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Abstract. This paper introduces two new methods of registering 2D point sets
over rigid transformations when the registration error is based on a robust loss
function. In contrast to previous work, our methods are guaranteed to compute
the optimal transformation, and at the same time, the worst-case running times are
bounded by a low-degree polynomial in the number of correspondences. In prac-
tical terms, this means that there is no need to resort to ad-hoc procedures such
as random sampling or local descent methods that cannot guarantee the quality
of their solutions.
We have tested the methods in several different settings, in particular, a thorough
evaluation on two benchmarks of microscopic images used for histologic analy-
sis of prostate cancer has been performed. Compared to the state-of-the-art, our
results show that the methods are both tractable and reliable despite the presence
of a significant amount of outliers.

1 Introduction

Image registration is a classical problem in computer vision and it appears as a sub-
routine for many imaging tasks. For example, it is a prerequisite for shape analysis and
modeling [6] and for automated analysis of multi-modal microscopy images [17]. It is
also an important component in image guided surgery where often fiducial markers are
used for estimating the transformation [14,7]. In this paper, we are interested in esti-
mating rigid image transformations under less controlled situations where there may be
a substantial number of mismatches and where it is important to obtain reliable results.
For example, the method should not be dependent on a good initialization.

Naturally, the registration problem has been studied in depth. When choosing the
method of preference, one is often faced with the following dilemma. Using a simpli-
fied, mathematical model of the problem enables efficient computations, but sacrifices
realism. While using a more realistic model incurs the computational cost of hard in-
ference. As an example, consider the case of feature-based registration under the as-
sumption that measurement noise in the target image can be modeled by independently
distributed Gaussian noise. This is in fact the standard Procrustes problem which can
be solved in closed form. However, the model is not so realistic as there are typically
erroneous measurements - outliers - among the feature correspondences. This makes
the registration estimates very unreliable. On the other hand, modeling outliers leads
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Fig. 1. Examples from our two benchmarks with 10 manually marked correspondences. Left:
Prostate tissue stained with H&E and p63/AMACR. Right: Prostate tissue stained H&E and TRF
(fluorescent). The goal is to find a rigid transformation that aligns the two images using features
from an automated method such as SIFT.

to a much more complicated optimization problem and solving this problem exactly is
sometimes dismissed as infeasible. Heuristic methods based on random sampling and
expectation maximization dominate the field. We show that one can achieve a method
which is both efficient (in terms of speed) and reliable (with respect to outliers).

Our own interests stem from the study of automated methods in medical imaging.
In particular, we seek to develop robust registration procedures for combining infor-
mation from different sources and modalities. The images may be degraded and have
limited/varying fields of view. We present experimental results from two different ap-
plications. In our first setting, the objective is to perform histologic analysis of biopsies.
Prostate cancer is the second most common cancer in men worldwide [16] and whose
gold standard of diagnosis and prognosis is based on histologic assessment of tumours
in images stained with Hematoxylin and Eosin (H&E). Several automatic pattern recog-
nition prototypes exist [20,8]. In order to improve the accuracy in clinical practice, con-
siderable research efforts have been directed to complement the analysis with additional
types of stainings and imaging modalities [17]. One example is given in the left of Fig. 1
where two adjacent tissue sections have been stained with H&E and antibodies directed
against p63/AMACR, respectively. Another example is given in the right of Fig. 1 with
one H&E staining and one Time Resolved Fluorescence (TRF) image measuring the
Androgen Receptor (AR) obtained from the same section. This type of images is quite
challenging for any automated approach because reliable feature correspondences are
hard to obtain and there are image degradations due to imperfect acquisition.

In our second setting, we are dealing with images of the human brain and the goal
is to study the perfusion of blood flow through small vessels, so-called capillaries in
the white and gray matter regions of the brain. This is important for patients with hy-
drocephalus which are treated by placing a drainage tube (shunt) between the brain
ventricles and the abdominal cavity to eliminate the high intracranial pressure, see
wikipedia/hydrocephalus [24]. To capture the anatomy of the region of inter-
est, MR-Flair images have been obtained. The perfusion data is obtained via contrast-
enhanced CT images taken at one second apart during a two-minute session. To acquire
good temporal resolution, only a couple of slices can be captured at each time instant.
The challenge here is to register single slices from the CT image to the full 3D vol-
ume of the MR image. As the head of the patient is in an upright position, the mapping
from one CT slice to the corresponding (but unknown) slice in the MR-Flair volume



Tractable and Reliable Image Registration 3

is well described by a rigid 2D transformation after having adjusted for known scale
differences.

