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Abstract 

Telomeres are the conservative sequence repeats located at the end of linear 

chromosomes that have been the focus of intensive research across many disciplines 

over the last four decades. They function as a cap to protect the chromosome ends 

from fusion to other chromosomes and to prevent chromosome degradation. 

Telomere shortening is thought to be involved in ageing, reflecting or even causing 

age-related dysregulation of bodily functions. Telomere length and telomere 

shortening have also gained considerable interest in the field of ecology and 

evolution as indicators of individual quality and mediators of life-history trade-offs. 

Telomere length (TL) predicts life span in many animal species but there is 

considerable variation in TL and shortening rate between individuals, populations 

and species. How does this variation come about and how is it maintained? Paper I 

in this thesis discusses the most prominent hypotheses in ecology and evolution that 

have been put forward to explain variation in TL and telomere dynamics (i.e., 

shortening and elongation of telomeres). It presents a framework that groups the 

different hypotheses based on research question or their underlying assumptions 

about the causal effects of telomeres on organism performance. Some of the key 

issues that are highlighted in this synthesis paper are that 1) the question of whether 

telomeres have a causal effect on ageing and life span is still debated, 2) the costs 

of telomere shortening and elongation remain elusive, and 3) the genetic and non-

genetic contribution to variation in TL (and therefore the potential for selection to 

act on TL) is still not fully understood. The papers III-V in this thesis try to tackle 

some of these questions. Paper III aims to test whether mild inflammation (induced 

through repeated immune challenges), can have measurable negative effects on TL, 

both over the short- and the long-term and whether this results in concomitant 

deterioration in physiological health. To measure physiological health, we use the 

measurement method based on the VetScan blood analyser, which is introduced and 

carefully evaluated for broader use in paper II. Immune system activation had no 

measurable effects on TL, but the change in ambient and social environment as a 

consequence of the experiment design (from harsh, rather cold and large-group to 

benign, thermoneutral and same-sexed pairs conditions), appeared to induce 

substantial telomere elongation (up to 150 % increase) in the individuals with the 

shortest TLs. This supports the hypotheses that telomere restoration is costly and 

therefore primarily occurs under benign conditions. Moreover, telomere elongation 

occurred more frequently among individuals with the shortest TL, possibly because 

such individuals are closer to the lower critical threshold in TL. Paper IV and V 
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investigate the genetic and non-genetic contribution to the variation in TL. By 

creating parental groups that were based on the individuals with the shortest and 

longest TL at birth in the population (thus manipulating the expected genetic 

contribution from parents to offspring) it was possible to test how genetic and non-

genetic parental effects contribute to TL during the prenatal and early post-natal life 

stages. The results show that offspring TL at birth, but not embryo TL, was predicted 

by parental early-life TL group. These results are not consistent with hypotheses 

assuming that telomere trajectories can be predicted based on TL at the very early 

stages of embryonic development. However, they support the idea that telomere 

shortening rate rather than TL itself is inherited. To study this further, paper V 

examines inheritance patterns of telomere length in detail using both animal model 

and parent-offspring regressions. The study shows that heritability estimates of TL 

are moderate magnitude, and, particularly, that these estimates vary considerably 

depending on at which life stage/age TL measurements were compared between 

parents and offspring.. Altogether, this thesis presents a number of novel findings 

that both confirm and challenge some of the current ‘telomere hypotheses’ discussed 

in paper I.   
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Popular science summary 

Telomeres were first discovered in the 1940s by Hermann Mahler and Barbara 

McClintock. They noticed this tiny structure located at the ends of chromosomes, 

which were different from the broken end of DNA sequences that was often seen in 

DNA exposed to X-ray experiments. During the 1970s, Elizabeth Blackburn and 

Joseph G. Gall discovered the unique character and the function of telomeres and 

they were awarded the 2009 Nobel Prize in Physiology and Medicine for the 

discovery of how telomeres protected chromosomes and the function of the reverse 

transcriptase telomerase.  

So, what are telomeres? Telomeres are repeated sequences of (TTAGGG)n at the 

end of linear chromosomes. During cell division, chromosomes untwist and 

replicate, however there is always some pieces of gene segment that cannot be fully 

copied (also known as the “end replication problem”). The function of telomeres is 

to protect the important coding regions of the DNA by extending the chromosome 

ends with this non-coding sequence that act as a protecting ‘cap'. As a cell continues 

to divide, chromosomes will reach a point when the telomere sequence reaches a 

critically short length that exposes coding DNA. Thus, the older a cell (and to some 

degree organism), the shorter the telomere length. This will lead to cell dysfunction 

and eventually cell death. Telomeres and the surrounding structures are also 

protecting DNA from oxidative stress. Oxidative stress is often generated during 

situations when organisms get sick or are living in challenging social and 

environmental life conditions. To sum up, telomeres are protective cellular 

structures that have evolved to reduce the immediate negative effects of DNA 

damage and that are known to shorten with age. 

The next question is, if telomeres could be continuously repaired and thus remain 

long, would this result in considerably prolonged life spans? Sadly, the answer is 

most probably no. Another important function of telomeres is to prevent unlimited 

cell division, which is an important mechanism to prevent cancer cells to be formed. 

In other words, if telomeres do not shorten due to cell division this would make cells 

immortal and, if such a cell would contain a malign mutation it would be able to 

divide and spread relatively unhindered. Thus, we might not die of short telomeres 

but of cancer instead. 

The biological meaning of life is to successfully pass genes to the next generation. 

There are multiple life history strategies, but the core idea is to produce relatively 
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more successfully reproducing offspring, and one important way of doing this is to 

live a healthy and long life. In this thesis, I used captive zebra finches as the study 

species and designed experiments to test hypotheses in the field of telomeres in 

ecology and evolution.  

I first looked into if telomeres shorten faster when an individual is fighting a disease. 

We know that when the immune system is activated, the body will increase its 

metabolism and produce a large amount of immune cells, such as white blood cells 

and antibodies to fight invading pathogens. Immune system activation also produces 

an excess of free radicals (harmful ‘reactive’ molecules that can damage DNA and 

cells). Both increased cell proliferation and the action of free radicals are known key 

processes that shorten telomere length. I immune-challenged zebra finches and 

measured their telomere length across a year. I predicted that telomeres would 

shorten in immune-challenged birds. Surprisingly, telomere length did not differ 

between experimental or control birds over one year, but to our surprise a huge 

telomere elongation occurred over only 30 days at the end of experiment, despite 

that some birds were supposed to be quite sick! This is a remarkable result because 

elongation of telomere length is a controversial issue among telomere researchers 

and some have even argued that it is only a methodological artefact. In the case of 

my study, moving the zebra finches from rather harsh outdoor to nicer indoor 

environment may have masked the effect of sickness, and instead allowed them to 

make very rapid and large investments in terms of telomere elongation (particularly 

in those with initially short telomere length). So maybe moving the birds away from 

the not always so pleasant March weather in Skåne and the “collective dormitory” 

of around 60 birds, and instead move them into a warmer (+ 22°C) environment 

where only two birds shared the same small “apartment” could have substantially 

eased social and physiological stress. A room with a heating system and no 

competition and easy access to plenty of good food may have made life so much 

easier for all the birds, apparently allowing them to invest much more into self-

maintenance such as telomere elongation!  

The second part of my work focuses on the inheritance pattern of telomeres. This 

knowledge is important because the level (high or low) and type (genetic or non-

genetic) of inheritance determines how evolution can act on telomeres. I wanted to 

know how offspring inherit this trait from their parents. If parents have long 

telomeres, will their children have long telomeres too? I spent four years preparing 

and conducting matched pairing (based on if parents had short or a long telomere 

length early in life) breeding experiments to test these questions. The results of the 

experiment were: 1) offspring telomere length showed a moderate level of similarity 

to the Tl of their parents; 2) the difference did not appear at the embryonic 

development stage, but appeared later when chicks were 10-days old; 3) advanced 

‘animal model’ analyses showed that the estimated heritability of telomere length 

was dependent on which life stages of both parents and offspring that were used in 

the models. These results tell us that genetic and environmental factors jointly shape 
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offspring telomere lengths. Thus, these studies show that it is important when in life 

telomere measurements are taken for analysis as this can influence the results and 

thus lead to different conclusions. 

Altogether, my thesis presents a number of novel findings that both confirm and 

challenge some of the current ideas about the functional and evolutionary roles of 

telomeres. 

 

 

 

 

Figure 1. What we know about zebra finches (by Philip Downing) 
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Populärvetenskaplig sammanfattning 

När Hermann Mahler och Barbara McClintock gjorde upptäckten av telomerer på 

1940-talet, lade de märke till de små strukturerna på kromosomernas ändar som 

skiljer sig från DNA-kedjans vanliga ändstycken. På 1970-talet upptäckte Elizabeth 

Blackburn och Joseph G. Gall telomerernas unika karaktär och funktion. De fick 

sedan Nobelpriset i fysiologi och medicin år 2009, för att ha upptäckt hur telomerer 

skyddar kromosomer och den omvända transkriptasen telomeras. 

Men vad är egentligen telomerer? Det är små upprepningar av sekvensen 

(TTAGGG)n som sitter i änden av våra kromosomer. När celler delar på sig löser 

kromosomerna upp sig och kopieras. Vissa gensegment kan inte kopieras 

fullständigt (detta kallas ändreplikationsproblemet). Telomerernas uppgift är då att 

förlänga kromosomernas ändstycken med denna icke kodande sekvens och 

därigenom skydda de viktiga kodande delarna av DNA:t. 

Allteftersom cellen fortsätter dela på sig finns det till slut inte mer av de skyddande 

telomererna kvar och istället förbrukas de kodande delarna, vilket leder till 

celldysfunktion och slutligen celldöd. Förutom celldelning skyddar telomerer och 

omgivande strukturer även kromosomens stabilitet från oxidativ stress. Oxidativ 

stress kan uppstå vid sjukdom eller under dåliga livsförhållanden. 

Sammanfattningsvis är telomerer en skyddsmekanism som organismer utvecklat för 

att bekämpa DNA-skador. Forskning har visat att telomerer förkortas med åldern. 

