RL) to implicitly model the ser-
vice chain and thus be able to propagate information cor-
rectly to predict resource needs for connected cloud-based
services. The focus of our work is time-sensitive services
where each job is associated with a deadline, which is typ-
ically the case for, e.g., cloud-based control systems [1, 2].
To meet deadlines, there is typically a trade-off involved
between over-allocating resources and thus having unused
capacity on standby or allowing deadlines to be missed
while scaling up.

The paper is organized as follows. Section 2 defines the
problem, and Section 3 contains an overview of related
work and what new ideas this article provides. Section 4
presents the application model as well as the workload
model. In Section 5 the setup for the simulations is pre-
sented, as well as the setup for all the baseline agents and
the RL agent. The results are presented and discussed
in Section 6. Finally, Section 7 presents some concluding
remarks as well as some ideas for future work.

2 Problem definition

Microservice architecture is the predominant style for
modern cloud applications. The basic trait is that a
single application is built from a set of small, indepen-
dent services, typically built around given business ob-
jectives. Microservices are deployed and managed indi-
vidually with little to no centralized coordination. An
advantage compared to previous generations of cloud ap-
plications, that were designed as larger monoliths, is great
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Figure 1: Four cloud applications, W1 to W4, that are
composed of a set of microservices. While many of the
applications share microservices, the call graphs are dif-
ferent, i.e., the paths the workloads go through differ.

simplification with regard to scaling and management.
However, a downside is an increase in complexity on the
application layer, since an application is composed of dis-
tributed communicating microservices, which are hard to
debug, trace, etc. In addition, a microservice is often
part of more than one cloud application. For example, an
authentication service or an ad service may be used by
several cloud applications. In many situations, there is a
many-to-many relation between microservices on a single
platform. This can give rise to quite complex call graphs,
sometimes referred to as microservice ”death star” archi-
tecture [3]. A service mesh is a layer that abstracts oper-
ations on a set of connected microservices. This allows
compartmentalizing services and allows for easier han-
dling and individual scaling of certain parts of a larger
system (the mesh).

Figure 1 shows a network of connected microservices.
There are four cloud applications. Each cloud applica-
tion provides a workload that spans over one or more
microservices. The actual call graph is typically dynamic
or data-dependent.

Current standard platforms provide reactive scaling
mechanisms that dynamically add or remove capacity to
match demands. This can be done by measuring the us-
age of resources and inspecting queue lengths, etc. There
will be a trade-off between the ability to serve a rapid in-
crease in workload and keeping unused allocated resources
on standby. The tighter the resource allocation, the more
cost-efficient the system.

If we again consider the system in Figure 1 and how re-
active scaling would work for it. The workload W1 enters
at M1 and causes further calls to M2, M5, M8, and M7. If
there is a rapid increase in demand, a reactive auto-scaler
would simply detect an increase in utilization at each of
the involved microservices, one at a time. This means
that the scaling of M7 does not occur until the traffic
reaches it, although it could have easily been predicted it
if the call graph was known ahead of time, leading to an
unnecessary and unwanted delay in scaling.

Instead of explicitly modelling the call graph, and all
the intricacies that come with that, we explore how well
an RL agent can learn an implicit model given minimal
data from the microservices. Some implicit representa-
tion of the underlying call graph will need to be learned
in order to be able to act proactively, but this will be
embedded in the agent’s internal neural networks. This
will effectively enable the policy to create feed-forward
connections between the load of one microservice to the
desired state of another based on how it estimates the
workload behavior. In the above example, this would
mean that when workload W1 increases and the capac-
ity of microservices M2, M5, M8, and M7 can increase
proactively. For time-sensitive workloads where the indi-
vidual jobs have real-time constraints, like the ones de-
scribed above, we can then avoid having spare capacity
on standby and still minimize missed deadlines.

We do not assume knowledge about the workloads and
do not try to predict the incoming loads, nor do we have
any information on the call graphs, i.e., the paths that
the workloads take. Instead, we use RL to train an agent
to proactively scale microservices when we can observe
changes in the workload on the system.

3 Related Works

Many recent works on cloud optimization look at some
trade-off between maximizing utilization while honoring
performance requirements, for example, latency bounds
specified in some service level agreement (SLA). The fun-
damental trade-off deals with the cost of resources vs the
value of providing a service at the right level.