In this paper, we develop two new robust methods for feature-based image registra-
tion based on the L1-norm of the residual functions. As we shall see, from a statisti-
cal point of view, this model is well-suited for dealing with outliers. The methods are
compared and extensively evaluated on two benchmarks of prostate tissue samples. The
focus of our evaluation is on two important desiderata that a satisfactory solution should
possess, namely tractability and reliability. The first term refers to the computational
complexity. We investigate both the performance in practice and derive theoretical com-
plexity bounds as a function of the number of feature correspondences. The second one
concerns the reliability of the estimate. We are interested in methods that produce prov-
ably optimal estimates under a robust loss function. If the registration fails, then it can
either due to lack of good correspondences or the algorithm’s inability to find a good
solution. In our approach, the latter source of error is removed from the process.

Our main contributions can be summarized as follows.

– Two new registration methods based on the L1-norm and the truncated L1-norm
with worst-case complexity O(n3) and O(n3 log(n)), respectively, where n is the
number of correspondences4.

– An extensive experimental evaluation and comparison with other registration meth-
ods on benchmarks with 88 and 103 image pairs, respectively.

Note that the set of algorithms we propose is restricted to rigid point set registration in
the plane, and other settings are not considered in this paper.

2 Related Work

Closed form solutions to the standard Procrustes alignment problem have been known
for a long time [15] and used in various settings, for instance, in surface alignment [3].
However, as the estimate is based on least-squares (minimum of L2-errors), outliers
will have a large influence and that makes the approach unreliable. Already in [21], it
is emphasized that robustness is a key issue and a multi-scale approach is proposed that
integrates local measures to obtain an estimate of a rigid transformation. The method is
applied to the problem of registering serial histological sections. In [19], a probabilistic
method is developed that explicitly models outliers and which regards the registration
problem as an inference problem. Inference is performed via expectation-maximization.
The method in [13] proposes to use the Huber kernel as a residual function to make the
registration less sensitive to outliers. Levenberg-Marquardt iterations are performed in
order to minimize the loss function. In [22] deterministic annealing is proposed in or-
der to optimize a robust loss function for the registration of autoradiograph slices. Yet
another example is [9], where meta-heuristics is applied for the optimization step of the
registration of angiograms. See also the registration survey [2]. All of these local opti-
mization techniques are dependent on a good initial estimate and they are susceptible
to local optima. Hence, they cannot guarantee the quality of their solutions.

4 The algorithms will be made publicly available to promote further research.
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Another popular approach for dealing with outliers is RANSAC [12]. It works by
hypothesize-and-test: Pick a random minimal subset of correspondences, compute a
hypothetical transformation and check how many of the other correspondences are con-
sistent with this transformation. The method is by nature random (which can be reme-
died by exhaustively examining all possible subsets). Still, the estimator has no guar-
antee of finding the optimal solution which makes the method unreliable. This will be
empirically demonstrated in our evaluation.

Several works have focused on optimal estimators based on branch-and-bound. One
of the first algorithms was developed in [5] and it finds the rigid transformation that
maximizes the number of inliers. In [11], a robust estimator based on a vertex cover
formulation is proposed and in [18], a formulation based on integer programming is
given. The methods are independent of initialization and converge to a global opti-
mum. However, as they are based on branch-and-bound, the computational complexity
of the algorithm is exponential. The most closely related work to ours is [10,1], where a
truncated L2-norm algorithm is derived with complexity O(n4). However, the runtime
tends to be prohibitive (see experimental section), making it a less tractable alternative.