Men vad skulle hända om vi skulle kunna förlänga telomererna i all oändlighet, 

kunde vi då leva förevigt? Tyvärr är svaret nej. Telomerer som är alltför utsträckta 

är mer benägna att brytas sönder och skadas. Telomererna har även en annan viktig 

funktion, vilken är att hämma obegränsad celldelning. Detta är en mekanism som är 

avgörande för att förhindra bildandet av cancerceller. 

Alla organismers främsta evolutionära syfte är att föra vidare våra gener till nästa 

generation. Genom att leva ett hälsosamt och långt liv förbättrar vi våra möjligheter 

att fortplanta och föra våra gener vidare. I min avhandling har jag använt zebrafinkar 

för att pröva befintliga hypoteser inom ekologi och evolution. 

Inledningsvis undersökte jag hur sjukdom påverkar telomerförkortning hos 

zebrafinkar. När immunsystemet aktiveras ökar kroppens metabolism och 

producerar en stor mängd immunförsvarsceller, såsom vita blodkroppar och 

antikroppar, för att bekämpa inkräktande patogener. Detta leder under en kortare tid 
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till ökad celldelning och metabolism. Utifrån detta var mitt antagande att 

telomererna förkortas snabbare när de motarbetar en infektion. Tillsammans med 

mina kollegor tilldelade jag immunostimulanter till zebrafinkarna och mätte deras 

telomerlängder under ett år. Förvånande nog skilde sig inte telomerlängden mellan 

försöks- och kontrollfåglarna under året. Däremot observerade vi en förlängning 

under de sista 30 dagarna, även bland fåglarna som fått immunostimulanter. 

Resultatet är anmärkningsvärt eftersom förlängningen av telomerer fortfarande är 

ett omdiskuterat ämne. Orsaken varför telomererna inte förkortades snabbare hos de 

immunstimulerade fåglarna är oklart, men det verkar som att den behagliga och 

varma inomhusmiljön har överskuggat sjukdomseffekten. Fåglarnas tillvaro - med 

värmesystem och tillräckligt med föda - förbättrade tillvaron för alla fåglarna, som 

visat sig ta tillfället i akt och lägga energi på sitt välmående! 

Jag studerade också hur en avkomma ärver arvsanlag för telomerer från sina 

föräldrar. Om föräldrarna har långa telomerer, kommer deras avkomma också ha 

det? Under fyra år genomförde jag avelsexperiment för att testa dessa idéer, där 

zebrafinkar parades baserat på deras telomerlängd. Som förväntat visade det sig att 

telomerlängden hos ungarna beror på föräldrarnas telomerlängd. Däremot visade sig 

inte skillnaden i telomerlängd under det embryonala stadiet, utan dök upp senare 

när ungarna var 10 dagar gamla. Slutligen visade vår djurmodell att telomerlängd 

beror till 30% på genetiska effekter och ca 15% på föräldraskötsel. Den återstående 

variationen verkar kunna tillskrivas miljöeffekter. Dessa resultat ger oss insikt i att 

genetiska och miljömässiga faktorer tillsammans formar telomerlängden hos 

avkomman. 

Vilken berättelse skildrar jag då i min avhandling? Min forskning bidrar till vår 

förståelse av telomerernas dynamik i två viktiga tillstånd, nämligen vid födsel och 

under sjukdom, genom att tillföra ny kunskap om hur telomerer utvecklas under 

uppväxten och hur sjukdomar och förändringar i livsstil påverkar fåglars fysiologi. 
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大众科学 

 

在 1940 年代, 赫尔曼·马勒和芭芭拉·麦克林托克两位科学家分别独立观察

到了染色体端粒。相比于其他随意断裂的染色体，端粒这个处在染色体末端

的结构显得尤为独特！ 

如果我们要了解染色体端粒的功能， 那首先我们就必须得先说到生物里最重

要的遗传物质——脱氧核糖核酸，也就是我们生活中常常能听说的所谓的

DNA。于 1953 年剑桥大学的卡文迪许实验室里，弗朗西斯·克里克与詹

姆·沃森共同发现了 DNA 的双螺旋结构。他们的这个发现令人类对生物遗

传物质的认识产生了质的飞跃， 而且因此这两人也共同收获了 1962 年的诺

贝尔生理及医学奖。 1970 年代，随着分子生物学家们对染色体的进一步研

究，他们惊讶地发现在细胞分裂过程中，染色体 DNA 末端总有一段基因片

段是无法被完整复制的。我们可以预想到， 随着细胞分裂次数的增加，这种

机制会导致染色体不断地丢失末端的片段，直至遗传信息大量缺失而基因无

法表达支持细胞正常生理功能的蛋白质，从而使细胞慢慢走向细胞衰亡。除

了细胞分裂，细胞氧化代谢产生的氧化应激也会损伤染色体结构。为了应对

以上这些情况，生物进化出了端粒。 

端粒的位置在染色体的最末端，它的主要功能是保护染色体终端的完整性。

然而，端粒的长度也是有限的，在一次又一次的细胞分裂过程中会逐渐缩短，

直到再也无法起到保护的作用，于是细胞走向衰亡。我们不妨换个角度思考，

如果染色体端粒无限长那我们是不是就可以长生不老了呢？答案是否定的。

这主要是因为染色体端粒拥有另外一个重要的特性，能防止细胞无限制分裂。

这也被认为是防御细胞癌变的重要机制之一。 

搞清楚了染色体端粒是什么之后，现在来聊聊我的博士论文吧！我的论文主

要分为两大部分：第一部分主要讨论了生病时（免疫系统激活）端粒长度可

能发生的变化。免疫学的研究目前已经认识到，当机体处在免疫应答，免疫

细胞如 B细胞会在短期内大量增殖。 由于细胞分裂也需要消耗能量，因此机

体的新陈代谢加速，细胞呼吸所产生的副产物氧自由基也相应增多，于是我

们能预测到端粒的长度会因此浮动。在我的论文里，我以斑胸草雀作为实验

对象，在为期一年的实验期间，它们多次接受脂多糖和血蓝蛋白皮下注射来
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激活两种不同程度的的免疫反应，而我观测了它们血液红细胞中端粒在这一

年中的动态变化。实验结果显示，实验组与对照组的端粒长度在这一年的时

间里并无明显差异，然而在第二年实验结束时，端粒长度竟有了显著的增长！

更出乎意料是，初始端粒长度较短的斑胸草雀个体在实验的最后一个月里端

粒长度却是增加最多的。对于这个意想不到的结果，我们推测最可能的原因

是生存环境的改变。三月份的斯科纳省户外气温在 0-10摄氏度之间，在这个

实验期间，鸟儿们从户外鸟舍被转移到了室内，打个比方，就相当于从容纳

60 只鸟的集体宿舍搬进了室内坏境恒温的小公寓（两只鸟）。 在这样温暖

的环境和充足的食物条件下，鸟儿得以有更多的能量来支持机体的生理功能，

通俗来说，就是吃好喝好身体倍儿棒！ 

相比于论文的第一部分，第二部分侧重在端粒的遗传模式。据大量文献显示，

端粒具有很高的遗传性，因此我们非常好奇如果父母的端粒长，这是否会遗

传给后代使得他们也有长的端粒？对于这个问题，我们花了四年的时间来准

备和实验，挑出端粒最长和最短的斑胸草雀个体进行定向繁育。实验结果如

下：1）如我们所预测，鸟宝宝的端粒长度是会被鸟爸妈的端粒长度影响的；

2）但是这个差异在胚胎发育的中期并没有显现，而出现在了鸟宝宝孵化 10

天后； 3）我们利用稍微复杂的动物模型试图区分可能决定鸟宝宝端粒长度

的因素，结果显示 30%由基因决定，15%左右取决于鸟爸妈的个“鸟”因素，

剩下的就是养育方式，比如喂食的频率，或者同窝鸟宝宝们的相互竞争也可

能会导致个体间端粒长度的差异。这些实验结果告诉我们遗传因素和后天因

素都会影响后代的端粒，尽管程度不同，但都很重要。 

综上，我的论文到底讲述了一个什么故事呢？我以斑胸草雀作为研究对象，

通过长期的纵向研究，分析了端粒在鸟生中的动态变化，探索了疾病和生活

环境的改变是如何影响和改变鸟儿的生理状态；同时我也试图理解染色体端

粒是如何遗传的。 

我花了四年的时间在这个领域溅起一个小小的水花，水波涟漪，一下就融进

了大海里，希望这个小小的水花有贡献进科学的海洋里，至此 
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Background 

Telomeres 

What are telomeres? 

Telomeres are distinctive sequences located at the end of linear chromosomes that 

help preserve genome stability, inhibit unnecessary recombination and prevent 

chromosome fusions (Blackburn 2000, Chan & Blackburn 2004). The shelterin 

complex (a protein structure that surrounds chromosome ends) and the enzyme 

telomerase, protect and maintain telomeres. The telomeric sequence is repeats of a 

short core sequence (TTAGGG)n, that is highly conserved in all vertebrates which 

indicates that telomeres are an efficient system for protecting chromosome ends 

(Meyne et al. 1989). 

 

 

Picture 1. A depictation of all 46 human chromosomes (blue), with telomeres (white) visualised with 
fluorescent markers. Copyright: Hesed M. Padilla-Nash and Thomas Ried, NCI (NIH in press). 
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Telomere attrition and restoration 

What causes telomere loss? 

In all somatic cells, the loss of telomeric sequences occurs progressively at each cell 

division due to the end replication problem (Levy et al. 1992). During cell division, 

chromosomes untwist and replicate but some pieces at the end of the chromosome 

will not be fully copied under the process of DNA replication, which is a result of 

inefficient initiation of Okazaki fragment synthesis (Chan & Blackburn 2004). 

Thus, at each cell division a chunk of telomeric repeats are lost, and because this 

inevitable loss of some distal bases are hitting telomeric repeats the core coding 

DNA region is protected from this grinding process (Verdun & Karlseder 2007). 

Consequently, telomeres shorten due to rapid cell division (e.g., during fast 

developmental growth) and with chronological age of the organism. 

In addition, other commonly cited reasons for telomere shortening is oxidative 

stress, often mentioned in studies of ageing. The imbalance between reactive oxygen 

species (ROS) and antioxidants in the cell environment may damage DNA, and the 

guanine-rich telomeric sequence are particularly vulnerable to this oxidative 

damage. Oxidative stress can be elevated by, for example chronic inflammation, 

disease, adverse environment, physiological and psychological stress (Epel et al. 

