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Abstract: In the mining industry, flotation is a commonly used process to separate valuable
minerals from waste rock in a concentrator. The rougher flotation is the first stage of the
process and in Boliden AB’s concentrator at Aitik, it consists of two lines of four flotation cells.
In this paper we consider one line of four cells and the buffer tank upstream of them. The
operating conditions in the flotation process change as the ore quality varies. This is a challenge
when modeling the process. We address this challenge by using a reinforcement learning (RL)
algorithm to design a state feedback controller for level control, without the need of an explicit
process model. Using simulations, we compare the performance of the resulting controller to that
of the cascade coupled PI-control structure that operates the real plant today. The RL-based
controller improves the performance and shows good potential. Convergence to an admissible
control law requires careful hyper-parameter tuning. Industrial deployment thus requires further
work to ensure the required reliability.

Keywords: Machine learning methods and applications, Advanced process control, Process
optimisation

1. INTRODUCTION

In order to produce metals, the raw ore needs to be
processed to concentrate the minerals that will later be
smelted into metals. In the process of concentrating min-
erals, flotation is commonly used. In series of flotation cells,
the differences in surface properties are used to separate
the valuable minerals from waste rock. To do so, the milled
ore is mixed with water to form a slurry to which chemical
reagents are added. The reagents make the selected min-
erals water repellent, which allows them to attach to air
bubbles generated at the bottom of the flotation cell and
form a mineral froth on top of the slurry in the cell. To
extract more of the minerals from the slurry, the tailing
from one flotation cell is the feed to the next one. The froth
is collected as it flows over the rim of the flotation cells and
as stated in Bergh and Yianatos (2011), this makes good
level control one of the foundations to having good overall
recovery of the minerals.

Since the flotation cells are connected in series, the levels
in the different cells form a strongly connected system.
Therefore multivariable controllers and cascade coupling
of SISO-loops are of interest for the level control. For
example, LQ-control and a decoupling controller was in-
vestigated for level control by Stenlund and Medvedev
(2002). Model predictive control (MPC) has also been
implemented for flotation by Brooks and Koorts (2017),
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however, targeting the recovery of minerals instead of the
level control.

All model-based control structures for flotation have one
thing in common, the model is a key factor for how success-
ful the controller will be. The quality of the incoming ma-
terial will change over the ore deposit and this will change
the optimal way to run the process. These variations are
hard to capture in the model for measurement reasons.
There may not be measurements of the quality in question
or the frequency of the measurements may be too low.
This becomes a challenge when the operating conditions
drift far from the conditions under which the model of the
process was created.

This paper investigates reinforcement learning for level
control as an example of how a state feedback law can
be designed without the need of an explicit process model.
The considered process section will be the rougher flota-
tion circuit at the concentrator plant in the Aitik mine, run
by Boliden AB located in Gällivare, northern Sweden. The
performance of the resulting controller will be compared
to the existing control structure that controls the plant
today. The comparisons will be performed in simulation.

2. PROCESS DESCRIPTION

The considered process consists of a buffer tank and four
flotation cells. A schematic picture of the process is seen in
Figure 1. Upstream from the considered process, there are
two milling lines. Raw ore enters the milling lines, where
it is mixed with water and ground to a fine sand, forming
a slurry. This slurry enters the considered process section
that starts with a buffer tank. Its volumetric inflow rate
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Fig. 1. Schematic overview of the considered process sec-
tion: a buffer tank followed by four flotation cells in
series. Slurry is actively pumped from the buffer tank
to the first flotation cell. The slurry level in tank/cell
i is hi, and neighboring flotation cells are mounted at
a height difference ∆h. The flow qi out of flotation cell
i is moderated by the control signal vi to a nonlinear
valve.

is controlled by the milling line and hence considered as
a disturbance. The slurry is actively pumped from the
buffer tank to the first flotation cell. The flotation cells
themselves are of equal size and mounted with ∆h height
difference between neighbors. Slurry flow between adjacent
cells is driven by their difference in hydrostatic pressure,
and moderated by a valve, as seen in Figure 1. Further
details on the model is found in Norlund, F. (2022).

3. CONTROL

We investigate the use of a reinforcement learning (RL)
algorithm to design a linear quadratic (LQ) controller. The
algorithm is entirely data-driven and has no knowledge of
the process model. This is of practical interest, since the
process operating conditions change over time, and these
changes are hard to accommodate for online within the
scope of the model.

