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Abstract—The state-of-the-art machine learning techniques
come with limited, if at all any, formal correctness guarantees.
This has been demonstrated by adversarial examples in the deep
learning domain. To address this challenge, here, we propose
a scalable robustness verification framework for Deep Neural
Networks (DNNs). The framework relies on Linear Programming
(LP) engines and builds on decades of advances in the field
for analyzing convex approximations of the original network.
The key insight is in the on-demand incremental refinement of
these convex approximations. This refinement can be parallelized,
making the framework even more scalable. We have implemented
a prototype tool to verify the robustness of a large number
of DNNs in epileptic seizure detection. We have compared the
results with those obtained by two state-of-the-art tools for the
verification of DNNs. We show that our framework is consistently
more precise than the over-approximation-based tool ERAN and
more scalable than the SMT-based tool Reluplex.

Index Terms—DNNs, verification, approximation, refinement,
linear programming, robustness

I. INTRODUCTION

The current difficulties in providing formal correctness
guarantees for the behaviours of DNNs are a fundamental
barrier for their adoption in safety-critical systems, e.g., cyber-
physical systems or smart medical devices [1]. Examples
of such machine-learning-based devices include implantable
and wearable devices to detect heart-attacks [2] or epileptic
seizures [3]. These systems continuously monitor the patients
and inform emergency units for rescue in case of such adverse
events. Therefore, it is, for instance, unacceptable for the
epileptic seizures detection/classification algorithms used for
real-time monitoring to change their classification decision
from “seizure” to “typical or non-seizure” after minor and
“irrelevant” changes. Such safety requirements led researchers
to explore ways to generate adversarial examples, i.e., exam-
ples falsifying the desired robustness property [4]–[7]. The
existence of such examples proves the possibility of violating
the safety property.

The state-of-the-art techniques for formally establishing
safety properties (e.g., robustness) for DNNs are either exact
(i.e., establish correctness iff it holds) [8]–[10] or based on
over-approximation [11]–[16] and/or simplified models (e.g.,
linear models) [17], [18]. In general, exact methods have
difficulties to scale as they explore all possible behaviours,
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i.e., generally exponential with the size of the model [10].
On the other hand, over-approximation-based approaches scale
better at the price of precision [12]. For instance, abstract-
interpretation-based methods use abstract domains to over-
approximate the possible values and speed-up the verification
process [11]. This results in a faster and more scalable
verification approach but may generate false positives, i.e.,
cases where the approach concludes the safety property may
be violated when it actually holds. In general, gaining more
precision for such approaches requires changing the abstract
domain to perform the verification from scratch.

In this paper, we propose SafeDeep, a scalable robustness
verification framework for deep neural networks. The key in-
sight in SafeDeep is in the on-demand incremental refinement
of the convex approximations. Our proposed framework lever-
ages on over-approximation for verification of the robustness
property. Unlike the abstract-interpretation-based techniques,
rather than restarting the verification process from scratch
upon inconclusive results, each time the obtained convex over-
approximation is not sufficient to establish the property, we
incrementally refine the underlying convex approximation. The
refinement process can be parallelized allowing for a scalable
usage of the decades of advances in LP. We have conducted
several experiments using DNNs with 760 neurons each
and trained them for the classification of epileptic seizures
in real-time setting using the e-Glass wearable system [3].
Our experiments on several hundreds formulations of the
robustness property for these DNNs show that our framework
could verify more formulations than the two established tools,
i.e., ERAN [13], which is based on over-approximation, and
the Reluplex [10], which is based on Satisfiability Modulo
Theories (SMT).

II. SAFEDEEP

In this section, we propose a novel framework to verify the
robustness of neural networks. We will explain our framework
step by step using a running example.