(author?) [1] did automatic scaling and admission
control of time-sensitive service chains using control-
based techniques and network calculus. The focus of that
work was to determine the lowest upper bound on com-
puting resources to support workload variations without
missing deadlines.
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Examples of previous work on automatic resource allo-
cation using reinforcement learning are found in [4, 5, 6].
The general problem addressed by these teams is that of
controlling and scaling a single microservice by adding or
removing single instances. By contrast, the work in this
paper aims at scaling capacity proactively on a service
mesh and allowing for arbitrarily sized scaling increments.
We target workloads with real-time constraints and dead-
lines, requiring the auto-scaler to be fast and responsive.

(author?) [5] proposed a proactive scaling algorithm
using a linear regressor to forecast future requests and
using this to estimate future utilization. We specifically
avoid estimating future workload given the inherent un-
certainties and instead rely on the proactive scaling en-
abled by learning the workload paths in the service mesh.
(author?) [7] presented a scaling approach using rein-
forcement learning and focusing on fast responses. How-
ever, they only act on a single machine and do not aim
at any proactive scaling.

More traditional workload scheduling is also a related
area of interest. The work found in [8, 9, 10] aims to solve
a different type of task or job scheduling in a cloud set-
ting using reinforcement learning. They model tasks as
directed graphs of jobs to be processed in a given order.
The graph, or the workload path, is thus known. In this
paper where we aim to learn the nature of the different
workloads by training, which will allow for a more adap-
tive algorithm that can handle changes over time, as there
might be in a real environment.

(author?) [11] are looking at network routing using
reinforcement learning, which is a slightly different prob-
lem, but they do strive for fast interaction similar to the
work in this paper.

One common theme in the related work is to heavily
reduce the size of both action and state space to sim-
plify learning. This is done using a variety of methods,
such as limiting the action space to only add or remove a
fixed number of instances, as well as using longer steps.
The latter leads to solutions that work best on stationary
workloads and typically fail to address jobs with dead-
lines. Furthermore, to the best of our knowledge, previ-
ous work requires knowledge about the structure of the
mesh and information about the call graph.

Our contribution is creating a reinforcement learning
agent acting on a short timescale and taking the whole
service chain into account to be able to do proactive scal-
ing in the chain. We look at a chain of services in some
microservice application, rather than only scaling a sin-
gle service at the time. We also consider the latency, for

M1M1M1

M1M1M1M1M2
M1M3W1
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l1 l2 l3
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Figure 2: A single workload over 3 microservices Mi.
Each has a scale si that can be controlled and a cur-
rent load li denoting how many jobs are currently being
processed or waiting to be processed. The workload W1

has a path P1 = [1, 2, 3] associated with it, an execution
time for each microservice on the path tj,i and a deadline
Tdj

for each job’s total allowed execution time.

example from boot time, when adding new resources.

4 Cloud application model

A cloud application commonly consists of a set of commu-
nicating microservices, each made to do one job. Incom-
ing jobs will enter at some microservice, and after being
processed there, they are either passed on to another mi-
croservice for further processing or they are done and can
return. Different types of jobs can enter at different points
and take different paths through the microservices.

We model this as a graph of microservices Mi where
different workloads Wj generate jobs traversing the graph
in different ways, as in Fig. 1.

We only simulate simple paths over a single microser-
vice at a time, though the RL agent is not restricted to
this and should also be able to learn good strategies for
microservice graphs with, e.g., parallel paths.

To define the environment and how it works, we look
at the smaller environment in Fig. 2, a single workload
with three microservices.

Each microservice Mi has an arrival queue where in-
coming jobs are placed, this has a max length of qmax after
which jobs are dropped. The number of running instances
on Mi is si, and this can be changed inside the interval
[smin, smax] by booting or closing instances. Booting a
new instance takes Tboot time, while closing takes Tclose

time. The total number of jobs on Mi is li, representing
both jobs being worked on and jobs in the queue. The
utilization of Mi is then the load over available resources,
ui = li/si.
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Each workloadWj has a path Pj containing the order in
which the microservices should be visited by correspond-
ing jobs and a deadline Dj which is the total time allowed
for a job to traverse the path. A job from workload Wj

has a processing duration tj,i that depends on what type
of workload it is, and which microservice it is currently
on.

The environment is discretized to evolve in steps of ∆t
seconds, and in each step, the instances work off ∆t time
from their assigned jobs.

There is a value Vj to finishing a job of type Wj before
the deadline, and a cost Ci to running instances of type
Mi.

