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Abstract

We study the Perron–Bremermann envelope

𝑃(𝜇, 𝜑) ∶= sup{𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω), (𝑑𝑑𝑐𝑢)𝑛 ≥ 𝜇, 𝑢∗ ≤ 𝜑}

on a B-regular domain Ω. Such envelopes occupy a central position within pluripotential
theory as they, for suitable 𝜇 and 𝜑 harmonic and continuous on Ω, constitute unique
solutions to the Dirichlet problem for the complex Monge–Ampère operator. Much
is also known about the measures that guarantee that the solution is continuous, but
the corresponding problems for unbounded or discontinuous 𝜑 have received very little
attention. This is the main theme of this thesis.

In paper i and ii, by adapting and expanding Leutwiler and Arsove’s theory of quasi-
bounded harmonic functions, we introduce a set of positive plurisubharmonic functions
which may be approximated from below by functions in 𝐿∞(Ω) ∩ 𝒫𝒮ℋ(Ω) outside a
pluripolar set. This approximation property is exploited to show that 𝑃(𝜇, 𝜑) is continu-
ous outside a pluripolar set for a large class of measures, given that 𝜑 is bounded from
below, is continuous in the extended reals, and have a non-trivial strong majorant, i.e. a
plurisuperharmonic majorant whose singularities in a precise sense surpass those of 𝜑.
We also show that 𝑃(𝜇, 𝜑) then corresponds to a unique solution to a Dirichlet problem
with unbounded boundary data.

In paper iii, we show that the Dirichlet problem is uniquely solvable for bounded
boundary data with a b-pluripolar discontinuity set, by modifying an extended version
of the comparison principle due to Rashkovskii. We also show that the discontinuity set
being b-pluripolar is not necessary for the uniqueness. In particular, we construct a class
of boundary data for which the Dirichlet problem is uniquely solvable, but where the
Lebesgue measure of the set of discontinuities is positive.

In paper iv, we discuss two variations of Edwards’ theorem. We prove one version of the
theorem for cones not necessarily containing all constant functions, and in particular,
we allow the functions in the cone to have a non-empty common zero set. In the other
variation, we replace suprema of point evaluations and infima over Jensen measures by
suprema of other continuous functionals and infima over a set measures defined through
a natural order relation induced by the cone. As applications, we give some results
on propagation of discontinuities for Perron–Bremermann envelopes on hyperconvex
domains, as well as a characterization of minimal elements in the order relation mentioned
above.
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Populärvetenskaplig sammanfattning på svenska

I denna avhandling studeras en särskild kategori av subharmoniska funktioner, det vill
säga reellvärda funktioner vars värde i en specifik punkt är mindre än eller lika med
funktionens medelvärde på sfärer med centrum i punkten. Sådana funktioner återfinns
på flera håll i vetenskapen. Ett exempel är temperaturen i ett bord efter att en värmeslinga
slagits på längs bordets rand. I detta fall kommer värmefördelningen vid varje tidpunkt,
betraktad som en funktion från ett område i planet till de reella talen, att utgöra en
subharmonisk funktion. Ett annat exempel är den elektriska potentialen i ett elektrisk
fält som bildas av ett antal positiva laddningar.

Subharmoniska funktioner är också intressanta rent matematiskt, och i synnerhet är teorin
för dessa, potentialteori, på områden i det komplexa talplanet mycket rik. Funktionerna
är då intimt förknippade med komplext deriverbara funktioner, så kallade holomorfa
funktioner. Till exempel är realdelen, imaginärdelen, beloppet samt logaritmen av be-
loppet av en holomorf funktion alla subharmoniska. Detta synsätt ger också en teknisk
fördel, eftersom subharmoniska funktioner till skillnad från holomorfa funktioner går att
modifiera lokalt. I högre dimension, på områden i det komplexa rummet ℂ𝑛, gäller i
hög grad samma förhållanden, om vi begränsar oss till de subharmoniska funktioner som
respekterar den komplexa strukturen. I avhandlingen studeras sådana plurisubharmoniska
funktioner.

Med exemplet med värmeslingan på randen av ett bord i håg kan man fundera över
villkor man kan ställa på en plurisubharmonisk funktion som gör den unikt bestämd,
i analogi med att en temperaturfördelning i jämvikt enbart bör bero på värmeslingans
temperatur och hur värme kan lämna bordet (t ex via luften). Sådana matematiska krav
återfinns i Dirichletproblemet för den komplexa Monge–Ampère-operatorn,

{
𝑢 plurisubharmonisk och begränsad,
𝑢 = 𝜙 på randen,
(𝑑𝑑𝑐𝑢)𝑛 = 𝜇

där (𝑑𝑑𝑐𝑢)𝑛 är 𝑢:s komplexa Monge–Ampère-mått, 𝜇 är ett fixerat positivt mått, och
𝜙 är en funktion definierad på områdets rand. Detta problem är mycket välstuderat,
och numera vet man att det har en unik lösning, som dessutom är kontinuerlig, om 𝜙
är kontinuerlig för en stor uppsättning komplexa Monge–Ampère-mått. Här ska det
också nämnas att liknande uppställningar, så kallade komplexa Monge–Ampère-ekvationer,
faktiskt uppkommer i strängfysiken, i frågor som rör hur de extra dimensionerna som
man inför där kan se ut rent geometriskt.

Det centrala temat i avhandlingen är att på olika sätt mildra kravet att 𝜙 ska vara kontin-
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uerlig, och att i dessa fall undersöka huruvida en lösning existerar, om den är unik, samt
om och var den är kontinuerlig. Hur diskontinuerlig kan vi låta 𝜙 vara? Går det att
säga någonting om 𝜙 är obegränsad, ”oändlig” i någon punkt? För att kunna göra detta
omformuleras en del resultat i en komplex variabel, där dessa frågor är mer utredda, på
ett sådant sätt att de är generaliserbara till högre dimensioner.
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Introduction

1 Background

This thesis addresses problems within pluripotential theory, which generalizes potential
theory in the plane (i.e. on ℂ) to several complex variables. Potential theory is an old
branch of mathematics with its roots in classical physics, in particular in electrostatics and
in Newton’s theory of gravity. At its core, potential theory is the study of subharmonic
functions, i.e. upper semicontinuous functions 𝑢 satisfying the local submean value
property

𝑢(𝑥0) ≤
1

Vol 𝐵(𝑥0, 𝑟)
∫

𝛣(𝑥0,𝑟)

𝑢 𝑑𝑉

for 𝑟 > 0 small enough. Equivalently, these are the upper semicontinuous functions for
which the Laplacian

Δ ∶= 𝜕2

𝜕𝑥21
+ ⋯ + 𝜕2

𝜕𝑥2𝑛
(possibly in a generalized sense) is non-negative. A subharmonic function for which the
Laplacian vanishes is called harmonic. This turns out to be a quite strong condition, for
example implying that the function is smooth. Though the physical scope of this operator
is vast, including descriptions of equilibria and waves as a component in both the heat
equation

Δ𝑇 = 𝜕𝑇
𝜕𝑡 ,

and the wave equation

Δ𝑢 = 𝜕2𝑢
𝜕𝑡2

,

it is perhaps most instructive from the viewpoint of potential theory to explain how it
arises within electrostatics. In a perfect vacuum, a charge distribution 𝜌 generates an
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electric flux �⃗� associating a vector to each point in space and satisfying Gauss’ law in the
form

∮
𝜕𝛫
�⃗� 𝑑𝐴 = ∫

𝛫
𝜌𝑑𝑉,

where 𝐾 is some region of space with boundary 𝜕𝐾. The physical interpretation of this
equation is that the amount of charge within 𝐾 equals the electric flux that “escapes”
through the boundary of 𝐾. This equation may be rewritten in differential form as

∇ ⋅ �⃗� = 𝜌,

using the divergence theorem. On the other hand, �⃗� is a conservative vector field ; this
corresponds to the fact that the amount of work needed to move a charge between
two points is independent of the path travelled. A mathematical consequence is that a
potential function 𝜙 for �⃗� may be defined, in other words a scalar field satisfying

∇𝜙 = �⃗�,

which implies that
Δ𝜙 = ∇ ⋅ ∇𝜙 = 𝜌.

Hence, a subharmonic function corresponds to the electric potential energy generated by
a distribution of positive charges. This physical interpretation was a guidance to several
important mathematical concepts. A central insight is that given a fixed compact set
𝐾, any amount of positive charge will distribute itself as to minimize the total energy.
Importantly, this gave rise to the notion of the equilibrium measure of 𝐾, used to define
polar sets (a set so small that it only supports charge distributions associated with infinite
energy) and the capacity of a set. This viewpoint allows for a quantification of sets
complementary to the methods of measure theory.

The adjective “harmonic” originates from the mathematical description of a vibrating
string, i.e. a string undergoing harmonic motion. Modeling this situation as a differential
equation, the solution may be written as a sum of sines and cosines (sines and cosines
hence called “harmonics”), and this sort of representation extends to periodic functions
on the real line (which may be seen as functions on a circle) using Fourier analysis.
Analogously, considering functions on an 𝑛-sphere, one arrives at a representation using
the spherical harmonics. These functions have vanishing Laplacian, and over time all
functions with vanishing Laplacian came to be known as “harmonic”. Subharmonic
functions are, as the name suggests, functions that are below the harmonic functions in
the following sense: given a harmonic function ℎ ∶ Ω → ℝ, we have

𝑢 ≤ ℎ on 𝜕𝑈 ⟹ 𝑢 ≤ ℎ on 𝑈
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for every relatively compact open set 𝑈 ⊂ Ω and any upper semicontinuous function
𝑢 ∶ 𝑈 → ℝ ∩ {−∞} which is subharmonic on 𝑈. In fact, this maximality property
characterizes the harmonic functions among the subharmonic functions.

Since the Laplacian is linear, the space of harmonic functions on a open set is a vector
space. The set of subharmonic functions on the other hand, is a convex cone, which means
that for 𝑎, 𝑏 ≥ 0,

𝑢, 𝑣 subharmonic ⟹ 𝑎𝑢 + 𝑏𝑣 subharmonic.

The subharmonic functions also carry a lattice property,

𝑢, 𝑣 subharmonic ⟹ max{𝑢, 𝑣} subharmonic,

and any function defined as a decreasing sequence of subharmonic functions is subhar-
monic. Furthermore, all subharmonic functions on a bounded domain necessarily satisfy
the following two properties:

(a) If a subharmonic function attains a global maximum at an interior point, then it
is constant.

(b) If a subharmonic function is non-positive on the boundary of the domain, then it
is non-positive in the interior as well.

Maximum principles such as these two statements have wide application, and instill
intuition for how subharmonic functions may behave. It should also be mentioned
that the convex functions also have the above properties. Convex functions are in fact
subharmonic as well, which should not come as a surprise as subharmonicity is defined
in terms of a local submean value property over balls, where as convexity involves a local
submean value property on lines.