The underlying algorithm is based on Bradtke (1992) and
Lewis et al. (2012). It relies on N samples, collected during
closed-loop operation of the system, to update a state
feedback controller based on a linear quadratic control cost
function. This procedure is iterated until the control gain,
L in the state feedback law

uk = −Lxk (1)

converges to the gain that is optimal for the imposed cost
function. Further details are found in Norlund, F. (2022).
Notable is also that the RL-controller treats deviations
from a linearization point instead of absolute states and
control signals, such that

h = href + x,

v = uref + u.
(2)

4. SIMULATIONS

4.1 Designing a controller with the RL-algorithm

When using the RL-algorithm to design a controller, an
initial feedback gain, L, must be chosen to start the
iterations. This gain must be stabilizing, but apart from
that it has no other requirements. For our system, the
identity matrix fulfills the requirements and it was chosen
to be the initial feedback gain.

When running the algorithm, the control signal must
perform a sufficient amount of exploration. Otherwise,
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Fig. 2. The first tuning iteration of the RL-algorithm per-
formed on the system consisting of a buffer tank and
four flotation cells. There are square waves present
in the disturbance term in equation (3) for one cell
at a time, starting with the buffer tank. The buffer
tank and the second cell are shown. The effects of the
disturbances in the buffer tank on the flotation cell
is visible, along with the effects of the first flotation
cells disturbances on the second cell.

the samples collected will not contain enough information
about the dynamics of the system. To ensure sufficient
excitation, a disturbance component ek is added to each
control signal sample, so that,

uk = −Lxk + ek. (3)

For this system, the disturbance component, ek, consisted
of Gaussian white noise and low frequency square waves.
The period of the square wave was chosen to match the
speed of the dynamics of the system components. The
square waves are only present in one cell at a time, so that
the effects of them are seen in the surrounding cells. The
square waves are applied from left to right in the process,
starting in the buffer tank and finishing in cell four. In
Figure 2, the first tuning iteration is seen for the buffer
tank and the second cell. The effects of the disturbances
in the buffer tank are clearly visible in the second cell as
well. The impacts of the square waves in the first cell is also
clearly visible in the second cell, they take place between
sample 400 and 800. The inflow of slurry to the buffer tank
was assumed to be constant during the tuning process, and
the level references for the cells were kept constant.

With five states and five control signals, the gain matrix
will be of size 5× 5. How the elements of its diagonal are
updated over the first 15 iterations of the RL-algorithm is
shown in Figure 3. With the control law in equation (1),
the diagonal elements of L tells us how much the state, xi,
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Fig. 3. The RL-algorithm is applied to the system con-
sisting of a buffer tank and four flotation cells. The
evolution—iteration by iteration—of the elements on
the main diagonal of the gain matrix in the feedback
law is visualized as they converge to stationary values.

contributes to the control signal ui that controls xi. Off-
diagonal elements in the gain matrix also contribute to the
control signals, but theses gains are, in our case, smaller.
In the considered, and representative, example, it takes
the algorithm seven iterations to converge to a feedback
gain. After this, no notable improvements are achieved by
the algorithm.

For the controller to be practically useful between tunings,
it also needs reference tracking properties. The controller
designed above will drive the states back to the references
that were set when it was designed. To enable it to follow
other references and correct stationary errors, without re-
tuning it, integral action can be added to the controller.
This can be achieved by extending the state vector with
integral states of the tracking error. The feedback gain
matrix must also be extended to include feedback gains
for the integral states.

4.2 RL-based versus currently implemented controller

In the Aitik plant, variations in the slurry flow to the buffer
tank is one of the biggest disturbances to the levels in
the flotation cells. The biggest inflow disturbance occurs
when one of the milling lines that supply flotation with
slurry unexpectedly stops. This roughly halves the inflow
of slurry to the flotation series. Process data from a real
occurrence of this disturbance has been extracted and
used as input to the model. In Figure 4, the RL-based
controller’s response to the abruptly changed slurry flow is
visualized along with the slurry flow itself. The RL-based
controller considered is the resulting controller from the
previous section, after the tuning procedure has converged.
There is no tuning active when the controller is tested in
this section.

In the real plant, the level control is governed by cascade
coupled PI-controllers. We have implemented a digital
twin of the control system, including actual parameter val-
ues, in our simulation environment. This way, the control
structure of the real plant and the RL-based controller
can be exposed to the same disturbances and their perfor-
mance can be compared. In Figure 5, the performance of
the PI-controllers is shown when the system is exposed to
the same inflow disturbance as in Figure 4.

