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Abstract

This paper presents a stabilized scheme that solves the wave propagation
problem in a general bianisotropic, stratified medium. The method utilizes the
concept of propagators, i.e., the wave propagation operators that map the total
tangential electric and magnetic fields from one plane in the slab to another.
The scheme transforms the propagator approach into a scattering matrix form,
where a spectral decomposition of the propagator enables separation of the
exponentially growing and decaying terms in order to obtain a well-conditioned
formulation. Multilayer structures can be handled in a stable manner using
the dissipative property of the Redheffer star product for cascading scattering
matrices. The reflection and transmission dyadics for a general bianisotropic
medium with an isotropic half space on both sides of the slab are presented
in a coordinate-independent dyadic notation, as well as the reflection dyadic
for a bianisotropic slab with perfect electric conductor backing (PEC). Several
numerical examples that illustrate the performance of the stabilized algorithm
are presented.

1 Introduction
Structures that are layered in one coordinate direction, and possibly but not nec-
essarily homogeneous in the remaining two, are common in nature as well as in
microwave and optical devices. Such structures take their full description in three
dimensions (3D), but their scattering properties are often considered in a one-
dimensional (1D) setting, which reduces the complexity of the problem considerably.
Methods reducing 3D problems to 1D are referred to as semi-analytical, and have
been of great interest in the past, and are in fact still of considerable importance
in practice, e.g., in the design and optimization process of many types of structures
with electromagnetic functionality [31]. The parameter space needed to be consid-
ered in the optimization process of an electromagnetic device is typically very large
with many local minima [3], which in practice implies that initial simulations are
commonly performed by the use of simplified methods like 1D approximations [5, 10,
38], and the move to full 3D modelling is, if even possible, only done for verification
and tuning of the final design of the device.

Simplifications where the microstructure is replaced with a macroscopic descrip-
tion can be accomplished by the use of, e.g., homogenization techniques [16, 23,
29, 32], that gives an effective medium approximation of the device. Alternatively,
it is common to use equivalent-circuit techniques in order to approximate complex
devices [11, 33, 34, 37]. Modeling approaches based on the standard transfer or scat-
tering matrix methods for stratified systems are classical, and adapted versions of
the methods to analyze behaviors of metasurface stacks have been recently reported
in the literature [1, 17, 35].

This paper is focused on the propagator method, which is an approach adapted
for solving 1D scattering problems of planar stratified structures, where the slabs in
general can be arbitrary linear materials, i.e., bianisotropic materials [9, 30]. The
propagator technique can also be seen as a vector generalization of the transmission
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(ABCD) matrix [25], or as a generalization of wave propagation through homoge-
neous media modeled as a transmission line [33]. The propagator method is in fact
most closely related to the less known wave matrix formulation reported in [26].

The propagator method is for most purposes accurate, but the formulation is in
fact inherently unstable, which is a well known common characteristics of other re-
lated transfer and scattering matrix approaches. Historically, there has been a desire
to reformulate these methods in a numerically stable manner and several stabilized
schemes have been developed in the past [6, 12, 13, 15, 19, 24, 36]. More recent
works that call for well-conditioned formulations are reported in [4, 18]. Numerical
problems with the propagator formalism were early pointed out in [36], that stabi-
lized the reflection problem by use of a spectral recursive transformation method.
Our paper introduces a reformulation of the propagator method [9, 30], that solves
the reflection as well as the transmission problem, by changing the approach into a
scattering matrix formulation, where the exponentially growing and decaying terms
are separated, resulting in a well-conditioned formulation. Having a stable and ro-
bust scattering matrix formulation for each slab in a given multilayer stack, the total
scattering matrix, i.e., the composition of the individual scattering matrices, is then
constructed by use of the Redheffer star product technique [27]. The dissipation
property of the star product ensures the numerical stability of the algorithm for
single as well as multilayer structures.

The stabilization of the propagator approach has been driven by the need of
extending its applicability to accurately handling devices that support evanescent
wave modes such as structures made up of complex materials that exhibit strong
dispersion within the frequency band of interest, or multilayered periodic bandgap
devices. The propagator can also be used in connection with frequency selective
surfaces (FSS) [8], where evanescent wave modes are present. Recently [7] made
a stability improvement due to the presence of higher order modes when consider-
ing the problem of multi-modal scattering and propagation through several closely
spaced periodic grids. The methodology presented in this paper is a building block
in handling similar higher order mode couplings through evanescent waves.

The present paper is organized as follows. The propagator method is revisited
in Chapter 2, and the inherently unstable nature of the method is explained and
illustrated by numerical examples in Chapter 3. The wave and scattering matrix
forms are discussed in Chapter 4 in connection with the stable reformulation of the
propagator method. The composition of a stack of slabs by the star product is
revisited in Chapter 5. The numerical accuracy and stability of the new formulation
are verified in Chapter 6. A summary with conclusions are given in Chapter 7, and
an Appendix including basic equations and relations are included at the end of the
paper.

2 Summary of the propagator method
This section summarizes the propagator method, which constitutes a systematic
analysis that solves the wave propagation problem in a general bianisotropic layered
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medium. A more detailed presentation of the propagator method is found in [9, 30],
and references therein. The foundation of the method is the notion of the propaga-
tor, i.e., the wave propagation operator that maps the total tangential electric and
magnetic fields from one plane in the slab to another. This is in contrast to the more
common approach of propagating the eigenmodes, i.e., the forward and backward
moving modes of the slab.

The reflection and transmission problem is treated in a concise way using a
coordinate-free dyadic notation. The reflection and transmission dyadics for a
medium enclosed with isotropic half spaces on both sides is presented as well as
the reflection dyadic for a medium with perfect electric conductor (PEC) backing.
The current on the metal backing of the latter case is also given.

The formulation presented in this chapter extends the earlier reported method
for the treatment of an arbitrary background medium distinct from vacuum by
introducing the concept of relative wave impedance operators in accordance with
Appendix D.

2.1 The plane wave spectrum representation

For the purpose of studying wave propagation in layered media as illustrated in
Figure 1, it is appropriate to decompose the electromagnetic field in a spectrum of
plane waves by use of the Fourier transform in the lateral variables in accordance
with Appendix A. We adopt the time convention e´iωt, and provided all the gener-
ating sources are located in the isotropic half-space z ă z0, the incident, reflected,
and transmitted fields are given by

Ei
pr, ωq “

1

4π2

8
ĳ

´8

ˆ

I2 ´
ẑkt

kz

˙

¨ F`
pkt, z1qe

ikt¨ρ`ikzpz´z1q dkx dky (2.1)

Er
pr, ωq “

1

4π2

8
ĳ

´8

ˆ

I2 `
ẑkt

kz

˙

¨ r`
¨ F`

pkt, z1qeikt¨ρ´ikzpz´z1q dkx dky (2.2)

Et
pr, ωq “

1

4π2

8
ĳ

´8

ˆ

I2 ´
ẑkt

kz

˙

¨ t`
¨ F`

pkt, z1qeikt¨ρ`ikzpz´zN´1q dkx dky (2.3)

Here, (2.1) is valid in the region z0 ď z ď z1, (2.2) in z ď z1, and (2.3) in z ě zN´1.
Furthermore, F`

pkt, z1q is the Fourier component of the transverse, electric exci-
tation at the interface z “ z1, and r` and t` denote the reflection and transmission
dyadics for excitation from the left, see Section 2.5. Here, ρ “ xx̂` yŷ is the trans-
verse position vector, kt “ kxx̂ ` kyŷ is the transverse wave vector, I2 “ x̂x̂ ` ŷŷ
is the transverse identity dyadic, and x̂, ŷ, and ẑ are the unit vectors in the x, y,
and z coordinate directions. Finally, the longitudinal wave number kz is given by
(where kt “ |kt| and k is the wavenumber in the isotropic material)

kz “

#

a

k2 ´ k2
t kt ă k

i
a

k2
t ´ k2 kt ą k

(2.4)
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. . .