Mathematically, the above discussion is valid for ℝ𝑛, but it turns out that potential theory
in the plane stands out as particularly interesting, owing in part to the large set of con-
formal mappings available compared to other dimensions. In particular, subharmonicity
is preserved under biholomorphic mappings, but the connection between potential theory
in the plane and complex analysis is even more intimate than immediately discernible
from this fact. For example, given a holomorphic function 𝑓, the functions log |𝑓|
and |𝑓|𝛼 for 𝛼 > 0 are all subharmonic, and Re𝑓 and Im𝑓 are both harmonic. These
connections allow for a cross-pollination between potential theory and complex ana-
lysis. In particular, many properties of holomorphic functions are in fact inherited from
harmonic functions or even subharmonic ones. Another advantage of potential theory
is that subharmonic functions are more flexible to work with as they may be modified
locally, allowing for a multitude of applications. Examples include the Riemann mapping
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theorem (including continuity at the boundary), the Koebe one-quarter theorem, and a
sharp quantitative form of Runge’s theorem (the Bernstein–Walsh theorem). For more
details on this matter, see Ransford (36).

One immediately encounters problems when trying to extend this intimate relation to
several complex variables. A first stumbling block is the fact that in general, precomposing
a subharmonic function on some open subset of ℂ𝑛 ≃ ℝ2𝑛 with a biholomorphic
mapping does not produce another subharmonic function. Instead, one only considers
plurisubharmonic functions, i.e. the subharmonic functions whose compositions with
biholomorphic mappings are still subharmonic. Furthermore, we say that a function
is pluriharmonic if it is both plurisubharmonic and harmonic. These notions extend
the relations found in the single variable case to a considerable degree; for example, the
real part of a holomorphic function is pluriharmonic, and the logarithm of its modulus
is plurisubharmonic. Surprisingly, it is actually enough to consider the subharmonic
functions that are subharmonic under all complex linear changes of the coordinates;
already such functions are necessarily plurisubharmonic (see (22, Proposition 1.45)).
Another defining property of plurisubharmonicity is that the local submean property
holds on all complex lines, i.e.

𝑧 ↦ 𝑢(𝑎 + 𝑏𝑧)
is subharmonic for 𝑧 ∈ ℂ, and every 𝑎, 𝑏 ∈ ℂ𝑛 such that 𝑎 + 𝑏𝑧 lies in the domain of 𝑢.
Pluriharmonicity is equivalent to all these mappings being harmonic. Here, one should
once again make a comparison with the convex functions, functions for which the local
submean property holds on all real lines. Remarkably, one may alternatively characterize
the convex functions as the subharmonic functions that remain subharmonic under all
real linear changes of the coordinates. Hence, plurisubharmonicity is a natural complex
counterpart to convexity.

There are several deep connections between plurisubharmonic functions and holomorphic
functions of several variables. Firstly, it should be mentioned that plurisubharmonic
functions play an important rôle in a historically central problem in the theory of several
complex variables: The Levi problem, concerning the classification of domains of holo-
morphy. This problem was resolved around 1940, when Oka (35) proved that a domain Ω
is a domain of holomorphy if and only if it is pseudoconvex, i.e. if there exists a continuous
plurisubharmonic function 𝜑 on Ω such that the set

{𝑧 ∈ Ω ; 𝜑(𝑧) < 𝑐}

is relatively compact for every 𝑐 ∈ ℝ. A different proof was provided in the sixties by
Hörmander (23), as a consequence of his solution to the �̄�-problem.

Secondly, on domains of holomorphy, the function theories of plurisubharmonic and
holomorphic functions are connected in rather striking ways. As noted earlier, a holo-
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morphic function ℎ gives rise to a set of plurisubharmonic functions of the form 𝑐 log |ℎ|,
where 𝑐 > 0. Bremermann (7) provided an elegant argument which shows that any
plurisubharmonic function 𝑢 may be constructed as the upper semicontinuous envelope
of the upper limit of a sequence of plurisubharmonic functions of this form. More
precisely, 𝑢 may be written

𝑢 = ( lim sup
𝑗

log |ℎ𝑗|
𝑗 )

∗

for some sequence of holomorphic functions ℎ𝑗. There is also a connection between zero
sets of holomorphic functions and singularities of plurisubharmonic functions, due to
Bombieri (6) and Hörmander (24): Given a plurisubharmonic function 𝑢 defined on a
domain of holomorphy, the set of points of non-integrability of 𝑒−𝑢 is an analytic variety.
See Kiselman (26) for more details.

One major theme in potential theory is the classical Dirichlet problem for the Laplace
operator, i.e. the problem of finding a harmonic function with prescribed boundary
values, which is always (uniquely) solvable if the domain and the boundary data satisfy
some reasonable assumptions. If one naively tries to extend such results to the setting
of several complex variables, it becomes painfully evident that pluriharmonic functions
do not come in abundance. In particular, Bremmerman (8) showed in the fifties that
the Perron method does not in general produce a pluriharmonic solution. The procedure
does however result in a plurisubharmonic function which carries a certain maximality
property akin to harmonic functions, suggesting the existence of an operator for which
these maximal plurisubharmonic functions indeed do solve a Dirichlet problem. Before
giving a more extensive account, we will now, for later comparison, review the classical
Dirichlet problem for domains in ℂ.

2 The Dirichlet problem in the complex plane

The material in this section may be found in Ransford (36) and Garnett (19), see also
Evans (16). For any (bounded) domain Ω ⊂ ℂ, one can consider the Dirichlet problem
for the Laplace operator on Ω, namely if it is possible to find a function ℎ ∶ Ω → ℝ
satisfying

{
Δℎ = 0
lim𝑤→𝑧 ℎ(𝑤) = 𝜑(𝑧) ∀𝑧 ∈ 𝜕Ω

for a given function 𝜑 ∈ 𝐶(𝜕Ω). That a solution to this problem necessarily is unique is
a straightforward consequence of the maximum principle. Indeed, suppose that we have
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two solutions ℎ1, ℎ2. Then ±(ℎ1 − ℎ2) are harmonic as well, extending continuously to
zero on the boundary. By the maximum principle,

±(ℎ1 − ℎ2) ≤ 0 on Ω,

and so ℎ1 = ℎ2.

There are several ways to establish existence of a solution, given some assumptions on
Ω. One way that generalizes to many other similar problems is to consider the envelope
of subsolutions, a procedure known as the Perron method. In our context, due to the
maximality property of harmonic functions, subharmonic functions smaller than 𝜑 on
the boundary will play the part of subsolutions. Our solution candidate will be the Perron
envelope

𝑃(𝜑)(𝑧) ∶= sup{𝑢(𝑧) ; 𝑢 ∈ 𝒮ℋ(Ω), 𝑢∗|𝜕Ω ≤ 𝜑}.

In fact, one can show that this envelope always is harmonic, and furthermore that it also
attains 𝜑 as its boundary values given that Ω is regular. This means that at all 𝜁0 ∈ 𝜕Ω,
there exists a neighborhood 𝑁 and a subharmonic function 𝑏 defined on Ω∩𝑁 (a barrier
at 𝜁0) such that

𝑏 < 0 on Ω ∩𝑁 and lim
𝑧→𝜁0

𝑏(𝑧) = 0.

Regularity of the domain is sufficient and necessary for the Dirichlet problem to be
solvable for all 𝜑 ∈ 𝐶(𝜕Ω).

It is however possible to relax the regularity condition, if one accepts that the boundary
values are not attained at every point, but nearly everywhere. This means outside a polar
set, in other words a set 𝑃 ⊂ ℂ for which there exists a subharmonic function 𝑢 on ℂ
such that

𝑃 ⊂ {𝑧 ∈ ℂ ; 𝑢(𝑧) = −∞}.

Polar sets necessarily have Hausdorff dimension zero, so they are in a sense very small.
These notions allow us to formulate a generalized Dirichlet problem which is solvable for
any domain Ω ⊂ ℂ with non-polar boundary (under the convention that ∞ ∈ 𝜕Ω if Ω is
unbounded): For 𝜑 ∶ 𝜕Ω → ℝ that is bounded and continuous n.e. (nearly everywhere),
there exists a unique bounded harmonic function ℎ such that

lim
𝑧→𝜁∈𝜕Ω

ℎ(𝑧) = 𝜑(𝜁) n.e.

On the other hand, if 𝜕Ω is polar, then all bounded harmonic functions on Ω are
constants; the assumption of having non-polar boundary should therefore not be seen as
a great restriction.
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For example, all bounded domains have non-polar boundary. There is then a unique
solution ℎ𝜑 corresponding to 𝜑 ∈ 𝐶(𝜕Ω), which allows us to define

𝑇𝑧 ∶ 𝐶(𝜕Ω) → ℝ
𝜑 ↦ ℎ𝜑(𝑧).

By the maximum principle, these are positive linear functionals, so by the Riesz repres-
entation theorem, there exists a probability measure 𝜔(𝑧,Ω) such that

ℎ𝜑(𝑧) = ∫
𝜕Ω

𝜑(𝑦) 𝑑𝜔(𝑧,Ω)(𝑦).

The measure 𝜔(𝑧,Ω) is called the harmonic measure (of the domainΩ with pole at 𝑧). We
will now continue by considering a situation where a explicit formula for the harmonic
measure is available, allowing us to push the generalization of the Dirichlet problem even
further.

2.1 Integral representation in the unit disk

In the unit disk, the harmonic measure is (mutually) absolutely continuous with respect
to arc length, and may be written

ℎ𝜑(𝑧) = ∫
𝜕Ω

𝜑(𝑦) 𝑑𝜔(𝑧,Ω)(𝑦) = ∫
2𝜋

0
𝜑(𝑒𝑖𝜃) 1 − |𝑧|

2

|𝑒𝑖𝜃 − 𝑧|2
𝑑𝜃
2𝜋.

This is the Poisson integral of 𝜑, predating the concept of harmonic measure by a century.
Notably, this formula continues to produce harmonic functions if we replace the arc length
with any probability measure 𝜇 on 𝜕𝐷, and replace 𝜑 with any element in 𝐿1(𝜕𝐷, 𝜇).
Our previous considerations established a correspondence between continuous functions
on the boundary and harmonic functions continuously extendable to the boundary. Is it
similarly possible to assign a boundary measure to any harmonic function ℎ?

Given some assumptions on ℎ, the answer is yes! If ℎ is bounded, then the sequence
𝜑𝑛(𝑒

𝑖𝜃) = ℎ(𝑟𝑛𝑒
𝑖𝜃) will have a weak star cluster point 𝜑 ∈ 𝐿∞(𝜕𝐷) by the Banach–Alaoglu

theorem. Since 𝜑𝑛 are bounded from above, the dominated convergence theorem implies
that the Poisson integrals of 𝜑𝑛, viz. ℎ(𝑟𝑛𝑒

𝑖𝜃), converge to the Poisson integral of 𝜑.
Bounded harmonic functions on 𝐷 are therefore in one-to-one correspondence with
bounded Borel functions on 𝜕𝐷, and we may view ℎ as the unique solution to a Dirichlet
problem with 𝜑 as boundary data. Also, by Fatou’s theorem, the non-tangential limit will
converge to 𝜑 almost everywhere (outside a set of Lebesgue measure zero). Obviously, we
are not guaranteed that

lim
𝑧→𝜁

ℎ(𝑧) = 𝜑(𝜁)
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for any point 𝜁 ∈ 𝜕𝐷 unless 𝜑 is continuous at 𝜁, but assuming that 𝜑 is continuous
outside a set 𝐴𝜑 of Lebesgue measure zero, there exists a unique bounded harmonic
function ℎ such that

lim
𝑧→𝜁∈𝜕𝐷

ℎ(𝑧) = 𝜑(𝜁) ∀𝜁 ∈ 𝜕𝐷 ⧵ 𝐴𝜑.