The level in the buffer tank is not of interest as long as it
does not overflow or become empty. It can be seen from

Figures 4 and 5 that this requirement is met by both the
RL-based controller and the PI-structure.

The effects on the levels in the flotation cells are of bigger
interest. First observing the noise canceling properties
of the controllers in steady state, it can be observed
from Figures 4 and 5 that they both have good noise
canceling properties. Looking at the root mean square
error (RMSE) for a typical steady state sequence, the RL-
based controller reduces it with roughly 50 % compared
to the PI-controllers for the flotation cells. How ever, the
noise canceling properties of the PI-controllers is already
satisfactory.

When the big inflow disturbance occurs at time t = 10 in
Figures 4 and 5, the levels in the cells are affected by this.
It is desired that the amplitude of the level deviations due
to the disturbance should be as small as possible and that
the level should return to its reference fast. It is visible in
the figures that the impact of the disturbance is bigger for
the PI-controllers than for the RL-based controller, both
when it comes to the amplitude of the deviations caused
by the inflow disturbance, and the duration of the effects of
it. Comparing the maximum amplitude deviations in the
flotation cells, it is reduced with 42 % on average by the
RL-based controller compared to the PI-controllers. When
it comes to the time it takes for the levels to return to their
references, a tolerance around the reference is chosen and
the time it takes for the level to return to the tolerated
area is measured. This time is on average reduced by 75 %
by the RL-based controller compared to the PI-controllers.

5. DISCUSSION

As was demonstrated in the previous section, the RL-based
feedback controller has overall better performance than
the cascade-coupled PI-controllers. It has both better noise
canceling properties and better disturbance rejection. This
serves to show that the method has potential to improve
operation under varying conditions. However, there are of
course practical considerations that need to be thoroughly
mapped out before attempting large scale deployment of
the investigated method. Below we discuss some of the
more important ones.

In our studied example, the feedback gain successfully
converged over just a few iterations of the algorithm.
This requires that the control signal perturbations, ek of
equation (3) provide sufficient exploration. Choosing this
exploratory component in a proper way can be an issue if
the knowledge of the system is poor. If the tuning process
is to be performed on the real system, the choice of ek
will also be a trade off. They should be chosen as small as
possible not to disturb production more than necessary,
while being big enough to ensure that the control signal
performs proper exploration. Too little exploration during
the collection of data can lead to a poor update of the state
feedback law. This can lead to that the updated controller
performs worse than the previous one, or even destabilises
the system.

To design a suitable cost function for the controller, a con-
ception of the relative importance of tacking versus control
signal activity is needed. So even though the algorithm
does not require a process model, some knowledge of the
process is important to have to be able to design a good
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Fig. 4. A slurry inflow from real process data that contains
typical disturbances is fed to the simulation model
of the process consisting of a buffer tank and four
flotation cells. The system is controlled by the model-
free RL-based state feedback controller. The effect
of the disturbances for the levels in the flotation
cells and the buffer tank are shown along with the
corresponding control signals.

controller using the algorithm. For the initial choice of L, it
is also beneficial to have some previous process knowledge.

Looking at the data collection during the tuning procedure
from a production point of view, the applied exploratory
control signal has a large impact on production. To be
practically feasible, further attention would need to be put
on how to achieve adequate exploration, while maintaining
adequate control performance.

Our study has shown that ”model-free” RL-based control
can achieve control performance that supersedes that of
the currently implemented control system. However, this
comes at the cost of initially exciting the dynamics more
than would be practically admissible, to obtain sufficient
model knowledge. Future work would therefore need to
focus on improved experiment designs. Here methods
that adjust the experiment online based on the system
response, such as Berner and Soltesz (2017) could prove
viable.

6. CONCLUSION

Summarizing the above observations, one could conclude
that the RL-based control show good potential to design
a state feedback controller without the need of an explicit
process model. This makes it highly relevant for processes
that are hard to model, where the process itself or its
operating conditions change over time. However, the ap-
proach has a number of practical considerations that must
be addressed when applying it to a real process. Particu-
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Fig. 5. A slurry inflow from real process data that contains
typical disturbances is fed to the simulation model of
the process consisting of a buffer tank and four flota-
tion cells. The system is controlled by PI-controllers
configured to be identical to those in the real plant.
The effect of the disturbances for the levels in the
flotation cells and the buffer tank are shown along
with the corresponding control signals.

larly, an adequate balance between stable operation during
exploration and sufficient excitation of the dynamics must
be met.
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