Sources

z “ z0 z “ z1 z “ z2 z “ z3 z “ zN´2 z “ zN´1

z

1 2 3 N ´ 1 N

F`
pzq

F´
pzq

F`
pzq

F´
pzq

Figure 1: The source region z ă z0 ă z1 and symbolic representation of the left and
right propagating split fields F˘ in region 1 and N , outside the stratified region.
The extent of the source region is limited by the plane z “ z0.

We assume the isotropic regions are lossless, hence the wavenumber k is real and
positive. In general, the surrounding isotropic regions could have different material
parameters, i.e., we could have k “ ka in (2.1) and (2.2), whereas k “ kb in (2.3),
where ka and kb are the wavenumbers for the different materials.

2.2 The fundamental equation

From now on, the tangential wave vector, kt, is assumed being fixed but arbitrary.
The Fourier components of the electric and magnetic fields can be uniquely decom-
posed in their tangential and normal components as

#

Epkt, zq “ Etpkt, zq ` ẑEzpkt, zq

Hpkt, zq “ Htpkt, zq ` ẑHzpkt, zq
(2.5)

Substituting the constitutive relations describing the material into the Maxwell equa-
tions (see Appendix B.1 and B.2 for further details) and eliminating the normal field
components Ez and Hz, gives a system of ordinary differential equations (ODEs) in
the tangential components of the electric and magnetic fields only. The fundamental
equation for one-dimensional time-harmonic wave propagation becomes [9]

d

dz

ˆ

Etpkt, zq

η0J ¨ Htpkt, zq

˙

“ ik0Mpkt, zq ¨

ˆ

Etpkt, zq

η0J ¨ Htpkt, zq

˙

(2.6)
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where J “ ẑ ˆ I2 is a rotation in the x-y-plane by π{2, and Mpkt, zq is a 4 ˆ 4
complex-valued dyadic referred to as the fundamental dyadic.

Equation (2.6) is the general equation for wave propagation in linear, laterally
homogeneous media. From the solution of this equation, can the longitudinal parts
of the fields and flux densities be found [9].

2.3 Wave propagation operators

The propagator formalism makes use of the fact that the total tangential electric and
magnetic fields are continuous across the interfaces in a planar stratified structure as
illustrated in Figure 1. Thus, the propagator, i.e., the wave propagation operator,
maps the total tangential electric and magnetic fields at the front surface of the
structure to the total tangential electric and magnetic fields at the rear surface of
the structure.

2.3.1 Single layer

A formal solution to the fundamental equation (2.6) can be written [9]
ˆ

Etpkt, zq

η0J ¨ Htpkt, zq

˙

“ Ppkt, z, z1q ¨

ˆ

Etpkt, z1q
η0J ¨ Htpkt, z1q

˙

(2.7)

where the propagator P is a 4 ˆ 4 complex-valued dyadic, mapping the tangential
electric and magnetic fields from z1 to z. For a homogeneous material, an explicit
solution of (2.6) can be found, and in this case the propagator is (note that the
order of the z-arguments in the propagator is important)

Ppkt, z, z1q “ eik0pz´z1qMpktq (2.8)

where the fundamental dyadic M contains all the wave propagation properties of
the slab and the exponential function propagates the field from one position z1 to
another position z. Note that (2.7) is a transfer matrix form that relates the total
tangential electric and magnetic fields between boundaries [26].

2.3.2 Several layers

Let zj, j “ 1, . . . , N ´ 1, be the locations of N ´ 1 parallel interfaces, as depicted in
Figure 1, and let Mj, j “ 1, . . . , N , be the fundamental dyadics of the corresponding
regions, respectively. It is assumed that all slabs are homogeneous and that the
environmental regions j “ 1 and j “ N are isotropic and homogeneous.

Since the tangential electric and magnetic fields are continuous at the boundaries,
a cascade coupling technique can be applied. Using (2.8) repeatedly gives

ˆ

Etpkt, zN´1q

η0J ¨ Htpkt, zN´1q

˙

“ PpzN´1, z1q ¨

ˆ

Etpkt, z1q

η0J ¨ Htpkt, z1q

˙

(2.9)

where the propagator for the layered bianisotropic structure is

PpzN´1, z1q “ eik0pzN´1´zN´2qMN´1 ¨ . . . ¨ eik0pz3´z2qM3 ¨ eik0pz2´z1qM2 (2.10)
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Hence, the propagator for a layered structure is given by the product of the propa-
gators for each layer. Note that in general the dyadics do not commute, so the order
of the products matter.

2.4 Wave splitting in simple medium

In order to efficiently organize the solution of the wave propagation problem, we
introduce a wave splitting in the isotropic regions surrounding the stratified region.
The wave splitting is a one-to-one transformation between the total tangential fields
Et and η0J ¨Ht, respectively, and two new split fields F` and F´, i.e., forward and
backward traveling fields, respectively.

This section extends the vacuum wave splitting reported in [9, 30] to any linear
homogeneous and isotropic medium, which is relevant if the layered structure is
being enclosed by an isotropic material distinct from vacuum.

By introducing the relative wave impedance operator Zr that relates the electric
and magnetic fields propagating in the ˘z-direction through

η0J ¨ Htpkt, zq “ ¯Z´1
r pktq ¨ Etpkt, zq (2.11)

see Appendix D, the wave splitting in any isotropic, homogeneous medium, becomes
ˆ

F`
pkt, zq

F´
pkt, zq

˙

“
1

2

ˆ

I2 ´Zr

I2 Zr

˙

¨

ˆ

Etpkt, zq

η0J ¨ Htpkt, zq

˙

(2.12)

with inverse
ˆ

Etpkt, zq

η0J ¨ Htpkt, zq

˙

“

ˆ

I2 I2
´Z´1

r Z´1
r

˙

¨

ˆ

F`
pkt, zq

F´
pkt, zq

˙

(2.13)

where explicit expressions for Z´1
r and Zr are given by (D.1) and (D.2), respectively,

in Appendix D.

2.5 Reflection and transmission dyadics

The reflection and transmission dyadics are found from the formal solution to the
scattering problem expressed by the propagator dyadic in (2.9). Combination of
(2.9) and the wave splitting relations (2.12) and (2.13) for an arbitrary material a
on the left and material b on the right, gives the scattering relation

ˆ

F`
pkt, zN´1q

F´
pkt, zN´1q

˙

“ W ¨

ˆ

F`
pkt, z1q

F´
pkt, z1q

˙

(2.14)

where

W “

ˆ

W11 W12

W21 W22

˙

“
1

2

ˆ

I2 ´Zr,b

I2 Zr,b

˙

¨

ˆ

P11 P12

P21 P22

˙

¨

ˆ

I2 I2
´Z´1

r,a Z´1
r,a

˙

(2.15)
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Recall that the generating sources are assumed being located in the half-space z ă

z0 ă z1, as depicted in Figure 1. Thus, the assumption of no sources on the right-
hand side of the slab implies F´

pkt, zN´1q “ 0 and the reflection and transmission
dyadics with excitation from the left are defined by

#

F´
pkt, z1q “ r`

¨ F`
pkt, z1q

F`
pkt, zN´1q “ t`

¨ F`
pkt, z1q

(2.16)

where the expressions for r` and t` in terms of the blocks of (2.15) are [9, 30]
#

r`
“ ´W´1

22 ¨ W21

t`
“ W11 ` W12 ¨ r`

(2.17)

In case of a PEC backed slab, the boundary conditions make it more convenient to
express the fields at the boundary zN´1 in terms of the total fields

ˆ

0
´η0JS

˙

“

ˆ

Etpkt, zN´1q

η0J ¨ Htpkt, zN´1q

˙

“ T ¨

ˆ

F`
pkt, z1q

F´
pkt, z1q

˙

(2.18)

where JS is the surface current density at z “ zN´1, with T defined by

T “ PpzN´1, z1q ¨

ˆ

I2 I2
´Z´1

r,a Z´1
r,a

˙

(2.19)

In this case we obtain the reflection and conductance dyadics, r` and g`, respec-
tively, by

#

r`
“ ´T´1

12 ¨ T11

g`
“ T21 ´ T22 ¨ r`

(2.20)

where the conductance dyadic is related to the electric surface current density on
the PEC surface for left excitation through [9]

´η0JS “ g`
¨ F`

pkt, z1q (2.21)

Usually, only the reflection dyadic r` is of interest.