A. Deep Neural Network Model

A neural network is a function composed of a sequence of
linear transformations and non-linear activation functions to
compute outputs based on trained weights and biases. Assume
a neural network with N layers such that ni is the number
of neurons in layer i for i ∈ {1, . . . N}. The network takes



as input a vector x(1) ∈ Rn1 . Let f(.) : Rnk−1 → Rnk be
a nonlinear activation function from layer k − 1 to layer k.
The relation between layer k − 1 and layer k is defined as
x(k) = f(W(k)x(k−1) + b(k)), for all k ∈ {2, ..., N}, where
W(k) ∈ Rnk×nk−1 and b(k) ∈ Rnk are matrices of weights
and vectors of biases, respectively. Note that x(k)

i shows the
value of the ith neuron of the kth layer.

Fig. 1 depicts a fully-connected feed-forward neural net-
work with two neurons in each hidden layer and Rectified
Linear Unit (ReLU) activation functions. This network is a
binary classifier that classifies input x(1) into Class 0, if
x
(4)
1 > x

(4)
2 holds, and Class 1 otherwise. The network is

trained and its weights and biases are shown in Fig. 1, on
the arrows and above/below each neuron, respectively. In this
example, the nonlinear activation function f is the ReLU
function resulting in x

(k)
i = f(x̂

(k)
i ) for layer k. Each neuron

in the hidden layers is split in two, shown with pink dashed
boxes, to illustrate the relations between neurons before and
after applying the ReLU activation function. For the neural
network of Fig. 1, starting from the input x(1)

1 = 2, x(1)
2 = 0

and propagating through the network, we obtain x
(4)
1 = −9

and x
(4)
2 = 0 as output, which means the input belongs to

Class 1, because x
(4)
1 < x

(4)
2 .
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Fig. 1: A four-layer fully-connected feed-forward neural
network with ReLU activation functions

B. Robustness Verification

Now, we define robustness of a classifier at input x̃(1) ∈ Rn1

w.r.t. a bound δ. Let c be the class associated to x̃(1). A box
around x̃(1) contains all inputs x(1) ∈ Rn1 satisfying:

∥x(1) − x̃(1)∥∞ ≤ δ. (1)

Such an input x(1) is said to be a perturbed input. The neural
network is said to be robust at x̃(1) against perturbation δ
if, considering all outputs x(N) corresponding to all possible
perturbed inputs x(1) satisfying Inequality (1), we have that:

min (x(N)
c − x

(N)
i ) > 0, ∀i ∈ {1, ..., nN}, i ̸= c. (2)

In other words, applying any perturbations of at most δ around
x̃(1) does not change the class of the outputs.

Next, we explain how to bound the value of x
(N)
c − x

(N)
i

for perturbed inputs. Towards this, we obtain the lower and
upper bounds for each neuron x

(k)
i (i.e., ith neuron of the kth

layer), which are captured by x
(k)
i and x

(k)
i , respectively. For

each neuron of the input/first layer, we have x
(1)
i = x̃

(1)
i − δ

and x
(1)
i = x̃

(1)
i + δ, for all i ∈ {1, 2, ..., n1}. The lower and

upper bounds of neurons in other layers can be obtained as
follows:

x
(k)
i =

∑
j:W

(k)
j,i >0

W
(k)
j,i · x(k−1)

j +
∑

j:W
(k)
j,i <0

W
(k)
j,i · x(k−1)

j + b
(k)
i ,

x
(k)
i =

∑
j:W

(k)
j,i >0

W
(k)
j,i · x(k−1)

j +
∑

j:W
(k)
j,i <0

W
(k)
j,i · x(k−1)

j + b
(k)
i ,

(3)

where i ∈ {1, 2, ..., nk} and j ∈ {1, 2, ..., nk−1}.
Let us reconsider the example in Fig. 1 and suppose we

would like to check whether the network is robust at input
x̃
(1)
1 = 2 and x̃

(1)
2 = 0 w.r.t. a perturbation δ = 0.5.