Since there are non-polar sets of Lebesgue measure zero, this includes the previous result,
which only allowed for a polar discontinuity set. Finding a higher dimensional analogue
of this result will be the overarching theme of Section 9–11.

Some classes of unbounded harmonic functions on the unit disk are also represented
by integrals. For positive harmonic functions, there is the Herglotz–Riesz representation
theorem: ℎ is a positive harmonic function on 𝐷 with ℎ(0) = 𝐾 if and only if there exists
a measure 𝜇 on 𝜕𝐷 such that 𝜇(𝜕𝐷) = 𝐾 and

ℎ(𝑧) = ∫
2𝜋

0

1 − |𝑧|2

|𝑒𝑖𝜃 − 𝑧|2
𝑑𝜇(𝑒𝑖𝜃).

Implicit in the works of Arsove and Leutwiler (1), there are several equivalent criteria
on ℎ which captures when 𝜇 is absolutely continuous with respect to arc length, for
example that it is possible to approximate ℎ from below with an increasing sequence of
bounded harmonic functions. Indeed, let ℎ𝑛 ↗ ℎ be as sequence of bounded harmonic
functions converging to ℎ, and let 𝜑𝑛 be the associated functions in 𝐿∞(𝜕𝐷). By the
monotone convergence theorem, we then have 𝜑𝑛 ↗ 𝜑 ∈ 𝐿1(𝜕𝐷). For the other direction,
suppose that ℎ is represented by 𝜑 ∈ 𝐿1(𝜕𝐷). Letting 𝜑𝑛 ∶= min{𝜑, 𝑛} ∈ 𝐿∞(𝜕𝐷), and
denoting the corresponding bounded harmonic functions by ℎ𝑛, it follows from the
dominated convergence theorem that ℎ𝑛 ↗ ℎ. Importantly, this show that the Dirichlet
problem with positive boundary data in 𝐿1(𝜕𝐷) is uniquely solvable in the class of such
quasibounded harmonic functions.

Several aspects of this setup also generalize to the non-linear theory of higher dimensions,
where no integral representation is available. This is the main theme of Section 5 and 6.
Leaving the topic of singular boundary values aside for the moment, we will now give a
brief introduction to a higher (complex) dimensional analogue of the Laplacian, and an
overview of results concerning its associated Dirichlet problem for continuous boundary
data.

3 The complex Monge–Ampère operator

In a series of seminal papers published around 1980, Bedford and Taylor (2; 3) introduced
the complex Monge–Ampère operator, which in many ways plays the rôle of the Laplacian
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in pluripotential theory. A motivation may be found in the following facts. For a twice
continuously differentiable plurisubharmonic function 𝑢 defined on a domain Ω ⊂ ℂ𝑛,
i.e. 𝑢 ∈ 𝐶2(Ω) ∩ 𝒫𝒮ℋ(Ω), the complex Hessian

𝐻𝑢 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

𝜕2𝑢
𝜕𝑧1𝜕�̄�1

𝜕2𝑢
𝜕𝑧1𝜕�̄�2

… 𝜕2𝑢
𝜕𝑧1𝜕�̄�𝑛

𝜕2𝑢
𝜕𝑧2𝜕�̄�1

𝜕2𝑢
𝜕𝑧2𝜕�̄�2

… 𝜕2𝑢
𝜕𝑧1𝜕�̄�𝑛

⋮ ⋮ ⋱ ⋮

𝜕2𝑢
𝜕𝑧𝑛𝜕�̄�1

𝜕2𝑢
𝜕𝑧𝑛𝜕�̄�2

… 𝜕2𝑢
𝜕𝑧𝑛𝜕�̄�𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

is positive semi-definite, where

𝜕
𝜕𝑧𝑗

= 1
2(

𝜕
𝜕𝑥𝑗

− 𝑖 𝜕
𝜕𝑦𝑗

)

𝜕
𝜕�̄�𝑗

= 1
2(

𝜕
𝜕𝑥𝑗

+ 𝑖 𝜕
𝜕𝑦𝑗

)

are Wirtinger derivatives. The attentive reader should note that this formalism very
succinctly conveys that the plurisubharmonic functions constitute the complex ana-
logue to the convex functions. Now suppose that there exists a point 𝑧0 ∈ Ω where
det(𝐻𝑢(𝑧0)) > 0. Then 𝑢 cannot satisfy the following maximality property on Ω:

𝑣 ∈ 𝒫𝒮ℋ(𝐺) ∩ 𝒰𝒮𝒞(𝐺) and 𝑣 ≤ 𝑢 on 𝜕𝐺 ⟹ 𝑣 ≤ 𝑢 in 𝐺,

for every relatively compact open subset 𝐺 ⊂ Ω. To see this, pick a neighborhood 𝑈 of
𝑧0 on which det(𝐻𝑢) > 0, and let 𝜙 be a smooth real valued cutoff function defined on
𝑈 such that 𝜙(𝑧0) > 0. For 𝜀 > 0 small enough, 𝑣 ∶= 𝑢 + 𝜖𝜙 will be plurisubharmonic,
which contradicts the above maximality property.

As the Perron method in pluripotential theory (i.e. constructing the Perron–Bremermann
envelope of all plurisubharmonic functions with smaller boundary values) in general
produces a function satisfying the maximality property, one could ask if it is possible
to extend 𝑢 ↦ det(𝐻𝑢) to functions that are not necessarily in 𝐶2(Ω). Bedford and
Taylor (2) managed to do just that, extending the domain of definition of the operator to
all locally bounded plurisubharmonic functions. We will now provide a sketch of their
construction. For more details, we refer to the recent textbook by Guedj and Zeriahi (22).

A complex current of bidegree (𝑝, 𝑞) on ℂ𝑛 is a differential form

𝑇 = ∑
|𝛪|=𝑝,|𝐽|=𝑞

𝑇𝛪, 𝐽𝑑𝑧𝛪 ∧ 𝑑�̄�𝐽
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where the coefficients 𝑇𝛪, 𝐽 are distributions. We say that a current of bidegree (𝑝, 𝑝) is
positive if 𝑇 = 𝑇 and

𝑇 ∧ 𝑖𝛼1 ∧ �̄�1 ∧ ⋯ ∧ 𝑖𝛼𝑛−𝑝 ∧ �̄�𝑛−𝑝 = 𝜆 𝛽𝑛,

where 𝜆 is a positive distribution,

𝛽𝑛 = 𝑑𝑥1 ∧ 𝑑𝑦1 ∧ ⋯ ∧ 𝑑𝑥𝑛 ∧ 𝑑𝑦𝑛,

and {𝛼𝑖}1≤𝑖≤𝑛−𝑝 are differential test forms of bidegree (1, 0). In the spirit of the Riesz
representation theorem, the distribution coefficients of a positive current are in fact
complex measures. Furthermore, by defining 𝑑𝑐 ∶= 𝑖(�̄� − 𝜕), one may show that 𝑑𝑑𝑐𝑢 =
2𝑖𝜕�̄�𝑢 extends to a positive current by duality. Note that for smooth 𝑢,

(𝑑𝑑𝑐𝑢)𝑛 ∶=
𝑛 times

⏞⏞⏞⏞⏞𝑑𝑑𝑐𝑢 ∧ ⋯ ∧ 𝑑𝑑𝑐𝑢 = 𝑛! 4𝑛 det(𝐻𝑢) 𝛽𝑛.

Here, we should point out that the precise coefficient preceding the determinant varies
in the literature, depending on how one chooses to define 𝑑𝑐. For 𝑢 locally bounded and
𝑇 positive and closed, we define

𝑑𝑑𝑐𝑢 ∧ 𝑇 ∶= 𝑑𝑑𝑐(𝑢𝑇),

which also turns out to be a closed, positive current. Continuing iteratively, we obtain

(𝑑𝑑𝑐𝑢)𝑛 = 𝜇,

where 𝜇 is a positive measure, not necessarily absolutely continuous with respect to the
Lebesgue measure. This is the complex Monge–Ampère operator in the sense of Bedford
and Taylor. Building on earlier work by Chern, Levine and Nirenberg (12) and Goffman
and Serrin (20), they were able to show that this operator is continuous with respect to
monotone sequences, and Demailly (13) showed that their construction also encompasses
all plurisubharmonic functions with compact singularity set. Important problems in
pluripotential theory include investigating the precise domain and range of this operator.
See Błocki (5), Cegrell (11) and Kołodziej (30) for more details.

4 Complex Monge–Ampère equations

A very important tool of the Bedford–Taylor theory is the comparison principle,

lim inf
𝑧→𝜕Ω

(𝑢(𝑧) − 𝑣(𝑧)) ≥ 0 and (𝑑𝑑𝑐𝑢)𝑛 ≤ (𝑑𝑑𝑐𝑣)𝑛 ⟹ 𝑣 ≤ 𝑢 in Ω
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for 𝑢, 𝑣 ∈ 𝐿∞(Ω) ∩ 𝒫𝒮ℋ(Ω). This principle will to a large extent replace the maximum
principle when dealing with the complex Monge–Ampère equation in Ω ⊂ ℂ𝑛 for 𝑛 > 1.
In particular, it yields an uniqueness argument for the (possibly inhomogeneous) Dirichlet
problem

{
𝑢 ∈ 𝐿∞(Ω) ∩ 𝒫𝒮ℋ(Ω)
(𝑑𝑑𝑐𝑢)𝑛 = 𝜇
lim𝑤→𝑧 𝑢(𝑤) = 𝜑(𝑧) ∀𝑧 ∈ 𝜕Ω,

where 𝜇 is a positive measure and 𝜑 ∈ 𝐶(𝜕Ω). The comparison principle also implies
that the functions for which the Monge–Ampère measure vanishes are indeed maximal
objects, at least in 𝐿∞(Ω) ∩ 𝒫𝒮ℋ(Ω). In analogy with ordinary potential theory, this
means that the solution must coincide with the Perron–Bremermann envelope

𝑃(𝜑, 𝜇) ∶= sup{𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐿∞(Ω), (𝑑𝑑𝑐𝑢)𝑛 ≥ 𝜇, 𝑢∗|𝜕Ω ≤ 𝜑}

if it exists. Prior to the works of Bedford and Taylor, Bremermann (8) and Walsh (40)
studied envelopes of the form

𝑃(𝜑) ∶= sup{𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω), 𝑢∗ ≤ 𝜑}

for an extended real-valued function 𝜑, sometimes requiring that 𝜑 ∈ 𝐶(Ω) or that
𝜑 is harmonic. If the domain and the dominating function are regular enough, they
managed to prove that the envelope indeed attains the sought boundary values and that
it is continuous on Ω. In this setting, 𝑢∗ ≤ 𝜑 may be translated into a condition on the
boundary as in the definition of 𝑃(𝜑, 𝜇) by assuming that 𝜑 is harmonic or identically
equal to +∞ on Ω, thereby essentially corresponding to the case 𝜇 = 0. Their results
showed that whether or not the envelope attains the same boundary values as 𝜑 heavily
depends on the domain. Over the years, several types of domains have been introduced
which to different degrees secure this property.

