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Abstract
Control systems are by design robust to various disturbances, ranging from noise to unmodelled
dynamics. Recent work on the weakly hard model – applied to controllers – has shown that control
tasks can also be inherently robust to deadline misses. However, existing exact analyses are limited
to the stability of the closed-loop system. In this paper we show that stability is important but
cannot be the only factor to determine whether the behaviour of a system is acceptable also under
deadline misses. We focus on systems that experience bursts of deadline misses and on their recovery
to normal operation. We apply the resulting comprehensive analysis (that includes both stability
and performance) to a Furuta pendulum, comparing simulated data and data obtained with the
real plant. We further evaluate our analysis using a benchmark set composed of 133 systems,
which is considered representative of industrial control plants. Our results show the handling of the
control signal is an extremely important factor in the performance degradation that the controller
experiences – a clear indication that only a stability test does not give enough indication about the
robustness to deadline misses.
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1 Introduction

Feedback control systems have been used as prime examples of hard real-time systems ever
since the term was coined. However, in the past twenty years, it has become increasingly
clear that the hard real-time task model is overly strict for most control systems. Requiring
that all deadlines of a periodic control task must be met can lead to very conservative
designs with low utilisation, low sampling rates, and – in the end – worse than necessary
control performance. Following this line of reasoning, researchers started looking into task
models in which tasks can sporadically miss some deadlines, and defined concepts like the
“skip factor” [45], i.e., the number of correctly executed jobs that must occur between two
failed instances. Task models with failed jobs eventually led to the definition of the weakly
hard task model [11], that specify constraints on the sequence of jobs that complete their
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execution correctly and the ones that miss their deadlines. Adopting the weakly hard model
allows a control task to opportunistically execute more frequently, which in general improves
reference tracking and disturbance rejection [41,46,55].

A recent industrial survey has shown that practitioners are used to work with systems
that experience deadline misses [5, Questions 14 and 15]. In a significant percentage of cases,
these systems are subject to blackout events that can persist for more than ten consecutive
task periods. Examples of such events are mode switches in mixed-criticality systems, resets
due to hardware faults, security attacks, specific types of cache misses, and connectivity
issues in networked control systems. Handling all of these situations by design could require
extreme resource over-provisioning.

In this paper we focus precisely on these sporadic system events, which may cause a
control task to stall for one or several cycles. To determine the effect of deadline misses on
the control system, it is of utmost importance to analyse the physics of the plant and the
effect of control signals not being delivered to it. For these systems, stability guarantees have
been given on the maximum number of tolerable consecutive deadline misses [48]. These
guarantees only consider stability of the closed-loop system as the property to be preserved.
In this paper, we demonstrate that while stability may be preserved, the control system
performance may be severely affected by the burst of misses. Performance and stability
have been considered simultaneously in the literature. For example, in [30] a controller is
developed that guarantees stability, accepting some level of performance degradation for
a given plant. However, we believe that a lot is left open to investigate, especially with
respect to general guarantees. In particular, in this paper we aim to understand the effect
that the deadline handling strategies jointly have on performance and stability, providing a
holistic evaluation. Furthermore, we evaluate our results on both simulated platforms and
real control plants. More precisely, we offer the following contributions:

We propose a new type of weakly hard task model, which specifies a consecutive deadline
miss interval followed by a minimum consecutive deadline hit (recovery) interval. This
model is crucial to properly assess the performance effect of a burst of deadline misses, as
the ones reported by practitioners [5].
We provide an analysis methodology for stability and performance of control tasks
executing under this task model using a variety of implementation choices to handle
deadline misses (Kill vs. Skip-Next, Zero vs. Hold). In particular, we separately consider
the two cases in which a miss pattern is repeated (which fits an increased workload
situation – for example due to a different mode of execution), and in which it is not
possible to specify constraints on the repetition of the miss pattern.
We compare experimental results obtained with a real process – a Furuta pendulum that
is stabilised in the upright position – with simulation results based on a linear model of the
same process, using the same controller. This shows that simulated data is representative
enough to draw conclusions on the controller performance, despite unmodelled nonlinear
dynamics and noise.
We present the result of a large scale evaluation campaign of commonly used controllers
on a benchmark of 133 industrial plants. From this evaluation we conclude that the choice
of actuation strategy (i.e., what to do with the control signal when a miss occurs) affects
control performance significantly more than the choice of deadline handling strategy (i.e.,
what to do with the control task when a miss occurs).

The rest of this paper is outlined as follows. In Section 2 we give a brief overview of
related work. In Section 3 we present relevant control theory and introduce the stability and
performance concepts. Section 4 describes the weakly hard task models and the strategies
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that are commonly used to handle deadline misses. Section 5 presents our extension to the
weakly hard task model, and the corresponding stability and performance analysis. Section 6
presents our experimental results, and Section 7 concludes the paper.

2 Related Work

The work presented in this paper is closely related to two broad research areas, namely, the
analysis of

(i) weakly hard systems and
(ii) fault-tolerant control systems.

