
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Extending Microservice Model Validity using Universal Differential Equations

Heimerson, Albin; Ruuskanen, Johan

Published in:
IFAC-PapersOnLine

DOI:
10.1016/j.ifacol.2023.10.1214

2023

Link to publication

Citation for published version (APA):
Heimerson, A., & Ruuskanen, J. (2023). Extending Microservice Model Validity using Universal Differential
Equations. In IFAC-PapersOnLine (pp. 2401-2406) https://doi.org/10.1016/j.ifacol.2023.10.1214

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. Jul. 2025

https://doi.org/10.1016/j.ifacol.2023.10.1214
https://portal.research.lu.se/en/publications/d2715ce2-0507-48b7-9679-caa0a4934047
https://doi.org/10.1016/j.ifacol.2023.10.1214

Extending Microservice Model Validity using Universal Differential

Equations

Albin Heimerson, Johan Ruuskanen

Abstract

When creating models of a system, there is always a trade-
off between the ease of modelling a part and the increased
value it brings to the model. Learning a model using ma-
chine learning, we might have less control over what dy-
namics to capture, but can also capture things we don’t
necessarily understand. Using universal differential equa-
tions we can combine the two, taking scientific models
and embedding machine learning into them, with the goal
of giving us the best of both worlds. In this paper, we
extend an existing model with small neural networks to
capture missing dynamics. The specific use-case involves
a microservice fluid model, where the learned extension
improves the range of parameters the combined model can
reliably produce predictions over. This means the model
can be reused in a wider parameter space before needing
to be retrained. We also explore the possibility of impos-
ing bias on the network based on features of the model,
and how that affects performance.

Both authors are members of the ELLIIT Excellence
Center at Lund University. We also thank Ericsson Re-
search for letting us run experiments in their datacenter.

1 Introduction

The success of deep learning is often accredited to a few
different things. Top among those are the generality of
neural networks (NNs) as efficient function approxima-
tors, as well as large amounts of data for training and the
resources to run large scale training. Though, in addition
to this, many of the large breakthroughs in deep learning
community comes from new ways of imposing inductive
bias onto the model. One example being convolutional
neural networks, with the idea that pixels close to each
other were more likely to be related, or recurrent networks
for time-series where the networks propagate information

in one direction through time. Another bias could be im-
posed when looking for solutions to systems we expect
to behave according to some differential equations (DEs).
By letting the NN learn the dynamics instead of the so-
lution, we can use well established DE solvers to simu-
late forward in time to find the solution. Taking this a
step further, we can combine known dynamics with NNs
to create a DE where parts are modelled using classical
methods, and the missing parts are modeled by the NN. A
differential equation that can model arbitrary dynamics
is known as universal differential equations (UDEs).

This work specifically looks at models of cloud applica-
tions, and how we can improve them. There is a tendency
in industry moving towards adoption of microservices as
the framework for cloud applications, as shown in the sur-
vey by [1]. Microservices are a modern way of designing
application in the cloud, where small independent ser-
vices are each responsible for some objective within the
application. They can be built, deployed and controlled
individually, and thus give a large flexibility in the or-
chestration of the application. There is little centralized
coordination, leading to easier control, but also leaving
out a lot of possibilities for optimization. In [2] we looked
at creating a control strategy by combining fluid models
of a microservice application with automatic differentia-
tion, optimizing the load balancing parameters by gradi-
ent stepping, and doing so with respect to the full context
of the microservice application. We use gradients to up-
date the parameters, but we only take a single bounded
step before collecting new data, since we don’t trust the
model’s prediction too much when the parameters change.

In this work, we look at extending existing ODE mod-
els with neural networks (NNs), to be able to make use
of prior models while still improving upon them. This
allows us to trust the model in a wider range of param-
eters, meaning more gradient steps can be taken before
the model needs to be retrained.

1

1.1 Data-driven Discovery of Differential
Equations

Using NNs to identify dynamics within an ODE has been
done since the early 1990s, e.g. [3, 4, 5], as well as other
function approximators such as Gaussian processes [6, 7,
8] or sparse regression methods [9, 10].

All of this can be unified under the term Universal Dif-
ferential Equations (UDEs), where the dynamics of the
DEs are modelled using universal function approximators
of some form, allowing them to capture arbitrary dynam-
ics.

dx

dt
= f(x, t,η) (1)

Here we assume some function f parameterized by η
defining the dynamics of the system, though we can easily
say that f(x, t,η) = F (x) +NNη(x), to both introduce
a good bias with the known dynamics in F , and capture
whatever is missing with NNη.