3 Motivation for the need of a stabilization scheme
The wave propagator formalism is inherently unstable, as pointed out in the In-
troduction. This section considers this characteristic of the method in more detail
and it is shown that numerical breakdown can occur when evanescent wave fields
are present in the scattering problem. Numerical examples are presented in order
to illustrate and motivate the need for introducing a stabilization scheme in the
formulation. At the end of this section, the wave and scattering matrix forms are
discussed.
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3.1 Origin of numerical instabilities

The fundamental dyadic M has eigenvectors and eigenvalues tvm, nmu4m“1

M ¨ vm “ nmvm (3.1)

where the eigenvalues nm are the refractive indices of the propagating modes, which
have polarizations given by the eigenvectors vm. The propagator has the same
eigenvectors and propagation factors as eigenvalues

P ¨ vm “ eik0nmdvm (3.2)

where d is the thickness of the slab, and the quantity nmd is often referred to
as the optical thickness. Note that in lossless isotropic media we would typically
have two waves of different polarizations, transverse electric (TE) and transverse
magnetic (TM), propagating in each direction, with two positive refractive indices
corresponding to waves propagating in the `z direction, and two negative refractive
indices corresponding to waves propagating the ´z direction. However, since we are
dealing with general bianisotropic media and complex-valued refractive indices, we
refrain from exploiting this in our notation and simply label all refractive indices by
nm.

We can now see the origin of the numerical instabilities when one or several
of the eigenvalues nm become complex, i.e., the wave modes become evanescent:
the exponential function in (3.2) will become either very large or very small as k0d
becomes large. Thus, in this situation, similar to what was early reported in [6], the
elements of the propagator become dominated by the exponentially growing waves,
and those of the decaying waves which contain the essential physics, are lost in the
computation.

3.2 Illustrations by numerical examples

As argued in the preceding subsection, evanescent wave modes inside a slab or
any stratified structure can cause numerical breakdown of the wave propagation
algorithm, see e.g., [6, 12, 13, 15, 19, 24, 36]. This subsection illustrates the problem
by showing a number of situations where instabilities occur unless a stabilization
scheme is applied. All examples presented in this section have been computed in
matlab where the expm command was used to evaluate the propagator P. Other
options are possible e.g., spectral decomposition by use of diag, that may result
in slightly different numerical performance, with unessential impact on the main
results.

3.2.1 Orthogonal basis

In isotropic regions, the wave modes are either homogeneous, obliquely propagating
plane waves or inhomogeneous (evanescent) plane waves depending on whether the
tangential wave number, kt, is less or greater than the wave number in the material,
k. It is common to introduce an angle of incidence (the angle between the incident



9

wave propagation direction and the normal of the structure), θi, through the relation
kz “ k cos θi, cf. (2.4). When evanescent waves are present, i.e., kt ą k, it is often
more convenient to use kz{k than cos θi.

The transverse wave number kt “
a

k2
x ` k2

y “ k sin θi is a non-negative real
number, which in general is non-zero, and then it is appropriate to make use of the
orthogonal basis defined by

#

ê∥pktq “ kt{kt “ x̂ cosϕi ` ŷ sinϕi

êKpktq “ ẑ ˆ ê∥pktq “ ´x̂ sinϕi ` ŷ cosϕi

(3.3)

for the representation of transverse vectors in the x-y-plane. The azimuth angle of
incidence ϕi is the angle of the tangential wave vector kt relative x̂. In isotropic
media, a wave with the electric field along ê∥ is said to be TM-polarized, whereas if
the electric field is along êK the wave is TE-polarized.

3.2.2 Reflection and transmission

With the sources located on the left-hand side of the structure, the reflection and
transmission dyadics are represented in the orthogonal basis by

#

r`
“ r`

∥∥ê∥ê∥ ` r`

∥K
ê∥êK ` r`

K∥êKê∥ ` r`
KKêKêK

t`
“ t`

∥∥ê∥ê∥ ` t`

∥K
ê∥êK ` t`

K∥êKê∥ ` t`
KKêKêK

(3.4)

where the first and second subscripts of the coefficients denote the polarization states
of the reflected (transmitted) and incident waves, respectively.

The reflected and transmitted power densities, including the cross polarized scat-
tering components, are given by the reflectance and transmittance, R` and T`, re-
spectively. These are in turn given by quadratic expressions of the components of
the reflection and transmission dyadics (3.4) as

#

R`
“ |r`

∥∥ sinχ ` r`

∥K
cosχ{ cos θi|

2
` |r`

K∥ cos θi sinχ ` r`
KK cosχ|

2

T`
“ |t`

∥∥ sinχ ` t`

∥K
cosχ{ cos θi|

2
` |t`

K∥ cos θi sinχ ` t`
KK cosχ|

2
(3.5)

where θi is the angle of incidence and χ is the polarization angle, χ “ 0 (TE
polarization) and χ “ π{2 (TM polarization). For details, see [9, 29]. However,
the expressions (3.5) are limited to the case of equal environments enclosing the
structure. To this end one can alternatively apply the more general expressions
given by

R`
“

pr` ¨ E0q
˚ ¨ Z´1

r,a ¨ r` ¨ E0

E˚
0 ¨ Z´1

r,a ¨ E0

and R´
“

pr´ ¨ E0q˚ ¨ Z´1
r,b ¨ r´ ¨ E0

E˚
0 ¨ Z´1

r,b ¨ E0

(3.6)

T`
“

pt` ¨ E0q
˚ ¨ Z´1

r,b ¨ t` ¨ E0

E˚
0 ¨ Z´1

r,a ¨ E0

and T´
“

pt´ ¨ E0q
˚ ¨ Z´1

r,a ¨ t´ ¨ E0

E˚
0 ¨ Z´1

r,b ¨ E0

(3.7)
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where ˚ denotes the complex conjugate, Z´1
r,a and Z´1

r,b are the relative wave admit-
tance operators of medium a on the left and medium b on the right, respectively,
see Appendix D, and E0 is the polarization defined by

E0 “ ê∥ sinχ ` êK cosχ

which can also be given a cartesian representation in a global coordinate system,
E0 “ Exx̂ ` Eyŷ, depending on which is most convenient.

3.2.3 Dielectric slab with losses

Our first case is a lossy dielectric material of thickness d enclosed by free space. Due
to the losses, the wave number in the material has an imaginary part causing an
exponentially decreasing/increasing wave propagation factor. The slab is assumed
being isotropic with relative material parameters given by

ϵ “ p1 ` iqI3, µ “ µI3, ξ “ ζ “ 0 (3.8)

The eigenvalues of the fundamental dyadic are

n2
“ ϵµ ´ k2

t {k2
0 (3.9)

Thus, the refractive index in the material has an imaginary part Imnm ‰ 0, caus-
ing an exponentially decreasing/increasing wave propagation factor, cf. Section 3.1.
Figure 2 shows results for the computed reflectance and transmittance, by use of
the standard propagator formulation in [9, 29]. It is clearly seen that numerical in-
stabilities occur for thick slabs, indicated by the strong oscillations and above-unity
results that start at k0d « 60. Thus, the type of instability is associated with atten-
uated fields due to absorption in lossy layers that have high thickness/wavelength
ratio [15].

3.2.4 Frustrated total internal reflection

When a plane wave in a dense medium is incident at a sufficiently large angle on
a less dense medium, we have the situation of a real longitudinal wave number kz
in the dense medium, and an imaginary one in the less dense (with exponential
attenuation of evanescent waves). When only two media are present, this leads
to total internal reflection, and zero transmission. However, even though there is
exponential attenuation, there are still some electromagnetic fields in the less dense
medium (having evanescent waves). If a second interface is brought close enough
to the first interface, a positive power transfer through the coupling of evanescent
waves in both directions may occur (tunneling). This typically happens when the
distance is significantly less than the wavelength in free space.