Weakly Hard Systems. Deadline misses can be seen as sporadic events caused by unforeseen
delays in the system. Such delays could for instance be induced by overload activations [36,64]
or cache misses [6, 22]. The idea behind weakly hard analysis is that deadline misses are
permitted under predefined constraints. Such systems have been analysed extensively from a
real-time scheduling perspective [10,15,21,37]. The weakly hard models have gained traction
in the research community as a tool to understand and analyse systems with sporadic
faults [4, 12,13,26,29,35,38,55,59–61]. In a recent paper, Gujarati et al. [33] analysed and
compared different methods for estimating the overall reliability of control systems using the
weakly hard task model. Furthermore, the authors of [50] proposed a toolchain for analysing
the strongest, satisfied weakly hard constraints as a function of the worst-case execution time.

Fault-Tolerant Control Systems. Real-time systems are sensitive to faults. Due to their
safety-critical nature, it is arguably more important to guarantee fault-tolerance with respect
to other classes of systems. Some of these faults can be described using the weakly hard
model. Due to the nature of control systems, special analysis techniques can combine fault
models and the physical characteristics of systems.

Fault-tolerance has been investigated in many of its aspects, e.g., fault-aware scheduling
algorithms [16,23] and the analysis of systems with unreliable components [43]. Furthermore,
restart-based design [1, 2] has been used as a technique to guarantee resilience. The fault
models are frequently assumed to target overload-prone systems, or systems with components
subject to sporadic failures. Bursts of faults have been observed to affect real systems [20,63].
Gujarati et al. [32] proposed an analysis method for networked control systems that uses
active replication and quantifies the resilience of the control system to stochastic errors.
Maggio et al. [48] developed a tool for determining the stability of a control system where
the control task behaves according to the weakly hard model. From the control perspective,
there has been extensive research into both analysis and mitigation of real-time faults in
feedback systems [30,31,57]. Very often, this research produced tools to analyse the effect of
computational delays [19] and of choosing specific scheduling policies or parameters [18,52],
possibly including deadline misses. In a few instances, researchers looked at how to improve
the performance of control systems in conjunction with scheduling information [14]. One
such effort analyses modifications to the code of classic and simple control systems to handle
overruns that reset the period of execution of the control task [53]. Abdi et al. [3] proposed a
control design method for safe system-level restart, mitigating unknown faults during runtime
execution, while keeping the system inside a safe operating space. Pazzaglia et al. [54] used
the scenario theory to derive a control design method accounting for potential deadline
misses, and discussed the effect of different deadline handling strategies. Linsenmayer et
al. [47] worked on the stabilisation of weakly-hard linear control systems for networked control

ECRTS 2021
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Figure 1 Control loop: The reference value rk is compared with the output yk of the plant P.
The control error ek = rk − yk is used by the controller C to compute the value of the control signal
uk. The plant is disturbed by the stochastic process wk.

systems, with some extension for nonlinear systems [39]. In the considered setup, faults
compromise network transmissions, but do not interfere with the controller computation
(assuming that the computation is triggered). The work also focused on stability, with no
control performance evaluation.

To the best of our knowledge, no previous work has devised a combined stability and
performance analysis to understand how faults (even when they can be tolerated) affect the
plant that should be controlled when different deadline handling strategies are used.

3 System Behaviour in Nominal Conditions

In this section, we introduce the relevant control background needed for the remainder of
the paper, and we detail how the controller and the system behave under normal operation.

3.1 Plant Model
We first describe the model we use for the object we are trying to control. In control terms
– mostly due to historical reasons – this object is called a plant. Examples range from a
pendulum that we would like to stabilise in the upward position, to a chemical dilution
process, to the distribution of workload in a datacenter.

Plants are usually modelled as continuous- or discrete-time dynamical systems. All real-
world plants are nonlinear, but for control design purposes they are often linearised around
their operating points. Around such a point, the resulting model becomes a Linear Time-
Invariant (LTI) system. In this paper, we restrict our analysis to discrete-time LTI systems,
because we investigate controllers implemented with fixed-rate sampling and actuation in
digital electronics. To design and analyse these systems, we use the discrete-time counterpart
of the continuous-time physical model, which can be obtained with standard techniques [9].

We consider a plant P described in state-space form:

P :
{

xk+1 = Ap xk + Bp uk + Gp wk

yk = Cp xk + Dp uk

(1)

In (1), k counts the discrete instants that represent the plant’s sampling points. We
assume periodic sampling; the time between two consecutive samples k and k + 1 is fixed
and equal to sampling period ts. In the equation, xk is a column vector with dp elements.
These elements represent the state variables that account for, e.g., the storage of mass,
momentum, and energy. Similarly, uk is a column vector with ip elements. These values
represent the inputs that affect the dynamics of the plant. We also consider wk, a column
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vector with ip elements. The term wk represents an unknown load disturbance, modelled as
a stationary stochastic process with known properties. Finally, yk is a column vector with op

elements, that represents the measurements that are taken from our plant. The matrices Ap

(size dp × dp), Bp (size dp × ip), Cp (size op × dp), Dp (size op × ip), and Gp (size dp × ip)
characterise the dynamics of the plant.