To earn as much value as possible, we want to maximize
the finished jobs while minimizing the running instances.

5 Implementation details

Here we present the parameters and implementation de-
tails for the simulation model, as well as for the different
algorithms we ran on the simulation model. The code
used for this paper, as well as some instructions to help
run it, is publicly available on Github1.

5.1 Simulation model

Not all parametrizations of this type of environment will
lend themselves to the problem we set out to solve. We
specifically want to look at environments that, like Fig.
1, has chains where it could be possible to scale quicker if
scaling is done with respect to the full set of microservices.

Taking a simple scenario with a single workload as in
Fig. 2, the entry point M1 will not be able to scale proac-
tively without making guesses about random changes in
arrivals, which is not something we look at in this work.
But for Mi>1, it is possible to start scaling before the
workload reach the microservice, and how much is gained
depends on the difference between the duration of the
work on previous microservices and the time to boot a
new instance. To fully boot instance Mi>1 proactively
would require that

i−1∑
k=1

t1,k ≥ Tboot for i ∈ [2, 3]. (1)

As long as there is no buildup of jobs and the microser-
vices can immediately process the jobs, the roundtrip

1https://github.com/albheim/ServiceMeshControl/tree/

dml-icc_2022

times for the jobs will then be t1,1 + t1,2 + t1,3 steps,
while if the job ever has to wait for either M2 or M3 to
scale up, it will take at least t1,1 + t1,2 + t1,3 +Tboot steps
to finish. If the workload have a deadline D1 that jobs
should meet, we then want that

t1,1 + t1,2 + t1,3 + Tboot > D1 (2)

to make sure that proactive scaling is required in order
to avoid buffers on M2 and M3. To also make sure it is
actually possible to hit deadlines we want that the total
work time is less than the deadline.∑

i

t1,i < D1 (3)

Selecting tj,i = Tboot = 1 will fulfill (1) for M2 and
M3 allowing them to scale proactively. Then we have
3 < D1 < 4 from (2,3), so choosing e.g. D1 = 3.5 will
make any reactive approach have to choose between ei-
ther keeping a large enough buffer on all microservices
or miss deadlines as the workload fluctuates. A proactive
approach on the other hand could scale M2 and M3 based
on the current state of microservices before them in order
to hit deadlines while not keeping a buffer anywhere but
on the first microservice.

Given that Tclose does not affect any important dynam-
ics of the environment, it is simply set to zero.

The costs of instances and values of jobs were selected
so that the value of a job should be able to cover booting
and running costs for instances working on it, with an
additional margin to make it worth hitting deadlines in
almost all cases. Without this, the RL agent would likely
have found the most value in just scaling down as much
as possible.

We create a synthetic workload that is simply designed
to generate a load that does a random walk over in-
tegers in a constrained range. This could for example
be a set of control applications turning on and off ran-
domly, adding a constant load while they are on. So as-
suming we currently have an arrival rate of x new jobs
every step, then the workload will with a probability
p = 0.1 pick a new random arrival rate in the range
[max(xmin, x − 1),min(xmax, x + 1)], and otherwise the
workload is kept as is. Here we set [xmin, xmax] = [0, 3].
The cost is set to Ci = 1 and the value for finished jobs
is Vj = 16.

In addition to the model with a single workload chain
presented above, the model in Fig. 3 with two workloads
taking different paths over some shared and some indi-
vidual microservices is also used. The parameters for this
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Figure 3: An environment with two workload chains
traversing four microservices, some shared and some in-
dividual.

model were chosen with the same reasoning as above, and
are the same in all cases except for the workload parame-
ters. Now we have W1 with [xmin, xmax] = [0, 4], and W2

with [xmin, xmax] = [0, 2], both still using p = 0.1.

These environments are difficult from a learning per-
spective in a few different ways. First, it is not fully
observable, meaning though we can see the utilization for
a microservice, that does not tell us how much work there
is left on the current jobs. This makes it harder to un-
derstand the value of states, since the same state could
have different values based on a hidden internal state.
There are also delays, e.g., when booting new instances it
takes time between the decision to scale before the state
actually changes and there is a delay between a change
in the state that will lead to a job passing through and
the job actually passing through and generating a value.
There is a tendency towards scaling down since it gives
an immediate response, while how many jobs get through
is a more delayed signal. This results in a local optimum
of scaling down everything as much as possible, where
any single action only gives extra cost, and to get any
reward multiple services have to scale up and do it for
long enough for any actual job to get through and gener-
ate value. This tendency seemed much stronger when the
environment allowed scaling down to zero instances, and
instead setting the minimum scale to one made it much
less prevalent. Since part of the problem is also that all
jobs accumulating in queues will likely miss their dead-
line, this will make it harder to find some reward again
when scaling up. For this reason, the maximum for the
queues is set rather low, to allow for a small buffer while
not letting too much accumulate.