Recall input x̃(1) belongs to Class 1. The values x
(1)
1 and

x
(1)
2 of any perturbed input freely range in [1.5, 2.5] and

[−0.5, 0.5], respectively. If the neural network is robust against
perturbation δ = 0.5 at x̃(1), then x

(4)
1 < x

(4)
2 holds for all

(x
(1)
1 , x

(1)
2 ) ∈ [1.5, 2.5] × [−0.5, 0.5], which means all inputs

belong to the Class 1.
Using weights and biases of the first layer, it is deduced

that x̂(2)
1 and x̂

(2)
2 both range in [1, 3]. As the range of x̂

(2)
1

and x̂
(2)
2 is positive, we have the same range for x

(2)
1 and

x
(2)
2 . By propagating further these individual bounds along the

layers, we obtain that x̂(3)
1 ∈ [3, 7] and x̂

(3)
2 ∈ [−2, 2]. Then,

after applying the ReLU function we have x
(3)
1 ∈ [3, 7] and

x
(3)
2 ∈ [0, 2]. In the output/last layer, we have x(4)

1 ∈ [−13,−3]

and x
(4)
2 ∈ [−2, 0]. Hence, min (x

(4)
2 − x

(4)
1 ) ≥ 1, which

is a sufficient lower bound on the difference of neurons
of the output/last layer of perturbed inputs to ensure that
x
(4)
2 is always larger than x

(4)
1 . This means that all inputs

in [1.5, 2.5] × [−0.5, 0.5] belong to Class 1, and the neural
network is robust against perturbation δ = 0.5 with the input
x
(1)
1 = 2 and x

(1)
2 = 0. However, this is not always the case

and we may need to refine the lower and upper bounds further
to be able to establish robustness. This is introduced in the
following section.

C. Linear Approximations

Compared to the bounds obtained by simple propagation
of the individual bounds along the network, as described in
the previous section, the bounds obtained by enumerating
all active/inactive choices are tighter because simple bound
propagation ignores the relations between variables. Indeed,
tighter bounds on outputs x(N) ∈ RnN are obtained by
considering all active/inactive choices of ReLU functions.
However, the number of such decisions is computationally
intractable, potentially exponential in the number of ReLU
functions. To address this issue, here, we apply a linear
optimizer on the neurons’ bounds to investigate the robustness
of a neural network for perturbed inputs x(1) ∈ Rn1 around
input x̃(1) and perturbation δ. We use linear optimizers to
avoid the expensive enumeration of all active/inactive choices
while tracking the relations among variables.
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Fig. 2: Minimum area convex approximation for ReLU.

Practically, to calculate the lower and upper bounds of
neurons using linear optimization tools, we need to express
the ReLU activation function, which is a nonlinear function
with linear constraints. Consider x̂(k)

i and x̂
(k)

i as the lower and
upper bounds of the neuron before applying ReLU activation
function; Applying ReLU(x) = max(0, x) leads to one
of the following states: The neuron is (i) always active, if
x̂
(k)
i ≥ 0, then x

(k)
i = x̂

(k)
i and x

(k)
i = x̂

(k)

i , (ii) always
inactive, if x̂

(k)

i ≤ 0, then x
(k)
i = x

(k)
i = 0, and (iii)

undetermined, if x̂
(k)
i < 0 and x̂

(k)

i > 0, then the value of
the neuron after applying ReLU cannot be exactly captured.
Here, we over-approximate the undetermined neurons, because
active/inactive choices cannot be ruled out. We use a convex
approximation with the minimum area, which is the tightest
possible linear approximation for ReLUs, as described in
Fig. 2. Thus, when the state of a neuron is undetermined,
we introduce the following constraints to model the tightest
possible convex approximation for the neuron x̂

(k)
i and its

ReLU image x
(k)
i :

x
(k)
i ≤ x̂

(k)

i .
x̂
(k)
i − x̂

(k)
i

x̂
(k)

i − x̂
(k)
i

, x
(k)
i ≥ x̂

(k)
i , x

(k)
i ≥ 0.

Now, we have the lower and upper bounds of all neurons,
and we would like to proceed with the robustness of the neural
network. To this end, using linear optimization, we investigate
whether Inequality (2) holds. If Inequality (2) holds, it is
proved that the neural network is robust against all possible
perturbations within range δ, when the input is x̃(1) ∈ Rn1 as
shown in Inequality (1).