3.2 Controller Model
The plant P is controlled by a periodically executing controller C with implicit deadlines, i.e.,
the deadline of each task instance (job) coincides with the next task activation. We consider
the class of all linear controllers with a one-step delay between sampling and actuation.1 In
other words, we consider all the controllers that can be written as linear systems, according
to the following state-space equation:

C :
{

zk+1 = Ac zk + Bc ek

uk+1 = Cc zk + Dc ek

(2)

Here, zk is a column vector with dc elements that represents the state of the controller.
The input of the controller is ek, a vector of ic = op elements. Each element in the vector is
the error between the corresponding plant output and its reference value (ek = rk −yk, where
rk represents the reference values for the plant outputs). Finally, uk is a vector of oc = ip

elements, that encodes the output of the controller, which is connected to the plant input
vector. The matrices Ac (size dc ×dc), Bc (size dc × ic), Cc (size oc ×dc), and Dc (size oc × ic)
characterise the dynamics of the controller. For every task activation, the controller first
applies the value of uk that was computed by the previous job and then reads the inputs rk

and yk. It then calculates the values of zk+1 and uk+1 that will be used in the next iteration.
The analysis methodology presented in the remainder of this paper is valid for all linear

controllers. The class of linear controllers includes some of the most frequently used controllers
in industry, in particular proportional and integral (PI), proportional, integral, and derivative
(PID), lead–lag compensators, and linear-quadratic-Gaussian (LQG) controllers. Although
the performance analysis is presented for the time-invariant case, the formulas are valid also
for systems with time-varying matrices. Hence, it is possible to analyse plants and controllers
that transition between different local linear models.

3.3 Closed-Loop System Dynamics
We now analyse the closed-loop system shown in Figure 1. Combining the dynamical models
from (1) and (2), we obtain matrices that represent the closed-loop system. We denote the
state vector of the closed-loop system with x̃k =

[
xT

k , zT
k , uT

k

]T , where T is the transpose
operator. In this way, we obtain a system that has the vectors rk and wk as input, and is
described by

S :
{

x̃k+1 = A x̃k + Br rk + Bw wk

yk = C x̃k,
(3)

1 One-step delay controllers are controllers in which a control signal is computed in the k-th interval
and actuated at the beginning of the k + 1-th period. In the real-time systems jargon, one-step
delay controllers are often referred to as controllers that follow the Logical Execution Time (LET)
paradigm [25, 44]. From the real-time perspective, implementing the controller following the LET
paradigm improves the timing predictability. From the control perspective, one-step delay controllers
reduce activation jitter and allows the engineer to neglect time-varying computational delays.

ECRTS 2021
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S
rk

wk

yk

Figure 2 Closed-loop system rewritten as a new linear system S. The resulting system has two
inputs, rk and wk and one output. The feedback loop shown in Figure 1 is hidden inside S.

where the closed-loop state matrix A is

A =

 Ap 0dp×dc
Bp

−Bc Cp Ac −Bc Dp

−Dc Cp Cc −Dc Dp

 , (4)

the input matrices Br and Bw are

Br =

0dp×ic

Bc

Dc

 , Bw =

 Gp

0dc×ip

0ip×ip

 , (5)

and the output matrix C is

C =
[
Cp 0dp×dc

Dp

]
. (6)

Figure 2 shows the graphical representation of the closed-loop system S, with input and
output signals.

Stability

To assess the stability of the closed-loop system under normal operation, it is sufficient to
check the eigenvalues of the state matrix. According to the Schur stability criterion [9], if the
eigenvalues of A lie within the unit disc, then the system is asymptotically stable. Formally,
a closed-loop system is Schur stable if and only if

max
i

|λi (A)| < 1, (7)

where λi (A) is a function that returns the i-th eigenvalue of A.
If the system dynamics change at runtime (e.g., in the case of a lost sample, unexpected

delay, or computational problem), Schur stability is no longer a sufficient stability criterion.
Instead, switching stability analysis can be employed to check the stability of a system with
alternating dynamics [40]. There has been a lot of research on the switching stability analysis,
with multiple tools developed in order to simplify the analysis. Two main methods are
employed: (i) the search for a common Lyapunov function, e.g., as done in [46], (ii) the
computation of the Joint Spectral Radius (JSR), e.g., as done in [48,62].

Performance

Alongside stability, it is important to look at the performance of the closed-loop system. Per-
formance can be defined in different ways, often depending on the application [8]. Whichever
way is chosen, a common way to quantify performance is to define a cost function and
evaluate the cost function during the execution of the controller. In our work, we use a
quadratic cost function

Jk = E
(
eT

k Qeek + uT
k Quuk

)
. (8)
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The cost function penalises deviations from the reference value as well as usage of the control
signal. E denotes expected value, and the positive semidefinite weighting matrices Qe (size
op × op) and Qu (size oc × oc) weigh the different terms against each other. A small cost
value means that the controller successfully makes the error approach zero, using a small
control signal.

If the stochastic properties of the external signals rk and wk are known, it is possible
to calculate the value of the cost function analytically. For simplicity and without loss of
generality, we will henceforth assume that rk = 0 (i.e., we want to regulate the output to
zero) and that wk is a zero-mean Gaussian white noise process with variance R = E

(
wkwT

k

)
.