Recent interest in combining ODEs and NNs has led to
work such as [11, 12], producing tools for automatic dif-
ferentiation of DE solvers, thus allowing efficient methods
for solving these types of problems in continuous time.

Similar techniques have previously been used to model
microservice applications, e.g. in [13] they used pure NN
models to capture the discrete dynamics of a microser-
vice mesh and predict future states to optimize resource
allocations.

This is different to our work in that we attempt to
keep the knowledge from an existing model, and simple
add a small piece modelling the missing dynamics. In
our work, we specifically want to keep the existing mi-
croservice model from [14], where the original model is
good in most scenarios, though there are cases when run-
ning outside some of the system parameters where it was
trained where it can have drastically reduced accuracy.
This could be approached by training multiple versions
of the original model, one model per parameter value,
but as the system increase in size this can quickly be-
come infeasible. By using a single base model extended
by an NN, we can let the NN capture how the dynamics
change from these parameters by training on data col-
lected from a small amount of the parameter space. We
evaluate the training efficiency and accuracy for the fluid
model as well as the fluid model extended with an NN
and compare them. We also explore how small inductive
biases in the NN, based on our assumptions about the
problem, affect the learning process and the final result.

2 Microservice Fluid Model

The fluid model for microservice applications used in this
work is adopted from [14]. In it, each microservice can
consist of multiple replicas, where each is modeled as a
multiclass processor sharing queue. The delay between
replicas is modeled as a multiclass delay queue. The ser-
vice time for each class is allowed to follow a phase-type
distribution. Furthermore, load balancing is assumed to
follow a weighted random strategy, allowing the entire
application to be expressed as a queuing network with
probabilistic routing. The mean queue lengths of this
queuing network can subsequently be approximated and
quickly evaluated using the fluid model obtained via a
refined mean-field approximation.

Let Q be the set of queues, i.e. all replicas in the mi-
croservices and their in-between delays. Cq is the set of
classes for queue q, i.e. all classes of requests q can pro-
cess. Then Sq,c is the set of phases from the phase-type
service time in class c of queue q. Let kq be the number

of processors in queue q, λ ∈ R|C|
+ the Poisson arrival rate

to each class and P ∈ R|C|×|C| the class-to-class rout-
ing probabilities. Let Ψ ∈ R|S|×|S|, A ∈ R|S|×|C| and
B ∈ R|S|×|C| be the parameter matrices for the phase-
type distributions for each class stacked into block diag-
onals. The model then approximates the average request
population in each phase state x(t) ≈ E [X(t)] as

dx

dt
= F (x,λ, p) = W T θ (x) +Aλ (2)

where x(0) = X(0), W = Ψ+BPAT , and the function
θi(x) = xigQ(i) (x) ∀i ∈ S where

gq (x) =
1(

1 +
(
k−1
q

∑
xq

)zq)1/zq
q ∈ Q. (3)

2.1 Extracting Metrics

Important performance metrics, such as population in
classes and queues or response time percentiles, can be
derived from the solution x(t) to (2).
The mean requests present at time t in the different

classes and queues, can be approximated by summing over
the corresponding phase states.

xc(t | x(t)) =
∑
i∈Sc

xi(t)

xq(t | x(t)) =
∑
i∈Sq

xi(t)
(4)

2

Let xC ∈ R|C|
+ and xQ ∈ R|Q|

+ be the corresponding vec-
tors of all mean requests for classes and queues respec-
tively.

The response time percentile can be approximated by
setting up another ODE based on x∗, the steady state

solution of (2). Let π(t) ∈ R|S|
+ be the probability vector

of finding a request in the corresponding phase state after

time t, and β ∈ R|C|
+ the probability vector of the request

entering the corresponding class at time t = 0. The prob-
ability of the request remaining in the network can then
be approximated with the ODE

dπ

dt
= W TDgπ(t), π(0) = Aβ (5)

where Dg ∈ R|S|×|S|
+ is a diagonal matrix with elements

Dg
ii = gQ(i)(x

∗). The approximation of the percentile φα

can then be found by evaluating (5) until
∑

π(φα) = 1−α
holds, or by doing, e.g., a bisection search over its closed-
form solution. We denote this solution as φα(x

∗).