2004, López-Otín et al. 2013, Asghar et al. 2015a, Casagrande & Hau 2019, Shay 

& Wright 2019, Louzon et al. 2019).  

Nevertheless, telomeres ensure that the coding-DNA regions remain intact during 

cell divisions and are less vulnerable to DNA damage and, therefore, telomeres help 

to secure regular cell function. However, the protective action of telomeres is limited 

by telomere length: when telomeres shorten beyond a critical point, there are too 

few telomere repeats left to protect the coding regions of the chromosome. Thus, 

telomeres rather offer a relaxation than a cure for cell death/aging/cell dysfunction.  

Telomere shortening with age 

Telomere shortening in somatic cells translates into a finite number of divisions and 

cells therefore have a limited capacity to proliferate, unless it is a cancerous cell 

(Kim et al. 1994). Telomere shortening has thus became a hot topic for research 

focusing on ageing and senescence, either as a causative agent of ageing or as a 

marker of biological age that might be linked to e.g., physiological or pathological 

state. A meta-analysis showed that telomere length in adulthood, on average 

declines with age, but the correlation is weak and varies across vertebrate classes 

(Remot et al. 2022). This suggests that the decline in telomere length with age can 

be complex in vertebrates. In another study, it was found that the absolute telomere 

length (measured by telomere restriction fragments, TRF, analysis) decreased with 

increasing age in the zebra finch, the tree swallow, the Adélie penguin and the 

common tern, but elongated with increasing age in the Leach's storm petrel (Vleck 
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et al. 2003). Longitudinal studies in human infants and feline cells found telomere 

shortening with age (Zeichner et al. 1999, Brümmendorf et al. 2002). However, a 

study on long–lived seabirds, the European shag and the wandering albatross found 

that telomere declined between the chick and the adult stage, but telomere length 

and age were no longer correlated after adulthood (Hall et al. 2004). Clearly, 

patterns of telomere length and age vary among species (Gomes et al. 2010). Some 

studies also suggested that the rate of telomere shortening may play an important 

role in the aging process, and act as predictor of the mean lifespan of a species 

(Whittemore et al. 2019). For example, a paper by Haussmann et al. (2003) showed 

that long-lived bird species have a relatively slower telomere shortening rate 

compared to short-lived bird species. In this paper, they also found that telomere 

rate of change (TROC) varies with maximum lifespan in birds, and they reported 

similar pattern for mammals, e.g., house mice, dog, sheep and southern pig-tailed 

macaque (Haussmann et al. 2003). TROC emphasize that telomeres are not always 

shortening over time, but they may also show net elongation between time points. 

Telomere elongation could be involved in determining maximum lifespan in long-

lived species, and this may elucidate that perhaps the mean speed in which a species 

loses telomeric repeats is the main determinant for when telomere reaches its critical 

point. TROC could in turn be a consequence of many processes, for example 

differences in telomerase activity, different start-up telomere lengths, different rates 

of telomere shortening, and different cell division rates (Monaghan & Ozanne 

2018). 

Oxidative damage on telomere length 

Regardless of the cell division rate, another main factor responsible for telomere 

shortening is oxidative stress (Reichert & Stier 2017). As mentioned above, reactive 

oxygen species (ROS) can be produced as metabolites by multiple cellular processes 

in response to different stimuli, e.g., during mitochondrial oxidative metabolism or 

during an infection (Houben et al. 2008, Reichert & Stier 2017) or as a consequence 

of the innate immune response in which phagocytes produce excess ROS to directly 

damage the pathogen (Schantz et al. 1999, Ilmonen et al. 2008). Oxidative stress 

refers to the imbalance that arises when the level of ROS exceeds the capability of 

the cell to be protected by internal antioxidant responses or external antioxidants 

(Schantz et al. 1999). Telomeres are highly sensitive to oxidative stress due to their 

rich content of guanines (von Zglinicki 2002) and lack of antioxidants may therefore 

lead to a failure in the prevention of oxidative damage at telomere regions. The 

complex formed by telomeres and surrounding proteins becomes less stable, 

eventually leading to an accumulation of DNA damage and telomere loss (Reichert 

& Stier 2017). Oxidative stress is often increased after periods of high metabolic 

demands (Dowling & Simmons 2009, van de Crommenacker et al. 2012). Harsh 

environmental conditions (e.g., low food availability, low temperatures) or 

challenging biological processes (e.g., reproduction, immune responses) are also 
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expected to increase metabolism, whilst they also increase cell division rate and 

therefore lead to a higher production of reactive oxygen species. Accumulating 

evidence suggests that a stressful environment affects telomere length and/or 

telomere shortening rate, especially in early life (Epel et al. 2004, Monaghan 2014, 

Chatelain et al. 2020). 

Interestingly, mild stressors, such as mild disease or moderate environmental stress 

have sometimes been assumed to have negligible effect on survival and fitness. 

However, growing evidence suggests that moderate stressors may have a delayed 

“hidden cost” that manifests itself only after a threshold is reached (Asghar et al. 

2015b), that is also known as the ‘accumulating costs’ hypothesis (Hasselquist & 

Tobler 2021).  

Telomere restoration and mitigation of telomere shortening 

Telomeres shorten over time due to the processes mentioned above, thus organisms 

have adaptive ways to mitigate or reverse telomere attrition. The most direct way 

could be decreasing the cell turnover rate, hence somatic cells would go through 

less cell division per lifetime. Cellular turnover rate varies among cell types within 

an organism, but also between species (Sender & Milo 2021). Studies showed that 

long-lived individuals have potentially lower cell turnover rate. For instance, the 

lifespan of individual erythrocytes apparently extends along with species life span, 

hence reducing the mean number of necessary cell divisions per lifetime (Röhme 

1981).  

Telomere restoration enhances genome stability and tissue renewal and it involves 

the activation of the enzyme telomerase, i.e., the essential reverse transcriptase that 

is active during telomere synthesis (Blackburn 1991). Telomerase contains an RNA 

template and a protein catalytic unit to add additional telomeric repeats to the end 

of the chromosome (Greider & Blackburn 1989, Blackburn 2005). Telomerase 

levels are typically higher in cells with a high prolific potential, such as embryonic 

and adult stem cells, as well as cells in the germ line. Moreover, it is also present in 

stem cells in the bone marrow that have high proliferation rates necessary to make 

many new red and white blood cells. Telomerase is expressed during embryogenesis 

in humans and presumably in all mammals, but telomerase activity is normally 

suppressed after embryonic development is completed, and it is thought that this 

suppression of telomerase in somatic tissues contributes to cancer prevention 

(Young 2018, Shay & Wright 2019). Suppression of telomerase activity is believed 

to prevent tumorigenesis, dividing cells will reach the Hayflick limit thereafter the 

cell will commit apoptosis if telomerase is absent. However, in cancerous cells 

where the telomerase gene expression has been activated, cell division will no 

longer be limited by the Hayflick limit and such cells then in principle become 

immortal resulting in malign cancer (Wu et al. 2017, Shay & Wright 2019).  
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Recent research found that telomerase activity varies largely among cell types, 

differently life stages and in different taxa (Gomes et al. 2010). A study on asexual 

and sexual animals showed different patterns in the maintenance of somatic 

telomere length. Whereas sexual animals achieve telomere elongation only through 

sexual reproduction, asexual animals were able to maintain somatic telomere length 

by upregulated telomerase activity during regeneration (Tan et al. 2012). Risques 

and Promislow (2018) summarized studies of telomerase activity in animals in 

relation to body size. In species that were smaller than roughly 2kg, telomerase was 

expressed throughout life, while telomerase activity was commonly suppressed after 

embryotic development in animals with higher body mass (Risques & Promislow 

2018). Telomere elongation has previously often been viewed as a measurement 

error, typically in qPCR-based studies (Verhulst et al. 2015). However, recent 

studies on some mammals and a songbird reported telomere elongation that 

suggested a more complex pattern where elongation occurred under more benign 

environmental and conducive to self-maintenance (van Lieshout et al. 2019, Viblanc 

et al. 2022, Tissier et al. 2022, Brown et al. 2022), whereas in another songbird 

elongation occurred in individuals with short telomeres and without malaria 

infection (Gómez-Blanco 2023). A study by Haussmann and Mauck (2008) first 

brought up the idea of the [excess resources] elongation hypothesis which assumes 

that TL maintenance is relatively expensive; only high-quality individuals would be 

able to afford to invest resources in telomere elongation process. This seems to be 

the case in Seychelle warbler females that experienced lower stress (i.e., high food 

availability, assisted by helpers, without malaria) and had the chance to lengthen 

their telomere (Brown et al. 2022). We recently also proposed the last resort 

elongation hypothesis in paper I, suggesting that individuals would accept the 

disadvantages (e.g., energetic costs, risk of cancer) to invest and elongate telomeres 

when its telomere length is getting too close to the critical point (further discussed 

in paper III) (Tobler et al. 2022). 

The balance between telomere shortening and telomere maintenance is essential for 

the health of organisms. The understanding of the patterns and pace of telomere 

attrition and restoration is likely to be very important for our understanding of life 

history evolution. When DNA damage accumulates and exceeds the capacity of 

DNA repair mechanisms, cellular senescence or apoptosis occurs, which may 

contribute to the ageing process. Thus, it has been suggested that telomeres and/or 

telomere dynamics is one of the best proxies for studying the accumulation of 

damage in somatic cells (Monaghan 2010). 

The immune system and telomeres  

Organisms are normally exposed to a wide range of pathogens (both in the wild and 

in captivity). In vertebrates, when pathogens are detected by immune cells, the 

innate and the adaptive immune system will be activated. As a first line of defense, 
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the innate immune system induces a series of reactions in a short time, including the 

activation of a complement system, the identification of antigens, activation of 

immune cells and the promotion of the clearance of antibody complexes. Large 

amounts of white blood cells will be produced and released into the blood stream to 

remove foreign substances. If the pathogen is not cleared from the body, the 

adaptive immune system will also be activated, which will produce antibodies 

against specific antigens. Antigens are highly specific to particular pathogens and 

this recognition guarantees a long-lasting protection in the case of re-infection (Ooi 

et al. 2010, Vanguri 2014). Maintaining an effective immune system is very 

important to protect organisms from diseases. It is a key component for organism 

function, however, the magnitude of investment in the immune system may differ 

depending on life history strategy. This is because the maintenance of an efficient 

immune system and the deployment of immune responses are costly (McKean et al. 