4.1 Strictly pseudoconvex, B-regular and hyperconvex domains

The most well-behaved class of domains one usually considers in pluripotential theory are
the strictly pseudoconvex domains. The archetypal example is the unit ball in ℂ𝑛. Though
the precise definition varies slightly, one definition (27) is that

Ω = {𝑧 ∈ ℂ𝑛 ; 𝜌(𝑧) < 0},

where the defining function 𝜌 is a twice continuously differentiable plurisubharmonic
function with its complex Hessian being positive definite on a neighbourhood of Ω, such
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that 𝑑𝑧𝜌 ≠ 0 on 𝜕Ω. These conditions are sufficient to ensure that 𝑃(𝜑) attains the same
boundary values as 𝜑 if 𝜑 ∈ 𝐶(Ω). Many classic results of Bedford–Taylor, Bremermann
and Walsh are formulated in terms of strictly pseudoconvex domains, and they find their
use in more recent applications as well (29; 30).

However, for any bounded domain Ω with 𝜑 ∈ 𝐶(Ω), Walsh proved that if 𝑃(𝜑) is
continuous at 𝜕Ω, then necessarily 𝑃(𝜑) ∈ 𝐶(Ω). Further, he showed that that this holds
for all 𝜑 ∈ 𝐶(Ω) if every point 𝜁 ∈ 𝜕Ω admits a (strong) plurisubharmonic barrier. This
means that there is a neighborhood 𝑁 of 𝜁 and a negative plurisubharmonic function 𝑢
defined on 𝑁∩Ω which has the limit 0 at 𝜁, and is bounded away from zero outside any
neighborhood of 𝜁. This suggests the following definition due to Sibony (39). We say that
a bounded domain is B-regular if every boundary point admits a strong plurisubharmonic
barrier. Sibony proved that that this condition is equivalent to requiring that for every
𝜑 ∈ 𝐶(𝜕Ω), there exists a continuous plurisubharmonic function coinciding with 𝜑
on 𝜕Ω. As these conditions are necessary and sufficient for the Dirichlet problem with
𝜇 = 0 to always have a solution for 𝜑 ∈ 𝐶(𝜕Ω), B-regular domains are often the stage
concerning more recent results in pluripotential theory.

Lastly, we mention the hyperconvex domains. These are for example considered when one
is not too concerned with how the boundary data influence the envelope 𝑃(𝜑, 𝜇), instead
focusing on the interplay with the measure 𝜇. This setting is more similar to pluripotential
theory on compact Kähler manifolds, where a boundary is altogether absent. A definition
of hyperconvexity is that there exists a negative, continuous plurisubharmonic function
that vanishes on the boundary, albeit local characterizations are also possible (25; 41).
One often restricts the analysis to certain classes of negative plurisubharmonic functions,
which allows for partial integration with respect to 𝑑𝑑𝑐, and importantly an extension of
the Monge–Ampère operator which in a certain sense is the best possible. See Cegrell (11)
for more details. An important example of a hyperconvex domain which is not B-regular
is the unit polydisk.

4.2 Existence and continuity of the solution

Bedford and Taylor showed that for positive, continuous 𝑓 and 𝜑 ∈ 𝐶(𝜕Ω), the Dirichlet
problem

{
𝑢 ∈ 𝐿∞(Ω) ∩ 𝒫𝒮ℋ(Ω)
(𝑑𝑑𝑐𝑢)𝑛 = 𝑓𝑑𝑉
lim𝑤→𝑧 𝑢(𝑤) = 𝜑(𝑧) ∀𝑧 ∈ 𝜕Ω,

has a continuous solution on strictly pseudoconvex domains. In addition, they showed
that the solution has locally bounded second-order partial derivatives defined almost
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everywhere if 𝜑 ∈ 𝐶1,1(𝜕Ω), 𝑓1/𝑛 ∈ 𝐶1,1(Ω). Higher regularity results than this does
not seem to be possible if there exists a point where 𝑓 = 0. However, for a smoothly
bounded strictly pseudoconvex domain, with 𝜑, 𝑓 smooth and 𝑓 strictly positive on Ω,
Caffarelli, Kohn, Nirenberg and Spruck (9) showed that the unique solution is smooth
up to the boundary.

Many have since then investigated the Dirichlet problem for more general measures.
Here, we ask two questions: For which measures does there exists a solution, and for
which measures is the solution continuous?

In the context of strictly pseudoconvex domains, the deepest results in these directions
are due to Kołodziej (29; 30). The question of existence is partially answered by his
subsolution theorem: The Dirichlet problem is solvable for a measure 𝜇 and 𝜑 ∈ 𝐶(𝜕Ω)
if and only if there exists a bounded plurisubharmonic function 𝑢 attaining the same
boundary values with (𝑑𝑑𝑐𝑢)𝑛 ≥ 𝜇. An important open question is to settle whether the
solution inherits continuity if one further assumes that the subsolution is continuous.
Kołodziej’s results establishing sufficient conditions for a measure to yield a continuous
solution are more involved to state, but an important corollary is that the Dirichlet
problem always has a continuous solution for 𝜑 ∈ 𝐶(𝜕Ω) when 𝜇 = |𝑓| 𝑑𝑉, if 𝑓 ∈ 𝐿𝑝(Ω)
and 𝑝 > 1.

Note that all the above results assume that the prescribed boundary values constitute a
continuous function on 𝜕Ω. The reasons are twofold: Firstly, the comparison principle
a priori only holds for bounded plurisubharmonic functions. It is therefore unclear
whether the constructed envelopes correspond to a unique solution to a Dirichlet problem.
Secondly, many continuity proofs rely on the original method of Walsh, which breaks
down if one introduces singularities on the boundary. In the next chapter, we introduce
sufficient conditions on 𝜑 allowing us to circumvent some of these difficulties.

13





Unbounded envelopes of
plurisubharmonic functions

5 Quasibounded plurisubharmonic functions

Let Ω be a bounded domain. We say that a plurisubharmonic function 𝑢 is quasibounded
if there exists an increasing sequence {𝑢𝑛} of upper bounded, plurisubharmonic functions
such that 𝑢𝑛 ↗ 𝑢. If the convergence only holds outside a pluripolar set, we say that 𝑢
is quasibounded quasi-everywhere. The corresponding notion for harmonic functions is
defined analogously, replacing each instance of the word “plurisubharmonic” with the
word “harmonic” (of course, we do not have to consider the notion of quasibounded quasi-
everywhere in the harmonic case due to the uniqueness theorem for harmonic functions
and Harnack’s theorem). We will begin this section by providing a characterization of
positive, quasibounded harmonic functions due to Leutwiler and Arsove (1). First, they
consider the set

ℳA–L ∶= {𝑓 ∶ Ω → [0, +∞] ; ∃𝑢 ∈ −𝒮ℋ(Ω), 𝑓 ≤ 𝑢},

i.e. the set of non-negative functions admitting a superharmonic majorant. On ℳA–L,
they define a family of operators by

(𝑆A–L
𝜆 𝑓)(𝑧) ∶= ( inf {𝑣(𝑧) ; 𝑣 ∈ −𝒮ℋ(Ω), 𝑣 ≥ (𝑓 − 𝜆)+})

∗
.

We remind the reader that

𝜙∗(𝑧) ∶= lim sup
Ω∋𝑤→𝑧

𝜙(𝑤) 𝜙∗(𝑧) ∶= lim inf
Ω∋𝑤→𝑧

𝜙(𝑤)

denote upper and lower regularization, respectively. Since the lower regularization of a
family of lower bounded superharmonic functions is superharmonic by the Brelot–Cartan
theorem (36), 𝑆A–L

𝜆 ∶ ℳA–L → −𝒮ℋ(Ω). Similarly,

𝑆A–L(𝑓) ∶= ( lim
𝜆→∞

𝑆A–L
𝜆 (𝑓))

∗
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is a superharmonic function smaller than all these 𝑆A–L
𝜆 (𝑓). Their characterization is

summarized in the following theorem.

Theorem 5.1. Let ℎ ∈ ℳA–L. Then the following are equivalent:

1. 𝑆A–L(ℎ) = 0.

2. There exists a function 𝜓∶ [0, +∞] → [0, +∞] such that 𝜓(+∞) = +∞,

lim
𝑡→+∞

𝜓(𝑡)
𝑡 = +∞,

and 𝜓 ∘ ℎ admits a non-trivial superharmonic majorant.

Further, if ℎ is harmonic, then the above statements are if and only if ℎ is quasibounded.

In paper i (31), we translate the methods of Leutwiler and Arsove to the setting of
pluripotential theory by defining the corresponding ℳ,𝑆𝜆 and 𝑆 in terms of plurisuper-
harmonic functions instead of superharmonic functions. We show that several properties
of the operators are retained, such as the monotonicity of 𝑆, i.e.

0 ≤ 𝑔 ≤ 𝑓 ∈ ℳ ⟹ 𝑆(𝑔) ≤ 𝑆(𝑓).

In fact, it is enough to require that 𝑔 ≤ 𝑓 holds quasi-everywhere. Nevertheless, due to
the fact that we cannot use linearity or Harnack’s theorem, we are not able to prove that
𝑆(𝑢) = 0 is equivalent to 𝑢 being quasibounded quasi-everywhere, even in the case when
𝑢 is a maximal plurisubharmonic function, although the equivalence between (1) and
(2) in Theorem 5.1 remains intact. The arguments of Arsove and Leutwiler are however
enough to prove the following theorem, which constitutes the central tool of paper i.

Theorem 5.2. Let 0 ≤ 𝑢 ∈ ℳ ∩ 𝒫𝒮ℋ(Ω). If 𝑆(𝑢) = 0, then 𝑢 is quasibounded quasi-
everywhere.

The corresponding equivalence between (1) and (2) in Theorem 5.1 is expanded upon in
paper ii (32), and depends on the following definition.

Definition 5.3. For a given pair 𝑓 ∶ Ω → [−∞, +∞] and 𝑣 ∈ −𝒫𝒮ℋ(Ω) bounded from
below, we say that 𝑣 is a strong majorant to 𝑓 if

𝑓(𝑧0) = +∞ ⟹ 𝑣(𝑧0) = +∞ and
𝑣(𝑧)
𝑓(𝑧) → ∞ as 𝑓(𝑧) → ∞.

We say that a function 𝑤 is a strong minorant to 𝑓 if −𝑤 is a strong majorant to −𝑓.
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Remark. Note that the corresponding definition in paper ii is slightly different. There,
strong majorants are defined for functions on the closure on domain, i.e 𝑓 ∶ Ω →
[−∞, +∞], with 𝑣 ∈ −𝒫𝒮ℋ(Ω) ∩ ℒ𝒮𝒞(Ω). The two definitions are equivalent for 𝑓
satisfying 𝑓∗ = 𝑓∗ on the boundary, if we extend 𝑣 lower semicontinuously.