3 Choice of Loss Function

It is a common and reasonable assumption that there exist correct but noisy point cor-
respondences as well as complete mismatches or outliers. The errors in the positioning
of correct correspondences follow approximately a normal distribution, whereas the
outliers are uniformly spread over the image. In [4] it is shown that in order to find a
maximum likelihood estimate, a sum of loss functions of the following type

`(r) = − log
(
c1 + exp

(
−r2/c2

))
(1)

should be minimized, where r is the residual error for one correspondence and the
constants depend on the amount of inlier noise as well as on the rate of outliers; see
Fig. 2. An approximation which is commonly used is obtained by truncating the squared
error. However, the quality of this approximation depends heavily on the rate of outliers
in data. At higher rates the loss function levels out much more slowly. In this case a
truncated L1-loss can be a more appropriate choice.

All these loss functions lead to a non-convex problem with many local minima. One
may even wrongly conclude that the problem is intractable to solve optimally, that is,
that no polynomial-time algorithm exists.

4 Fast Optimization of the Truncated L1-Norm

Given corresponding point coordinates in two images, xi = (xi, yi)
T and x′i = (x′i, y

′
i)
T ,

i = 1, . . . , n, consider the following problem

min
R,t

n∑
i=1

`(||Rxi + t− x′i||1) (2)
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Fig. 2. The robust loss function (red) suggested in [4], the truncated L2-error (green) and the
truncated L1-error (blue) that can be optimized using the proposed framework.

where R is a 2× 2 rotation matrix and t a translation vector, parameterized as

R(α) =

[
cosα − sinα
sinα cosα

]
and t =

[
t1
t2

]
,

respectively and where ` is the loss function `(r) = min{r, ε} for some given threshold
ε, that is, the truncated L1-norm.

The following observation allows us to simplify the problem.

Lemma 1. For any fixed rotation R, consider the minimization of (2) over t

min
t

n∑
i=1

l (|xi cosα− yi sinα+ t1 − x′i| + |xi sinα+ yi cosα+ t2 − y′i|) . (3)

Then there exist two indices j and k in {1, . . . , n} such that

t∗1 = x′j − xj cosα+ yj sinα and t∗2 = y′k − xk sinα− yk cosα (4)

is an optimal choice of t.

In order to get a geometric intuition why the above lemma is true, consider the graph of
the loss function in (3). Note that it is piecewise linear in t and a global minimum can
be found by examining all break points, that is, points which are non-differentiable in
all directions. There are two different causes for non-differentiability in our objective
function. One is due to truncation and one is due to taking absolute values. Our proof
shows that break points that are also local minima are given by (4). This means that
break points caused by truncation need not be examined since all local minima are due
to taking absolute values.

Proof. The optimal t∗ to the truncated L1-loss, denoted L(t∗), is also a global mini-
mizer to the L1-loss on the set of optimal inlier correspondences (those that have resid-
uals less than ε). To see this, let Linliers(t∗) be the optimal loss on the inliers and
Loutliers(t

∗) the loss on the outliers. Assume that there exists a different solution t with
Linliers(t) < Linliers(t

∗). Clearly,Loutliers(t) ≤ Loutliers(t∗) as this is already max-
imal. Hence L(t) = Linliers(t)+Loutliers(t) < Linliers(t

∗)+Loutliers(t
∗) = L(t∗)

which is a contradiction.



6 E. Ask, O. Enqvist, L. Svärm, F. Kahl and G. Lippolis

Fig. 3. Sketch of the objective function in (5), denoted L(α), which is piecewise smooth.

This shows that an optimal t∗ is a local optimum to the L1-loss. The formula for
the L1-loss is given by

n∑
i=1

|xi cosα− yi sinα+ t1 − x′i|+ |xi sinα+ yi cosα+ t2 − y′i|.

As no absolute value contains both t1 and t2 we can write this as a function of t1 plus a
function of t2 and the minimization with respect to t1 and t2 can be analyzed separately.
Consider the t1-part. We have a piecewise linear function that tends to infinity as |t1|
tends to infinity and thus a minimizer of this function is at a break point. The break
points are due to the absolute values - there is a break point whenever one of the absolute
values is exactly zero. Hence a minimizer exists for which at least one absolute value
is zero, so t∗1 = x′j − xj cosα + yj sinα for some j as stated in the lemma. The same
argument for t2 proves the lemma.