Results are shown in Figure 3 for an air slab enclosed by isotropic dielectric
materials a and b with refractive indices na “ nb “ 2. The air slab has material
parameters

ϵ “ I3, µ “ µI3, ξ “ ζ “ 0 (3.10)
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Figure 2: The reflectance and transmittance (TM polarization) by use of the stan-
dard propagator formulation in [9, 29], for the lossy isotropic slab at angle of inci-
dence θi “ 35˝.

Figure 3 shows results from computed reflectance and transmittance by use of
the same technique as the preceding example i.e., without use of any stabilization
scheme. Note that for very small k0d, there is high transmittance and low re-
flectance, which changes to low transmittance and high reflectance around k0d « 1.
The numerical instabilities start at kd « 60. For details and derivation of the cor-
respondence between the electromagnetic analog of quantum mechanical tunneling
by use of the transfer matrix approach, see [28].

3.2.5 Non-magnetic lossless gyrotropic slab

When a plasma (a collection of free floating charged particles) is subjected to a
magnetic field, a gyrotropic material model is applicable. The eigenwaves of this
material are circularly polarized with respect to the axis of the magnetic field. With a
sufficiently strong magnetic field, one of the eigenwaves may have an imaginary wave
number, causing exponential attenuation or increase. A non-magnetic gyrotropic
lossless material is modeled by the constitutive relations (where the notation rϵs is
used for a matrix representation of the dyadic ϵ in the xyz coordinate system)

rϵs “

¨

˝

ϵr iϵg 0
´iϵg ϵr 0
0 0 ϵz

˛

‚, µ “ I3, ξ “ ζ “ 0 (3.11)

where ϵr, ϵg and ϵz are real numbers, with ϵr and ϵz being non-negative. At normal
incidence, kt “ 0, it can be shown that the eigenvalues of the fundamental matrix
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Figure 3: The reflectance and transmittance (TM polarization)by use of the standard
propagator formulation in [9, 29], for the air slab enclosed by isotropic dielectric
materials distinct from vacuum, at angle of incidence θ “ 35˝.

M are
n2

˘ “ ϵr ˘ ϵg (3.12)

Thus, there exists a wave number in the material, with imaginary part Imnm ‰ 0,
if |ϵg| ą ϵr, causing exponentially decreasing/increasing wave propagation factors.

For reference and verification purposes, we list below analytical expressions for
the reflection and transmission dyadics in case of normal incidence on a gyrotropic
slab, which can be found by explicit calculations using the eigenvectors and eigen-
values of M. The results for cases without and with PEC-backing are given in the
following paragraphs.

Slab enclosed by air The reflection and transmission coefficients for a slab en-
closed by air at normal incidence are
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’

’

’

’

’

’

’

’

’

’

’

’

’

%

r`

∥ “ ´
p1 `

tanpξn`q

in`
qp1 `

tanpξn´q

in´
q ´ p1 ´ in` tanpξn`qp1 ´ in´ tanpξn´q

4p1 `
tanpξn`q

2in`
p1 ` n2

`qqp1 `
tanpξn´q

2in´
p1 ` n2

´qq

r`
K “ ´

tanpξn`q

n`
p1 ´ n2

`q

4p1 `
tanpξn`q

2in`
p1 ` n2

`qq
`

tanpξn´q

n´
p1 ´ n2

´q

4p1 `
tanpξn´q

2in´
p1 ` n2

´qq

t`

∥ “
1

2pcospξn`q `
sinpξn`q

2in`
p1 ` n2

`qq
`

1

2pcospξn´q `
sinpξn´q

2in´
p1 ` n2

´qq

t`
K “

1

2ipcospξn`q `
sinpξn`q

2in`
p1 ` n2

`qq
´

1

2ipcospξn´q `
sinpξn´q

2in´
p1 ` n2

´qq

(3.13)

where ξ “ k0d is the phase thickness of the slab, and n˘ are given by (3.12). The
reflection and transmission dyadics are

#

r`
“ r`

∥ I2 ` r`
KJ

t`
“ t`

∥ I2 ` t`
KJ

(3.14)

where J “ ẑˆI2 “ ẑˆpê∥ê∥` êKêKq “ êKê∥´ ê∥êK. The co- and cross polarization
coefficients r`

∥ (t`

∥ ) and r`
K (t`

K), respectively, are related to the coefficients of the
reflection (transmission) dyadics (3.4) by r`

∥ “ r`

∥∥ “ r`
KK, and r`

K “ ´r`

∥K
“ r`

K∥ and
similarily for the transmission coefficients.

PEC backed slab The reflection coefficients for a PEC backed slab with air to
the left at normal incidence are

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r`

∥ ´
1 `

tanpξn`q

n`

tanpξn´q

n´
´

1 ´ i tanpξn`q

n`

¯ ´

1 ´ i tanpξn´q

n´

¯

r`
K “ ´

tanpξn`q

n`
´

tanpξn´q

n´
´

1 ´ i tanpξn`q

n`

¯ ´

1 ´ i tanpξn´q

n´

¯

(3.15)

with the reflection dyadic of the form

r`
“ r`

∥ I2 ` r`
KJ (3.16)

The reflectance and transmittance for a gyrotropic slab enclosed by air is depicted in
Figure 4, which shows that the degradation of numerical accuracy starts at kd « 5.
Furthermore, Figure 5 presents |r`

∥ |, for the case of a PEC-backed lossless gyrotropic
slab, showing that the instabilities start at kd « 5 also for this case, similar to the
results reported in [36].
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Figure 4: The reflectance and transmittance at normal incidence by use of the
standard propagator formulation in [9, 29], and the analytical expressions (3.13)
and (3.14), for a lossless gyrotropic slab enclosed by air, with ϵr “ 40 and ϵg “ 80.
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Figure 5: The co-polarized reflection coefficient at normal incidence by use of the
standard propagator formulation in [9, 29], and the analytical expressions (3.15) and
(3.16), for a PEC-backed lossless gyrotropic slab with ϵr “ 40 and ϵg “ 80, [36].
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3.2.6 Dispersive bianisotropic slab

This example considers a PEC backed dispersive chiro-omega medium enclosed by
vacuum, as an example of an anti-reflection surface optimized for low reflection
within a given frequency band, see [20]. The chiro-omega medium is an example
of a bianisotropic medium. This example illustrates that a slight perturbation of a
material parameter can cause loss of accuracy without the use of any stabilization
scheme of the propagator formalism.

More specifically, the permittivity and permeability dyadics ϵ and µ of the slab
are given by the matrix representations [20]

rϵs “

¨

˝

ϵt 0 0
0 ϵt 0
0 0 ϵzz

˛

‚ rµs “

¨

˝

µt 0 0
0 µt 0
0 0 µzz

˛

‚ (3.17)

where
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ϵt “ ϵr
`

1 `
ω2
p

ω2
0 ´ ω2 ´ pω2

p ` A2ω2q{3 ´ i2νω

˘

ϵzz “ ϵr

µt “ µr

`

1 `
A2ω2

ω2
0 ´ ω2 ´ pω2

p ` A2ω2q{3 ´ i2νω

˘

µzz “ µr

(3.18)

The other two coupling dyadics, ξ and ζ are [21]

rξs “

¨

˝

iκ iΩ 0
´iΩ iκ 0
0 0 0

˛

‚ rζs “

¨

˝

´iκ iΩ 0
´iΩ ´iκ 0
0 0 0

˛

‚ (3.19)

where
$

’

’

’

&

’

’

’

%

κ “

?
ϵrµrωpAω sin β

ω2
0 ´ ω2 ´ pω2

p ` A2ω2q{3 ´ i2νω

Ω “

?
ϵrµrωpAω cos β

ω2
0 ´ ω2 ´ pω2

p ` A2ω2q{3 ´ i2νω

(3.20)

Figures 6 and 7 show the real and imaginary parts of the material variables corre-
sponding to ϵ, µ, ξ and ζ, respectively. Notice that data for a perturbed slab, where
A is changed from 0.353 to 0.553, are included for the purpose of comparison.