Definition 5.3 is central to the developments of paper ii, as it will allow for some control
over the pluripolar set where the approximating sequence of bounded plurisubharmonic
functions (possibly) does not converge to 𝑢. Summarizing results of paper i and ii, we
obtain the following plurisubharmonic counterpart to Theorem 5.1.

Theorem 5.4. Let 𝑢 ∈ ℳ. Then the following are equivalent:

1. 𝑆(𝑢) = 0.

2. There exists a function 𝜓∶ [0, +∞] → [0, +∞] such that 𝜓(+∞) = +∞,

lim
𝑡→+∞

𝜓(𝑡)
𝑡 = +∞,

and 𝜓 ∘ 𝑢 admits a non-trivial plurisuperharmonic majorant.

3. 𝑢 has a non-trivial strong majorant.

If 𝑢 is plurisubharmonic, then the above statements are if and only if there exists an increas-
ing sequence of upper bounded plurisubharmonic functions 𝑢𝑛 ≤ 𝑢 such that (𝑢𝑛 − 𝑢)∗ is
plurisubharmonic and 𝑢𝑛 − 𝑢 ↗ 0 quasi-everywhere.

Here, we should mention that one might add the analogue of the third item to Theorem 5.1,
and that the analogy is complete if one instead of considering harmonic functions con-
siders subharmonic functions. The question of whether or not maximal plurisubharmonic
functions in some sense occupy a special place in this setting is currently unclear.

Theorem 5.4 has the following straightforward consequence for harmonic functions in
the unit disk. We include a proof since it does not appear in paper ii.

Theorem 5.5. A harmonic function ℎ defined on the unit disk has a non-trivial strong
majorant and a non-trivial strong minorant if and only if there exists 𝜑 ∈ 𝐿1(𝜕𝐷) such that

ℎ(𝑧) = ∫
2𝜋

0
𝜑(𝑒𝑖𝜃) 1 − |𝑧|

2

|𝑒𝑖𝜃 − 𝑧|2
𝑑𝜃
2𝜋.

Proof. If ℎ is represented by 𝜑, then the harmonic functions ℎ1 and ℎ2 represented by
𝜑+ and −𝜑− respectively are quasibounded (see Section 2). By Theorem 5.1, 𝑆(ℎ1) =
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𝑆(ℎ2) = 0, and by Theorem 5.4, ℎ has a non-trivial strong majorant and non-trivial strong
minorant.

Conversely, if ℎ has a non-trivial strong majorant and non-trivial strong minorant, then
𝑆𝑛(ℎ) = 𝑆𝑛(ℎ

+) is a decreasing sequence of positive harmonic functions converging
pointwise to zero. As ℎ𝑛 = 𝑆𝑛(ℎ) − ℎ are positive harmonic functions with a common
non-trival strong majorant, Theorem 5.4 and Theorem 5.1 implies that ℎ𝑛 is quasibounded.
Hence, ℎ𝑛 is represented by elements −𝜑𝑛 ∈ 𝐿

1(𝜕𝐷), and by the monotone convergence
theorem, ℎ is represented by an element 𝜑 ∈ 𝐿1(𝜕𝐷) such that 𝜑𝑛 ↗ 𝜑.

6 Application to the Dirichlet problem

A consequence of Theorem 5.2 and the monotonicity of 𝑆 is that the envelopes

𝑃(𝜑) ∶= sup{𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω), 𝑢∗ ≤ 𝜑}

and
sup{𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐿∞(Ω), 𝑢∗ ≤ 𝜑}

coincide outside a pluripolar set 𝒫 if 𝜑 is bounded from below, 𝜑∗ = 𝜑∗ on Ω and
𝑆(𝜑+) = 0. As 𝑃(𝜑) is upper semicontinuous on Ω and the latter coincides with

sup{𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐶(Ω), 𝑢 ≤ 𝜑},

it follows that 𝑃(𝜑) ∈ 𝐶(Ω ⧵ 𝒫). If 𝜑 is harmonic or plurisuperharmonic, one may
further show that (𝑑𝑑𝑐𝑃(𝜑))𝑛 = 0, and that 𝑃(𝜑) attains the same boundary values as 𝜑.
This means that the Perron–Bremermann envelope is a solution to a Dirichlet problem.
Is it the unique solution?

To gain some clarity on the matter, consider a harmonic function ℎ on the unit disk
𝐷 which is bounded from below and continuous on the boundary in the sense of the
extended reals. In other words, the upper and lower limits coincide at all points, but we
allow for positive singularities. Assume without loss of generality that ℎ has a singularity
at 1 ∈ 𝜕𝐷. Such a function is not uniquely determined by its boundary values, since
adding a multiple of the Poisson kernel with pole at 1 yields a larger harmonic function
ℎ̃ coinciding with ℎ on 𝜕𝐷 in the sense that

lim
𝑧→𝜁∈𝜕𝐷

ℎ(𝑧) = lim
𝑧→𝜁∈𝜕𝐷

ℎ̃(𝑧)

in the extended reals. Of course, the boundary data differ in the sense of measures, but
this difference is undetectable if one solely considers the above limits. There is however a
unique quasibounded harmonic function with the prescribed boundary values.
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In paper i, we show that this problem persists in the plurisubharmonic setting as well, as
illustrated by the two maximal plurisubharmonic functions

𝑢1(𝑧1, 𝑧2) =
1 − |𝑧1|

2

|1 − 𝑧1|2
− log |1 − 𝑧1|

𝑢2(𝑧1, 𝑧2) =
|𝑧2|

2

|1 − 𝑧1|2
− log |1 − 𝑧1|

defined on the unit ball in ℂ2. One way to secure uniqueness is to add the additional
requirement that any solution must be majorized by 𝜑, which limits the set of possible
solutions to those that are quasibounded quasi-everywhere. In summary, we have the
following theorem.

Theorem 6.1. Let Ω be a B-regular domain, and suppose that 𝜑 is a harmonic function
bounded from below such that 𝑆(𝜑+) = 0 and 𝜑∗ = 𝜑∗ on Ω. Then 𝑃(𝜑) is the unique
solution to the Dirichlet problem

{

𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐿∞loc(Ω)
(𝑑𝑑𝑐𝑢)𝑛 = 0
𝑢∗ ≤ 𝜑
lim𝑤→𝑧 𝑢(𝑤) = 𝜑(𝑧) ∀𝑧 ∈ 𝜕Ω.

Furthermore, 𝑃(𝜑) ∈ 𝐶(Ω ⧵ 𝒫), where 𝒫 is a pluripolar set.

In paper ii, we refine this theorem in two ways. Firstly, we show that the discontinuity
set 𝒫, if non-empty, must be a subset of the set

{𝑧 ∈ Ω ; 𝑣(𝑧) = +∞},

where 𝑣 is any strong majorant to 𝜑. In particular, this allows us to conclude that 𝑃(𝜑) is
guaranteed to be continuous at all points where 𝑣∗ ≠ +∞. We also show that it is possible
to extend Theorem 6.1 to a class of inhomogeneous Dirichlet problems. Specifically, we
consider the class of measures for which the Dirichlet problem with regards to continuous
boundary values has a bounded solution, which we call compliant, and measures for which
that solution is always continuous, which we call continuously compliant. The existence of
compliant measures is equivalent to that the domain is B-regular (see paper iii). Also
note that for two measures 𝜇, 𝜈 such that 𝜇 ≥ 𝜈, we have

𝜇 compliant ⟹ 𝜈 compliant

by Kołodziej’s subsolution theorem. Using this terminology, we have the following
statement.
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Theorem 6.2. Let Ω be a B-regular domain, 𝜇 be a compliant measure, and let 𝜑 satisfy the
requirements of Theorem 6.1. Then the Dirichlet problem

{

𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐿∞loc(Ω)
(𝑑𝑑𝑐𝑢)𝑛 = 𝜇
𝑢∗ ≤ 𝜑
lim𝑤→𝑧 𝑢(𝑤) = 𝜑(𝑧) ∀𝑧 ∈ 𝜕Ω,

has a unique solution. If 𝜇 is continuously compliant, then the solution is continuous on the
set {𝑧 ; 𝑣∗(𝑧) ≠ +∞}, where 𝑣 is a strong majorant to 𝜑.

We should stress that Theorem 6.2 only guarantees that the solution is continuous on
the set {𝑧 ; 𝑣∗(𝑧) ≠ +∞}. We have not found any examples where the envelope is not
continuous on Ω (in the extended sense).

7 Edwards’ theorem

One way to study envelopes is through a dualization argument due to Edwards (15).
The main idea is as follows. Let ℱ be a cone of upper bounded, upper semicontinuous
functions on a compact metric space 𝑋, and associate to each 𝑥 ∈ 𝑋 a set of positive
measures

𝑀ℱ
𝑥 ∶= {𝜇 ; 𝑢(𝑥) ≤ ∫𝑢𝑑𝜇 for all 𝑢 ∈ ℱ}.

Given a Borel function 𝑔 on 𝑋, 𝑥 ∈ 𝑋, we also define

𝑆𝑥(𝑔) ∶= {
sup{𝑢(𝑥) ; 𝑢 ∈ ℱ, 𝑢 ≤ 𝑔}, if ∃ 𝑢 ∈ ℱ ; 𝑢 ≤ 𝑔,
−∞, otherwise,

𝐼𝑥(𝑔) ∶= inf {∫𝑔𝑑𝜇 ; 𝜇 ∈ 𝑀ℱ
𝑥 }.

Clearly, 𝑆𝑥(𝑔) ≤ 𝐼𝑥(𝑔), since

𝑢(𝑥) ≤ ∫𝑢𝑑𝜇 ≤ ∫𝑔𝑑𝜇

holds for all 𝑢 in the defining family for 𝑆𝑥(𝑔) and all 𝜇 in the defining family for 𝐼𝑥(𝑔).
Edwards proved that under certain assumptions, these two operators coincide:

Theorem 7.1. If ℱ contains all constants and 𝑔 is bounded and lower semicontinuous, then
𝑆𝑔 = 𝐼𝑔 on 𝑋.
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By slightly modifying Edwards’ original proof, we show in paper ii that the requirement
that the cone contains all constants is not necessary. Instead, we consider the set of
measures

𝐶ℱ
𝑥 ∶= {𝜇 ; 𝜇(𝑋) ≤ −𝑆𝑥(−𝟙)} ∩𝑀

ℱ
𝑥 ,

where −𝟙(𝑥) ≡ −1. As 𝐶ℱ
𝑥 is weak∗-compact for all 𝑥 ∈ 𝑋 such that 𝑆𝑥(−𝟙) > −∞, it is

still possible to carry out the compactness arguments of Edwards’ proof. Notably, this
allows for the following stronger version of Theorem 7.1:

Theorem 7.2. Let 𝑔 be lower semicontinuous and bounded from below. For all 𝑥 ∈ 𝑋 such
that 𝑆𝑥(−𝟙) > −∞, we have 𝑆𝑥(𝑔) = 𝐼𝑥(𝑔). It is enough to take the infinum over measures in
𝐶ℱ
𝑥 .