ut

The lemma shows that if the two indices j and k are given (for example, by exhaus-
tively trying all possibilities), we can reduce the problem via substitution of t∗ in (4) to
a one-dimensional search over rotation angle α,

min
α

n∑
i=1

`(|δxij cosα− δyij sinα− δx′ij |+ |δxik sinα+ δyik cosα− δy′ik|), (5)

where δxij = xi−xj , δyij = yi−yj , etc. Let us denote the resulting, piecewise smooth
objective function in (5) by L(α), see Fig. 3 for an illustration. It has optimum either at
a break point or at a stationary point. The break points are places where the derivative
L′(α) is discontinuous and occur when an absolute value is exactly zero or the number
in an input to ` is exactly ε. Hence the number of break points grows linearly with n.
Given the break points α1, α2, . . . , αM , consider an interval [αi, αi+1] of L(α). It can
be described by

L(α) = w1 cosα+ w2 sinα+ w3, (6)

for some constants w1, w2 and w3. By examining all intervals, we can compute the
optimal rotation angle α∗ using Algorithm 1.
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Algorithm 1 Finding the rotation angle
Set L∗ :=∞.
Compute all break points of L(α) for α ∈ [0, 2π).
Sort the break points α1, α2, . . ., αM .
for i = 1, . . . ,M

Compute L(αi) and compare with L∗.
Compute w1, w2 and w3 of (6) for [αi, αi+1].
Compute local minimum αlocal of (6).
if αlocal ∈ [αi, αi+1],

compute L(αlocal)
compare with L∗.

4.1 Complexity

There are two important things to note here. First, that each time we compute w1, w2

and w3 for [αi, αi+1] in (6), we can take advantage of the constants from the previous
interval [αi−1, αi]. Only the coordinates xi and x′i that gave rise to αi are required for
computing the update. Second, that there is only one local minimum to

w1 cosα+ w2 sinα+ w3,

being

(cosα, sinα) = ±(w1, w2)/
√
w2

1 + w2
2, (7)

given by the minus sign. Hence each step in the for-loop of Algorithm 1 is O(1) so the
computationally heaviest step is the sorting. Given the indices j and k, we can find an
optimal α∗ in O(n log n). If we consider all possible index pairs j and k exhaustively,
the total complexity is O(n3 log n). Note that the most complex arithmetic operations
in the algorithm consists of computing square roots.

4.2 Fast Outlier Rejection

To increase the speed even more we propose a fast outlier rejection step as preprocess-
ing, inspired by the work in [1]. For this we need a variant of Algorithm 1 that works
with the zero-one loss (denoted by L0), that is, counting the number of outliers rather
than truncated L1-norm. First note that the zero-one loss has the same break points as
truncated L1 and that the loss function only changes values at these break points. There,
it either increases with one or decreases with one. Algorithm 2 lists the details.

We will use this algorithm together with the following observation.

– Assume that for the optimal transformation (R∗, t∗), correspondence k is an inlier
and there are N outliers, i.e. residuals larger than ε. If we change the translation to
t so that rk(R∗, t) = 0, then, since ||t− t∗|| ≤ ε, the error on inliers has increased
with at most ε so there are at most N residuals larger than 2ε.
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Algorithm 2 Upper bound on inliers
Initialize best loss, L∗0 =∞.
Compute all break points of L0(α) for α ∈ [0, 2π).
Sort the break points α1, α2, . . ., αM .
Compute L0(α1) and update L∗0.
for i = 2, . . . ,M

Depending on the type of αi

Set L(αi) = L(αi−1)± 1 and update L∗0.

This means that we can use Algorithm 2 with threshold 2ε to produce a bound of the
following kind: If correspondence k is an inlier, then there are at least N outliers. This
also yields a bound on the truncatedL1 loss, as ifN residuals are> ε, then the truncated
L1 loss is at least Nε. If this is a higher loss than one we have already found, we can
discard correspondence k from further consideration.

Algorithm 3 Fast Outlier Rejection
Given an upper bound Lc on the optimal loss.
for i = 1, . . . , n

Set t = x′i − xi

Use Algorithm 2 with threshold 2ε to compute L∗0
(The output L∗0 is a bound on the number of outliers)
if L∗0ε > Lc ,

discard correspondence i

A value for Lc can be found by running Algorithm 3 using ε in place of 2ε and
simply storing the best loss function value rather than discarding points. As the domi-
nating cost inside the loop is the sorting in Algorithm 2 running this scheme to remove
outliers costs only O(n2 log n) and can be used as a preprocessing step while keeping
guaranteed optimality.