More elaborate disturbance models can be realised by adding extra states in the plant model.
We now detail how to evaluate (8). Let Pk denote the covariance of the closed-loop state

vector at time k,

Pk = E
(
x̃kx̃T

k

)
. (9)

The state covariance evolves according to

Pk+1 = A Pk AT + Bw R BT
w . (10)

Given Pk, we can calculate the cost for time step k as

Jk = E
(
x̃T

k Q x̃k

)
= tr (Pk Q) , (11)

where tr computes the trace of the matrix, and

Q =

CT
p Qe Cp 0dp×dc 0dp×ip

0dc×dp
0dc×dc

0dc×ip

0ip×dp
0ip×dc

Qu

 (12)

is the total cost matrix. The stationary cost of the system is defined as J∞. This is the cost
that the system converges to when operating under normal conditions:

J∞ = lim
k→∞

Jk. (13)

This means that there exists an instant k̄ for which Jk reaches a value arbitrarily close to
the steady-state value J∞, or ∀ε, ∃k̄ s.t. ∀k > k̄, |(Jk − J∞)/J∞| < ε.

4 System Behaviour with Deadline Misses

The analysis above holds when the control task meets all its deadlines. However, the presence
of deadline misses changes the behaviour of the system. The stability of controllers with
a number of consecutive deadline misses has been investigated in [48]. The results of this
investigation attested that, due to their inherent robustness, many control systems can
withstand at least a small number of consecutive misses.

To analyse the system, we need to clarify three aspects about the miss behaviour:
(i) What happens to the control signal.
(ii) What happens to the control task.
(iii) The computational model used for the analysis (how many deadlines can we miss, and

in what pattern).

For the first item, the actuator can either output a zero (uk = 0oc×1), or hold the previous
value (uk = uk−1). The choice depends on both the plant dynamics and on the controller, as
no strategy in general dominates the other one [58]. For controllers with integral action, it

ECRTS 2021
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makes sense to hold the previous control value, under the presumption that the system is still
disturbed and that a non-zero control signal is needed to keep the plant close to its operating
point. On the other hand, the zero strategy may be preferred for plants with unstable or
integrator dynamics, where outputting a zero control action may be the safer option.

Considering the second item, at least three different strategies can be employed to deal
with a control task that misses its deadline [18]:

(i) Kill,
(ii) Skip-Next,
(iii) and Queue(λ) (λ ∈ {1, 2, 3, . . .}).

When the Kill strategy is used, the job that missed its deadline is terminated, its changes
are rolled back, and the next job is released. Following the Skip-Next strategy, the job that
missed its deadline continues its execution. No new control task jobs are released until the
currently running one completes its execution. Queue(λ) behaves similarly to Skip-Next in
allowing the current job to complete execution, but also allows the activation of new jobs
(the queue of active jobs holds up to the most recent λ instances of the control task). In this
paper we only analyse Kill and Skip-Next. In fact, the results presented in [18,48] suggest
that Queue(λ) is not a feasible strategy to handle misses. The presence of two or more
active jobs in the same period creates a chain effect that is hard to recover from and that
deteriorates stability and performance.

The last item refers to models of computation. The weakly hard task model [11, 34]
is usually considered expressive enough to analyse the behaviour of tasks that miss their
deadlines. The authors of [11] propose four definitions for a weakly hard real-time task τ :

▶ Definition 1 (Weakly Hard Task Models [11]). A task τ may satisfy any of these four weakly
hard constraints:

(i) τ ⊢
(

n
ℓ

)
: there are at least n hits for every ℓ jobs,

(ii) τ ⊢
(

m
ℓ

)
: there are at most m misses for every ℓ jobs,

(iii) τ ⊢
〈

n
ℓ

〉
: there are at least n consecutive hits for every ℓ jobs,

(iv) τ ⊢
〈

m
ℓ

〉
: there are at most m consecutive misses for every ℓ jobs.

There has been a lot of research on the second model, often also called m-K model [4,
12,13,26,29,35,38,45,54,55,57,59–61] (with m being the maximum number of misses in a
window of K activations). Recently there has also been an analysis of the stability of control
systems when the control task behaves according to the fourth model [48].

If the misses are due to faults or security attacks, usually the control task experiences an
interval of consecutive misses. When the fault is resolved, the control task starts hitting its
deadlines again. From the performance standpoint, a consecutive number of misses degrades
the control quality. We are interested in what degradation is acceptable and how much time
should occur between two potential failures. Specifically, we look at how many deadline hits
should follow a given number of consecutive misses for the system to recover. None of the
four models above allow us to formulate this requirement (as they specify either consecutive
hits or misses but not both), which leads us to introduce a different weakly hard model of
computation, together with its analysis, in Section 5.

5 Burst Interval Analysis

In this section, we analyse the stability and performance of a real-time control system that
experiences bursts of deadline misses. Section 5.1 introduces the fault model, Section 5.2
derives the control system behaviour subject to different real-time policies and delves into
both the stability and performance analysis.
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5.1 Fault Model

Faults can happen during the normal execution of tasks on a platform. Informally, as a result
of a fault, tasks miss their deadlines. When the fault is resolved, then the original situation
is recovered (possibly after a transient initial phase).