Figure 8 shows results from computed reflectance for the PEC backed bian-
isotropic slab and its perturbed counterpart. It is seen in Figure 8 that numerical
instabilities occur in the case of the perturbed slab, within the frequency band where
the slab exhibits strong dispersion, i.e., between 9 and 10 GHz. Thus, this example
illustrates the fact that a stabilization scheme is needed in order to get accurate
results, which is critical if the propagator method is intended to be used in combi-
nation with, e.g., an optimization algorithm for the design of devices that exhibit
strong dispersion.
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Figure 6: Real and imaginary parts of the variables (3.18) of ϵ and µ, with param-
eters in accordance with paper VII in [21], i.e., with ϵr “ 3, µr “ 1, f0 “ 10 GHz,
ω0 “ 2πf0, ωp “ 2.29 ¨ 1010, ν “ 5 GHz, β “ 48.0˝ and A “ 0.353. The material
parameters of the perturbed slab were identical, except A that was given the value
0.553.
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Figure 7: Real and imaginary parts of the variables (3.20) of ξ and ζ, with param-
eters in accordance with paper VII in [21], i.e., with ϵr “ 3, µr “ 1, f0 “ 10 GHz,
ω0 “ 2πf0, ωp “ 2.29 ¨ 1010, ν “ 5 GHz, β “ 48.0˝ and A “ 0.353. The material
parameters of the perturbed slab were identical, except A that was given the value
0.553.
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Figure 8: Reflectance at normal incidence from a PEC backed dispersive bian-
isotropic slab of thickness 60 mm, enclosed by vacuum. The values of the consti-
tutive dyadic ϵ, µ, ξ and ζ in (3.17) and (3.19) are specified in Figure 6 and 7,
respectively.

3.2.7 Periodic bandgap structure

Define a unit cell structure, consisting of two isotropic materials having high and low
refractive indices nH and nL, respectively, and thicknesses dH and dL. By stacking
a number of unit cells in sequence, it is well known that a stop band with very low
transmission may occur. When choosing the optical thickness nHdH “ nLdL “ λ0{4,
where λ0 is the free space wavelength at design frequency f0, the result is a stop
band centered at f0 with a bandwidth determined by the contrast nH{nL.

Inspired by Chapter 6 in [22] on dielectric mirrors, we assume that the periodic
structure has an odd number of layers, with the high index layer nH being the first
and last layer. More specifically, we assume nL “ 1.38, nH “ 2.32 and choose a
structure made of 70 periods, i.e., in total 141 layers. Figure 9 shows results in the
case of the structure being enclosed by isotropic dielectric materials a and b, with
refractive indices na “ 1 and nb “ 1.52, i.e., vacuum on the left and an isotropic
dielectric material on the right.

In Figure 9, it is seen that numerical instabilities occur with respect to transmis-
sion around the center of the stop band, i.e., λ “ 500 nm. This can be explained
by the total propagator of the structure being pPH ¨ PLqN ¨ PH, where PH is the
propagator for the high index material, PL is the propagator for the low index, and
N is the number of unit cells. In the stop band, it can be shown that some of the
eigenvalues of the unit cell propagator PH ¨PL are not of unit magnitude, and similar
problems as in the previous examples with exponentially increasing or decreasing
factors occur.
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Figure 9: Reflectance and transmittance at normal incidence by use of the standard
propagator formulation in [9, 29], for the periodic bandstop structure.

The given examples have shown that care should be taken when evanescent wave
modes are present in the scattering problem. The origin of the numerical instabili-
ties, specifically associated with total internal reflection as well as from the imaginary
component of the refractive index associated with absorption in layers that have high
thickness/wavelength ratio is discussed in more detail in [15]. Furthermore, it was
also illustrated that care should be taken for frequencies where strong dispersion
occurs.

4 Stable reformulation of the propagator method
This section introduces the main result of the present paper, i.e., a reformulation
of the propagator method presented in [9, 30], that solves the reflection as well as
the transmission problem in a well-conditioned formulation accomplished by trans-
forming the method into a scattering matrix form in combination with a spectral
decomposition of the propagator where exponentially growing and decaying terms
are separated. A similar technique has been reported in [6].

4.1 Wave and scattering matrix relations

The propagator method is on a transfer matrix form, i.e., based on wave propagation
operators that map the total tangential electric and magnetic fields through a stack
of material layers, cf. (2.9). Using a wave splitting, see Section 2.4, transforms the
propagator formulation into a wave matrix form, cf. (2.14), that relates the forward
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and backward propagating electric waves [26].
As illustrated in Figure 10, the wave matrix formulation relates the input and

output wave fields in accordance with
ˆ

F`
pkt, zN´1q

F´
pkt, zN´1q

˙

“ W ¨

ˆ

F`
pkt, z1q

F´
pkt, z1q

˙

“

ˆ

W11 W12

W21 W22

˙

¨

ˆ

F`
pkt, z1q

F´
pkt, z1q

˙

(4.1)

and for the scattering matrix formulation depicted in Figure 11, the relation reads
ˆ

F´
pkt, z1q

F`
pkt, zN´1q

˙

“ S ¨

ˆ

F`
pkt, z1q

F´
pkt, zN´1q

˙

“

ˆ

S11 S12

S21 S22

˙

¨

ˆ

F`
pkt, z1q

F´
pkt, zN´1q

˙

(4.2)

Thus, by definition, the W- and S-matrix formulations mainly differ with respect
to the relation between the input and output wave fields. However, cascading slabs
with the W-matrix form is ordinary matrix multiplication while the S-matrices are
cascaded in terms of the star product that is reviewed in Section 5.

It was pointed out in the Introduction, that the propagator method and related
methods are inherently unstable, a fact supported by the discussion in Section 3.1.
As is illustrated in Figure 10 and seen in (4.1), the wave matrix always propagates
the fields in the forward direction when d “ zN´1 ´ z1 ą 0. It is in fact the
arguments of P that determines the direction of propagation. This implies that
wave fields associated with eigenvalues having negative imaginary part will increase
when mapped with W, cf. the motivation given in Section 3.1. Thus, the existence
of evanescent wave fields can render numerical instabilities in layers that have high
thickness/wavelength ratio.

The blocks of the scattering matrix (dyadic) S are by definition the reflection and
transmission dyadics r˘ and t˘, where the ` or ´ sign indicates whether the incident
field is propagating in the positive or negative z-direction, respectively. Thus, S can
be rewritten in terms of the wave matrix (dyadic) W through the transformation
[9]

$

’

’

’

&

’

’

’

%

S11 “ r`
“ ´W´1

22 ¨ W21

S12 “ t´
“ W´1

22

S21 “ t`
“ W11 ` W12 ¨ r`

“ W11 ´ W12 ¨ W´1
22 ¨ W21

S22 “ r´
“ W12 ¨ t´

“ W12 ¨ W´1
22

(4.3)

where the blocks S11, S12, S21 and S22 have been identified with the reflection and
transmission dyadics, cf. Section 2.5, hence the name scattering matrix make sense.

The inverse of (4.3) gives the wave matrix W in terms of the scattering matrix
S i.e.,

$

’

’

’

&

’

’

’

%

W11 “ S21 ´ S22 ¨ S´1
12 ¨ S11

W12 “ S22 ¨ S´1
12

W21 “ ´S´1
12 ¨ S11

W22 “ S´1
12

(4.4)

From (4.3) it is clear that S is not stable if W is not stable. To this end, in order to
obtain a numerically stable formulation, we will instead derive the scattering matrix
formulation (4.2) through reformulation of (2.14).
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Figure 10: The wave matrix W for a slab enclosed by two homogeneous isotropic
half-spaces a on the left, and b on the right. The total tangential output fields
(scattered) F`

pkt, zN´1q and F´
pkt, zN´1q consist of waves transmitted through the

slab as well as waves reflected from the slab. Outside the slab the wave functions are
expressed as a superposition of forward and backward propagating (electric) fields,
see Section 2.4.