3 Method Description

3.1 Identifying base fluid model

We extract the base fluid model using the latest batch
of data according to the method described in [14]. The
extracted model is then used to simulate the load in the
system using (2), as well as estimating the expected 95th
percentile response time using (5). To predict outside the
current parameter settings, the P matrix can be updated
with desired load balancing values, and λ can be changed
to reflect expected incoming load. This updated model
can now be simulated to get expected loads and response
time percentiles for a different parameter setting. Though
this model is accurate around the parameter setting where
it was fitted, it will have an increased tendency for pre-
diction errors as we get further away from the parameters
used for the data collection.

To decrease these prediction errors, we add two parts
to the model. An NN modelling the missing dynamics
in the class population from the fluid model, and an NN
modelling the error of the response time prediction.

3.2 Modelling missing dynamics

We set up our extended model using as a universal ordi-
nary differential equation, where a small neural network is

added to the fluid model to capture the missing dynamics.

dx

dt
= F (x,λ, p) +NNη(x,λ, p) (6)

The neural network is parameterized by η in addition to
depending on the same parameters as the fluid model,
i.e., the phase-states x, arrival rate λ and load balancing
probability p. It is trained by simulating the ODE until
convergence, and comparing the steady-state class popu-
lation x∗

C to the recorded average class population x̂C via
the mean squared error. We do this over some historical
data D

LC(η) =
∑

p,λ,x̂c∈D

(x∗
C(λ, p)− x̂C)

2 (7)

where x∗
C(λ, p) is the steady state solution collected into

different classes according to (4), and η are the parame-
ters of the NN. We estimate the steady state solution by
simulating for some time tf that is large enough that the
system normally will have reached steady state, for this
system tf = 2 s was found to be sufficient. Further, we
use λ from recorded data when training, since this will
allow a better fit and will likely create a more accurate
model.

How the networks are designed can have a large effect
on learning efficiency and accuracy, and imposing bias on
them can improve learning speed as well as accuracy if
done right. The basic NN contain only dense layers with
linear activation in the output layer, and will be referred
to as nn or fluid nn depending on if we use the fluid
model as base.

A slightly more informed model includes a final layer
that makes sure the NN does not create or remove any
flow, just change the internal flows between the phases-
states. This can be implemented for the NN by simply
subtracting the mean of the last layer from itself, thus
creating an output that sums to zero. We will refer to
this method as fluid nnfc.

fc(z) = z − 1

|S|

|S|∑
i=1

zi. (8)

A third approach constrains the flow based on the fluid
model, i.e. looking at the rows in W where each row
representing internal flows sum to zero, we call this fluid
nnmc. By having the output of the final layer of the NN
be weights that each set a flow between two phase states
in the pattern defined by W , the flow is forced to follow
the pattern of the fluid model. As long as the fluid model

3

is general enough, this should simplify learning while not
reducing the accuracy of the model.

Using the models to estimate future behavior for dif-
ferent load balancing parameters, we don’t know what
the future λ will be since it is a stochastic variable. We
choose to estimate it by the most recently recorded value,
as that is likely a good approximation of the future value.

3.3 Modelling response time prediction
error

The improvements to the fluid model will already make
the estimate of the response time percentile (5) better,
since we now have more accurate predictions for the class
populations. But the main problem of the assumption
that each request receive the mean processor share as
mentioned in [15] still remains. In most cases, this will
be less true the larger the utilization due to the increased
variability in queue lengths. The error of (5) can thus
be expected to correlate with the utilization. Due to this
correlation with the solution of the ODE, it becomes sim-
ple to improve the estimate. We do so by adding a small
NN to estimate the error of the solution, which is trained
in the step after the UDE model is trained.

Having the predicted x∗, the phase state population
in steady state, we can then estimate the response time
percentiles from (5), and calculate the errors compared
to the recorded values. Now we fit a small regularized
network using supervised learning to map from the load
on each replica, to the error of the estimation in (5).

φerr = φ̂α − φα(x
∗(λ, p))

Lφα(µ) =
∑

p,λ,φ̂α∈D

(φerr −NNµ(x
∗
Q(λ, p)))

2 + α
∑
µ∈µ

µ2

where φ̂α is the response time percentile estimated di-
rectly from the data and µ are the parameters for this
neural network.