2008), thus investment in immune function must be traded off against investment in 

other essential physiological functions, such as maintenance of TL, for example.  

Telomere shortening as a response to immune activation 

One potential cost of immune system activation may be accelerated telomere 

shortening (Hasselquist & Tobler 2021). There is a direct link between immune 

system activation and telomere shortening through cell proliferation and oxidative 

stress. Immune cells have a high proliferation rate during infections, and the 

activation of (especially) the innate immune system involves the production of 

excess ROS either through increased inflammatory mechanisms or through elevated 

metabolism (Ilmonen et al. 2008). Telomere length could be reducing at a faster rate 

as a response to immune activation when immune cells rapidly expand in numbers 

to fight infections or during inflammatory disease (Derting & Compton 2003, 

McKean et al. 2008, Eisenberg 2011). During periods of energy shortage, organism 

need to trade-off energy between immune function and telomere maintenance 

(telomere repair mechanisms). It has been suggested that under an energy 

emergency state, telomeres are shortened rapidly, possibly because immediate 

survival is prioritized over long-term somatic maintenance such as telomere 

protection and restoration (Casagrande & Hau 2019). 

Telomere inheritance   

Even though telomere length changes over life, a growing number of studies 

demonstrate that early-life telomere length (eTL) can predict telomere length at later 

stages of life (including total lifespan; (Heidinger et al. 2012, Eastwood et al. 2019, 

van Lieshout et al. 2019) as well as life history strategy (Herborn et al. 2014, 

Marasco et al. 2022). It is therefore of particular interest to understand how telomere 

length is inherited across generations, and how the parents may affect offspring 

physiology and behavior (survival) not only through genetic factors but also through 
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non-genetic effects (e.g., parental effects), and how environmental effects (e.g., 

epigenetic effects) are contributing. Taking into account both genetic and non-

genetic effects will improve our understanding of the proximate mechanisms 

underlying the determination of telomere length (with potential implications for life 

history strategies). 

Several studies have discussed the potential mechanisms for telomere inheritance. 

Early studies suggested X-linked inheritance of telomere length in humans (Nawrot 

et al. 2004), and such an association was confirmed in studies on a Dutch population 

and in a meta-analysis of humans in general (Broer et al. 2013, Nersisyan et al. 

2019). However, studies on birds have provided different results. Studies in kakapos 

and great reed warblers have shown, that besides genetic effects, there was also 

rather strong maternal effects acting on telomere length (Horn et al. 2011, Asghar 

et al. 2015a) Maternal inheritance was also found in a study in king penguin, 

although they also noticed that the correlation become not significant as chicks grew 

older (Reichert et al. 2015). On the other hand, recent studies have reported stronger 

paternal inheritance of telomere length in humans and sand lizards (Nordfjäll et al. 

2005, Njajou et al. 2007, Olsson et al. 2011). The suggested mechanisms behind 

such paternal/maternal telomere inheritance could be an independent or joint result 

of parent-specific imprinting, hormonal regulation and sex-chromosome linkage 

(Nordfjäll et al. 2005, Horn et al. 2011, Olsson et al. 2011).  

The estimated telomere heritability reported in humans varies between 34% and 

82% (Broer et al. 2013, Kim et al. 2020). Kim et.al (2020) reported a leukocyte 

telomere length heritability of 64%, estimated by measuring TL through three 

generations in families, including newborns, parents, and grandparents. However, it 

was problematic that telomere length was measured at a different time point in life 

for each individual. As compared with newborns, the telomere lengths of parents or 

grandparents are measured at very different life stage, and therefore environmental 

effects may have substantially affected their TL. This is a common drawback in 

studies of humans where environmental effects and non-genetic effects are not 

easily quantified. Studies on heritability in species other than humans provide a wide 

range of patterns, e.g., telomere length being inherited from father to daughter, or 

from mother to son (Dugdale & Richardson 2018). Atema et al. (2015) estimated a 

very high heritability (99%) in zebra finches. In contrast, a study on long-lived 

myotis bats only found a heritability of 1.1%–6.0% (Foley et al. 2020). In studies 

on animals where it is possible to separate genetic and non-genetic (e.g., parental) 

effects with the help of animal models, lower heritability estimates for the genetic 

components have been found 3.8 ± 6.9% in white-throated dippers, 18% in collared 

flycatcher, 35-48% in great reed warbler and 48% in tawny owls (Voillemot et al. 

2012, Asghar et al. 2015a, Becker et al. 2015, Morosinotto et al. 2022). This 

variation in TL heritability estimates among studies is somewhat puzzling. It could 

be the result of biologically interesting variation in either the genetic background of 

the population or the amount of environmental variation experienced. This might be 
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able to explain the differences of mechanisms of inheritance on telomeres, either 

between wild versus captive populations, between humans and non-human animals, 

and between wild populations inhabiting environments with varying levels of 

temporal and spatial heterogeneity. However, study designs, methodological 

variation and biological or cultural differences across populations are likely to 

contribute also to this large variation. For example, the life stage in which telomere 

length is measured, or the use of different measurement method (TRF or qPCR-

based), and statistical methods (parent-offspring regression or animal models) all 

could affect the results (Nussey et al. 2014, Eisenberg 2014).  

Physiology and telomeres  

Maintaining a good health status is a fundamental task for multicellular organisms. 

However, it is quite difficult to define ‘being healthy’, especially when it comes to 

animals. McGlone tried to describe it as a state of normal physiology and to live 

free from disease (McGlone 1993). Prolonging a good health status enables 

organisms to monopolize resources, pursue costly reproductive strategies, optimize 

reproduction and, ultimately, maximize Darwinian fitness. Though, physiological 

performance degrades with age (Boss & Seegmiller 1981, van Beek et al. 2016). 

Telomeres have been suggested to be an indicator of individual quality (i.e. longer 

telomeres signify better quality). If true, one might expect that individuals with 

longer TL would excel individuals with shorter TL in other measures of 

physiological health (especially given that TL has been shown to be associated with 

age-related degenerative diseases (Boss & Seegmiller 1981, van Beek et al. 2016). 

Animal physiology involves intricate systems that do not work in isolation but form 

a coordinated physiological regulatory network (Cohen et al. 2012). One of the well-

studied parameters that underly physiological performance is glucose (GLU). 

Glucose is the direct energy source for carbohydrate metabolism to generate energy 

for all kinds of fundamental cellular function. Blood glucose concentration is 

upregulated when exposed to energy demanding processes, such as immune 

activation (Braun & Sweazea 2008, Von Ah Morano et al. 2020). In addition, 

increased glucose levels in the blood may link to an increase in oxidative stress 

which could result in DNA (including telomere) and cell damage. However, this 

damage is mitigated through endogenous antioxidant mechanisms such as the 

production of uric acid (Cohen et al. 2007). Uric acid (UA) is the most abundant 

circulating antioxidant, and is derived from amino acid catabolism (Cohen et al. 

2007). The oxidative tissue damage to skeletal and cardiac muscles induced as a 

response to immune activation is reflected in an elevated concentration of Creatine 

kinase (CK) and aspartate aminotransferase (AST) (Abdelmajeed 2009). 

Physiological mechanisms are tightly integrated, such as the immune response and 

the oxidative stress system are thought to be tightly linked with costs (Pamplona & 
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Costantini 2011), and many other physiological systems modulate each other and 

hence affect each other’s outcomes (Costantini et al. 2011).  

A wide range of assay are used to measure physiological parameters related to, e.g., 

metabolism and nutritional status; e.g., hormones (Davies et al. 2013, Huber et al. 

2017, Fletcher et al. 2018), oxidative stress (Cohen et al. 2012, Costantini et al. 

2016, Jensen et al. 2023), immune function (Hasselquist et al. 2001, Demas et al. 

2011, Hegemann et al. 2017), and also telomere length (Chaney et al. 2003, Ilmonen 

et al. 2008, Hohensinner et al. 2011). Combining different measures of 

physiological status (e.g., TL and different blood analytes) can give a more 

comprehensive picture of the overall quality of an individual. Studies of 

physiological variation in response to biotic and abiotic stressors can help us to 

understand and predict how animals cope with stressful conditions (Enders et al. 

2015, Lettoof et al. 2021), and improve our understanding of how different life-

history strategies can evolve (Hasselquist et al. 2007, Evans & Gustafsson 2017, 

Hegemann et al. 2019, Andreasson et al. 2020, McWilliams et al. 2021).  

Telomeres in an evolutionary ecological perspective  

Telomere length and telomere dynamics is determined by both genetic and 

environmental effects. The variation in telomere length at adulthood within the 

population may result from one or a combination of environmental stressors, such 

as infection (Asghar et al. 2015b, Karell et al. 2017), reproduction (Sudyka et al. 

2019, Pepke et al. 2022) and environmental conditions (Giraudeau et al. 2019, 

Chatelain et al. 2020). Recent studies have shown that the conditions individual 

experienced early in life can have profound effects on later life physiology and 

performance (Monaghan 2008). In vertebrates, the fertilized egg cell grows into an 

individual with complete functional organs during embryonic development, 

normally within a very limited time. During this period of development, from pre-

natal to early post-natal, the offspring goes through a huge amount of cell 

proliferation and cellular differentiation. Hence, this period of high growth rate is 

usually also linked to a higher rate of telomere attrition (Haussmann & Marchetto 

2010, Boonekamp et al. 2014, Monaghan & Ozanne 2018). As mentioned above, 

this is the suggested reason for higher telomerase activity during embryonic 

development, in order to compensate for the higher telomere attrition rate partially 

caused by the high cell division rate.  