Remark. In Section 13, we will discuss versions of Edwards’ theorem which encompass
Theorem 7.2 as a special case.

We will now briefly explain how Edwards’ theorem may be applied in the study of
envelopes. Suppose that ℱ1, ℱ2 are two cones of upper bounded, upper semicontinuous
functions on a compact metric space 𝑋, and that ℱ1 ⊂ ℱ2. Now consider the equation

sup{𝑢(𝑥) ; 𝑢 ∈ ℱ1, 𝑢 ≤ 𝑔} = sup{𝑢(𝑥) ; 𝑢 ∈ ℱ2, 𝑢 ≤ 𝑔}.

For which 𝑥 ∈ 𝑋 does this hold, and when do the envelopes coincide at all points? In
some way, we expect that the answer should depend on how well, if at all, one may
approximate elements in ℱ2 by elements in ℱ1. It turns out that it is sufficient to require
that each element in ℱ2 may be approximated pointwise by a decreasing sequence of
functions in ℱ1. This is where Edwards’ theorem comes into play, as it allows us to
translate the equation into

𝐼ℱ
1

𝑥 (𝑔) = 𝐼ℱ
2

𝑥 (𝑔),

which is true at all points where 𝑀ℱ1

𝑥 = 𝑀ℱ2

𝑥 . A priori, we know that 𝑀ℱ2

𝑥 ⊂ 𝑀ℱ1

𝑥 , so
it is enough to show that 𝜇 ∈ 𝑀ℱ1

𝑥 implies that 𝜇 ∈ 𝑀ℱ2

𝑥 , or equivalently

∫𝑓𝑑𝜇 ≥ 𝑓(𝑥)

for all 𝑓 ∈ ℱ2. Given that there exists 𝑓𝑛 ∈ ℱ1 such that 𝑓𝑛 ↘ 𝑓, this is an easy
consequence of the monotone convergence theorem.

8 Continuity sets of unbounded envelopes

In this section, we continue our study of the continuity set of the Perron–Bremermann
envelope

𝑃(𝜑) = sup{𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω), 𝑢∗ ≤ 𝜑}.
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Our starting point is the following theorem due to J.B. Walsh (40).

Theorem 8.1 (J.B. Walsh’s theorem). Let Ω be a B-regular domain, and suppose that
𝜑 ∈ 𝐶(Ω). Then 𝑃(𝜑) is continuous on Ω.

The main theorem of paper ii is a generalization of the above result, valid for all 𝜑 ∶ Ω →
[−∞, +∞] such that 𝜑∗ = 𝜑∗ with non-trivial strong minorant 𝑣 and non-trivial strong
majorant 𝑤. There are essentially two techniques involved in the proof, as the positive
and the negative singularities separately contribute to the possible discontinuity set. In
particular, the positive part of 𝑃(𝜑) is quasibounded quasi-everywhere by Theorem 5.4 if
𝑤 is non-trivial, which allows us to approximate by upper bounded plurisubharmonic
functions outside the set

{𝑧 ∈ Ω ; 𝑤(𝑧) = +∞}.

To handle the negative singularities, we employ a variant of the method of Jensen meas-
ures (34; 41) made possible by Theorem 7.2. Crucially, this allows us to show that the
upper semicontinuous envelope

sup {𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω), 𝑢∗ ≤ 𝜑−}

coincides with the envelope

sup {𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐶(Ω ⧵ 𝒫), 𝑢∗ ≤ 𝜑−},

where 𝒫 = {𝑧 ∈ Ω ; 𝑣∗(𝑧) ≠ −∞} and 𝜑− denote the negative part of 𝜑. As the
second envelope is lower semicontinuous on Ω ⧵ 𝒫, both envelopes must be continuous
outside 𝒫.

Combining these two observations, we arrive at the following theorem.

Theorem 8.2. Let Ω be a B-regular domain, and let 𝜑 be a continuous extended real-valued
function on Ω with a strong minorant 𝑣 and a strong majorant 𝑤. Then 𝑃(𝜑) is continuous
on

{𝑧 ∈ Ω ; 𝑣∗(𝑧) ≠ −∞} ∩ {𝑧 ∈ Ω ; 𝑤∗(𝑧) ≠ +∞}.

Note that the case 𝑣 = 𝑤 = 0 corresponds to Theorem 8.1, and that the statement is
empty if either 𝑣 ≡ −∞ or 𝑤 ≡ +∞.
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Plurisubharmonic functions with
discontinuous boundary behavior

9 The unit disk revisited

As we saw in the first chapter, an integral representation of the solution permits us to
conclude that given a fixed bounded function 𝜙 ∶ 𝜕𝐷 → ℝ, continuous outside 𝐴𝜙 ⊂ 𝜕𝐷,
the following two statements are equivalent:

(a) 𝐴𝜙 has Lebesgue measure zero.
(b) There exists a unique bounded harmonic function ℎ𝜙 such that

lim
𝐷∋𝜁→𝑧0

ℎ𝜙(𝜁) = 𝜙(𝑧0), ∀𝑧0 ∈ 𝜕𝐷 ⧵ 𝐴𝜙.

It possible to list a third property of 𝐴𝜙, equivalent to (a) and (b), namely

(c) 𝐴𝜙 is b-pluripolar.

Definition 9.1 (Djire and Wiegerinck (14)). Let Ω ⊂ ℂ𝑛 be a bounded domain. We say
that a set 𝐹 ⊂ 𝜕Ω is b-pluripolar if there exists 𝑣 ∈ 𝒫𝒮ℋ(Ω) such that 𝑣 ≤ 0, 𝑣 ≢ −∞ and
𝑣∗ = −∞ on 𝐹.

This follows from a theorem of Fatou (17), which says that we for any compact set
𝐾 ⊂ 𝜕𝐷 of Lebesgue measure zero may find a function 𝑓 such that 𝑓 ∶ 𝜕𝐷 → [−∞, 0]
continuously, 𝑓 ∈ 𝐿1(𝜕𝐷) and

𝑓(𝑧) = −∞ ⟺ 𝑧 ∈ 𝐾.

Since 𝐴𝜑 is a 𝐹𝜎 set, we may write 𝐴𝜑 as a countable union of compact sets 𝐾𝑖. Extending
the corresponding 𝑓𝑖 to harmonic functions ℎ𝑖 in the interior, we then construct

ℎ ∶=
∞
∑
𝑖=1

𝑐𝑖ℎ𝑖,
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where 𝑐𝑖 > 0 are chosen such that the sum converges at some point in the interior. By
Harnack’s theorem, the sum converges everywhere to a harmonic function, which shows
that 𝐴𝜑 is b-pluripolar.

Conversely, suppose that 𝐴𝜑 is b-pluripolar, and let 𝑣 be a negative subharmonic function
such that 𝑣∗ = −∞ on 𝐴𝜑. Solving the Dirichlet problem for the boundary values
max{𝑣, 𝑛}∗, we get a decreasing sequence of harmonic functions bounded below by 𝑣. By
Harnack’s theorem, this sequence converges to a harmonic function which is represented
on the boundary by a function in 𝐿1(𝜕𝐷) (see Section 2) with 𝐴𝜑 as a subset of its
singularity set. Hence, 𝐴𝜑 must have zero Lebesgue measure.

In the next sections, we will investigate to which degree this relationship remains for the
Dirichlet problem for the complex Monge–Ampère operator in higher dimensions.

10 Discontinuous boundary data for B-regular domains in ℂ𝑛

In the general plurisubharmonic setting, we will replace (b) in the previous section with
the statement that the following inhomogeneous Dirichlet problem for the complex
Monge–Ampère operator has a unique solution:

{
𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐿∞(Ω)
(𝑑𝑑𝑐𝑢)𝑛 = 𝜇
limΩ∋𝜁→𝑧0 𝑢(𝜁) = 𝜑(𝑧0), ∀𝑧0 ∈ 𝜕Ω ⧵ 𝐸𝜑.

Here, we will assume thatΩ is B-regular, 𝜇 is a compliant measure, and that 𝜑 ∶ 𝜕Ω → ℝ
is a bounded function, continuous outside 𝐸𝜑. Note that in one complex dimension,
these assumptions reduce the problem to finding a harmonic function with the above
boundary behavior, as we may subtract a subharmonic function 𝑢 with the properties

𝑑𝑑𝑐𝑢 = 𝜇, lim
𝑧→𝜕Ω

𝑢(𝑧) = 0,

by the compliance of 𝜇. The main result in paper iii (33) is that it is sufficient to assume
that the discontinuities form a b-pluripolar set; in other words, the implication (c) ⟹
(b) remains intact also in higher dimensions, for any B-regular domain.

Theorem 10.1. Let 𝜇 be a compliant measure on a B-regular domainΩ, and let 𝜑 ∶ 𝜕Ω → ℝ
be a bounded function, continuous outside a b-pluripolar set 𝐸𝜑. Then the Dirichlet problem

{
𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐿∞(Ω)
(𝑑𝑑𝑐𝑢)𝑛 = 𝜇
limΩ∋𝜁→𝑧0 𝑢(𝜁) = 𝜑(𝑧0), ∀𝑧0 ∈ 𝜕Ω ⧵ 𝐸𝜑
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has a unique solution.

The main difficulty of the proof is to show that a solution necessarily is unique. This is due
to the fact that the comparison principle (used to establish the uniqueness of the solution
when the boundary function is continuous) does not a priori allow for exceptional sets;
this is in stark contrast to the Dirichlet problem in the complex plane, where we both
have an extended version of maximum principle (allowing for polar exceptional sets) and
integral representations at our disposal. Analogously, uniqueness would immediately
follow from a corresponding extended comparison principle.

A very recent result in this direction is due to Rashkovskii (37), who provided a version of
the comparison principle that allows for exceptional sets that are pluripolar. Modifying
his proof, we arrive at the following lemma—the essential ingredient in the proof of
Theorem 10.1.

Lemma 10.2. Let 𝑢, 𝑣 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐿∞(Ω),Ω ⋐ ℂ𝑛 and suppose that

lim sup
𝑧→𝜁

(𝑢(𝑧) − 𝑣(𝑧)) ≤ 0 ∀𝜁 ∈ 𝜕Ω ⧵ 𝐹,

where 𝐹 ⊂ 𝜕Ω is b-pluripolar. If (𝑑𝑑𝑐𝑣)𝑛 ≤ (𝑑𝑑𝑐𝑢)𝑛, then 𝑢 ≤ 𝑣 on Ω. In particular, if
lim𝑧→𝜁(𝑢(𝑧) − 𝑣(𝑧)) = 0 for all 𝜁 ∈ 𝜕Ω ⧵ 𝐹 and (𝑑𝑑𝑐𝑣)𝑛 = (𝑑𝑑𝑐𝑢)𝑛, then 𝑢 = 𝑣.