5 Fast Optimization of the L1-Norm

Optimizing the L1-norm is a simpler problem compared to the truncated case. In fact,
one can set ε := ∞ and use the same algorithm, but we can do better. Lemma 1 still
applies, so we can eliminate the translation and only consider the rotation problem,
which simplifies to

min
α

n∑
i=1

|δxij cosα− δyij sinα− δx′ij |+ |δxik sinα+ δyik cosα− δy′ik|. (8)

An important difference here is that we can compute the break points for the first term
and the second term independently. This means that we can precompute and sort all
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the break points for j, k = 1, . . . , n in O(n2 log(n)) and then use the for-loop of Al-
gorithm 1 to find the optimal α∗. Now, the heaviest part is no longer the sorting. The
total time complexity is O(n3) since the for-loop is O(n) and exhaustively trying all
combinations of j and k is O(n2).

6 Experiments

The proposed methods have been evaluated on two challenging registration tasks.

6.1 Registering Histology Sections

The first set of experiments is concerned with the registration of histology sections of
prostate tissue, and also serves as a quantitative evaluation. We used one dataset with 88
image pairs of adjacent slides of prostate tissue, stained using H&E and p63/AMACR,
respectively. Another dataset consists of 103 images of H&E stained slides, in which
sub-parts are also analyzed with TRF. Examples can be seen in Fig. 1. The size of the
stained images are on the order of 1100x1100, while the TRF images are 368x546.

We used SIFT features as the basis of our point-to-point correspondences. Match-
ing was restricted to the same scale octave and we used Lowe’s ratio criterion with a
threshold at 0.9 to discard poor matches. This yielded 800-1500 matches for the first
dataset, and, due to TRF images being smaller, 40-500 matches in the second dataset.
The inlier rate varies from 1% to 40% with a 10% average for the H&E-p63/AMACR
set and from 4% to 54% for the H&E-TRF set with a 28% average.

The proposed algorithms were compared to the algorithm for truncated L2-norm
from [1] as well as standardL2-minimization and RANSAC followed byL2-minimization
on the inlier set. For each problem instance, 10 correspondences were manually picked
by an expert and used to compute an optimal transformation under the L2-loss. Re-
ported results are compared to the rotation and the translation of this estimate. We have
also selected two failure criteria based on these comparisons. The first being that the
rotation error is larger than 5◦, the second that the translation error is larger than 25
pixels. The percentage of results that fail according to these criteria are presented.

The experimental results on H&E-p63/AMACR are shown in Table 1. The most
accurate results are obtained by the truncated L2-method. Truncated L1-norm performs
poorly on the lowest threshold, but at more reasonable levels for this task performance
is similar to truncated L2. None of the methods based on RANSAC succeeds on all ex-
amples, although the accuracy is good at higher thresholds with 1000 iterations. We
also note that regular L1-norm (marked ∞) succeeds much more frequently than L2-
norm and with better accuracy than a majority of the RANSAC variants—on a dataset
with only 10% inliers on average. For the highest threshold level (20p), we have also
performed a test exhaustively trying all possible hypotheses ransac migth get. The accu-
racy is slightly worse but comparable to the L1- and L2- truncated methods. However,
as the time complexity is O(n3), close to the complexity of truncated L1 with more
expensive operations and no fast rejection method, it is in practice as slow or slower as
the L1- method while having no theoretical guarantees.
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RANSAC Truncated norms
ε 100 iter. 500 iter. 1000 iter. L1 L2

1p 10.7◦ 204p 48% 8.38◦ 221p 27% 8.14◦ 105p 28% 2.72◦ 61p 11% 2.47◦ 58p 8%
5p 14.4◦ 280p 42% 2.85◦ 53p 9% 1.94◦ 28p 5% 1.21◦ 7p 3% 0.43◦ 6.4p 2%
10p 7.80◦ 158p 28% 1.23◦ 42p 6% 2.24◦ 43p 6% 0.29◦ 4.8p 1% 0.28◦ 4.6p 1%
20p 3.96◦ 78p 18% 2.43◦ 34p 8% 0.91◦ 23p 3% 0.27◦ 4.0p 0% 0.26◦ 3.9p 0%
∞ - - - 2.43◦ 6.5p 5% 6.54◦ 94p 69%
Table 1. The results for the H&E - p63/AMACR benchmark. In the left column, the inlier thresh-
old ε is varied. Then, for each of the methods (RANSAC with varying number of iterations, and
the truncated L1- and L2-norms), three numbers are reported: average rotation error (degrees),
average translation error (pixels) and failure rate. A failure case is one with error in rotation larger
than 5◦ or in translation larger than 25 pixels. When ε =∞, no truncation takes place.