Specifically, given a system S, we define a burst interval M as an interval of controller
activations in which the control task executing C consecutively misses m deadlines, regardless
of the strategy used to handle the misses. We assume that the burst interval M is followed
by a recovery interval R, defined as an interval in which the control task consecutively hits
n deadlines.

During the burst interval, the deadline misses of the control task are handled using a
deadline handling strategy D (Kill, K, or Skip-Next, S). The control signal uk is selected in
accordance with the actuation strategy A (Zero, Z, or Hold, H). We denote the combination
of D and A with H = (D, A). For example H could be SZ to indicate that the Skip-Next
deadline handling strategy is paired with the Zero actuation strategy. The system recovers
once it operates close to steady-state.

From an industrial viewpoint, the proposed fault model is highly relevant. The common
approach is to treat faults as pseudo-independent events adhering to predefined constraints
on their incidence rate [42, 49, 51]. However, during the operation of a control system, faults
can be caused by events like network connection problems (e.g., cutting the connection
between the sensor and the controller), security attacks, contention on resources. Studies in
the automotive sector, for example, indicate that deadline misses can occur in bursts [56, 64].
In these cases, the controller does not execute properly for a given amount of time (e.g., until
the connection is restored, the attack is terminated, or the resource contention is reduced).
The analysis methods we propose allow us to address such situations and to provide tighter
bounds on the closed-loop stability and performance than under the previously proposed
weakly hard models. Moreover, following a burst interval, we are interested in analysing the
length of the recovery interval R that is needed to return to normal operation under each
implementation strategy H. Hence, we here extend the weakly hard models of computation
with a fifth alternative and then devote the remainder of the paper to its analysis.

▶ Definition 2 (Weakly Hard Fault Model With Burst Of Misses). A real-time task τ may
satisfy the weakly hard task model

(v) τ ⊢
{

m
ℓ

}
: there are at most m consecutive misses, followed by ℓ − m consecutive hits

for every ℓ jobs.
This means that a real-time task τ behaves according to the model τ ⊢

{
m
ℓ

}
, if, whenever

τ experiences a burst interval M consisting of m consecutive deadline misses, it is always
followed by a recovery interval R consisting of n = ℓ − m consecutive deadline hits.

5.2 Closed-Loop System Dynamics

In this section we derive the system dynamics for a closed-loop control system under the
assumption that we enter a burst interval of length m after time instant k, and after m

deadline misses we start completing the control job in time.

Normal Operation. Under normal operating conditions the system is not experiencing any
deadline misses. In other words, the system evolves according to the closed-loop system
dynamics (3).

ECRTS 2021
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Kill&Zero. If a control task deadline miss occurs at time instant k, the plant states xk still
evolve as normal. However, the controller terminates its execution prematurely by killing the
job, thus not updating its states (zk+1 = zk). The controller output is determined by the
actuation strategy and is here zero (uk+1 = 0). Now, consider a burst interval of length m

after time instant k. Recalling that x̃k =
[
xk

T zk
T uk

T
]T , we can write the evolution of the

closed-loop system for the sequence of m deadline misses followed by a single deadline hit
as the product of a matrix representing the behaviour of the system for a hit and a matrix
representing the behaviour in case of miss elevated to the power of m to indicate m steps of
the system evolution.

The resulting closed-loop system in state-space form isxk+m+1
zk+m+1
uk+m+1

 = A

 Ap 0dp×dc
Bp

0dc×dp
I 0dc×ip

0ip×dp
0ip×dc

0ip×ip

m

︸ ︷︷ ︸
AKZ (m)

xk

zk

uk

 , (14)

where AKZ (m) represents the system matrix for m misses under the Kill&Zero strategy,
followed by a single hit (the matrix A that is multiplied to the left of the equation). The
matrix A is the same specified in (4), and represents the first hit that follows the m misses,
hence, we determine how x̃k influences x̃k+m+1 (m misses and one hit).

Kill&Hold. Changing the actuation strategy to Hold, slightly alters the system matrix we
derived for the Kill&Zero case. The plant states xk evolve as normal and the control states
zk are still not updated (zk+1 = zk). However, due to the change in actuation strategy, the
last actuated value is instead held (uk+1 = uk). The resulting closed-loop state-space form
can be seen in (15), where AKH (m) is used to represent the system matrix for m misses
under the Kill&Hold strategy and matrix A is specified in (4).xk+m+1

zk+m+1
uk+m+1

 = A

 Ap 0dp×dc Bp

0dc×dp
I 0dc×ip

0ip×dp
0ip×dc

I

m

︸ ︷︷ ︸
AKH (m)

xk

zk

uk

 (15)