5.2 Reinforcement learning agent

We use a version of Soft Actor-Critic (SAC) [12, 13], an
off-policy model-free deep RL algorithm. It was selected
mainly for the sample efficiency and robustness to its hy-
perparameters, though other algorithms could very well
have sufficed. The SAC algorithm we use is an imple-
mentation from ReinforcementLearning.jl [14], corre-
sponding to the updated SAC algorithm in [13]. This
means there is an automatic tuning of the entropy pa-
rameter α to match a given target entropy H, simplifying
parameter tuning.

The neural networks for both policy and value func-
tion are a few densely connected layers with a common
activation function. The policy network outputs 2 contin-
uous values for each action dimension, creating a normal
distribution from which to sample the actions. Since the
action is to choose the desired scale of the microservices,
the action space is discrete

at ∈ [smin, smin + 1, . . . , smax]
N

and the action produced by the policy has to be converted
by rounding to the nearest valid integer.

The state used is the current scale si and the utilization
ui for each microservice. This is then stacked with the
previous state to give the agent more information, both
since the state is not fully observable, and also to allow
for information about changes in state to be incorporated
in the decision. This can help in learning when there are
delays in the environment, so that the agent can easier
connect what action led to what result. The full state the
agent sees is then

st = [s1(t), u1(t), . . . , sN (t), uN (t),

s1(t− 1), u1(t− 1), . . . , sN (t− 1), uN (t− 1)]

where N = |M | is the number of microservices in the
application and t is the current step. The state is also
normalized, letting the neural network operate on values
of similar scales, which helps with learning.

The reward is defined based on the value of completed
jobs, i.e. no value for missed deadlines, and the cost
of running instances. The number of jobs that finished
within the deadline during this step is denoted fj(t), giv-
ing

rt =

N∑
i

Cisi(t)−
|W |∑
j

Vjfj(t). (4)

The reward is scaled by a factor rscale, where finding a
good value is a common strategy to improve the learning
of the value network.
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Table 1: Hyperparameters for Soft Actor-Critic
Parameter Value
optimizer ADAM

learning rate for optimizer 0.003
activation function elu

reward scaling rscale 0.5
discount factor γ 0.93
target smoothing τ 0.01
target entropy H 2.5 ·N
value net hidden layers 4
value net hidden units 120
policy net hidden layers 2
policy net hidden units 20
minibatch size B 100
alpha learning rate 5 · 10−5

target entropy 7.5
update frequency 8
replay buffer size 5 · 105
start algorithm random action
steps with start algorithm 50000

Though SAC is supposed to be robust to hyperparam-
eters, some tuning still played an important role in mak-
ing a successful agent. Table 1 contains the parameters
used for the experiments and are similar for both environ-
ments, only the target entropy depends on N to reflect
that the differently sized action spaces should have differ-
ent entropy.

Since the neural networks used are quite small, the RL
agents could be trained and evaluated on single CPUs.

5.3 Baseline algorithms

5.3.1 Reactive autoscaler

One very simple strategy is to look at the average utiliza-
tion ui over all machines for microservice i and if this is
larger than some umax a machine is added, if it is lower
than some umin a machine is removed. This only looks
at utilization and can only scale by one machine per step,
but it manages well with reasonably chosen limits and
is very simple to implement and understand. For these
experiments (umin, umax) = (0.5, 0.8) is used.

5.3.2 Kubernetes autoscaler

The Kubernetes horizontal pod autoscaler (HPA) is sim-
ilar to the basic reactive scaler in that it is only reactive
and scales based on the desired utilization value.