RANSAC Truncated norms
ε 100 iter. 500 iter. 1000 iter. L1 L2

1p 2.53◦ 30.6p 6% 0.40◦ 6.2p 1% 0.31◦ 2.7p 0% 0.34◦ 2.9p 0% 0.31◦ 2.6p 0%
2p 2.27◦ 31.2p 5% 0.29◦ 2.6p 0% 0.27◦ 2.7p 1% 0.29◦ 2.6p 0% 0.28◦ 2.6p 0%
3p 1.75◦ 23.4p 4% 0.29◦ 2.7p 0% 0.29◦ 2.7p 0% 0.28◦ 2.6p 0% 0.28◦ 2.6p 0%
4p 0.66◦ 8.5p 3% 0.28◦ 2.6p 0% 0.28◦ 2.6p 0% 0.28◦ 2.6p 0% 0.27◦ 2.6p 0%
5p 1.14◦ 7.4p 2% 0.26◦ 2.5p 0% 0.26◦ 2.5p 0% 0.27◦ 2.5p 0% 0.26◦ 2.6p 0%
10p 0.76◦ 7.8p 1% 0.27◦ 2.4p 0% 0.27◦ 2.4p 0% 0.26◦ 2.5p 0% 0.26◦ 2.4p 0%
∞ - - - 15.6◦ 173p 57% 33.6◦ 341p 100%

Table 2. The results for the H&E - TRF benchmark. See Table 1 for explanation.

Results from the benchmark experiment on H&E-TRF registration are shown in
Table 2. This dataset has significantly fewer matches per image pair and higher inlier
ratios, making it more suitable for RANSAC. With 1000 iterations, RANSAC performs
on par with truncated L1-norm and truncated L2-norm, but with fewer iterations there
are still some failures. The poor results for regular L1-norm and L2-norm show that for
this task, aligning a sub-image to a larger image, using truncated norms is essential.

We also tested the intensity-based Image Regsitration Toolkit [23], using normal-
ized mutual information. For the first dataset, the toolkit failed to produce a correct
registration (less than 5◦ rotation and 25 pixels translation error) in 86% of the experi-
ments. For the second dataset it failed to produce any corrrect results. The poor results
are not surprising as these methods often are sensitive to initialization and to outlier
structures in the images.

6.2 Registering CT to MR-Flair

This experiment is a demonstration of the applicability of the method. For more quanti-
tative results, see Sections 6.1 and 6.3. The dataset consists of 44 image slices captured
using the MR-Flair methodology and 4 image slices from a CT-scan of one single sub-
ject. To correlate the information provided by the different modalities, one would like
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Fig. 4. Left: Runtime as a function of number of matches is graphed for truncated L1-norm
(green), truncated L2-norm (red) and regular L1-norm. The L1-method follows closely aO(n3)-
curve (blue). Right: Runtime as a function of number of inlier matches is graphed. The trun-
cated methods are more correlated to the number of inliers, see the O(n4)-curve (red) and the
O(n3 log(n))-curve (green), respectively. (ε = 10 pixels.)

to register each of the CT slices to the MR-Flair volume. As the CT slices are roughly
aligned with the slices of the MR-Flair volume, we try to register each of the CT slices
to each of the MR-Flair slices and then try to find the sequence of four MR-Flair slices
that best match the four CT slices. We use standard 2D SIFT to obtain correspondences.
To improve the matching performance, all descriptors were extracted at a fixed scale
instead of using the estimated scale from the difference of Gaussians detector. The mo-
tivation is that in very noisy images the scale estimation tends to be uncertain.