In our example, by increasing perturbation to δ = 1, inputs’
ranges change to x

(1)
1 ∈ [1, 3] and x

(1)
2 ∈ [−1, 1]. Then, by

propagating through the neural network, we obtain x
(2)
1 and

x
(2)
2 both range in [0, 4], x(3)

1 ∈ [1, 9], x(3)
2 ∈ [−4, 4], x(4)

1 ∈
[−17, 3], and x

(4)
2 ∈ [−4, 0]. As min (x

(4)
2 − x

(4)
1 ) ≥ 0 does

not hold, the robustness of the network is not guaranteed. We
apply a linear optimizer and discover that min (x

(4)
2 − x

(4)
1 ) ≥

−1 on the neural network, which is tighter, but still not
sufficient to establish robustness in this example.

D. Refining Bounds

In this section, we further refine the lower and upper bounds
of the neurons to reduce the over-approximation and obtain

Algorithm 1: Robustness Verification

Input: W, b, and x(1) of a N -layer neural network
Result: Robustness status

1 x(k) = f(W(k)x(k−1) + b(k)), ∀k ∈ {1, ..., N}
2 for layer l in layers ∈ [3, N − 1] do
3 for neurons in layer l do
4 if state of the neuron is undetermined then
5 Refine bounds using linear optimizers;
6 end
7 end
8 Update neurons’ bounds of the next layers;
9 if min (x

(N)
c − x

(N)
i ) > 0, ∀i ̸= c in layer N then

10 Return Robustness is verified.
11 end
12 end
13 Return Robustness is not verified.

tighter bounds. To avoid unnecessary computations, we do not
refine all the neurons since there is no over-approximation for
neurons that have already been shown to be in state (i) always
active or state (ii) always inactive. Only undetermined neurons
need to be over-approximated and targeted by the refinements.

Algorithm 1 shows the SafeDeep refinement procedure. The
refinement process proceeds layer-by-layer to obtain tighter
convex approximations and bounds for the individual unde-
termined neurons (Lines 2–11). First, we tighten the lower
and upper bounds of the undetermined neurons in the second
hidden layer using LP queries, one for each targeted neuron
in the layer (Lines 3–7). Then, we update the lower and upper
bounds of all neurons in the next layers, based on the narrower
bounds in the previous layers (Line 8), using Equation (3).

After re-calculating min (x
(N)
c − x

(N)
i ) on the linear ap-

proximations resulting from the obtained bounds (Line 9), if
there exists i ∈ {1, ..., nN} that does not satisfy Inequality (2),
we continue tightening bounds for the next layer, up to
the last hidden layer; otherwise, the robustness is verified
(Line 10). We avoid unnecessary computations and processing
time by refining the bounds, one layer at a time, instead of
simultaneously refining all undetermined neurons in all layers.

In Fig. 1, x̂(3)
2 and its ReLU image x

(3)
2 are the only neurons

for which the initial bounds are insufficient to decide their
state. Thus, we tightened the lower and upper bounds of this
targeted neuron, and the refined range of x(3)

2 is [−2, 2], instead
of [−4, 4]. If this network had more layers, the new tighter
over-approximation could be used to obtain tighter bounds for
the next layers, making the approximation more precise. In
this example, as there are no more hidden layers, we obtain
min (x

(N)
c − x

(N)
i ) ≥ 1 by applying linear optimization on

the over-approximated system resulting from the new bounds
for x(3)

2 . This is sufficient to establish the robustness property.
The robustness of this neural network is, therefore, proved for
x̃
(1)
1 = 2, x̃(1)

2 = 0, and δ = 1.
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Fig. 3: Architecture of the deep neural network. Here, FC(.)
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III. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed framework to
verify the robustness of deep neural networks against two
established tools. We compare SafeDeep to ERAN [12], which
is based on over-approximation, and Reluplex [10], which is
SMT-based, for a seven-layer neural network shown in Fig. 3.
The input size is 512, and the output size is two, as the
goal of the network is to classify input data into seizure/non-
seizure classes. The activation function for all hidden layers is
ReLU. The neural network is fed with the F8-T8 and F7-
T7 channels of the EEG signal in CHB-MIT dataset [19],
[20], consistent with the e-Glass wearable system for real-time
seizure detection [3].