3.4 Control

One use-case for these improvements is to optimize a cost
function for the distributed application operations with
respect to the load balancing parameters. In [2], the cost
function is conditional on whether the limit for φα is vi-
olated, selecting control parameters to either minimize
the response time or to minimize the cost to run the dis-

f

frontend

Load balancer

b1

b2

p1

p2

backend

Edge node

Cloud DC
d

Figure 1: A simple distributed application with two mi-
croservices. The frontend only exists close to the user on
the edge nodes, and the backend has replicas on both the
edge nodes and the cloud. The backend has a weighted
random load balancer with routing probabilities p1 = p
and p2 = 1− p. There is a delay d between the edge and
the cloud.

tributed load.

L(p) =

{
Cφφα (x∗(λ, p)) if φα > φlim

CTx∗
Q (λ, p) otherwise

(9)

4 Experiment description and Re-
sults

4.1 Application

We consider a distributed microservice application as
shown in Fig. 1 which is subject to external requests
with exponential inter-arrival times, i.e. Poisson arrivals,
with the rate parameter λ = 14. It is a simple face de-
tection service consisting of two connected microservices,
a frontend and a backend, where the backend is made up
of two replicas distributed over different sites. Each in-
stance are running with 4 cores, i.e. kq = 4∀q ∈ Q. A
load balancer using a weighted random scheme controls
how jobs are distributed over the backend, deciding which
replica is to service any specific request. There is a real
computational cost which will be affected by where a load
is placed and what type of load it is, as well as a cost for
breaking the response time constraints. For this experi-
ment, the coefficients for the computational C is set to
be a zero vector except for the two backends where it was
set to Cb = [3, 1], and the cost coefficient for the response
time constraint is set to Cφ = 8. We use α = 0.95 to
look for the 95’th percentile response time as well as the
limit φlim = 0.55. There is also a communication delay

4

d between the sites which affect soft constraints such as
response time percentiles. All connections between the
two clusters are given a Pareto distributed additive delay
with a 25ms mean, 5ms jitter (approximately standard
deviation) and 25% correlation between samples.

4.2 Data and Training

The application used to evaluate the improvements was
run on a federated cluster using the tools introduced in
[16].

In this work, the cluster was only used for recording
real data for the experiments, and all training and verifi-
cation was done offline using the recorded data. This is
not a restriction of the method in general, but was more
convenient for experimentation. In [2] we show that the
corresponding methods transfer well from offline evalua-
tion to the live application.

The data is collected as 5-minute recordings, contain-
ing all arrival and departure logs for each request. From
these logs the class populations can be extracted, and
this data is collected for all p ∈ [0, 0.05, . . . , 1]. For
these experiments, we use p = 0.6 as the current load-
balancing parameter, i.e. the data the fluid model is
trained on. The NN can additionally use data collected
at p ∈ [0.1, 0.3, . . . , 0.9], which together with data from
p = 0.6 forms the training data D. The remaining data
is only used to visualize how well the model captures the
parameters in general. The historical data was selected in
a sparse grid over the interval to have a chance of finding
a good model for the missing dynamics.

The training is done using the SciML (Scientific Mach-
ing Learning) ecosystem in Julia which has DE solvers
that support AD. This means that we can define a func-
tion that, based on some initial parameters, solves the
DE, evaluates a loss based on the solution and generates
the gradient of the loss with respect to the parameters.
The NN optimization is done using the ADAM algorithm,
a standard first order method commonly used in deep
learning. All the code is publicly available on Github1.

4.3 Evaluating model designs

We compare three different NN extensions to the fluid
model, as presented in Section 3.2, to see how impos-
ing bias on the net affects the learning speed as well as
the accuracy of the learned model. For comparison, we
also show the performance of the fluid model by itself, as

1https://github.com/albheim/IFAC2023_code

0 100 200 300 400 500

10−5

10−3

10−1

101

Iterations

L
C

Training loss for xC

fluid nnfc fluid nn
nn fluid nnmc

fluid

Figure 2: Training loss for the different models defined in
Section 3.2, and the loss of the fluid model as reference.

well as a purely NN based model, though using the same
amount of states in the UDE as for the fluid model.

For the fluid model, we give each class in the queuing
network 3 phase states, for a total size of |S| = 24. For
the NN only and extended models, the dense layers of the
neural networks are all the same, three hidden layers with
20 units each and exponential linear units for activation.

Fig. 2 show how the loss LC converge during train-
ing for the different methods. The presented data is the
average over 5 trials using different seeds for the training.