Due to the small dataset we only present qualitative results for our truncated L1-
approach. Different slice-matches have different number of potential inliers, making
the truncated L1-cost skewed. However this is easily rectified by using a modified cost
ci defined as ci = Niε − l∗i where Ni is the combined number of correspondences for
subsequence i, epsilon the truncation level, and l∗i the combined optimal truncated L1-
solution. Using this criterion and ε = 10 the best subsequence evaluated at c19 = 397,
with closest runners up c18 = 362, c17 = 367. All other sequence-matchings had
significantly lower score. We show the found matchings for the best matching in Fig. 5.

The frequently used intensity-based method called NIFTYREG [21] using mutual
information was also tested, but without any reasonable registration results at all. Note
that this method was also developed to cope with outlier structures by using robust
estimation techniques.

6.3 Speed

The theoretical worst time complexities are stated in Table 3. In practice RANSAC is not
run exhaustively but with a fixed number of k iterations, giving a complexity ofO(nk).
For average-size problems (280 matches) and k = 1000, RANSAC required 73 ms. The
fastest (but worst-performing) method is the closed-form L2-method with a typical run-
time of 0.2 ms. For the remaining methods timing plots are shown in Fig. 4. Because of
the fast outlier rejection scheme discussed in Section 4.2, runtimes of the truncated L1-
norm and L2-norm depend mainly on the size of the inlier sets. The full L1-method has



12 E. Ask, O. Enqvist, L. Svärm, F. Kahl and G. Lippolis

Fig. 5. The found inliers for the best subsequence obtained using our truncated L1 algorithm.

no such advantage. These numbers clearly show the advantage in runtime for the trun-
cated L1-method over both the regular L1-norm and the truncated L2-norm. However,
on datasets consisting of a majority of inliers, the lower complexity of the L1-norm
would give faster runtimes as all operations are identical apart from the sorting strate-
gies. The timing statistics is from experiments on H&E-TRF, though the same analysis
holds for H&E-p63/AMACR.

7 Discussion

So what is the right way to attack feature-based image registration in presence of out-
liers? The literature provides us with a vast amount of choices, but many of these are
based on local optimization and require a reasonable starting solution, which means

Fig. 6. Left: 13 inliers among 1179 hypothetical SIFT matches of the truncated L1-method (suc-
cess). Right: 8 inliers of RANSAC with 1000 iterations (failure). This was the hardest case to
register among all pairs. (ε = 20 pixels.)
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Algorithm complexity tractability reliability reference

RANSAC O(n3) high medium [12]
Truncated L1-norm O(n3 log(n)) high high this paper

L1-norm O(n3) high medium this paper
Truncated L2-norm O(n4) medium high [1]

L2-norm O(n) high low [15]
Table 3. Characteristics of the algorithms presented or discussed in the paper. Note that the stated
complexity for RANSAC is for exhaustive selection of all minimal subsets which can be thought
of as a worst time complexity bound.

that the outlier problem is already more-or-less solved. To handle really difficult outlier
problems, RANSAC-type algorithms are the standard against which others are measured.
However, as our experiments show, they are sub optimal both in terms of accuracy and
with respect to the risk of failure. Some of the failures could be avoided by increasing
the number of iterations - even up to exhaustively searching all the minimal subsets.
But, that will increase the complexity to O(n3), being practically the same as the al-
gorithms proposed here (Table 3). More importantly, even then there is no guarantee as
to the solution quality (Fig. 6). Hence, we would only recommend RANSAC when the
amount of outliers is known to be low and the available runtime is very limited.

This contrasts sharply to the typical setting for medical image registration where the
process is performed offline. With different image modalities, the rates of outliers are
usually high. In these cases the increased reliability of optimizing a truncated norm is
valuable and the L1-based methods, although slower than RANSAC, should be efficient
enough for most applications. Our experiments indicate only a small gain in accuracy
for the truncated L2-norm, so using the truncated L1-norm would be the general rec-
ommendation.

In many applications, the actual improvement in terms of accuracy and failure rates
of these methods might not be huge. This is compensated by the value of removing
a possible error source and not having to tune the parameters of the algorithm. We
believe that the choice between a tractable, reliable algorithm with guaranteed high-
quality solutions and a fast algorithm with no guarantees whatsoever should be an easy
one.
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