Earlier studies in humans showed that early-life stress, e.g., physiological or 

psychological stress, could affect long-term performance (e.g., metabolic disorders) 

into adulthood (Barker 1990, Marasco et al. 2022). The early-life stress in this 

context could mean a variety of physiological and behavioral responses, including, 

but not limited to, nutritional restrictions, limited parental resources, social 
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competition, predation pressures, pollutants, or hormones (Romero et al. 2015, 

Sapolsky 2015). Studies on song-birds have found shorter telomere length of 

nestlings reared in urban vs. rural environments (Salmón et al. 2016) or reared at 

higher ambient temperatures during the nestling period (Casagrande et al. 2020, 

Stier et al. 2020, Eastwood et al. 2022).  

Parental traits, such as age, has been found to have an impact on offspring longevity 

(Carslake et al. 2019), which is also known as the Lansing effect (reviewed in 

Monaghan et al. 2020). Moreover, accumulating evidence suggest that offspring 

telomere length can be affected by parental age (Heidinger & Young 2020). One 

such mechanism is the quality decline of gametes with parental age, as some studies 

have found that gametes from older parents are more likely to contain DNA 

mutations and shorter telomeres (Monaghan & Metcalfe 2019). In addition to the 

genetic effect, there are non-genetic parental (environmental) effects that may 

change with age. For example, parental care may be reduced with age (e.g., lower 

feeding frequency or ability to defend the nest) and older parents may not be capable 

of occupying a high quality territory (Monaghan & Metcalfe 2019). However, there 

are also examples where older individuals seem to be of higher quality, such as older 

breeders being better at obtain resources for their offspring or older mothers 

producing offspring with longer telomeres (Asghar et al. 2015a, Dupont et al. 2018). 

To understand how offspring telomere length and telomer shortening may be 

affected by parental age and condition will help us to further reveal and understand 

patterns of telomere inheritance from an ecological and evolutionary perspective. 

 

 
Figure 2. Watercolor masterpiece by Violeta Caballero López 
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Thesis aims 

The aim of this thesis is to gain a better understanding of how telomere dynamics 

vary across life stages and how different factors such as inheritance, immune 

function and environmental conditions affect telomere length and shortening. The 

findings in this thesis add to our knowledge about the physiological mechanisms 

that shape-individual life history strategies and modulate fitness. 

The thesis includes both theoretical and empirical work. Paper I describe a 

conceptual framework of the current main hypotheses in telomere ecology and 

evolution, highlighting controversies and gaps in knowledge. In paper II-V, a 

combination of experimental and laboratory methods are used to study inheritance 

of telomere length as well as physiology and telomere dynamics in captive zebra 

finches (Taeniopygia guttata) (Paper II-V) and nestling jackdaws (Corvus 

monedula) (paper II). 

The main research questions are:  

What are the current main research questions, controversies and conceptual 

gaps in telomere ecology and evolution? 

In paper I, two conceptual frameworks are presented which group telomere-related 

hypotheses either based on their connection to research questions or in a hierarchical 

framework based on their assumptions of causality and proposed functional 

consequences of telomere length/shortening. The aim was to highlight the 

similarities and discrepancies between different ‘telomere hypotheses’ and, thus, to 

provide an overview of the controversies and theory ‘gaps’ in the field. The paper 

is also intended to bridge ideas that stem from different research disciplines and thus 

help researchers, both those familiar with and those new to the subject, to identify 

new avenues for research. 

What tools can (field) ecologists use to obtain a comprehensive health 

measurement of birds? 

Paper II is an evaluation of the usefulness of the VetScan blood analyser for the type 

of studies conducted in this thesis. The suitability of the blood analyser was tested 

in field or semi-field settings. The study describes potential constraints, e.g., in 

terms of blood volume (>80ul), how quickly analyses need to be conducted, as well 

as advantages in usage. 
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Do repeated episodes of immune system activation result in accumulated 

telomere shortening and what is the role of the ambient environment? 

Paper III aims to elucidate how repeated immune challenges may induce 

physiological changes and affect telomere dynamics. TL was measured with the 

qPCR method and a portable VetScan VS2 analyser was used to measure 

physiologically important blood analytes. The major target was to experimentally 

test if accelerated telomere degradation may be a putative mechanism through which 

small immune costs can accumulate and be translated into senescence effects. 

However, it also revealed some unexpected and exciting results regarding the effects 

of the ambient environment on TL dynamics. 

Are telomere length and telomere trajectories set for life already at conception? 

Paper IV tests the idea that telomere length and telomere trajectories are determined 

already before birth (or even at conception), by studying trans-generational effects 

and parental age effects in relation to offspring sex, using an experimental set-up 

with assortative mating of parents based on their own early-life telomere length. 

What are the genetic and non-genetic contributions to telomere length and are 

estimates of heritability consistent when they are based on the same or different 

life stages in parents and offspring?  

In paper V, data on parental and offspring telomere length were used to estimate the 

heritability of telomere length when compared at different life stages in parents and 

their offspring. We used both animal model and parent-offspring regression 

analyses to disentangle genetic effects, non-genetic parental (maternal and paternal) 

effects and purely environmental effects. 
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Methods 

Study species 

The zebra finch (Taenopygia guttata) is native to Indonesia and Australia, it is the 

most common and widespread grass finch across the Australian continent. Zebra 

finches live in social flocks, their body size is ~10-12cm long and 9-1. In their 

natural habitat, zebra finches may live up to 4-5 years but individuals in captive 

populations can reach to 5-9 years. Typically, individuals reach sexual maturity at 

an age of three months and they breed all year round during the raining season. 

Zebra finches have a clutch size of 3-6 eggs and incubation normally takes 11-13 

days. Both parents participate in feeding and taking care of the nestlings. Nestlings 

fledge around 18-22 days after hatching, and parents provision fledglings until they 

are independent (~circa 45 days). Zebra finches are easily kept and bred in captivity 

making them excellent study subjects for longitudinal studies.  

Zebra finches have been used as a captive model organism in a wide range of 

biological studies, ranging from behavior such as song learning (Slater et al. 1988, 

Clayton et al. 2009) to physiology and genomics (Westneat 1997, Wada et al. 2006, 

Warren et al. 2010, Balthazart et al. 2017) and aging/telomere studies (Haussmann 

& Vleck 2002, Atema et al. 2015, Salmón et al. 2021). The population used for my 

work originate from a large population maintained at the Max Plank Institute, 

Seewiesen, Germany.  

My study population is kept in outdoor aviaries at Stensoffa Ecological Station, 

Lund, Skåne Sweden (N 55°69′, E 13°44′). Zebra finches were taken indoors during 

the immune challenge experiments in papers II and III, and selective breeding 

experiments in papers IV and V. During these experiments, they were exposed to 

natural timing of day/night regime, a mixed seed diet (Finkfrö, Franks Zoofor AB), 

drinking water and sepia shell were provided ad libitum at all times. 
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Picture 2. Zebra finches in outdoor aviary in Stensoffa Ecological Station (Photo by Elsie Ye Xiong)  

 

 

Picture 3. Breeding experiment at indoor aviary and a pair of zebra finches in a breeding cage at 

Stensoffa Ecological Station (Photo by Elsie Ye Xiong)  

Paper II involved western jackdaws (Corvus monedula) from a wild nest box colony 

at Revingehed (N 55°43′, E 13°26′) in southern Sweden (Aastrup & Hegemann 

2021). Jackdaws are mostly resident (i.e., non-migratory), their clutch size 3-5 eggs, 

and our study only involved nestlings (26 to 29 day-old). Their larger body size that 

allowed for repeated blood sampling in a relatively short time period.  

Immune challenge experiment  

The immune response is particularly of interest to us given that the maintenance of 

an efficient immune system is costly (see introduction). We applied two types of 

immune stimulants to zebra finches in chapter III. Lipopolysaccharides (LPS) is an 
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endotoxin that is found on the cell wall of gram-negative bacteria (Johnson et al. 

1993) and Keyhole limpet hemocyanin (KLH), is a large metalloprotein that is 

found in the hemolymph of the giant keyhole limpet- Both two compounds are 

commonly used to trigger innate and adaptive immune responses respectively 

(Hasselquist & Nilsson 2012, Merrill & Grindstaff 2015) 

We were interested in how physiological parameters and telomere length are altered 

under different scenarios of immune responses. We repeatedly stimulated the 

immune system of zebra finch adults within a month per year (two times in total, 

16th March to 16th April 2019 and 17th March to 16th April 2020; Figure 3.). LPS 

injection was administered via injection every 10 days from when the experimental 

month started (16th March 2019 and 17th March 2020) for three times 

(day0/day10/day20 and day365/day375/day385). KLH injection was administered 

twice at day0/day20 and day365/day385 within the experimental month. All birds 

were blood sampled at each timepoint before immune challenge. The control birds 

were only handled, and blood sampled, but not given an immune stimulant. 

  

 

 

Figure 3. Experiment setup of the longitudinal immune challenge experiment.   

The long-term experiment was preformed over the course of a year from 2019 March to 2020 April. Zebra 

finches were moved in from the outdoor to the indoor aviary on March 2019 and March 2020 for a month 

per year. During the months they were housed indoors, we used a VetScan VS2 blood analyser to 

measure physiological blood analytes on day-10 (10 days before immune challenge experiment start), 

day355 and day405. We also gave LPS (Lipopolysaccharides) and KLH (Keyhole limpet hemocyanin) to 

treatment groups (details please see above in text), and only handled the control group. Blood samples 

were collected at multiple time points through the year. 

VetScan – physiological health  

In papers II and III, we measured physiological parameters with VetScan VS2 

machine. The VetScan VS2 machine is a small stationary blood analyzer that can 

be used to measure up to 12 different physiological parameters from one single 
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sample (80 µL) of avian or reptilian blood (blood parameters: Asparate 

Aminotransferase (AST), Creatine Kinase (CK), Uric Acid (UA), blood Glucose 

(GLU), Phosphorous (PHOS), Calcium (Ca++), Total Protein (TP), Albumin (ALB), 

Globulin (GLOB), Potassium (K+), and Sodium (Na+)). These physiological 

measurements helped us to evaluate individuals’ health status by examining blood 

parameters on electrolyte status, liver integrity and renal function. Therefore, it 

provided an overview of the animal’s health while focusing on specific organ 

functions. We followed individuals (2-3 times) to collect this longitudinal dataset 

therefore allowing us to assess whether there are any signs of physiological 

senescence (paper II) or responses to immune challenge (paper III). In paper II, we 

examined if VetScan could capture individual consistency on physiological traits in 

the long-term but also account for how handling stress in the short-term can affect 

blood analytes. In paper III, we included physiological measurements were 

accompanied to understand the effect of a moderate stressor (immune challenge) on 

telomere dynamics. 