Skip-Next&Zero. When the control task misses a deadline under the Skip-Next strategy,
the job missing the deadline is allowed to continue its execution until completion. However,
no subsequent job of the control task is released until the current job has finished executing.
If the currently active job terminates during period k, the next control job is released at the
start of the k + 1-th period. We can then write the evolution of the system where the control
job experiences m misses before completing its execution, meaning that there is a subsequent
hit that uses old information for the error measurements. While the controller executed only
once to completion, the plant evolved for m + 1 steps. The resulting closed-loop state-space
form can be seen in (16), where ASZ (m) is used to represent the system matrix under the
Skip-Next&Zero strategy for m misses and one completion using old measurements.xk+m+1

zk+m+1
uk+m+1

 =

 Am+1
p 0dp×dc

Am
p Bp

−BcCp Ac −BcDp

−DcCp Cc −DcDp


︸ ︷︷ ︸

ASZ(m)

xk

zk

uk

 (16)
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Skip-Next&Hold. Similar to Skip-Next&Zero, one job finishes execution after m consecutive
misses. However, the actuation strategy holds the previous control value during the entire
burst interval. Therefore, the plant evolution is affected by a cumulative sum over the prior
control values. The resulting closed-loop state-space form can be seen in (17), where ASH (m)
is used to represent the system matrix for m misses under the Skip-Next&Hold strategy.xk+m+1

zk+m+1
uk+m+1

 =

 Am+1
p 0dp×dc

∑m
i=0 Ai

pBp

−BcCp Ac −BcDp

−DcCp Cc −DcDp


︸ ︷︷ ︸

ASH (m)

xk

zk

uk

 (17)

Equations (14)–(17) are inspired by the analysis in [48], but we have we introduced two
generalisations. The first one is that our controller is specified as a general state-space system;
therefore our method is able to address all linear controllers. The second generalisation is
that we could include estimates of the plant states in the controller. We can thus properly
handle the presence of an observer.2 Furthermore, we simplify the calculations by reducing
the number of states x̃k of the closed-loop matrices.

Stability

We now describe how the system matrices above can be used to analyse stability. Recall
that a closed-loop control system is stable if and only if the (fixed) system matrix A is Schur
stable. This criterion is also valid for cyclic patterns, where A represents the product of all
closed-loop state matrices experienced in a full burst–recovery cycle. Hence, we can search
for the shortest recovery interval length n such that

max
i

∣∣λi

(
An−1AH (m)

)∣∣ < 1, H ∈ {KZ, KH, SZ, SH}. (18)

Recall that AH (m) already includes one hit, thus the left multiplication with An−1. This is
a sufficient condition and not necessary, meaning that a miss occurring during the recovery
interval does not immediately imply that the closed-loop system is destabilised. We summarise
the analysis in the following definition.

▶ Definition 3 (Static-Cyclic Stability Analysis). We denote the stability analysis from (18)
with the term static-cyclic stability analysis. The system under analysis cycles through a
sequence of m misses followed by a sequence of n hits, indefinitely.

The static-cyclic analysis assumes a repeating burst–recovery cycle with no interruptions.
This works well for instance in case the misses are due to a permanent overload condition
caused by a mode switch (for example from low to high criticality mode in mixed-critical
systems). However, the setting is not very general. To foster generality, we complement
the stability evaluation with a less restrictive stability analysis, based on the proposed task
model in Definition 2.

▶ Definition 4 (Miss-Constrained Stability Analysis). To guarantee miss-constrained stability,
a system has to be stable under arbitrary switching between all the possible m realisations
(i.e., closed-loop matrices) that comply with all task models τ ⊢

{
m⊂

ℓ

}
, m⊂ ∈ {1, . . . , m} and

also include the case in which the system does not miss deadlines.

2 In [48] the controller state is specified as part of the plant (e.g., when the proportional and integral
controller is introduced). This implies that the state is computed although the controller did not execute.
Our formulation fixes this by separating the plant execution and the controller states.
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In other words, a system is miss-constrained stable if and only if it is stable under arbitrary
switching of the closed-loop matrices in the set{

Aℓ−1AH (1) , Aℓ−2AH (2) , . . . , Aℓ−mAH (m) , A
}

. (19)

Switching stability is unfortunately quite involved.3 However, many excellent tools have been
developed to simplify this analysis (e.g., MJSR [48] or the JSR toolbox [62] for MATLAB).

Performance

We now show how the cost function in Equation (11) can be used as a time-varying perform-
ance metric. Before a burst interval, we assume that the system is in the neighbourhood of
its steady-state covariance P∞ and performance J∞.

When a burst interval of m missed deadlines occurs, the system will be disrupted and its
covariance matrix will evolve according to

Pk+m+1 = AH (m) Pk (AH (m))T + AjnRw

(
Ajn

)T
, (20)

where

Rw =
[∑jm

i=0 Ai
p Gp R GT

p (Ai
p)T 0dp×dc+ip

0dc+ip×dp
0dc+ip×dc+ip

]
,

jm =
{

m − 1 if D = K (Kill),
m if D = S (Skip-Next),

jn =
{

1 if D = K (Kill),
0 if D = S (Skip-Next).