The desired scaling for microservice i is calculated as

Di(t) =

{⌈
si(t)

ui(t)
utarget

⌉
if

∣∣∣1− ui(t)
utarget

∣∣∣ > ϵ

Di(t− 1) else

where ϵ = 0.1 and utarget = 0.8 is used. This means that
the scaler only acts if the relative change is large enough,
and will help to avoid jitter in the signal. The next step
is that the actual action it takes is the maximum of all
the previous desired actions over a window of time, so

ai(t) = max
τ∈[0,W ]

Di(t− τ)

where W = 60s was used as the size for the window. This
means scaling down will happen gradually, reducing the
impact of fluctuations in the metrics and making sure to
rather keep a few more instances running than have too
few for the workload.

The Kubernetes scaler is implemented according to
what default parameters we could find for HPA at the
time of the experiments.

5.3.3 Oracle autoscaler

The name oracle is to indicate that it has knowledge not
available to the other algorithms. The extra knowledge is
still constrained to what was deemed interesting for the
proactive scaling mechanism in order to create something
that is as close to optimal as possible for the proactive
part.

So the first microservice in a job chain will have to
be reactive, and the strategy is to always keep one extra
instance running per job type.

For a microservice later in the job chain, scaling of the
service can start at some point after the job arrives with
the goal that the microservice will finish scaling at the
same point the job arrives at it.

This assumes full knowledge of the utilization on each
microservice and what type each job is. It also assumes
full knowledge of all microservice chains for jobs as well
as delays between difference microservices in the chain.

It will only work well under specific circumstances, but
since these are fulfilled in the environments presented
here, it is used as a benchmark of how well it is possi-
ble to scale proactively.

This is most likely not optimal in regard to the loss
function defined here, but will be as close as we can get
with a relatively simple algorithm.
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6 Results

The results from the two environments in Fig. 2 and 3 are
presented here. Some additional simulations were made
to verify that the RL agent could still perform well out-
side these examples that were specifically constructed for
this, though we choose to focus on presenting these cases
since they are simple to reason about while providing the
complexity needed to examine how well the RL agent can
learn the desired traits. Other cases that were tested had
for example more complex workload paths with varying
execution times, where proactive scaling was not always
possible, or simply a larger value for the jobs compared
to the cost of an instance.

The simulations are run over a longer time than shown
here to verify that the RL agent has stabilized and does
not hit a phase where catastrophic forgetting happens, a
well-known phenomenon for neural networks learning in
a sequential manner. For clarity, we only show 100 days
of data in the plots. This was deemed enough to both see
a little of the initial learning phase and the later phase
where the policy is optimized.

All data presented is sampled and smoothed to make
it possible to visualize what is going on. The simulation
environment logs data every minute, which is then pro-
cessed through a moving average over 1000 data points
and downsampled by a factor of 1000 for nicer plotting.

The random seeds used for the presented experiments
are different from the ones used in the hyperparameter
optimization. This ensures that the agent was not over-
fitting to the specific seed.

Starting with the simple environment in Fig. 2, the
reward in Fig. 4 show how the RL agent quickly learns
to achieve a competitive score, and manages to keep a
relatively stable performance throughout the simulation.
The few spikes are due to continuously learning and ex-
ploring, something that could be turned off. But con-
tinuously learning could provide additional benefits for
the algorithms, especially when applied to more complex
environments, since being able to adapt to changing con-
ditions in the environment can allow for more specialized
control.

The scale and utilization for the microservices are dis-
played in Fig. 5 where the average arrival rate for the
jobs are 1.5 jobs/s, so a proactive strategy should be able
to keep M2 and M3 at those levels, while M1 will likely
need a small buffer. Neither strategy keeps that low on
any of the microservices, but the oracle scaler is close on
M1 and M2, where proactive scaling can be done, with

0 25 50 75 100

12

14

16

18

20

Time [Days]

Reward

Kubernetes Oracle
RL agent Reactive

Figure 4: Reward for the different scaling strategies on
the single workload chain environment from Fig. 2. Dips
in RL agent performance is due to continually learning
and exploring.

the RL agent not far behind.

Based on these results, the RL agent seems to do well
in scaling. It does learn a strategy that keeps similar uti-
lization for the microservices where proactive scaling is
possible, achieving a similar reward, making a case that
the RL agent has learning some kind of forward connec-
tions between the microservices to do proactive scaling.
In addition to being very close to the oracle for the two
later microservices, it also pushes the utilization for the
first microservice higher than the other strategies. This
can be good but will likely have an effect on deadline
misses, the other term in the reward (4).