S

d

a b

Input F`
pkt, z1q

Output F´
pkt, z1q

OutputF`
pkt, zN´1q

InputF´
pkt, zN´1q

S21
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Figure 11: The scattering matrix S for a slab enclosed by two homogeneous isotropic
half-spaces a on the left, and b on the right. The scattering matrix S relates the total
tangential input fields F`

pkt, z1q and F´
pkt, zN´1q to the output fields F´

pkt, z1q

and F`
pkt, zN´1q i.e., the scattering matrix relates the incident fields to the scat-

tered in any direction. The block matrices S11 and S22 map the reflected backward
and forward propagating fields, whereas S12 and S21 map the transmitted backward
and forward propagating fields, respectively.
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4.2 Spectral decomposition

In the following, we use the left eigenvectors um defined by u˚
m ¨ P “ eik0dnmu˚

m

rather than the right eigenvectors vm used in section 3.1. The left eigenvectors
can be computed straightforwardly numerically for any given P. For instance, in
matlab use [V,D,U] = eig(M) to compute right eigenvectors V, eigenvalues D, and
left eigenvectors U, whereas in python we could use scipy.linalg.eig function with
the option left=True to make the same computation. Hence, we have

U:
¨ P “ D ¨ U: (4.5)

where U is a 4 ˆ 4 matrix with the left eigenvectors as columns, : denotes the
Hermitian transpose, P is the 4ˆ 4 matrix representation of the propagator, and D
is a diagonal matrix of eigenvalues

D “

¨

˚

˚

˝

eik0dn1 0 0 0
0 eik0dn2 0 0
0 0 eik0dn3 0
0 0 0 eik0dn4

˛

‹

‹

‚

(4.6)

The propagator dyadic P is diagonalizable if it is not defective, i.e., if the eigenvec-
tors still span C4. More details concerning different representations the propagator
P, can be found in Appendix F of [9]. We now proceed to use this spectral decom-
position to find a stable formulation for the scattering matrix.

4.3 Transformation into stable scattering matrix form

As a first step in the development of an unconditionally stable formulation, we
derive the scattering matrix form (4.2) through reformulation of (2.14). The scat-
tering relation (2.14) for a slab, enclosed by two homogeneous isotropic half-spaces
is rewritten as

ˆ

I2 I2
´Z´1

r,b Z´1
r,b

˙

¨

ˆ

F`
b

F´
b

˙

“ P ¨

ˆ

I2 I2
´Z´1

r,a Z´1
r,a

˙

¨

ˆ

F`
a

F´
a

˙

(4.7)

where we introduced F˘
a “ F˘

pkt, z1q, F˘
b “ F˘

pkt, zN´1q, and P “ PpzN´1, z1q
for brevity. The split fields on either side of the structure can be written in terms
of the excitation fields F`

a and F´
b and the scattering matrix as

ˆ

F`
a

F´
a

˙

“

ˆ

I2 0
S11 S12

˙

¨

ˆ

F`
a

F´
b

˙

“

„ˆ

I2 0
0 0

˙

`

ˆ

0 0
I2 0

˙

¨

ˆ

S11 S12

S21 S22

˙ȷ

¨

ˆ

F`
a

F´
b

˙

(4.8)
ˆ

F`
b

F´
b

˙

“

ˆ

S21 S22

0 I2

˙

¨

ˆ

F`
a

F´
b

˙

“

„ˆ

0 0
0 I2

˙

`

ˆ

0 I2
0 0

˙

¨

ˆ

S11 S12

S21 S22

˙ȷ

¨

ˆ

F`
a

F´
b

˙

(4.9)
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With arbitrary excitations F`
a and F´

b , we find that insertion of these expressions
in (4.7) yields a matrix equation
„ˆ

0 I2
0 ´Z´1

r,b

˙

´ P ¨

ˆ

I2 0
Z´1

r,a 0

˙ȷ

¨

ˆ

S11 S12

S21 S22

˙

“ P¨

ˆ

I2 0
´Z´1

r,a 0

˙

´

ˆ

0 I2
0 Z´1

r,b

˙

(4.10)

From this equation, one could solve directly for the scattering matrix S, but this
only leads to the instabilities explored in the previous section. Instead, we use the
spectral decomposition (4.5), which yields

„

U:
¨

ˆ

0 I2
0 ´Z´1

r,b

˙

´ D ¨ U:
¨

ˆ

I2 0
Z´1

r,a 0

˙ȷ

¨

ˆ

S11 S12

S21 S22

˙

“

„

D ¨ U:
¨

ˆ

I2 0
´Z´1

r,a 0

˙

´ U:
¨

ˆ

0 I2
0 Z´1

r,b

˙ȷ

(4.11)

To make (4.11) stable and avoid propagation factors that are both large and small,
identify propagation factors satisfying |eik0dnm | ą 1 (this could correspond to any
number of modes, but for the sake of clarity we assume here these are m “ 1
and m “ 2) and divide the equations by these. Note that the eigenvectors U: and
eigenvalues nm are computed from the eigenproblem for M, and P is never explicitly
computed. The result is

„

D´ ¨ U:
¨

ˆ

0 I2
0 ´Z´1

r,b

˙

´ D` ¨ U:
¨

ˆ

I2 0
Z´1

r,a 0

˙ȷ

¨

ˆ

S11 S12

S21 S22

˙

“

„

D` ¨ U:
¨

ˆ

I2 0
´Z´1

r,a 0

˙

´ D´ ¨ U:
¨

ˆ

0 I2
0 Z´1

r,b

˙ȷ

(4.12)

where

D´ “

¨

˚

˚

˝

e´ik0dn1 0 0 0
0 e´ik0dn2 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

and D` “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 eik0dn3 0
0 0 0 eik0dn4

˛

‹

‹

‚

(4.13)

Thus, by dividing by the potentially large exponential functions, all coefficients have
finite amplitude leading to a well-conditioned form [12]

S “

ˆ

S11 S12

S21 S22

˙

“

„

D´ ¨ U:
¨

ˆ

0 I2
0 ´Z´1

r,b

˙

´ D` ¨ U:
¨

ˆ

I2 0
Z´1

r,a 0

˙ȷ´1

¨

„

D` ¨ U:
¨

ˆ

I2 0
´Z´1

r,a 0

˙

´ D´ ¨ U:
¨

ˆ

0 I2
0 Z´1

r,b

˙ȷ

(4.14)

A special case of interest, is when the thickness of the slab is zero i.e., d “ 0
(D` “ D´ “ I), then the above equation becomes

S “

ˆ

S11 S12

S21 S22

˙

“

ˆ

´I2 I2
´Z´1

r,a ´Z´1
r,b

˙´1

¨

ˆ

I2 ´I2
´Z´1

r,a ´Z´1
r,b

˙

(4.15)
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which is considered as an interface scattering matrix that describe layers with zero
thickness.

In the case of PEC backing, we use ´η0JS “ g` ¨ F`
a and F´

a “ r` ¨ F`
a to

rewrite (2.18) as a matrix equation
ˆ

0
g`

˙

“ P ¨

ˆ

I2 I2
´Z´1

r,a Z´1
r,a

˙

¨

ˆ

I2
r`

˙

(4.16)

Writing
ˆ

0
g`

˙

“

ˆ

0 0
0 I2

˙

¨

ˆ

r`

g`

˙

and
ˆ

I2
r`

˙

“

ˆ

I2
0

˙

`

ˆ

0 0
I2 0

˙

¨

ˆ

r`

g`

˙

(4.17)

and applying the same spectral decomposition and dividing by exponential factors
larger than unity, we find
ˆ

r`

g`

˙

“

„

D´ ¨ U:
¨

ˆ

0 0
0 I2

˙

´ D` ¨ U:
¨

ˆ

I2 0
Z´1

r,a 0

˙ȷ´1

¨D` ¨U:
¨

ˆ

I2
´Z´1

r,a

˙

(4.18)

From these equations the reflection dyadic r` and conductance dyadic g` can be
computed in a numerically stable manner.

5 Composition of slabs and the star product
The technique in Section 4.3 enables the computation of scattering matrices in a
stable and numerically robust manner in all layers even where evanescent wave
fields are present. The composition of a given stack of materials in terms of given
scattering matrices is then made by use of the Redheffer star product [27]. This is in
contrast to the transfer matrix formulation where the composition of slabs is made
by ordinary matrix multiplication. The star product is a cascading technique by
which several substructures that have been analyzed individually can be connected
together [31].