All experiments are conducted using a pre-trained deep
neural network shown in Fig. 3 on random samples from the
CHB-MIT dataset that are correctly classified by the network.
We aim to verify the robustness for the input data against
four perturbation δ values: 0.005, 0.01, 0.02, and 0.04. Ta-
ble I shows our experimental results for comparing SafeDeep
against ERAN and Reluplex, where the tool reports whether
robustness surely does hold (i.e., robustness guarantee) or
might not hold (i.e., inconclusive or, equivalently, robustness
could not be proved).

In comparison with ERAN, on average, SafeDeep verifies
the robustness for 43% more cases of the 785 random samples
selected from CHB-MIT dataset, due to the tighter bounds
obtained in our algorithm. It verifies the robustness for the
majority of the samples when δ = 0.005. On the other hand,
when δ = 0.04, it verifies the robustness for 81 cases, whereas
ERAN cannot verify any cases. Using SafeDeep, it takes 32
to 47 seconds on average to run an experiment on this specific
deep neural network shown in Fig. 3, while processing time of
ERAN is less than one second in these experiments. Therefore,

TABLE I: Verified robustness and processing time (s) by
SafeDeep, ERAN, and Reluplex on CHB-MIT dataset.

Perturbation δ

δ = 0.005 δ = 0.01 δ = 0.02 δ = 0.04

Method # Acc Time Acc Time Acc Time Acc Time
SafeDeep

785
761 32 461 42 140 46 81 47

ERAN 591 0.5 376 0.6 43 0.7 0 0.7
SafeDeep

100
97 33 57 42 14 46 7 48

Reluplex 24 344∗ 9 774∗ 5 803∗ 1 180∗
∗The average processing time of Reluplex does not include the timeout cases.
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Fig. 4: Results of refining bounds layer-by-layer on
over-approximated undetermined neurons.

SafeDeep outperforms ERAN by a large margin, particularly
for larger perturbations, within a reasonable processing time.

To evaluate SafeDeep against Reluplex, we randomly se-
lected a subset of 100 samples from the previous dataset, as
the processing time of Reluplex is several orders of magnitude
more than SafeDeep and ERAN. We allotted a timeout of
one hour for Reluplex, which is more than 70 times higher
than the average processing time of our framework. In this
experiment, Reluplex does not terminate in more than 80% of
samples within the one hour timeout. Therefore, SafeDeep is
significantly more efficient than Reluplex and verifies many
more cases within a substantially shorter time interval. Note
that the average processing time of Reluplex, reported in
Table I, exclude timeout cases.

Fig. 4 presents the effect of layer-by-layer refining and
selecting undetermined nodes to refine bounds instead of
blindly refining the bounds of all neurons. Fig. 4a shows,
for each perturbation δ and step m, the relative frequency
of samples obtained with perturbation δ that could be verified
in m steps. Note that the number of steps is the number of
layers that bound refinement is done on their undetermined
neurons plus one. In general, the larger the perturbation, the
broader the neuron’s range, the more the neurons that need to
be updated, and the more the steps that are required to verify
robustness. For example, when the perturbation is 0.01, about
20% of samples are verified with three steps (i.e., involving
two refinement steps). Fig. 4b shows the relative frequency of
undetermined neurons w.r.t. each perturbation. These results
highlight that SafeDeep avoids unnecessary computations on-
demand by over-approximating and refining bounds exclu-
sively for undetermined neurons, only when required.

IV. CONCLUSIONS

In this paper, we presented SafeDeep, a scalable framework
to verify the robustness of deep neural networks. The key in-
sight in SafeDeep is in the on-demand incremental refinement
of the convex approximations. Our experimental evaluation
demonstrates that SafeDeep is more precise than ERAN,
an over-approximation-based method, and substantially more
efficient than Reluplex, an exact SMT-based method.
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