(21)

Ap and Gp are matrices from the plant evolution in (1), R is the noise intensity from (10),
and A is the closed-loop matrix from (4). The cost will simultaneously change following (11).
In the recovery interval, the covariance is again governed by the normal closed-loop evolution
described in (10). The system is said to have recovered once the cost is arbitrarily close to
the steady-state cost. We evaluate this as∣∣∣∣J∞ − Jk

J∞

∣∣∣∣ < ε, (22)

where ε > 0 is the recovery threshold.

▶ Definition 5 (Performance Recovery Interval). We define the recovery length interval n∗
H

as the smallest n such that (22) is satisfied for all k ≥ n when using H to handle deadline
misses.

▶ Definition 6 (Maximum Normalised Cost). We denote the maximum normalised cost of the
system by

JM,H = max
k

Jk,H

J∞
, (23)

where Jk,H is the cost computed according to (11) when using H to handle the deadline
misses.
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Figure 3 Illustration of normalised cost (Jk/J∞), performance recovery interval n∗
H and maximum

normalised cost JM,H on a data trace. The example uses H = Kill&Zero and ε = 0.1.

Figure 3 gives a graphical representation of n∗
H and JM,H for an execution trace in which

the controller experiences 3 misses and uses Kill&Zero as strategy H.
Compared to the stability analysis, the performance analysis also takes into account

state deviations and uncertainty due to disturbances. In Section 5.2 we used the system
dynamics to analyse the stability of the system. The disturbance term wk was neglected
as it does not influence the system stability. However, its presence (as the presence of any
disturbance) changes the dynamic behaviour of the system. For the performance metric,
the state covariance matrix Pk evolves according to both the noise intensity and the system
dynamics (20). The result is that the performance analysis provides us with a conservative
(but more realistic) recovery interval, that takes system uncertainties into consideration.

To find the length of the recovery interval, we evolve the state covariance during a burst
interval, using a specific strategy H according to (20). Thereafter, the state covariance is
evolved under normal operation, according to (10), until (22) is satisfied, allowing us to find
the performance recovery interval n∗

H.

6 Experimental Results

In this section, we apply the analysis presented in Section 5 to a set of case studies, analysing
stability and performance. We first present detailed results with a Furuta pendulum, both
in simulation and with real hardware, using the same controller. The simulated results
are compared to the real physical plant. This shows that the performance analysis does
capture the important trends for real control systems. We then present some aggregate
results obtained with a set of 133 different plants from a control benchmark. One noteworthy
aspect is that the Furuta pendulum model is linearised for the control design and the
pendulum stabilised around an unstable equilibrium – the top position – while the control
benchmark includes (by design) stable systems. The difference between simulation results
and real experiments for stable linear systems should in principle be smaller than for unstable
nonlinear systems, making our pendulum the ideal stress test for the similarity of simulated
and real data.

3 We have devoted some research effort into the investigation of a suitable stability analysis for control
tasks subject to a set of weakly-hard constraints (of the type presented in Defintion 1). A summary of
our findings can be found at https://arxiv.org/abs/2101.11312.
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6.1 Furuta Pendulum
We here analyse the behaviour of a Furuta pendulum [27], a rotational inverted pendulum in
which a rotating arm is connected to a pendulum. The rotation of the arm induces a swing
movement on the pendulum. The pendulum has two equilibria: a stable position in which
the pendulum is downright, and an unstable position in which the pendulum is upright. Our
objective is to keep the pendulum in the up position, by moving the rotating arm.

The Furuta pendulum is a highly nonlinear process. In order to design a control strategy
to keep the pendulum in the top position, it is necessary to linearise the dynamics of the
system around the desired equilibrium point. We consider this as a stress test to check the
divergence between simulation results and real hardware results, because of the instability of
the equilibrium and the nonlinearity of the dynamics. In fact, the controller necessarily acts
with information that is valid only around the upright position, and there is only a range of
states in which the linearised model closely describes the behaviour of the physical plant.

We design a linear-quadratic regulator (LQR) to control the plant. Every ts = 10 ms the
plant is sampled and the control signal is actuated. Based on state-of-the-art models [17]
and on our control design, the plant model P is

P :


xk+1 =


1.002 0.0100 0 0
0.3133 1.002 0 0

−2.943 · 10−5 −9.808 · 10−8 1 0.01
−0.0059 −2.943 · 10−5 0 1

 xk +


−0.0036
−0.7127
+0.0096
+1.9120

 uk + Iwk,

yk = Ixk,

(24)

the controller C takes the form

C : uk+1 =
[
8.8349 1.5804 0.2205 0.3049

]
xk (25)

and is designed and analysed using the following parameters (see Section 3.3):

Qe = diag(100, 1, 10, 10), Qu = 100, R = diag(0, 0, 10, 1). (26)

We first apply the stability analyses presented in Section 5.2 to our model. Figure 4
shows the results. Each square in the figure represents a combination of (at most) m deadline
misses (on the vertical axis) and (at least) n deadline hits (on the horizontal axis). If a
square is coloured with a dark colour, the corresponding combination of misses and hits is
both static-cyclic and miss-constrained stable, found using the JSR Toolbox [62]. The light
squares in the figure show combinations for which the system only satisfies the static-cyclic
stability condition. The white squares mark configurations for which stability cannot be
guaranteed.