The star product combines the individual scattering matrices Sp1q and Sp2q of
two material slabs, both assumed embedded in a reference background material
with relative wave impedance Zr,0, by

S “ Sp1q ‹ Sp2q (5.1)

where the combined scattering matrix S is defined by

S “

ˆ

S11 S12

S21 S22

˙

(5.2)

whit the block dyadics
$

’

’

’

’

’

&

’

’

’

’

’

%

S11 “ S
p1q

11 ` S
p1q

12 ¨
“

I2 ´ S
p2q

11 ¨ S
p1q

22

‰´1
¨ S

p2q

11 ¨ S
p1q

21

S12 “ S
p1q

12 ¨
“

I2 ´ S
p2q

11 ¨ S
p1q

22

‰´1
¨ S

p2q

12

S21 “ S
p2q

21 ¨
“

I2 ´ S
p1q

22 ¨ S
p2q

11

‰´1
¨ S

p1q

21

S22 “ S
p2q

22 ` S
p2q

21 ¨
“

I2 ´ S
p1q

22 ¨ S
p2q

11

‰´1
¨ S

p1q

22 ¨ S
p2q

12

(5.3)
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assuming that
“

I2 ´ S
p2q

11 ¨ S
p1q

22

‰

and
“

I2 ´ S
p1q

22 ¨ S
p2q

11

‰

are invertible, see e.g., [27, 31].
The product has the property of being dissipative which is fundamental in order to
keep the scattering matrix formulation numerical stable when composition of slabs
is considered, see Appendix E for details.

Compositions consisting of more than two slabs is performed by recursively eval-
uating the star products

Sptotq
“ Sp1q ‹ Sp2q ‹ . . . ‹ SpNq (5.4)

where N denotes the number of slabs. Equation (5.4) assumes the star product
being associative.

Having computed a scattering matrix Sptotq for a material stack with respect to a
reference background material impedance Zr,0, we get the final and so called global
scattering matrix with respect to the embedding materials a and b as

Spglobalq
“ Spaq ‹ Sptotq ‹ Spbq (5.5)

where Spaq is the interface scattering matrix with material a on the left and reference
material 0 on the right, whereas Spbq is the interface scattering matrix with reference
material 0 on the left and material b on the right. The additional scattering matrices,
see (4.15), are made to describe layers with zero thickness, in order to keep the phase
of the total scattering matrix correct [31].

6 Numerical examples
The reformulated propagator formulation according to Section 4, is verified in this
section, The examples in Section 3.2 have been recomputed by use of the stabilized
formulation of this paper, and the results are presented in Figure 12 through 17.

As shown in Figure 12, are the strong oscillations and above-unity results as-
sociated with attenuated fields due to absorption in lossy layers with high thick-
ness/wavelength ratio eliminated by use of the stabilized formulation. Similarly,
is it seen in Figure 13 that the new scheme avoids numerical instabilities in the
example of tunneling, where strongly attenuated evanescent fields are present.

The exponentially decreasing and increasing wave propagation factors that are
present in the examples of the non-magnetic lossless gyrotropic slab, are handled ap-
propriately by the stabilized propagator formulation even for high thickness/wavelength
ratios as seen in Figure 14 for the case of a slab enclosed by air and Figure 15, in
case of a PEC backed slab.

Figure 16 furthermore, illustrates that the new formulation can treat more com-
plicated structures having strong dispersion in certain frequency bands. Finally,
Figure 17 shows that the new scheme is numerical stable even around the center
frequency in the stop band of the earlier considered bandgap structure.

The presented examples illustrate that the reformulation of the propagator method
in of Section 4, yields stable numerical results in all considered cases of the present
paper. However, there is an added numerical cost in the stabilized algorithm from
the computation of an eigenvalue problem for the 4 ˆ 4 matrix M. In most cases,
this cost is negligible.
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Figure 12: The reflectance and transmittance by use of the stabilized propagator
formulation cf. Figure 2 in in Section 3.2.3.
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Figure 13: The reflectance and transmittance by use of the stabilized propagator
formulation cf. Figure 3 in Section 3.2.4.
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Figure 14: The reflectance and transmittance by use of the stabilized propagator
formulation cf. Figure 4 in Section 3.2.5.
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Figure 15: The co-polarized reflection coefficient by use of the stabilized propagator
formulation cf. Figure 5 in Section 3.2.5.
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Figure 16: Reflectance by use of the stabilized propagator formulation cf. Figure 8
in Section 3.2.6.
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Figure 17: Reflectance and transmittance by use of the stabilized propagator for-
mulation cf. Figure 9 in Section 3.2.7.
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7 Conclusions
This paper has presented a stabilized scheme that solves the wave propagation prob-
lem in a general linear, bianisotropic, stratified media. The method utilizes the
concept of propagators, i.e., the wave propagation operators that map the total
tangential electric and magnetic fields from one plane in the slab to another. The
new scheme transformed the propagator approach into a scattering matrix form,
where spectral decomposition of the propagator enabled separation of the exponen-
tially growing and decaying terms in order to obtain a well-conditioned formulation.
It was further outlined how multilayer structures can be treated in a stable man-
ner based on the dissipative property of the Redheffer star product for cascading
scattering matrices.

The reflection and the transmission dyadics for a general bianisotropic medium
with an isotropic half space on both sides of the slab were presented in a coordinate-
independent dyadic notation, as well as the reflection dyadic for a bianisotropic slab
with perfect electric conductor backing (PEC).

Several numerical examples have been shown with the purpose of motivating the
need for stabilization of the propagator formalism as well as for the illustration of the
performance of the stabilized algorithm. All considered numerical examples could be
computed in a numerically stable manner by the stabilized propagator formulation.

Acknowledgments
The work reported in this paper was supported by grants from Saab Dynamics AB,
Linköping, Sweden, which is gratefully acknowledged. The authors also would like
to thank Dr. Christer Larsson from Saab Dynamics AB, for the support and helpful
discussions about the content of this paper.

A Lateral Fourier transform of the fields
In a geometry where the medium is laterally homogeneous in the variables x and
y, it is natural to decompose the electric and magnetic fields and flux densities in
a spectrum of plane waves [2]. The fields are decomposed into a spectrum of plane
waves by use of the Fourier transform with respect to the lateral position vector
ρ “ x̂x ` ŷy defined by

Epkt, zq “

8
ĳ

´8

Eprqe´ikt¨ρ dx dy (A.1)

where the tangential wave vector kt “ x̂kx ` ŷky is real-valued and fixed but arbi-
trary. The inverse is

Eprq “
1

4π2

8
ĳ

´8

Epkt, zqeikt¨ρ dkx dky (A.2)
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and the argument of the field indicates whether the field itself Eprq or its Fourier
transform Epkt, zq with respect to ρ is intended.

B Basic equations

B.1 Maxwell source free equations

The dynamics of the fields in a source free region is modeled by time-harmonic
Maxwell equations, where time dependence e´iωt is assumed throughout the paper,
i.e.,

#

∇ ˆ Epr, ωq “ ik0c0Bpr, ωq

η0∇ ˆ Hpr, ωq “ ´ik0c0η0Dpr, ωq
(B.1)

where c0 “ 1{
?
ϵ0µ0 is the speed of light in vacuum, k0 “ ω{c0 is the vacuum

wave number and η0 “
a

µ0{ϵ0 the intrinsic impedance of vacuum, where ϵ0 and µ0

denotes the vacuum permittivity and permeability, respectively. The normalization
factor η0 introduced in Ampere’s law makes the field quantities having the same
order of magnitude.

B.2 Time harmonic constitutive relations

The Maxwell equations (B.1) are usually combined with the constitutive relations,
relating the magnetic flux vector Bpr, ωq and displacement field Dpr, ωq to the
electric and magnetic field Epr, ωq and Hpr, ωq.