When 𝜇 is continuously compliant, it is possible to estimate at which points the solution
𝑢𝜇,𝜑 might be discontinuous. This estimate is given in terms of the defining family

ℱ𝛦𝜑 ∶= {𝑢 ∈ 𝒫𝒮ℋ(Ω) ; 𝑢 ≢ −∞, 𝑢 < 0, 𝑢∗ ∣𝛦𝜑= −∞}

for the b-pluripolar hull

�̂�𝜑 ∶= {𝑧 ∈ Ω ; ∀𝑢 ∈ ℱ𝛦𝜑 , 𝑢
∗(𝑧) = −∞}

of the b-pluripolar set 𝐸𝜑 of discontinuities on the boundary.

Theorem 10.3. Let 𝜇 be a continously compliant measure on a B-regular domain Ω, and let
𝜑 ∶ 𝜕Ω → ℝ be a bounded function, continuous outside a b-pluripolar set 𝐸𝜑. Then 𝑢𝜇,𝜑 is
continuous outside the closed set ∩𝑢∈ℱ𝛦𝜑{𝑢∗(𝑧) = −∞}.

In general, the set of discontinuities may be nonempty, and may even coincide with
∩𝑢∈ℱ𝛦𝜑{𝑢∗(𝑧) = −∞}. To see this, consider the plurisubharmonic function

�̃�(𝑧1, 𝑧2) ∶= max{
∞
∑
𝑘=1

2−𝑘 log |𝑧1 − 2
−𝑘|, −1}
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restricted to the unit ball 𝔹 ⊂ ℂ2. Clearly, �̃� satisfies (𝑑𝑑𝑐�̃�)𝑛 = 0, is discontinuous on
{𝑧1 = 0} ∩ 𝔹, and extends continuously to the boundary outside the b-pluripolar set

�̃� ∶= 𝐸�̃�∣𝜕𝔹 = {𝑧1 = 0} ∩ 𝜕𝔹.

Since the zero measure is continuously compliant on B-regular domains, �̃� uniquely
solves a Dirichlet problem satisfying the conditions of Theorem 10.1 and Theorem 10.3.
Precomposing with the analytic disk

𝐷 → 𝔹
𝑧 ↦ (0, 𝑧),

it is immediate that any element 𝑢 ∈ ℱ�̃� satisfies 𝑢 = −∞ on {𝑧1 = 0} ∩ 𝔹. On the other
hand, log |𝑧1| ∈ ℱ�̃�, implying that in fact

∩𝑢∈ℱ�̃�
{𝑢∗(𝑧) = −∞} = {𝑧1 = 0} ∩ 𝔹.

Hence, this example shows that the estimate given in Theorem 10.3 is sharp.

A next natural question is to ask if the reverse implication, (b) ⟹ (c), also holds in
higher dimensions. Before answering this question, we will digress a little bit and consider
some results in paper iii concerning the continuity of Perron–Bremermann envelopes on
Reinhardt domains.

11 Continuity of envelopes on Reinhardt domains

As we saw in Section 7, on a domain Ω ⊂ ℂ𝑛, there is a connection between the
continuity of the Perron–Bremermann envelope and the property that plurisubharmonic
functions defined on Ω may be approximated pointwise from above by continuous ones.
Edwards’ theorem provides one way to illuminate this fact; it is also possible to verify
this relationship more directly in certain situations.

For example, on B-regular domains, J.B. Walsh’s theorem (Theorem 8.1) implies that the
envelope 𝑃(𝜑) is continuous for any continuous function 𝜑 ∶ Ω → ℝ, and since any
(upper bounded) plurisubharmonic function 𝑢 in the defining family extends to a upper
semicontinuous function on Ω, there is a decreasing sequence of continuous functions
𝜑𝑛 such that 𝜑𝑛 ↘ 𝑢 on Ω. Then, as 𝑃(𝜑𝑛) are continuous plurisubharmonic functions
such that

𝜑𝑛 ≥ 𝑃(𝜑𝑛) ≥ 𝑢,

26



we get a decreasing sequence of continuous plurisubharmonic functions converging
pointwise to 𝑢 on Ω. Conversely, since (𝑃(𝜑))∗ is plurisubharmonic by the Brelot–
Cartan theorem and (𝑃(𝜑))∗ ≤ 𝜑 for continuous 𝜑, a decreasing sequence 𝑢𝑛 ↘ (𝑃(𝜑))∗

of continuous plurisubharmonic functions will convergence uniformly since

max{𝜑, 𝑢𝑛} ↘ 𝜑

converges uniformly by Dini’s theorem.

Something similar can be achieved on Reinhardt domains, i.e. a domain Ω ⊂ ℂ𝑛 with the
property that

𝑧 = (𝑧1, … , 𝑧𝑛) ∈ Ω ⟹ {𝑤 ∈ ℂ𝑛 ; |𝑤𝑘| = |𝑧𝑘| for all 𝑘} ⊂ Ω.

For these domains, there is a explicit construction due to Fornæss and Wiegerinck (18)
which one can use to approximate all plurisubharmonic functions from above by plurisub-
harmonic functions continuous in the interior. This translates into continuity properties
of various Perron–Bremermann envelopes, given some assumptions on the majorant 𝜑.
Below, we highlight two such results from paper iii. First, to establish the continuity
of 𝑃(𝜑), it turns out that either of the following two properties are sufficient if Ω is
bounded:

(i) 𝜑 is uniformly continuous on Ω (in other words, 𝜑 extends to an element in
𝐶(Ω)),

(ii) 𝜑 is upper semicontinuous, bounded from below and toric, i.e.

𝜑(𝑧1, … , 𝑧𝑛) = 𝜑(|𝑧1|, … , |𝑧𝑛|)

holds for all 𝑧 ∈ Ω.

Note that 𝑃(𝜑) trivially is continuous (at least outside the coordinate hyperplanes) if 𝜑
satisfies the second property, since this implies that 𝑃(𝜑) is toric as well, and therefore
convex in logarithmic coordinates. It is however not obvious that the first condition is
sufficient as well, as we do not require thatΩ is B-regular. The following result may hence
be viewed as version of J. B. Walsh’s theorem valid on bounded Reinhardt domains.

Theorem 11.1. Let Ω be a bounded Reinhardt domain. Then

𝜑 uniformly continuous on Ω ⟹ 𝑃(𝜑) ∈ 𝐶(Ω).

Remark. In contrast to the case when Ω is B-regular, this theorem only guarantees that
𝑃(𝜑) is continuous in the interior. There is also a notion of c-regular domains, which may
be characterized as domains for which the above implication holds, but with continuity
up to the boundary. For example, smoothly bounded pseudoconvex Reinhardt domains
in ℂ2 are c-regular. See Göğüş and Şahutoğlu (21) for more details.
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Here we should mention that paper iii also contain similar results for envelopes where the
complex Monge–Ampère measures of the defining family are restricted by a measure of
the form 𝑓𝑑𝑉, where 0 ≤ 𝑓 ∈ 𝐶(Ω) and 𝑑𝑉 denotes the volume measure. If we further
assume that Ω is strictly pseudoconvex and that 𝜑 is harmonic on Ω, it is possible to
weaken the assumptions on 𝑓 considerably.

Theorem 11.2. Let Ω ⊂ ℂ𝑛 be a bounded, strictly pseudoconvex Reinhardt domain, and
assume that 𝜑 is toric, harmonic and bounded from below. Then for 0 ≤ 𝑓 ∈ 𝐿𝑝(Ω), 𝑝 > 1,

𝑃(𝜑, 𝑓) ∶= sup{𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ(Ω), (𝑑𝑑𝑐𝑢)𝑛 ≥ 𝑓𝑑𝑉, 𝑢 ≤ 𝜑}

is continuous.

The proof of this theorem depends on the machinery developed by Kołodziej (29), used
to prove that the Dirichlet problem for the complex Monge–Ampère operator (on strictly
pseudoconvex domains) always has a continuous solution for continuous boundary data
when 𝜇 = |𝑓| 𝑑𝑉, if 𝑓 ∈ 𝐿𝑝(Ω) and 𝑝 > 1. In the next section, we will similarly apply
Theorem 11.2 to a Dirichlet problem with discontinuous boundary data.

12 A counterexample in the unit ball in ℂ3

In this section, we will construct a family of examples that allows us to refute the possibility
of extending the implication (b) ⟹ (c) of Section 9 to higher dimensions. The setting
will be the unit ball 𝐵 ⊂ ℂ𝑛, and we will consider boundary data of the form

𝜙𝛢(𝑧) = {
−1, 𝑧 ∈ 𝐴
0, 𝑧 ∈ 𝜕𝐵 ⧵ 𝐴,

where 𝐴 ⊂ 𝜕𝐵 is an open, toric set such that �̄� does not meet the hyperplanes {𝑧𝑗 = 0}.
The relative boundary 𝜕𝐴 will then be the discontinuity set of 𝜙𝛢, and this set is never
b-pluripolar. Indeed, for 𝜁 ∈ 𝜕𝐴, the set

{𝑧 ∈ ℂ𝑛 ; |𝑧𝑘| = |𝜁𝑘| for all 𝑘} ⊂ 𝜕𝐴

will be the Bergman–Shilov boundary of the polydisk

𝐷(0, 𝜁) ∶= 𝐷(0, |𝜁1|) × ⋯ × 𝐷(0, |𝜁𝑛|) ⊂ 𝐵.

Therefore, by the maximum principle, for elements in 𝑢 ∈ 𝒫𝒮ℋ(𝐵), we have

𝑢∗ ∣𝜕𝛢= −∞ ⟹ 𝑢 ∣𝐷(0,𝜁)≡ −∞ ⟹ 𝑢 ≡ −∞.
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We conclude that 𝜕𝐴 cannot be b-pluripolar.

It is easy to find 𝐴 such that 𝜕𝐴 has Lebesgue measure zero, which shows that the
implication (a) ⟹ (c) does not hold in general. On the other hand, we are not excluding
the possibility that 𝜕𝐴 has positive Lebesgue measure. Although higher dimensional
geometry seldomly lends itself to visualization, it is possible to acquire some intuition for
this pathological scenario. Consider for example the unit ball in ℂ3, represented as an
object in three real dimensions by identifying points 𝑧, 𝑤 for which

(|𝑧1|, |𝑧2|, |𝑧3|) = (|𝑤1|, |𝑤2|, |𝑤3|).

Since 𝜕𝐴 is toric, it is faithfully captured in this representation, and may be identified
with the boundary of a relatively open subset of an one-eight of the unit sphere.

A pathological set may now be constructed by beginning with a curve that is both an
Osgood curve, i.e. a non-self-intersecting curve that has positive area, and a Jordan curve,
dividing the plane into an interior and exterior part. Such curves are guaranteed to exist by
the Smith–Volterra–Cantor construction and the Denjoy–Riesz theorem. Alternatively,
as illustrated below, one may begin with an arrangement of three triangles and successively
cut out smaller and smaller triangles (see Knopp (28)).

The sixth step in the construction of a set 𝜕𝛢 with positive Lebesgue measure.
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Alas, the set 𝜕𝐴 may be very complicated, but as a consequence of Djire and Wiegerinck’s
partial answer (14, Theorem 2.11) to Sadullaev’s question concerning when the upper
semicontinuous regularization of a variety of boundary extremal functions coincide (38),
we can still guarantee that 𝜙𝛢 always has the following property.