Breeding experiment  

Telomere inheritance has been well studied in humans and many other organisms, 

including zebra finches (Horn et al. 2011, Eisenberg 2014, Atema et al. 2015, 

Noguera et al. 2018). Although, how telomere heritability is potentially affected by 

genetic or non-genetic factors at depending on developmental stages, i.e. from 

conception to postnatal development stage is still unclear (Perez & Lehner 2019). 

To investigate the telomere inheritance pattern at different life stages, we conducted 

assortative breeding experiments where we selected zebra finch adults with known 

early-life telomere lengths? (eTL, measured by day10 blood sample) and age cohort. 

Experimental individuals were checked for relatedness before pairing to avoid 

inbreeding (we did not breed siblings or half siblings). We performed the assortative 

breeding experiment twice between July-December 2020 and between July-

November 2021. Breeding zebra finch adults were selected based on their eTL 

group (long or short) and age (cohort/age group: young 6-9 month or old 27-32 

month). The pairing method was different between year 2020 and year 2021. In year 

2020 (paper V), we made four distinct breeding groups by producing pairs within 

the same eTL group and age groups (long × long and short × short for old and young 

cohorts respectively). In the year 2021, we also paired birds within the same eTL 

group but not between age groups (long eTL: young female × old male or young 

male × old female, same for short eTL groups). 

The breeding processes were monitored from nest building until nestlings were 

independent from their parents. In addition, we collected the first clutch of eggs laid 

by the breeding pairs in 2020 and only the first egg laid in 2021, the collected eggs 

were moved and incubated in an incubator for 6 days with controlled temperature 

and humidity. Pairs were allowed to continue with breeding and produce a new 
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clutch from which they raised offspring. More specifically, in paper IV, we 

compared telomere length of 6-days-old embryos and 10-day old nestlings 

((produced by the same parents) in relation to parental eTL group and parental age 

group based on the breeding round in year 2020. In paper V, we used animal models 

and parent-offspring regressions to estimate heritability between parents and 

offspring at different life stages in both parents (at nestling and at adult (when 

breeding) stages) and their offspring (at embryo and at nestling stages). 

Telomere measurement 

DNA extraction 

Studies have shown that tissue types, sampling collection methods, and storage of 

DNA extractions, can lead to conflicting telomere measurements (Cunningham et 

al. 2013, Nussey et al. 2014). We used DNA extraction kits from Machery-Nagel to 

extract DNA from blood and embryo samples to avoid unnecessary inconsistency 

by sample type or method (Reichert et al. 2013, Asghar et al. 2016, Demanelis et al. 

2020). However, the NucleoSpin™ Blood QuickPure kit was used to extract DNA 

from whole blood for paper III, and blood from parent samples in papers IV&V. 

Additionally, to extract DNA from embryo and nestling blood samples in papers 

IV&V, we used a NucleoSpin™ Tissue kit. Extractions were conducted according 

to the manufacturers’ protocols.  

  

Quantitative real-time PCR  

Relative telomere length (RTL or TL) was measured by quantitative real-time PCR 

(qPCR) (Cawthon 2002), and is a relative measure of the telomere repeated copy 

number (t) in relation to control copy gene (s). Hence, the relative telomere length 

is measured as a ratio (t/s). We optimized our qPCR protocol based on Criscuolo’s 

method (Criscuolo et al. 2009) which has previously been validated for studies 

involving birds. We designed new primers for a single copy gene, glyceraldehyde-

3-phosphate dehydrogenase (GAPDH, GenBank ID: NM_001198610), telomere 

primers remained the same as in the paper. We updated the qPCR protocol by 

decreasing the amount of DNA required for each reaction to 5ng per reaction and 

reduced reaction cycles for both telomere and GAPDH. We also changed to Skirted 

Hard-Shell® 96-Well PCR Plates (Bio-Rad, model.id: HSP9601) to improved 

qPCRs performance in the CFX96™ Realtime System C1000 Touch® Thermal 

Cycler (Bio-Rad). 

In papers III, IV and V, we measured the relative telomere length by using our 

established qPCR method (details see paper III). DNA samples that on each qPCR 

plate were ran at least in duplicates for paper III, and as triplicates for papers IV and 
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V. Further, we also ran every sample for at least two distinct rounds (same DNA 

sample but different dilutions) to confirm the results.  

 

 

 

 

Figure 4. Illustration of zebra finch cuties playing with DNA tree. 

By Chang Xu (徐兔妖) 
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Result and Discussion 

The combination of abiotic and biotic stressors shapes an organism’s health status. 

Telomeres have been considered one of the best proxies for evaluating the effects 

of environmental stressors on health status at both the individual and population 

level, and in laboratory and wild study systems (e.g., Asghar et al. 2015b, Bateson 

2016, Entringer et al. 2018, Angelier et al. 2019). Since telomeres are heritable, this 

allows researchers to investigate how transgenerational patterns shape fitness-

related life history traits (Heidinger et al. 2012, Voillemot et al. 2012, Brown et al. 

2022). Specifically, this thesis investigates the effects of environmental conditions 

(i.e., immune challenge and transfer to a benign ambient environment) on telomere 

dynamics and estimates heritability of TL based on different life stages in a set of 

experiments and using different methods.  

Here, I present an overview of some of the most important results found in the five 

papers of my thesis, and also include a brief discussion of these results.  

The current main research questions, controversies and conceptual 

gaps in telomere ecology and evolution (paper I) 

For the past two decades, there has been a surge in the number of hypotheses 

involving telomeres in the field of ecology and evolution. These have mainly been 

related to associations between telomere length/shortening and life-history traits or 

fitness-facilitating processes, sometimes with similar or just slightly different angles 

on a certain research question. To get a comprehensive understanding of the existing 

hypotheses, how to test them and to provide a quick overview over the results from 

previously published studies, it is helpful to synthesize the hypotheses in a 

systematic way. In paper I, we review name-given ‘telomere hypotheses’ in the field 

of ecology and evolution and provide two conceptual frameworks that help 

understand their differences (or similarities). The aim of paper I is to frame and 

provide a clear overview that can help researchers from different fields to critically 

test the different hypotheses and to identify conceptual gaps. 

The hypotheses were grouped in two ways; (i) based on their main research 

question, and (ii) in a hierarchical framework based on the assumptions of causality 

(i.e., if telomere length/shortening has a causal effect on organism performance) and 

if functional consequences of telomere length/shortening have been proposed. We 
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found that many of the existing hypotheses from different research areas have 

generated parallel, or sometimes even overlapping, ideas. However, several of the 

hypotheses are also competing, thus generating opposing predictions. When we 

grouped the hypotheses based on the research questions they address (Figure 5), we 

found that some hypotheses have been formulated in a broad way so that they end 

up in more than one cluster. We then grouped the hypotheses in a hierarchical way, 

based on assumptions of causality and the proposed functional consequences of 

telomere attrition on performance (Figure 6). This hierarchical framework helps to 

get a new angle on the similarities and differences among the many hypotheses. 

Hence, we believe that this paper would help other researchers to conduct more 

rigorous hypothesis testing and identify conceptual gaps. 

 

 
Figure 5. Grouping of the hypotheses based on research questions (Grouping I).  

Hypotheses in italics are included in more than one research question because they have been 
described so broadly that they cover more than one of these contexts. 

The paper I review relates directly to several of the other papers included in my 

thesis. For instance, I investigated hypotheses in the cluster “physiological 

currency” in grouping I as well as in the context of “cost maintenance models” in 

grouping II. It is well known that telomeres shorten with age and that cell function 

would collapse if telomere length reached a critical point. At the basis of many of 

the hypotheses is the question ‘why is there such large between-individual variation 

in telomere length within populations?’ If having long telomeres is beneficial for 

the organism, why is there no directional selection for longer telomeres? The current 

view is that long telomeres also entail costs. The costly maintenance hypothesis, the 

thrifty telomere hypothesis and the metabolic telomere attrition hypothesis assume 

38



 

that telomere maintenance is energetically costly and that organisms therefore must 

trade-off investment in maintenance with investment in other energetically 

demanding functions or behaviours. Hence, organisms have to tolerate some 

telomere shortening because they have to trade-off limited resources with other 

fitness-improving functions. The studies described in paper IV and V test 

hypotheses in the cluster that is termed “static and dynamic signal models” that 

suggest telomeres are pre-determined by parental effects and the early-life 

environment (pre-natal and early postnatal). Hypotheses highly relevant for my 

thesis in this cluster are the fetal programming of telomere biology hypothesis that 

assumes a maternal effect modulate the initial setting of telomere length and 

telomerase expression with long-term influence on the offspring’s life-history or 

behavioural strategies, and the telomere messenger hypothesis that proposes that 

environmental cues are transferred to offspring via TL.  

 

 

Figure 6. Hierarchical classification of the telomere hypotheses (Grouping II).   
Specific assumptions for each hypothesis and the rationale of clustering them in a certain group are 
discussed in more detail in paper I. With causality or causal effect, we mean that telomere length or 
shortening per se can affect performance and function of the organism. * denotes new hypotheses that 
were added by us in paper I. 
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A tool for (field) ecologists to obtain a comprehensive health 

measurement of birds (paper II) 

The assessment of VetScan VS2 in a study with semi-field and field settings 

Physiological mechanisms work as a complex network, meaning that many 

physiological systems cooperate and they modulate each other’s outcomes within 

different pathways (Costantini et al. 2011). Our aim was to use analyses of 

physiological health in conjunction with telomere dynamics in immune-challenged 

individuals. However, the measurement of physiological parameters can be 

difficult, for example because the sample volume is small and only few parameters 

can be assayed, or because there are financial and logistical limitations when 

working with wild animals. The VetScan blood analyser may be a valuable tool to 

overcome some of these limitations. We therefore conducted a methodological 

study to validate the usefulness of this instrument for ecological and evolutionary 

studies, such as the ones described in paper II and III of this thesis. We tested the 

repeatability of the measurements and the sensitivity to stress under different 

conditions and across different timepoints in jackdaw nestlings and zebra finch 

adults (paper II).  