The models using only NNs had some problems learn-
ing the dynamics, and would sometimes either produce
an unstable system, crashing the ODE solver, or not find-
ing the relationship between the class dynamics and the
load-balancing parameter p, as can be seen in Fig. 4. If
trained for even longer, they sometimes found a decent
model, though they had a larger tendency to overfit to
data instead of capturing the dynamics.

Comparing the models that extend the fluid model, we
see that they are quite similar. All of them start around
the same performance as the fluid model, and improve
from there. The extended model using an NN that has its
output constrained by the dynamics of the model, fluid
nnmc, does however converge quite a bit faster than the
other ones. Seeing this, we will evaluate the performance
in more detail using only fluid nnmc out of the extended
models, though we keep both nn and fluid to compare
against.

5

0 0.2 0.4 0.6 0.8 1

3

4

5

p

∑ x
∗

Total requests in application, real λ

data fluid
nn fluid nnmc

Figure 3: Here we use the recorded λ for each evaluated
p, making for a better comparison of how well we fit the
model, instead of testing the predictive capability.

4.4 Evaluating performance metric pre-
dictions

To start with, we look at how well the extended model
captures the actual data by supplying the real λ in the
whole range, see Fig. 3. The fluid model captures the real
data well around p = 0.6 where it was trained, though as
we move further away by updating p and λ in the model,
we see the prediction accuracy decline. The model with
only NN does not do too well, and seems to not have
captured much of the dynamics. The extended model is
a lot more accurate and actually matches the data quite
well, though we still see some artifacts, e.g. at p = 0.95
where the data decrease but all models increase. This can
also be seen in the fluid model, and is likely an artifact
from building upon it.

In Fig. 4 we see the predicted request population, the
predicted response time percentile and the predicted cost
for the fluid model as well as the flow constrained NN
model for different number of training iterations. The
requests are based on a Poisson process, and the load
balancer is random, so the real data show some stochastic
behavior that the model does not predict. This is mainly
from λ not being known for the values we predict, and
instead estimated based on the most recent data, so here
we use the λ that was estimated for p = 0.6. We can
clearly see this difference when comparing the predictions
for the queue-length in Fig. 3 and 4. To estimate the
cost function well, the response time percentiles play a
big role, especially when close to its limit. As seen in Fig.
4, neither the fluid model nor the model with only an NN

4

5

6

∑ x
∗

Model accuracy evaluation

0.4

0.6

0.8

1

φ
.9
5

data fluid
nn fluid nnmc
φlim

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

p

L
(p
)

Figure 4: Here we see the recorded data as well as predic-
tions from a few different models. From the top we have
the total number of requests, the 95th percentile response
time and the cost function.

6

0 0.2 0.4 0.6 0.8 1

6

8

10

p

L
(p
)

Control parameter optimization

data prediction

optimization path

Figure 5: Gradient descent on p based on the loss of the
trained fluid nnmc model. Starting at p = 0.6 which is
the recent data used for the fluid model, and ending up
around p = 0.3.

predict this well, resulting in a cost where the optimum is
at p = 0. The extended fluid model identifies a minimum
around 0.3, close to where the data also show it.

4.5 Control

To visualize this in a control scenario, Fig. 5 shows how
the control parameter is optimized using the model pre-
diction. Using the model from Fig. 4, we run gradient
descent starting at p = 0.6 on the predicted values from
the model. Exactly where the real minimum is will vary
since the load is stochastic, but we can see that the found
p ends up reasonably close to an optimal setting for the
real data.

5 Conclusion

The type of models used in [2] can be extended to have
more accuracy outside the current parameter settings by
adding a small NN to the model in order to capture the
missing dynamics. The experiments in this work show
how the efficiency of training can increase by providing
basic dynamics in the model, and how these models are
more likely to ultimately capture correct dynamics. In
addition to using an existing model as base, imposing
structure from the model onto the NN itself is also ex-
plored. Both this and using the base model are different
ways of adding bias to the NN, and for a good bias we are
likely to see improving training efficiency and model accu-

racy. We analyze different combinations of these biases,
and in our experiments both of them improves learning
speed and accuracy for our moderately sized networks.

