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Timing-Robust Control over the Cloud
Using On-Line Parametric Optimization ⋆

Max Nyberg Carlsson ∗ Nils Vreman ∗ Anton Cervin ∗

∗ Department of Automatic Control, Lund University, Sweden

Abstract: In this paper, we present a heuristic method for adapting a networked linear feedback
controller to improve its robustness to timing complications, such as long delays, aborted
computations, and dropped packets. The core concept of the approach is to log successful
sampling and actuation events and then, at discrete time-points, use non-convex parametric
optimization to improve the expected performance of the controller under the assumption that
the future timing behavior will be similar to the current one. To reduce the time complexity of
the optimization algorithm, automatic differentiation is integrated for efficient gradient descent.
The approach is evaluated on a physical ball and beam plant, where both the controller and
optimization algorithm can be located in the Cloud.

Keywords: Fault-tolerant, Data-driven robust control, Adaptive control

1. INTRODUCTION

Offloading feedback controllers to the Cloud is predicted
to be a strong trend in the future (Abdelzaher et al.,
2020). In the Cloud, more advanced control algorithms can
utilize the extensive resources that are available in order to
(among many others) compute global objectives for vehicle
platoons, safe operations for swarms of drones, and global
control of distributed nodes in a power grid. However,
control over the Cloud also entails several challenges.
Both the Cloud and the communication channels between
the Cloud and the clients are powerful yet unreliable
resources. To address these uncertainties, a Cloud-based
controller must be robust against random changes in the
computation and communication layers.

It is well known that extensive and time-varying delays in
the control computation as well as communication chan-
nels may lead to degraded control performance, and in
certain cases even instability (Cervin et al., 2003; Vreman
et al., 2021). Despite this, robust control synthesis meth-
ods have typically relied on fault models with particular
structure and known parameters, e.g., Markov chains, de-
lay distributions, or packet loss probabilities. If these mod-
els are inaccurate for the specific system implementation,
the stability and performance guarantees provided by the
control design methods are void.

We instead propose an adaptive controller that is robust
to multiple timing uncertainties, e.g., computational jit-
ter, time-varying delays, and packet losses. The adaptive
controller consists of three parts: (i) a control law that ex-
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ecutes periodically, (ii) a logger that records the incoming
packets, and (iii) an optimizer.

The controller adaptation is a stepping stone to mitigating
the effects of communication delays between, e.g., self-
driving autonomous vehicles and the cloud services hosting
their corresponding digital twins. In such a setup, trans-
mission delays are difficult to predict due to, for instance,
network traffic, the vehicle’s distance to a radio station,
and transmission interference (among many other factors).
With the adaptive controller proposed in this paper, we
aim to robustify the control laws’ implementation in re-
mote cloud services, where network delays and packet
drops are difficult to predict or estimate.

1.1 Related Work

The idea to design robust controllers via parametric opti-
mization has been around for a long time (Ackermann,
1980). It is well known that many controller synthesis
problems—including static output feedback and low-order
dynamic feedback designs—lead to nonlinear optimization
problems that can only be solved using numerical meth-
ods (Syrmos et al., 1997; Grimble and Johnson, 1999).

Optimization-based solutions have been proposed for a
variety of non-standard LQR and LQG design problems.
In Bernstein et al. (1986), an iterative projection algo-
rithm is used to produce low-order sampled-data LQG
controllers for systems with delays. A direct optimization
approach is taken in Mäkilä and Norlander (2000), which
produces optimal controllers for random delays.

The practical applicability of Cloud-based controllers were
demonstrated in Skarin et al. (2018), where the authors
show that running a controller in the 5G edge could
improve the control performance in comparison to running
it either locally or in a remote data center.



1.2 Contributions

Our objective is to explore how safety-critical control
can be improved by exploring how state-of-the-art ap-
proaches within parametric optimization for LQG can
be combined with Cloud-based control architectures. We
propose a data-driven approach to compensate for delays
and lost packets in networked control systems, utilizing
the extensive resources that the Cloud provides. Com-
pared to standard methods for designing LQG controllers
for systems with delay, previous control signals are not
stored as additional states. Instead, the approach adapts
the controller parameters on-line based on a backlog of
sensor packets and their corresponding timestamps. This
makes the method applicable to large variety of scenarios,
including constant, periodic, sporadic, or random patterns
of timing and connectivity problems.