Other physiological studies have shown that storage condition and time can affect 

the measurement values for different blood analytes (Männistö et al. 2007). In paper 

II, we checked consistency of blood parameter values in relation both to short- and 

long-term storage time. We found no effect of short-term storage (2 hours) on the 

concentrations of seven out of 10 blood parameters, and four blood analytes 

remained stable even after long-term storage (12 hours). Our results generally agree 

with studies done on other blood analysers (Christopher & O’Neill 2000, Turchiano 

et al. 2013, Hoppes et al. 2015, Lee et al. 2016).  

Animals can show rapid reactions to stress (Davies et al. 2013, Deviche et al. 2016, 

Li et al. 2019). To investigate how sensitive VetScan analyte measures were to 

effects of capture and handling stress, we sampled blood from jackdaw nestlings at 

multiple times (<3min, 16 min and 30 min after handling began). Eight out of 10 

parameters were significantly affected by handling stress already after 16 min 

(Figure 7). These results show that the Vetscan VS2 blood analyser can capture 

rapid changes in blood chemistry, and thus can be used to study stress effects on 

multiple analytes simultaneously. However, our study also underlines that blood 

samples should be collected as quickly as possible after capture (e.g., within 3 min) 

if wanting to avoid confounding effects of handling stress.  
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Figure 7. VetScan measurement results from handling stress and the 12-h storage experiment 
conducted on jackdaw Corvus monedula nestlings.   
The x-axis labels denote the time from capture to when the blood sample was taken (2min (baseline), 
16min and 30min (stress samples)) and the maximum storage time for jackdaw samples (12h, shaded 
area). See methods for detailed handling and storage protocols. The y-axis denotes the range of the 
values for the different blood analytes. The box in the upper left corner of each panel reports the statistics 
of the repeated measures analyses for the 2-min, 16-min and 30-min sample. Different letters above the 
error bars reflect significant differences (p<0.05) and are based on Tukey post-hoc tests for the repeated 
measures. Statistical differences between the measurement values analyzed after 2h and after 12h, 
respectively, were based on Wilcoxon signed rank tests. 
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Effects of repeated episodes of immune system activation on 

accumulated telomere shortening and the role of the ambient 

environment (paper III)  

In paper III, I and my colleagues investigated how telomere dynamics and other 

physiological health measures were affected by repeated immune challenges and 

environmental conditions. Controls and immune challenge groups showed 

significant differences in two blood analytes, GLU and CK. Changes in CK are 

difficult to interpret since most of the treatment effect is due to changes in the 

control individuals between day 60 and day 365. However, in the case of glucose, 

the two immune challenged groups showed higher levels than controls, suggesting 

that blood glucose levels were upregulated to facilitate energy demanding 

inflammatory immune reactions.  

We found no significant difference between treatment groups in terms of telomere 

length (TL) change over the entire experimental period. However, we found an 

unexpected pattern of a mean increase in telomere length (i.e., telomere elongation) 

independent of treatment when birds were moved from harsh outdoor to benign 

indoor conditions over the second immunization period (day365 to day395). 

Moreover, the magnitude of telomere elongation (and shortening) depended 

critically on the initial TL value prior to the immune challenge treatments (Figure 

8). Individuals with initially short telomeres showed the largest elongation (a mean 

increase of almost 70 % and a maximum of > 150%) over just one month, while 

individuals with longer telomeres tended to retain or even shorten their telomere 

length (Figure 9). To the best of our knowledge, such a large and fast telomere 

elongation effect has not been observed before in any vertebrate. These results 

suggest that ambient environmental factors contributed unexpectedly much to 

telomere dynamics in this case. Indeed, other studies have shown that zebra finches 

increased aggressive behaviors when living at high social density, leading to a 

stronger activation of reactive oxygen metabolites, and this, in turn, means that less 

energy can be used for body maintenance (Poot et al. 2012, Quque et al. 2022). The 

level of inter-individual competition (about 60-ish same-sexed in the outdoor aviary 

vs only 2 birds in an experimental cage) was likely strongly reduced during the 

immune challenge period. Additionally, the benign and mild indoor environment 

with constant room temperature likely improved living conditions (and reduced 

their costs). These changes in living environment singular or combined probably 

masked the cost of immune stimulation.  

The results from paper III showing a rapid elongation in telomere length are notable 

also because elongation in telomere length is still debated in the field (previously 

often viewed as a methodological artefact), and is at odds with the hypotheses listed 

under “Aging” in the grouping based on research questions in paper I. Moreover, it 

is worth noting that the individual quality hypothesis, the excess resources 

elongation hypothesis and the costly maintenance hypothesis all assume that 
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telomere maintenance is costly and only high-quality individuals can afford to have 

long telomeres (i.e., are able to invest heavily in TL maintenance). The results in 

paper III appear to partly support this. Zebra finches elongated their telomeres after 

they were moved indoors which suggests that the telomere maintenance costs were 

alleviated when the birds were moved inside. However, it was mostly the individuals 

with the shortest telomere length (at the experiment start) that elongated TL over 30 

days during the second immunisation period. These results support the critical 

threshold models (see paper I) and the last resort telomere elongation hypothesis 

where birds are expected to invest in TL maintenance (including elongation) when 

coming close to a lower critical threshold in TL. The results also to some extent 

support the excess resources elongation hypothesis as it was when moved into the 

benign indoor conditions that substantial telomere elongation was induced, although 

note that this pattern was particularly evident in individuals with short TL which 

according to this hypothesis would be considered low-quality individuals. Still, 

maybe the indoor environment was so benign that even low-quality short TL 

individuals could afford a very high investment in telomere maintenance that it even 

resulted in telomere elongation. Furthermore, drawing conclusions about the quality 

of an individual based on a few adult TL measurements may potentially be 

misleading (see Figure 8). However, it is not clear whether such a rapid change in 

ambient environment like the one that was created in the experiment would occur 

in nature. 
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Figure 8. Telomere dynamics throughout experiment from day0 to day395.   
Relative telomer length (z-trans log-t/s) on y-axis and four timepoints represent at x-axis. Despite of KLH 
group had a relative lower t/s from the start (by chance), all immunization treatment groups have the 
same pattern of an telomere elongation, especially from day365 to day395. 
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Figure 9. The percentage change in TL (z-tans log t/s-ratio) at population level.   
Percentual TL change (t/s ratio) between day365 and day395 plotted against TL at day0 (top left) and 
against TL at day365 (top right). The same variables plotted against each other, but separately per TL 
group (day0: bottom left; day365: bottom right). 

Inheritance of telomere length (paper IV and V) 

Increasing evidence shows that early-life environmental conditions affect telomere 

length and that these effects can carry over into adulthood (Noguera et al. 2016, 

Bijnens et al. 2017, Stier et al. 2020, Martens et al. 2021). Moreover, early-life 

telomere length (eTL) has been shown to predict lifespan (Heidinger et al. 2012), 

survival into adulthood (Fairlie et al. 2016, van Lieshout et al. 2019), and lifetime 

reproduction success (Nowicki et al. 1998, Monaghan & Ozanne 2018, Eastwood 

et al. 2019). In paper IV and V, attention was moved from how adult telomere length 

responds to challenges (immune responses and ambient conditions) to how 

environment and genes determine the telomere length at different life stages. 
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Telomere trajectories but not telomere length may be set already at conception 

(paper IV) 

Telomere length and telomere shortening are key physiological traits that during 

early development may contribute to the programming of individual life trajectories 

(Entringer et al. 2018). Our selective breeding experiment allowed investigation of 

telomere inheritance patterns at the embryo and nestling life stages. For the study in 

paper IV, two main scenarios of telomere inheritance were considered: 1) TL is 

strictly genetically determined already at conception and in general there is a parallel 

pattern between individuals in terms of TL change over time (Noguera et al. 2016); 

2) (early-life) TL is predominately affected by factors occurring after conception 

during the late pre- and early post-natal periods. The later scenario matches with the 

fetal programing of telomere biology hypothesis (Entringer et al. 2018) (see paper 

I). We tested the two scenarios by creating two parental groups with distinct early-

life telomere length (eTL, long eTL and short eTL). Based on the first scenario, our 

prediction was that the offspring’s TL during pre- and postnatal stages would match 

up with their parent’s eTL (Figure 10A). We also predicted two alternative 

outcomes based on the second scenario (Figure 10B & 10C, for detailed information 

see paper IV).  

 

 

Figure 10. Schematic figure of the three alternative outcomes that can be predicted based on the 
experimental set-up 

Parental pairs were mated assortatively based on their early life telomere length (eTL; i.e., TL measured 
on blood taken from parents when 10-days old) creating pairs originating from the same eTL group (i.e., 
either short or long eTL). Predictions of mean TL patterns in offspring from the two disticnt parental eTL 
groups when measured at embryo or nestling life stages; (A) Offspring TL at both the embryo and nestling 
stages reflect their parental eTL group (long or short). This will create a pattern of parallel TL shortening 
rate in the two paternal eTL groups over the early developmental period, (B) embryo TL differs between 
the short and the long parental eTL group but the difference fade away towards the nestling stage. The 
reason for this could be that genetic effects apparent at the embryo stage are later masked by non-
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genetic (parental) effects acting at the late pre- and early post-natal stages, (C) mean embryos TL is 
similar for the two parental eTL groups (due to weak genetic effects) but later at the nestling stage mean 
TL differs and matches the parental eTL groups (due to a heritable component of the TL rate of change). 

The results in paper IV show that embryo TL was on average 28% longer than 

nestling TL which is expected as embryos have undergone fewer cell divisions 

compared to nestlings (Schaetzlein et al. 2004, Tan et al. 2012) and telomerase 

activity is usually higher during the embryo stage (Wright et al. 1996, Shay & 

Wright 2019). Furthermore, our results show that nestling TL, but not embryo TL, 

matched with their parental eTL group (Figure 11). This result fits with the third 

prediction we made (Figure 10c). It could be explained by either genetic or non-

genetic programming factors kicking in at the late pre- and early post-natal stages. 