These models are combined with the techniques for con-
trol presented in [2], to take more gradient steps with the
same model and achieve faster convergence. In this way
we can optimize the control parameters for the combined
model, ending up close to the actual optimal value, with
a single trained model. For the fluid model this is not
feasible, as it would end up at p = 0 given the loss in Fig.
4. To achieve the same results, it would instead require
smaller steps where new data was collected and trained
on in-between, resulting in slower convergence to good
control parameters.

The method itself is more general than the specific use-
case presented here, and could be applied to a wide va-
riety of applications by combining some basic knowledge
about the system with UDEs to model the missing parts.
Using gradient based methods to find optimal parameters
for control is only one option for control, though a very
convenient one if the framework for AD exists.

5.0.1 Future work

We would like to run this for a larger system, where it
would be infeasible to train and store a model for each
parameter setting. This would also require running it
against a live system since we would not collect a fine
enough grid of data for a larger system. To make this
feasible, we need to improve the runtime performance of
the algorithm, and one way to achieve this could be to
translate the implementation to use reverse-mode differ-
entiation.

References

[1] Steve Swoyer and Mike Loukides. Microservices
adoption in 2020, Jul 2020.

[2] Albin Heimerson, Johan Ruuskanen, and Johan
Eker. Automatic differentiation over fluid models
for holistic load balancing. Presented at ACSOS
2022. Email albin.heimerson@control.lth.se for ac-
cess., 2022.

[3] Ramiro Rico-Martinez, K Krischer, IG Kevrekidis,
MC Kube, and JL Hudson. Discrete-vs. continuous-
time nonlinear signal processing of cu electrodissolu-
tion data. Chemical Engineering Communications,
118(1):25–48, 1992.

7

[4] Raul González-Garćıa, Ramiro Rico-Mart̀ınez, and
Ioannis G Kevrekidis. Identification of distributed
parameter systems: A neural net based approach.
Computers & chemical engineering, 22:S965–S968,
1998.

[5] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin
Dong. PDE-net: Learning PDEs from data. In
Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3208–3216. PMLR, 10–15
Jul 2018.

[6] Michael Schober, David K Duvenaud, and Philipp
Hennig. Probabilistic ode solvers with runge-kutta
means. Advances in neural information processing
systems, 27, 2014.

[7] Maziar Raissi and George Em Karniadakis. Hidden
physics models: Machine learning of nonlinear par-
tial differential equations. Journal of Computational
Physics, 357:125–141, 2018.

[8] Markus Heinonen, Cagatay Yildiz, Henrik Man-
nerström, Jukka Intosalmi, and Harri Lähdesmäki.
Learning unknown ODE models with Gaussian pro-
cesses. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1959–1968. PMLR,
10–15 Jul 2018.

[9] Steven L Brunton, Joshua L Proctor, and J Nathan
Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical sys-
tems. Proceedings of the national academy of sci-
ences, 113(15):3932–3937, 2016.

[10] Samuel H Rudy, Steven L Brunton, Joshua L Proc-
tor, and J Nathan Kutz. Data-driven discovery
of partial differential equations. Science advances,
3(4):e1602614, 2017.

[11] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt,
and David Duvenaud. Neural ordinary differential
equations. CoRR, abs/1806.07366, 2018.

[12] Christopher Rackauckas, Yingbo Ma, Julius
Martensen, Collin Warner, Kirill Zubov, Rohit
Supekar, Dominic Skinner, and Ali Jasim Ramad-
han. Universal differential equations for scientific
machine learning. CoRR, abs/2001.04385, 2020.

[13] Zhe Yang, Phuong Nguyen, Haiming Jin, and Klara
Nahrstedt. MIRAS: Model-based Reinforcement
Learning for Microservice Resource Allocation over
Scientific Workflows. In 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 122–132, July 2019.

[14] Johan Ruuskanen and Anton Cervin. Distributed
online extraction of a fluid model for microservice
applications using local tracing data. In 2022 IEEE
15th International Conference on Cloud Computing
(CLOUD), pages 179–190. IEEE, 2022.

[15] Johan Ruuskanen, Tommi Berner, Karl-Erik Årzén,
and Anton Cervin. Improving the mean-field fluid
model of processor sharing queueing networks for dy-
namic performance models in cloud computing. Per-
formance Evaluation, 151:102231, 2021.

[16] Johan Ruuskanen, Haorui Peng, Alfred Åkesson,
Lars Larsson, and Maria Kihl. Fedapp: a research
sandbox for application orchestration in federated
clouds using openstack, 2021.

8