1.3 Outline

The remainder of this paper is structured as follows.
In Section 2 we outline the problem we are trying to
solve and the assumptions put on the system setup. How
the cost function of the leveraged toolbox JitterTime is
calculated is described in Section 3. Section 4 describes
the closed-loop system setup in more detail with focus
on the controller adaptation in the Cloud. In Section 5,
we present an empirical evaluation on a physical ball and
beam process, which is controlled and robustified using the
proposed method. Finally, Section 6 concludes the paper
and discusses future research directions.

2. PROBLEM FORMULATION

In this paper, we address the timing problems that can
occur when a control algorithm is executed in the Cloud.
Of particular interest are time delays and packet losses
that are induced by unreliable network communication.

Our objective is to improve the control robustness to both
transmission delays over the network (i.e., latency) and
packet losses due to unreliable communication channels.
We want to avoid both imposing too restrictive constraints
on the controller and altering the controller structure,
such as introducing additional complexity or increasing its
order. Finally, we set out to adapt the controller on-line
without affecting the control performance or robustness
negatively.

2.1 Assumptions

We consider a situation where a plant should be remotely
controlled due to, for instance, limited local computing
resources. Sampling and actuation are performed locally
at the client side, while the control computations and
parametric optimizations are carried out on a server in
the Cloud. In the paper, we assume that the networked
control loop operates in the following way:

(1) Measurement samples are taken periodically by the
sensors on the client side, timestamped with the
current time, and transmitted to the server.

(2) If and when a sample packet reaches the server,
(a) a control computation is scheduled, and

(b) the packet (including timestamp) is logged.
(3) If and when a control computation finishes, the

response (i.e., the control signal) is transmitted back
to the actuators on the client side.

(4) If and when a control packet reaches the client,
(a) the actuator outputs the control signal to the

plant, and
(b) the client timestamps the control signal and sends

it back to the server to be logged.

Limiting the scope of this work, the connection between
server and actuator is assumed ideal. Furthermore, we
assume that the messages sent over the network are
timestamped using standard algorithms created for use
in embedded systems. The additional overhead that is
introduced by these algorithms is assumed to be negligible
in relation to the round-trip and computation time. We
assume that no additional overhead exists (e.g., from
encrypting the network packets). Finally, we assume that
there exists no a priori knowledge about packet loss
probabilities or server response times; but the behavior
is assumed to change slowly such that the adaptation to
the network and computational conditions is feasible. We
acknowledge that the assumptions are coarse; however,
we see this work as a stepping stone to analysing more
complex systems in the future.

2.2 Control Model and Objective

Given a process model with known parameters, a fixed-
structure controller, a cost function, and a set of sampling
and actuation timestamps collected over a time window,
the objective is to minimize the expected future cost of
the control loop. In the optimization, a major assumption
is that the timing behavior in the near future will be
similar to the recently logged behavior. To facilitate an
efficient cost evaluation and optimization under variable
timing patterns, we will assume a linear process with
Gaussian disturbances, a linear controller, and a quadratic
cost function.

3. COST FUNCTION EVALUATION

To leverage the power of parametric optimization, we
need to be able to compute the expected future cost as
a function of the feedback controller. For this purpose, we
utilize the JitterTime toolbox, see Cervin (2019), which
facilitates the evaluation of a quadratic cost function for
a sampled-data linear stochastic system under arbitrary
timing patterns. The toolbox allows for a number of
continuous- and discrete-time systems driven by Gaussian
white noise to be connected in a control loop. The cost is
then calculated in a simulation phase, where the discrete
systems can be executed in any order at given points
in time. This makes it possible to evaluate the impact
on performance of delays, jitter, lost samples, aborted
computations, etc., in a given scenario.