The time harmonic constitutive relations of a general bianisotropic medium [14]
is given by

$

&

%

D “ ϵ0 tϵ ¨ E ` η0ξ ¨ Hu

B “
1

c0
tζ ¨ E ` η0µ ¨ Hu

(B.2)

The bianisotropic medium is the most general linear complex medium fully described
by 36 scalar constitutive parameters or functions i.e., the bianisotropic slabs are not
restricted to be homogeneous, which means that the slabs may be functions of depth
z and/or angular frequency ω (dispersive media). In the lateral directions, x- and
y-directions, it is assumed that the material parameters are constant.

B.3 Decomposition of dyadics

For the purpose of studying wave propagation problems in layered bianisotropic
structures by the concept of propagators, it is appropriate to decompose each three-
dimensional constitutive dyadic into components parallel and perpendicular to the
normal of the planar structure, [9, 30]. In general, each three-dimensional constitu-
tive dyadic is decomposed according to

A “ AKK ` ẑAz ` AKẑ ` ẑAzzẑ (B.3)
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where
#

AKK “ I2 ¨ A ¨ I2

Azz “ ẑ ¨ A ¨ ẑ

#

Az “ ẑ ¨ A ¨ I2

AK “ I2 ¨ A ¨ ẑ
(B.4)

The dyadic AKK is a two-dimensional dyadic in the x-y plane and the vectors Az and
AK are two two-dimensional vectors in this plane. Azz is a scalar. Thus, the four
dyadics ϵ, ξ, ζ and µ in the constitutive relations (B.2) for a general bianisotropic
medium can be decomposed in tangential and normal parts according to (B.3) i.e.,

$

’

’

’

&

’

’

’

%

ϵ “ ϵKK ` ẑϵz ` ϵKẑ ` ẑϵzzẑ

ξ “ ξKK ` ẑξz ` ξKẑ ` ẑξzzẑ

ζ “ ζKK ` ẑζz ` ζKẑ ` ẑζzzẑ

µ “ µKK ` ẑµz ` µKẑ ` ẑµzzẑ

(B.5)

Using these decompositions, a structured decomposition of the Maxwell equations
in components parallel and perpendicular to the normal of the planar structure.

C The fundamental dyadic
The fundamental dyadic Mpkt, zq is a 4ˆ4 complex-valued dyadic. In a bianisotropic
media modelled by the constitutive relations (B.2) the map Mpkt, zq is explicitly
given by [9]

Mpkt, zq “

ˆ

M11pkt, zq M12pkt, zq

M21pkt, zq M22pkt, zq

˙

(C.1)

with the block dyadics
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

M11pkt, zq “ ´J ¨ ζKK ` ap
kt

k0
´ J ¨ ζKqp´µzzϵz ´ ξzzJ ¨

kt

k0
` ξzzζzq

´ apJ ¨ µKqpζzzϵz ` ϵzzJ ¨
kt

k0
´ ϵzzζzq

M12pkt, zq “ J ¨ µKK ¨ J ` ap
kt

k0
´ J ¨ ζKqpµzz

kt

k0
´ µzzJ ¨ ξz ` ξzzJ ¨ µzq

´ apJ ¨ µKqp´ζzz
kt

k0
` ζzzJ ¨ ξz ´ ϵzzJ ¨ µzq

M21pkt, zq “ ´ϵKK ´ aϵKp´µzzϵz ´ ξzzJ ¨
kt

k0
` ξzzζzq

` apJ ¨
kt

k0
´ ξKqpζzzϵz ` ϵzzJ ¨

kt

k0
´ ϵzzζzq

M22pkt, zq “ ξKK ¨ J ´ aϵKpµzz
kt

k0
´ µzzJ ¨ ξz ` ξzzJ ¨ µzq

` apJ ¨
kt

k0
´ ξKqp´ζzz

kt

k0
` ζzzJ ¨ ξz ´ ϵzzJ ¨ µzq

(C.2)

where a´1 “ ϵzzµzz ´ ξzzζzz, and J “ ẑ ˆ I2 represents a rotation of π{2 around the
z-axis, and I2 “ ê∥ê∥ ` êKêK is the identity dyadic in R2 for lateral vectors. Notice
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that the four dyadics ϵ, ξ, ζ and µ depend on z for materials that are stratified
in the z direction. In homogeneous regions, the map M is independent of z, and,
specifically, in an isotropic region the fundamental dyadic is

Mpktq “

˜

0 ´µI2 ` 1
ϵk20

ktkt

´ϵI2 ´ 1
µk20

kt ˆ pkt ˆ I2q 0

¸

(C.3)

More explicit examples of the fundamental dyadic M are found in [9, 30], and for
an alternative representation, see [34].

D The relative wave impedance operator
The relation between electric and magnetic fields propagating in the ˘z-direction
in a simple media are related through the relative wave impedance operator Zr by

η0J ¨ Htpkt, zq “ ¯Z´1
r pktq ¨ Etpkt, zq

where (the operator Z´1
r is commonly referred to as the relative wave admittance

operator Yr)

Z´1
r pktq “

1

η

ˆ

k

kz
ê∥ê∥ `

kz
k
êKêK

˙

(D.1)

and
Zrpktq “ η

ˆ

kz
k
ê∥ê∥ `

k

kz
êKêK

˙

(D.2)

Here k “ k0
?
ϵµ is the wavenumber, kz “ pk2 ´ k2

t q
1{2 is the normal wave number,

and kt “ |kt| “
a

k2
x ` k2

y is the lateral wave number which is a non-negative real
number, and η “

a

µ{ϵ, is the relative wave impedance. Finally, are ê∥ “ kt{kt and
êK “ ẑˆ ê∥, othogonal basis vectors corresponding to the TM and TE polarizations,
respectively. The branch of the square root for kz “ pk2 ´ k2

t q
1{2 is chosen so that

Impkzq ě 0 for Impkq ě 0 (for time convention eiωt, simply replace i Ñ ´i, and
choose branch for kz as Impkzq ď 0 for Impkq ď 0). For kt “ 0 i.e., at normal
incidence, we have Z´1

r “ I{η and Zr “ ηI.

E Dissipation property star product
The scattering matrix S for a given slab can be written in terms of the reflection
and transmission dyadics r˘ and t˘, respectively i.e.,

Spiq
“

˜

S
piq
11 S

piq
12

S
piq
21 S

piq
22

¸

“

ˆ

r` t´

t` r´

˙

(E.1)

A passive structure is characterized by the property }S} ď 1, where } ¨ } denotes the
operator norm [27, p. 21]. This can be written as inequalities for the reflection and
transmission dyadics as

|r`
|
2

` |t`
|
2

ď 1 and |r´
|
2

` |t´
|
2

ď 1 (E.2)
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F`
1

F´
1

Sp1q

1

S
p1q

21

S
p1q

11

S
p1q

12

S
p1q

22

F`

F´

F`
2

F´
2

Sp2q

2

S
p2q

21

S
p2q

11

S
p2q

12

S
p2q

22

Figure 18: Composition of scattering matrices.

with equality for lossless media. Details on the characterization of passive and
lossless media can be found in [9, pp. 57–65].

Consider two scattering matrices Sp1q and Sp2q defined by
ˆ

F´
1

F`

˙

“ Sp1q
¨

ˆ

F`
1

F´

˙

and
ˆ

F´

F`
2

˙

“ Sp2q
¨

ˆ

F`

F´
2

˙

(E.3)

and illustrated in Figure 18. If both matrices satisfy }Sp1,2q} ď 1, we have the
dissipation relations

|F´
1 |

2
` |F`

|
2

ď |F`
1 |

2
` |F´

|
2 and |F´

|
2

` |F`
2 |

2
ď |F`

|
2

` |F´
2 |

2 (E.4)

The composition of scattering matrices in terms of the star product
ˆ

F´
1

F`
2

˙

“ Sp1q ‹ Sp2q
¨

ˆ

F`
1

F´
2

˙

(E.5)

preserves the dissipation property i.e.,

|F´
1 |

2
` |F`

2 |
2

ď |F`
1 |

2
` |F´

2 |
2 (E.6)

which is easily found by adding the inequalities above. This result can be extended
to any number of slabs, see [27, pp. 22–24].
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