Such factors could be e.g., genetically based co-variation between parents and 

offspring in the physiological factors determining telomere maintenance and/or 

restoration, or maternal effects acting on egg constituents and incubation effort. 

Nevertheless, our findings imply that parents and offspring TL have been influenced 

in the same way during early development resulting in similar eTL at the nestling 

stage. These findings suggest that telomere length at conception maybe not be a 

good predictor of telomere length at later life stages. Instead, this study highlights 

that the late pre- and early post-natal periods may be decisive in shaping early-life 

TL and studying these effects deserves further attention. 
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Figure 11. Telomere length (TL; z-transformed t/s ratio) at embryo and nestling stage, between 
long or short parent eTL groups.  

The embryo TL is 28% longer than nestling TL in general. The result also showed no difference in TL 
between long or short parent eTL groups at embryos but the nestlings TL matched to their parentl eTL 
parental group at 10-days-old. 

We also found sex-specific effects of our assortative pairing on nestling TL. Sons 

from parents of the short parental eTL group had significantly shorter telomeres than 

sons from parents of the long parental eTL group. Meanwhile, this difference is less 

pronounced in daughters that have intermediate TLs (Figure 12). These findings 

support previous studies that have found patterns of sex-specific parental imprinting 

in telomere maintenance genes (Barrett & Richardson 2011). Another explanation 

for these results could be that telomere restoration is regulated differently in males 

and females due to the action of sex hormones (Barrett and Richardson 2011). In 

this scenario, telomere maintenance or restoration mechanisms may have been 

upregulated in male offspring from the long parental eTL group but downregulated 

in the short parental eTL group. In comparison, female offspring of both parental 

eTL groups had an intermediate TL. 
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We found no effect of parental age on either embryo or nestling TL. Although there 

was a trend that male embryos produced by old parents had longer telomeres, but 

this trend disappeared when reaching the nestling stage. Therefore, our results do 

not seem to support the telomere messenger hypothesis.  

 

 

Figure 12. Nestling telomere length (TL; z-transformed t/s ratio) for sons and daughters 
separately for the short and long parental eTL group. 
There was no significant difference in nestling TL between daughters originating from the two Parental 
eTL groups. For sons there was a strong significant difference; sons originating from parents with long 
eTL had the longest TL and sons from parents with short eTL had the shortest TL.  

 

Genetic and non-genetic contributions to telomere length and variation in estimates 

of heritability of telomere length between life stages (paper V) 

Telomere length in an individual at any given point is determined by three 

processes: the initial telomere length at conception and the amount of shortening 

and the amount of restoration it has experienced over time. It may therefore not be 

49



surprising that heritability estimates of TL vary considerably between studies, as 

many studies, particularly in wild study systems and in humans, use telomere length 

measurements of parents and offspring that were taken at different ages and life 

stages and/or under different environmental conditions. Paper V uses captive zebra 

finches which allow repeated sampling at precise age and given life stages and 

housing under relatively stable environmental conditions to further investigate 

telomere inheritance with two different methods: ‘animal models’ and ‘parent-

offspring regression’. The results from paper V show that early-life telomere length 

for both parents and offspring is heritable to a moderate degree (h2 = 27 – 31 %, 

Figure 13). The highest heritability estimate was obtained when parent and offspring 

TL measurements were taken at the same life stage (parent and offspring eTL). No 

significant and numerically relatively low maternal or paternal effects were found 

in all comparisons. The results at least partially support the hypothesis that 

environmental effects are accumulating with age and that therefore heritability 

estimates should be highest when based on measurements taken early in life and 

lower when based on measurements taken at later life stages. 

Since heritability estimates varied depending on at which life stage the TL 

measurements were taken, the results do not support the idea that TL is set for life 

at conception or birth. The results also appear not to support the telomere messenger 

hypothesis (TMH). Under the TMH one would expect that environmental factors 

gradually change TL in parents over life, and it is this environmentally-altered TL 

that is inherited by the offspring (therefore higher heritability estimates would have 

been expected when parent TL was measured at breeding (or conception) and 

offspring TL measurements taken very early in life). 

 

 

50



 

 

Figure 13. Variance partitioning of the phenotypic variance in telomere length (TL) in a captive 
population of zebra finches.  
Bars show results from ‘animal model’ analyses based on TL was measured at different life stages in 
parents and offspring; P eTL – O eTL: both parents and offspring measured at nestling stage, P breedTL 
– O eTL: parents measured at breeding and offspring at nestling stage, P eTL – O embryoTL: parents 
measured at nestling stage and offspring at embryo stage, P breedTL – embryoTL: parents measured at 
adult stage (when breeding) and offspring at embryo stage. All models included genetic (narrow sense 
heritability), maternal, paternal and environmental (residual) effects. Heritability was significant in the P 
eTL – O eTL (0.31 ± 0.12 SE, p-value 0.013) and P breedTL – embryoTL (0.26 ± 0.10 SE, p-value: 
0.023). Parental effects were not significant in any of these four models. Whiskers in figure show the ± 1 
SE for the genetic effect. For more details, see paper V. 
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Conclusion and future perspective 

General conclusion 

Research on telomeres in an ecological and evolutionary framework is currently a 

hot research topic, as can be seen from the rapidly expanding number of published 

studies (paper I). However, we still have a limited understanding of how telomere 

length is inherited, which environmental factors that can influence telomere 

shortening or telomere elongation (still a debated issue), and to what degree an 

individual’s fitness is directly affected by (either constrained or elevated) or merely 

correlated to telomere dynamics.  

In this thesis, I used a captive songbird species, the zebra finch, to conduct immune 

challenge and assortative breeding experiments and applied state-of-the-art 

laboratory techniques for blood analysis. The work united hypotheses and methods 

of evolutionary ecology, immunology and molecular biology. The research 

conducted in the framework of my thesis has shed new light on the evolutionary 

background and ecological relevance of telomere length and telomere dynamics. 

Reviewing a plethora of hypotheses regarding the role of telomeres in ecology and 

evolution, allowed for a thematic hierarchical clustering of the hypotheses that can 

help researchers to explore and test ideas proposed in different research fields. 

Furthermore, me and my colleagues validated that a portable and cost-effective 

blood analyser can provide measurements of a spectrum of physiological parameters 

collected from birds under field and semi-field conditions, which may help to 

broaden the perspectives of the role of telomeres in bird ecology and ecophysiology. 

In the immune challenge experiment, there was physiological effects of immune 

treatment but no effects on telomere dynamics. However, there was an exceptionally 

strong and rapid telomere elongation effect over the second 30-day long immune 

challenge period in all birds, likely a consequence of them being transferred into a 

benign indoor environment. In addition, our TL-based assortative breeding 

experiment showed that the telomere length of nestlings, but not of embryos, is 

predicted by the nestling stage TL of their parents. These results suggest that it is 

the telomere rate of change, rather than the telomere length itself, that is the key 

heritable trait for determining early-life TL. Finally, we revealed that up to 30% of 

the telomere length variation in the offspring is determined by the telomere length 

of their genetic parents when measured at the same (i.e., nestling) life stage, but that 

the parents’ telomere length at breeding was the main determinant (26 %) of embryo 

telomere length. Overall, these results highlight that the life stage when TL 
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measurements are taken fand later used for heritability analyses is important and 

may explain some of the huge variation in heritability estimates that have been 

reported in the literature. 

Future perspectives 

This thesis raises several exciting new questions to be studied in the future. For 

example, the remarkable telomere elongation pattern found in paper III may change 

our view of how we look at telomere dynamics, not the least seeing telomere 

shortening as an always ongoing and almost unavoidable process in living 

organisms. Although captive animal models are different from wild populations and 

results therefore need to be interpreted with this in mind, the results in paper III 

strongly suggest that changes in adult telomere length may be much more dynamic 

in terms of both magnitude and timeframe, than hitherto thought. These results were 

true for blood cells and it would therefore also be important to study if these effects 

also occur in other somatic cells (see below). Moreover, previous studies have often 

investigated changes in TL over longer periods (e.g., between years), but my results 

now call for studies that also focus on short-term dynamics (especially in wild study 

systems).  

Whether or not an individual may be able to adjust investment in telomere 

maintenance over the short term may be more important than previously thought. If 

so, the role of telomerase, the main enzyme that regulates telomere restoration, 

should be also investigated more closely. Previous studies on vertebrates mostly 

suggest that telomerase is suppressed after early development (due to the risk of 

promoting cancer) and that there is little telomerase activity in adulthood. However, 

if there is a lower critical TL that affects systemic performance (and assuming TL 

measured in the blood reflects TL in the hematopoietic stem cells) and thus 

organism performance, it would be expected that telomerase is upregulated (at least 

for short periods) also in adults under certain circumstances e.g., when closing in on 

the lower critical threshold in TL. It might be possible to conduct experiments where 

offspring that have short or long telomeres (e.g., created in the same way as 

described in paper IV) are exposed simultaneously to multiple stressors (e.g., both 

controlled change in ambient environment and immune activation) and test whether 

they invest differently in telomere maintenance. Another interesting avenue for 

future research would be to test whether changes in TL in other tissue than blood 

may be equally rapid, or whether investment in telomere maintenance is different 

depending on tissue. Most studies measure TL from DNA of circulating blood cells. 

Thus, measuring TL also in tissue cells could potentially add to the bigger picture 

in our understanding about how an organism adapts to environmental stressors 

during costly life-history events e.g., migration or reproduction. 

Telomere length is a heritable somatic trait. The heritability estimate based on the 

parents TL at breeding and embryo TL found in paper V is puzzling and needs 
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further investigation. For example, one might specifically test father-son or mother-

daughter regressions to examine parental contributions more closely. Moreover, 

conducting animal model analyses only on siblings would give further insights. 

Furthermore, it would be very interesting to determine the TL of the offspring from 

paper IV and V when they were adults and conduct heritability analyses also based 

on these TL measurements. 

Altogether, my thesis clearly shows that even though telomeres have been the target 

of research for several decades, there are still many questions that remain to be 

answered.  

 

 

 

 

Pitcure 4. Elsie caught a female zebra finch at the outdoor aviary, Stensoffa.  

On 11th August 2019, it was a warm and beautiful summer day (Photo by Farisia Polwijk) 
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