The JitterTime model setup used for cost evaluation
in this paper is shown in Figure 1. The linear contin-
uous process P (s) with control input u(t) is disturbed
by continuous-time white process noise w(t) with inten-
sity R1, and its measurement signal y(t) is corrupted
by discrete-time Gaussian white noise v(t) with variance



R2. The discrete sampler S(z) = I executes at sampling
events and holds the current and old measurement values
yk, . . . , yk−d between updates. The linear discrete con-
troller C(z) executes at actuation events and can use any
of the current or old measurement samples as inputs to
model an arbitrary real-valued input–output delay from 0
up to d+ 1 sampling periods.

The performance of the control loop is measured by the
continuous-time cost function

fτ = E

∫
τ

(
x⊤(t)Q1x(t) + u⊤(t)Q2u(t)

)
dt, (1)

where E denotes expected value, τ is the evaluation
horizon, x is the process state vector, and Q1 and Q2 are
positive definite weighting matrices. For regular sampling
and actuation times, the cost calculation would be trivial
and given by well-known formulas from sampled-data LQG
theory (Åström and Wittenmark, 1997). Under irregular
timing events, however, each interval between events must
be considered separately.

Internally, the toolbox keeps track of the combined covari-
ance of the continuous and discrete states of the model at
all points in time. At the discrete events, either the sampler
S or the controller C updates the covariance of their
states and outputs according to discrete linear stochastic
dynamics. Consider the discrete system

x(k + 1) = Φkx(k) + v(k) (2)

where v(k) is zero-mean white-noise process with covari-
ance R. When triggered, the covariance P (k) is updated
according to

P (k + 1) = ΦkP (k)Φ⊤
k +R. (3)

During the intervals between discrete events, the process
P accumulates covariance and expected cost according to
linear stochastic dynamics. Using the interval length as
sampling time, these quantities are updated according to
(3) and (1). The computational burden of a cost calcula-
tion is dominated by the matrix exponentials required for
the sampling, and the total evaluation time grows linearly
with the number of events during the evaluation horizon.
For a more detailed description of the problem, we refer
the interested reader to Åström and Wittenmark (1997)
and Lincoln and Cervin (2002)

P (s)

w(t)

C(z) S(z)

y(t)
v(t)

u(t)

yk

· · ·
yk−d

Fig. 1. JitterTime model for cost function evaluation.
The continuous process P is connected to a discrete
sampler S, which outputs both the current sample
yk as well as older samples to model long round-trip
delays. The discrete controller C represents both the
calculation and the actuation of the control signal.
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Fig. 2. An overview of the networked control system
and the packets sent. Packets sent are: γS

k , from the
sampler to the controller and Logger; γC

k , from the
controller to the actuator; and γA

k , from the actuator
to the Logger. Timestamps included in γS

k and γA
k

are used to encode the network conditions, which is
used to adapt the controller after a specified number
of timestamps have been collected in the Logger.

4. IMPLEMENTATION

From the timestamps of the sampler and actuator packets,
the round-trip delays and lost packets can sometimes be
derived. Round-trip delay cause the difference between
τSk and τAk . Lost γS

k packets cause time between received
packets, in the server, to be more than one sampling
period. If a γC

k or γA
k packet is dropped, the controller

is updated but it is not known whether the system was
actuated. For the implementation used in this paper, it is
assumed only γS

k may be dropped. This forms a network
architecture consisting of a client and server illustrated
in Figure 2. The following paragraphs explain how the
assumptions are used to adapt the controller.

At time k, the periodic sampler in the client sends the
packet γS

k containing sensor measurements yk and times-
tamp τSk to the server. The server routes yk to the con-
troller routine and τSk is stored in a queue denoted Logger,
explained further below.

The controller is triggered by receiving yk from the sam-
pler. The internal controller states get updated and the
control signal uk is sent in packet γC

k back to the client
once calculated, where it is routed to the actuator.

By receiving uk, the actuator activates and changes the
input to the system by holding a constant signal. A
timestamp τAk of when the actuation changed is sent to
the server in packet γA

k , routed to the Logger.

Whenever both τSk and the corresponding τAk have arrived
at the Logger, a counter is increased. Once a certain
number of timestamps have been stored the timestamps,
and possibly more data depending on implementation
specifics, are sent to an optimizing routine. Based on the
recorded network conditions, a cost function is evaluated
using a digital twin of the system. This step can be



expanded to store additional logged data in order to adapt
the controller.