The environment with two different workloads over dif-
ferent paths in the application is visualized in Fig. 6.
Here we see how the oracle scaler keeps the highest uti-
lization on the microservices where it can scale proac-
tively, with the RL agent not far behind. The oracle
scaler has information about the job distribution on each
microservice that is not available to the other scalers, and
should be expected to be able to keep a higher utilization
because of this. The Kubernetes scaler prioritizes not
scaling down over minimizing the buffer, and will as such
have quite low utilization on average.

The reward for the strategies is shown Fig. 7, and we
see that the RL agent has a similar reward to the oracle
scaler, though a bit noisier. This is expected though, since
it does not know the full state or exact microservice layout
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Figure 5: Scale and utilization of the three microservices in the single chain environment from Fig. 2. The oracle
scaler manages to keep the highest utilization for the microservices that can be proactively scaled, but does get
information not available to the other scalers. The RL agent manages to keep all three at relatively high utilization
in comparison, with some noise in the scale due to continually learning and exploring.

as the oracle do, and it is also continuously learning. The
Kubernetes scaler receives quite a low reward, which can
be attributed to it being a very safe strategy in that it
promotes keeping a large buffer over risking scaling down
too low and missing a job. The environment is certainly
not optimal for the Kubernetes scaler, but it was selected
to be able to show the benefit of proactive scaling in the
cases where that is possible.

In the bottom left of Fig. 6 we also see that neither the
oracle nor the Kubernetes scaler miss a single job. This
is expected since the oracle was designed to keep the low-
est scale, while still guaranteeing no misses for this type
of workload. The Kubernetes scaler looks at the maxi-
mally needed scaler over a period, and as such will tend
to have a larger buffer in favor of missing jobs. The RL
agent is still learning, as we see how the missed jobs have
a trend downwards for most of the period. The reason
it still misses a few jobs can be attributed to mainly two
reasons. First, the objective function does not explicitly
tell the agent to not miss any jobs. The reward (4) is
a weighted sum of the cost of running instances and the
value of finishing jobs in time, which means that there
will be an optimal strategy where neither term can be im-
proved without making the other one worse. Depending
on parameters in the environment, this might very well
be at a level where some jobs get dropped. The other

reason is that the RL agent is stochastic, since it needs
to explore to learn. Some stochasticity will likely result
in unfortunate scaling decisions now and then, even if the
number of occurrences is relatively low. This will result
in booting or closing instances in ways that might not be
optimal, and the RL agent will on average boot and close
more instances than the other strategies, but this is an ef-
fect of needing exploration to accommodate the learning
process.

Increasing the reward of a finished job compared to
the cost of running an instance, will shift the optimal
policy towards dropping less, and thus scaling up more.
The agent has been tested on both smaller and larger job
values and managed to learn well in both cases.

7 Conclusion

In the work presented, we aim at creating a proactive
cloud scaler using reinforcement learning. The main ob-
jective is to achieve feed-forward scaling for service chains,
such that it is possible to service time-sensitive cloud ap-
plications. A cloud model and a simulation environment
are presented. With a focus on capturing traits such
as delays and latencies, it comprises what is typically
hard for algorithms based on sequential learning. A few
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Figure 6: The double chain has two workloads (W1 and W2) with different average loads (top left) going through
both shared microservices (M1 and M4) as well as individual ones (M2 and M3). In the bottom left, we see how
many missed deadlines there are on average for the different scaling algorithms. The RL agents signal is a bit noisy
due to continually learning and exploring.
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Figure 7: Reward for the different agent acting on the
double workload chain environemnt from Fig. 3. Dips in
RL agent performance is due to continually learning and
exploring.

alternative scaling algorithms are presented to compare
against, and the process for achieving successful training
of the RL agent is also mentioned.

We show that the RL agent achieves a higher reward
than reactive scalers, and is close to the oracle, when it
comes to optimizing the defined objective (4). This shows
that the RL agent can find good strategies, even for this
type of system that are problematic for a learning-based
algorithm.

We show how the RL agent is keeping utilization higher
on microservices later in a service chain, indicating that
the RL agent embedded some knowledge of the graph
structure and learned the forward connection needed to
do proactive scaling on the later microservices in the
chain.

For future work, we want to implement this as a re-
placement for Kubernetes autoscaler with some standard
mesh tools such as Istio using the Ericsson Research Dat-
acenter. When running on real systems, it is also impor-
tant that much of the training can be done beforehand on
a model. So exploring offline learning based on data col-
lected by standard algorithms to later just fine-tune the
agent when running live could be an important question
to look into.
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