Lemma 12.1. Let 𝐴 ⊂ 𝜕𝐵 satisfy the requirements above. Then 𝑃(𝜙𝛢) is continuous, and
may be written as an envelope over uniformly continuous functions.

This lemma is key to showing that the Dirichlet problem with 𝜙𝛢 as boundary data has
a unique solution. The rough idea is to replace the step of applying the comparison
principle directly to the Perron–Bremermann envelope, instead comparing with elements
that extends continuously to the boundary in the defining family. Combining this strategy
with Theorem 11.2, we arrive at the following surprising theorem.

Theorem 12.2. Let 𝐴 ⊂ 𝜕𝐵 satisfy the requirements above, and let 𝜇 be a compliant measure.
Then the Dirichlet problem

{
𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐿∞(𝐵)
(𝑑𝑑𝑐𝑢)𝑛 = 𝜇
lim𝛣∋𝜁→𝑧0 𝑢(𝜁) = 𝜙𝛢(𝑧0), ∀𝑧0 ∈ 𝜕𝐵 ⧵ 𝜕𝐴

has a unique solution. This solution is furthermore continuous on 𝐵 if 𝜇 is a continuously
compliant measure of the form 𝜇 = 𝑓 𝑑𝑉, where 0 ≤ 𝑓 ∈ 𝐿𝑝(Ω), and 𝑝 > 1.

This result shows that (b) does not imply either (a) or (c) in higher dimensions.
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Variations on Edwards’ theorem

13 Altering Edwards’ proof

In paper iv, we explore how far one may push the original proof of Edwards’ theorem.
Structurally, the argument may be broken down as follows:

• We begin with the inequality 𝑆𝑥 ≤ 𝐼𝑥, by the property of Jensen measures. If one
can show that each element in 𝜑 ∈ 𝐶(𝑋) have a minorant in ℱ, finite at 𝑥 ∈ 𝑋,
then −𝑆𝑥 defines a sublinear map 𝐶(𝑋) → ℝ. This is for example guaranteed if
ℱ contains all constants. Importantly, 𝑆𝑥 ≤ 𝐼𝑥 is then an inequality between a
sublinear operator −𝑆𝑥 and a family of positive linear operators.

• On the span of a fixed element 𝜑0 ∈ 𝐶(𝑋), i.e. elements of the form 𝑐𝜑0, 𝑐 ∈ ℝ,
we can define linear maps −𝐴𝑥(𝑐𝜑0) ∶= −𝑐𝑆𝑥(𝜑0), which satisfies −𝐴𝑥 ≤ −𝑆𝑥. By
the Hahn–Banach theorem, we can extend −𝐴𝑥 to a linear map −𝐴𝑥 ∶ 𝐶(𝑋) → ℝ
where this inequality holds on the entire space 𝐶(𝑋), with equality on 𝜑0.

• Using the inequality, it follows that 𝐴𝑥 is a positive linear operator on 𝐶(𝑋), and
hence represented by a measure 𝜇𝑥 by the Riesz representation theorem.

• In order to show that 𝜇𝑥 is a Jensen measure, we will employ the following relation
between 𝐶(𝑋) and 𝒰𝒮𝒞(𝑋): For each element 𝑢 ∈ 𝒰𝒮𝒞(𝑋), there exists a
decreasing sequence 𝑔𝑖 ∈ 𝐶(𝑋) such that 𝑔𝑖 ↘ 𝑢. In particular, this holds if 𝑢 ∈ ℱ.
By the monotone convergence theorem, 𝜇𝑥 is a Jensen measure, and since the
operators induced by the Jensen measures all majorize 𝑆𝑥, Edwards’ theorem is
proven true for continuous majorants.

• In order to show that Edwards’ theorem also holds for lower semicontinuous
majorants, we likewise employ the following relation between 𝐶(𝑋) and ℒ𝒮𝒞(𝑋):
For each element 𝑙 ∈ ℒ𝒮𝒞(𝑋), there exists an increasing sequence 𝑔𝑖 ∈ 𝐶(𝑋) such
that 𝑔𝑖 ↗ 𝑙. Edwards’ theorem follows from another application of the monotone
convergence theorem.
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There are two settings which suggest natural alterations to this proof.

13.1 Ordering of measures

In the first variation, we replace the Jensen measures by other sets of measures, defined
in terms of an ordering of measures. These sets are natural to consider, since any cone
ℱ of real-valued functions on 𝑋 induces an ordering on the (positive Radon) measures
supported on 𝑋.

Definition 13.1. Let 𝜇 and 𝜈 be positive Radon measures supported on 𝑋. We say that 𝜇 ≤ℱ 𝜈
if

∫𝑢𝑑𝜈 ≤ ∫𝑢𝑑𝜇

for all 𝑢 ∈ ℱ.

In particular, the Jensen measures at 𝑥 ∈ 𝑋 may be defined as all measures smaller than
the point mass at 𝑥 in this order relation. Similarly, one can consider the set of measures
smaller than a fixed measure 𝜇 with regards to ℱ. Then

𝑆𝜇𝜑 = sup {∫𝑢𝑑𝜇 ; 𝑢 ∈ ℱ, 𝑢 ≤ 𝜑}

also become superlinear operators on 𝐶(𝑋), coinciding with

𝐼𝜇𝜑 = inf {∫𝜑𝑑𝜈 ; 𝜈 ≤ℱ 𝜇}

by slightly modifying Edwards’ proof. We will refer to this result as the first variation.

13.2 Cones not minorizing the continuous functions

It is apparent that the space 𝐶(𝑋) is central to the entire argument, in particular for
the measure representation, needed for the monotone convergence. What if there is an
element in 𝐶(𝑋) that is not minorized by any element in ℱ? This is for example the case
if all elements in ℱ are zero on 𝜕𝑋. One way to alter Edwards’ proof to also encompass
such cones is to replace 𝐶(𝑋) by a subspace 𝐻 ⊂ 𝐶(𝑋) where all elements are minorized.
For this to work, several modifications to the proof have to be made, and 𝐻 must satisfy
certain criteria (see paper iv for more details). We will refer to this variant of Edwards’
theorem as the second variation.
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14 Application to cones of plurisubharmonic functions

From the viewpoint of pluripotential theory, both variations are motivated by the fol-
lowing ordering of positive measures induced by (negative) plurisubharmonic functions,
introduced by Bengtson in (4).

Definition 14.1. Let Ω ⊂ ℂ𝑛 be a hyperconvex domain, and let 𝜇 and 𝜈 be positive Radon
measures supported on Ω. We say that 𝜇 ≤psh 𝜈 if

∫𝑢 d𝜇 ≥ ∫𝑢 d𝜈

for all 𝑢 ∈ ℰ0(Ω).

Here, we remind the reader that

ℰ0(Ω) = {𝑢 ∈ 𝒫𝒮ℋ(Ω) ∶ 𝑢 < 0, lim
𝜁→𝑝∈𝜕Ω

𝑢(𝜁) = 0,∫
Ω
(𝑑𝑑𝑐𝑢)𝑛 < ∞}

is the cone of “plurisubharmonic test functions” defined by Cegrell (10). In paper iv, we
study several similar orderings induced by plurisubharmonic functions. Among these,
for two finite positive Radon measures 𝜇, 𝜈 supported on Ω we say that 𝜇 ≤c 𝜈 if

∫𝑢 d𝜇 ≥ ∫𝑢 d𝜈 for all 𝑢 ∈ 𝒫𝒮ℋ(Ω) ∩ 𝐶(Ω).

The advantage of this ordering is that two comparable measures automatically have the
same mass, since the generating cone contains all constants. On any hyperconvex domain
Ω, the two orderings are related as follows.

Proposition 14.2. If 𝜇 ≤psh 𝜈 and 𝜇(Ω) = 𝜈(Ω) < ∞, then 𝜇 ≤c 𝜈.

As an application of our first variation of Edwards’ theorem, we characterize the minimal
elements in the ordering ≤c on B-regular domains.

Theorem 14.3. Let Ω ⊂ ℂ𝑛 be a B-regular domain. Then a positive Radon measure 𝜇 on Ω
has the property that

𝜈 ≤c 𝜇 ⟹ 𝜈 = 𝜇

if and only if supp 𝜇 ⊂ 𝜕Ω.

In Bengtson’s ordering, there are no minimal measures in the sense that

𝜈 ≤psh 𝜇 ⟹ 𝜈 = 𝜇,
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since we always have 1
2𝜇 ≤psh 𝜇. On the other hand, by combining both variations of

Edwards’ theorem, we quickly conclude that there are no elements in this ordering (on
hyperconvex domains) with the property

𝜈 ≤psh 𝜇 ⇒ 𝜈 = 𝑘𝜈𝜇

for some 𝑘𝜈 ∈ [0, 1].

Theorem 14.4. Let Ω ⊂ ℂ𝑛 be a hyperconvex domain, and suppose that 𝜇 is positive Radon
measure on Ω satisfying the minimality property above. Then 𝜇(Ω) = 0.

The second variation also allows us to study envelopes over cones of negative pluri-
subharmonic functions defined on the closure of a bounded hyperconvex domain Ω.
These results are largely paralleling the case when Ω is B-regular (32; 41). Specifically, we
consider the two cones

𝒫𝒮ℋ0(Ω) ∶= {𝑢 ∈ 𝒰𝒮𝒞(Ω) ∩ 𝒫𝒮ℋ−(Ω) ; 𝑢|𝜕Ω = 0},

ℰ0(Ω) ∩ 𝐶(Ω).

By an approximation theorem of Cegrell (11), the Jensen measures of these two cones
coincide. Denoting this set of measures by 𝐽−𝑧 , the second variation implies the following
result.

Theorem 14.5. Let 𝑔 ∶ Ω → ℝ be a lower bounded function such that 𝑔∗ ≤ 𝑔, with equality
outside a pluripolar set 𝑃, and suppose that 𝑔∗(𝜁) = 0 for all 𝜁 ∈ 𝜕Ω. Then

sup {𝑢(𝑥) ; 𝑢 ∈ ℰ0(Ω) ∩ 𝐶(Ω), 𝑢 ≤ 𝑔} = sup {𝑢(𝑥) ; 𝑢 ∈ 𝒫𝒮ℋ0(Ω), 𝑢 ≤ 𝑔}

= inf {∫𝑔𝑑𝜇 ; 𝜇 ∈ 𝐽−𝑧 }

holds outside the pluripolar hull of 𝑃. In particular, if 𝑔 is upper semicontinuous and 𝑃 is a
closed, complete pluripolar set, then the envelopes are continuous outside 𝑃.

We also get a version of Theorem 8.2 valid for hyperconvex domains.

Theorem 14.6. Let Ω be a hyperconvex domain, and let 𝑔 ∶ Ω → [−∞, 0] be such that
𝑔∗ = 𝑔∗ on Ω, 𝑔 = 0 on 𝜕Ω, and that 𝑔 has a non-trivial strong minorant. Then the envelope

sup {𝑢(𝑧) ; 𝑢 ∈ 𝒫𝒮ℋ−(Ω), 𝑢∗ ≤ 𝑔}

is continuous on {𝑧 ∈ Ω ; 𝑣∗(𝑧) ≠ −∞}.
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