4.1 Client-Server Setup

At the core of the presented approach is the client-server
architecture, in Figure 2. The client is located near the
controlled process, it consists of the sampler and actuator
and interacts with the physical process. With the main
requirement being network connection, the hardware could
be a computationally weak microcontroller. The server
process can be run remotely, such as in a virtual machine
in the Cloud, where the control signal is calculated and
controller optimization is performed.

The client-server communication was implemented via the
WebSocket protocol 1 . With each packet sent from the
client (i.e. γS

k or γA
k ), a timestamp is included; the times-

tamps are used for the on-line adaptation by representing
the network conditions.

Round-trip delays can be emulated by waiting between
calculating the uk and sending it to the actuator. Packet
losses are emulated by simply not sending them.

4.2 Optimization Problem

Let τ = (τ0, τ1) be the time interval that the adaptation
of the controller C should be based on. In other words,
all timestamp pairs τk =

(
τSk , τ

A
k

)
, such that τSk ≥ τ0 and

τAk ≤ τ1 are true, will be used to adapt the controller.

Let f̃τ (CK) be the value of the cost function (1) when
using the specific controller CK , parameterized by the
vector of controller parameters K ∈ Rn. With no further
constraints, the formulation of the optimization problem
therefore is simply

min
K

f̃τ (K). (4)

Due to the real-time nature of the problem, the adaptation
should be performed within a limited time from from the
timestamp measurements. Thus the optimization problem
not being solved sufficiently fast is a problem which must
be addressed. As such, a limited number of optimization
iterations are performed each time the optimization rou-
tine is performed. How many iterations to execute depends
on hardware performance, deadline for the optimization
routine, complexity of the system, number of timestamps
used in the cost function, etc.

4.3 Real-Time Optimization in Julia

To allow for evaluation and optimization of the cost
function (1), we combined the JitterTime 2 with the
ForwardDiff package (Revels et al., 2016) to leverage
automatic differentiation of the JitterTime simulation.
Automatic differentiation exploits the composition of func-
tions with known derivatives; derivatives of more ad-
vanced functions, consisting of these elementary functions,
can thus be calculated by applying differentiation rules
(particularly the chain rule) (Hoffmann, 2016). Since a

1 For a specification of the protocol, see Melnikov and Fette (2011).
2 Translated from its original version (written in Matlab) to Julia:
https://github.com/X-N-C/JitterTime.jl

JitterTime simulation consists of relatively simple opera-
tions such as products, additions, and matrix exponentials,
it is possible to compute an exact gradient of f̃τ with
respect to the controller parameters K. The gradient can
then be used to efficiently solve the optimization problem
using gradient descent, following for instance the Armijo
rule for deciding step lengths. The number of iterations in
the real-time optimization can be adjusted to the amount
of available compute resources as well as the time windows
used to log timing events.

5. PRACTICAL EVALUATION

To evaluate the proposed adaptive approach, a remotely
controlled ball and beam process was used. The ball
and beam (Wellstead et al., 1978) is a classical control
example, where a ball rolls freely on a beam, which in
turn is rotated by a speed-controlled DC motor. The goal
is to make the ball position follow a reference trajectory
(viewed as an output process disturbance) by adjusting the
motor voltage. The available measurement signals are the
beam angle and the ball position. The process dynamics
is essentially described by a triple integrator. For our
particular device, a state-space model of the process is
given by

ẋ(t) =

[
0 0 0

−10 0 0
0 1 0

]
x(t) +

[
4.5
0
0

]
u(t) + w(t)

y(t) =

[
1 0 0
0 0 1

]
x(t) + v(t)

where the three components of x represent the beam
angle, ball velocity, and ball position, respectively. The
process noise w is assumed to have the intensity R1 =
diag(1000, 50, 1), while the measurement noise v has the
variance R2 = diag(0, 1). The cost matrices are specified as
Q1 = diag(1, 0, 20) and Q2 = 100. The reference position
for the ball is chosen as a sine signal that covers half of
the beam length.

The nominal, baseline controller for the process is an LQG
regulator with the sampling period of 50 ms, consisting
of a Kalman filter with 3 × 2 gain matrix L and a state
feedback with a 1×3 gain vectorK. After some preliminary
experiments, where it was seen that the Kalman filter was
not so impacted by delay, it was decided that only the
state feedback gain K should be adapted.

We considered a situation where both long transmission
delays and random sample packet drops could occur si-
multaneously. Sampling and actuation events were logged,
and once 100 timestamp pairs have been stored in the Log-
ger, the optimization routine is called; i.e., if no dropout
occured the controller was adapted every 5 seconds. As a
simplification of the method implementation, only packets
of type γS

k are considered droppable. These are lost with
a uniformly distributed dropout probability; as such the
controller state is not updated without a corresponding
actuation.

After verifying that the server can run from a remote
data center and successfully control the process under
nominal conditions (less than 10 ms round-trip delay
and no dropped packets), the robustness of optimizing
the controller was investigated. For ease of configuration
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Fig. 3. For too large time delays or packet losses, the
closed loop system becomes unstable. For three dif-
ferent packet loss probabilities, the adapted controller
manages to keep the system stable for approximately
10 ms longer delays. The system is sampled with a
period of 50 ms.

during the performance evaluation, both client and server
were run locally.

Due to the nature of random packet drops, the controlled
process was evaluated for 5 minutes. If it remained stable,
the emulated round-trip delay was increased and the ex-
periment repeated until the threshold delay was identified.

For different packet drop probabilities, the time delay
thresholds for when the system becomes unstable are
shown in Figure 3. The adapted controller handles time
delays better than the nominal, remaining stable for circa
10 ms longer time delays in each case.

6. CONCLUSION AND FUTURE WORK

The idea explored in this paper is based on using previous
network conditions as the best guess for the future, thus
performance depends on how quickly the environment
changes compared to how far back in time the controller
is adapted to. If the update rate is too slow, the controller
may be exceedingly conservative and limit performance.
Although updating too quickly might require unnecessar-
ily many computations for barely any improvement.

In this exploration, all parameters in the state feedback
vector are decision variables. For larger systems, no com-
plexity analysis of how the optimization loop scales has
been done. To remedy this, maybe a subset of parameters
could be optimized independently and the automatic dif-
ferentiation should be in reverse mode for better efficiency.
The gradient of the cost function, when the simulation is
run for 100 samples, typically becomes large and the line
search must be performed appropriately.

When implementing LQG controllers, an extra state for
earlier control signals can be added to account for time
delays, with one additional state for each sample period
of delay. The controller structure of the method presented
here, where the controller parameters are adapted, does
not change with the time delay.

The controller has been implemented and manages to
stabilize an unstable process, demonstrating how the ap-

proach can work in practice. Although there exists ana-
lytical solutions to LQG problems for systems with time
delays, none exist for dropped packets.

This paper focused on the novelty of on-line adaptation
of a controller based on network conditions and the im-
plementation on a real system. There are multiple ways
forward from this.

• For this paper a state feedback controller with a
Kalman filter was used. To fully utilize Cloud re-
sources, adaption of more advanced control structures
could be explored.

• For step changes in round-trip delays, investigate how
quickly the system must be able to adapt in order to
handle delay differences of a given length.

• The current implementation of the client was run
on a personal desktop computer; the client should
execute on a basic microcontroller, capable of the bare
minimum such as network communication.

• The currently formulated optimization problem (4)
consists of only a cost function. Constraints could be
added, ensuring desired properties to be obeyed. For
the implementation, the suitability of more advanced
methods than gradient descent could be explored.

• After each optimization cycle, the controller is up-
dated like a jump linear system. Study properties such
as stability margins when these switches occur.

• The current cost function is, based on the covariance,
the total cost after a full simulation. Is this the most
suitable cost function?

• Only packets with sampled sensor data are assumed
losable in the setup of this paper. In the future all
packet types should be handled appropriately.

• The method actuates a constant control signal dur-
ing sequences of lost packets. A combination of the
proposed adaption and e.g. letting the actuation fade
to 0 could be investigated.

• Although the evaluated process is unstable, only the
servo problem of following a trajectory was evaluated.
Robustness to external physical disturbances, e.g.
load disturbances, should be investigated.
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