We remark on the presence of peaks in the static-cyclic stability region of H = KH at
n = {1, 5, 9, 13, 19}. Similar peaks are also found for the other strategies, but for different
values of n. These peaks indicate that the system would be stable if that particular burst
and recovery interval length would be repeated indefinitely. However, this assumption is
not robust to variations in the burst or recovery interval lengths as can be seen from the
miss-constrained stability region being more conservative with its guarantees. Instead, the
peaks in the static-cyclic region can be explained by stable modes occurring due to the
natural frequencies of the open-loop (for the Zero actuation mode) and closed-loop (for the
Hold actuation mode) systems. It is also interesting to note that Kill seems to consistently
yield a larger stability region than Skip-Next, while neither Zero nor Hold dominate each
other in terms of stability guarantees. An example of the latter fact was given already in [58].



N. Vreman, A. Cervin, and M. Maggio 15:15

1

10

20

30

40

50

1 5 10 15 20 25

Kill&Hold

n

m

1

10

20

30

40

50

1 5 10 15 20 25

Skip&Hold

n

1

10

20

30

40

50

1 5 10 15 20 25

Kill&Zero

n

1

10

20

30

40

50

1 5 10 15 20 25

Skip&Zero

n

Figure 4 Miss-constrained stability (dark coloured area) and static-cyclic stability (light coloured
area) when different strategies H are used in the example and the weakly hard model in Definition 2
is considered. Each square represents a window of size ℓ = m + n. The dark area satisfies both the
miss-constrained and static-cyclic stability whilst the light area only provides static-cyclic stability.
The white squares denote potentially unstable combinations of m and n.

For the performance analysis, we considered a one-shot burst fault of a specific length m,
followed by a long period of normal execution. Assuming that the pendulum starts close to
the upright equilibrium, with stationary cost J∞, we calculate how the covariance Pk and
performance cost Jk evolve during and after the burst interval using Equations (20)–(21).4
These calculations assume an ideal, linear model of the pendulum. The simulation results for
different strategies and bursts of length m = 20 are shown in the upper half of Figure 5. For
Hold, it is seen that the cost grows exponentially during the initial fault interval (the first
20 ts = 0.2 s). This is true also for Zero, although the growth rate is too small to be visible.
The reason for the poor performance of Hold is that any non-zero held control signal will
actively push the pendulum away from its unstable upright equilibrium even further than
either disturbances or noise would already do without a proper control action.

The large spike in cost comes when the controller is reactivated at time 0.2 s. Here, the
Hold strategy again shows much worse performance than Zero, with the peak cost being
almost an order of magnitude worse. The difference between Kill and Skip-Next is relatively
small, with the latter strategy consistently performing slightly worse than the former. This
is due to the small extra delay caused by using old data in the Skip-Next strategy.

We conducted experiments on a Furuta pendulum, using the same controller for the real
plant rather than its model.5 Initially, we performed 500 experiments with 500 jobs each and
no deadline misses, to determine the nominal variance of the system – i.e., the stationary
variance used to find the static cost J∞. For each strategy H we then ran 500 identically set
up experiments. In each experiment, the control task operated according to the task model

4 The analysis is implemented using JitterTime [19], https://www.control.lth.se/jittertime.
5 A video, showing experiments with the real system and bursts of deadline misses can be viewed at

https://youtu.be/0P0K_7lvKVU. The video shows a comparison of all the strategies for bursts of
(m = 20, n = 480). Furthermore, we have included additional experiments with (m = 50, n = 450)
and (m = 75, n = 425) for the Skip&Hold strategy. The results of the additional experiments with
higher values of m are not described in the paper, as stability could not be guaranteed (and in fact the
pendulum is not at all times kept in the upright position).
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Figure 5 Normalised performance cost Jk/J∞ obtained with the Furuta pendulum. The upper
part of the figure shows simulated data, while the lower part of the figure shows the corresponding
values obtained averaging the results of 500 experiments with the real process and hardware. Each
experiment corresponds to a 500 jobs of the controller (20 misses and 480 hits).

from Definition 2, experiencing a burst of length m = 20 misses, followed by by a recovery
interval with n = 480 deadline hits.

Due to system model uncertainties (e.g., friction) being significant, the rotation angle
around the arm axis displayed a considerable variance. We removed the state from the
covariance calculations, since the arm angle majorly impacted the variance despite its
inconsequential significance on the system dynamics (the pendulum can be stabilised with
the arm being around any position, provided that the pendulum itself is kept in the upright
position). Including the rotation angle would not change the shape of the performance
degradation seen in Figure 5. However, it would make the results obtained with different
strategies H not comparable (in some of them, the rotation angle could have varied less across
the 500 experiments). The covariance matrix Pk was derived by calculating the variance of
the closed-loop state vector x̃k according to Equation (9), in each time step k.

The resulting performance cost can be seen in the lower half of Figure 5, where the
cost Jk was calculated according to Equation (11) and normalised using the stationary cost
J∞. Comparing the simulated (upper) and real (lower) performance costs in Figure 5, we
notice the similarities between the simulated analysis and the analysis performed on the
physical plant. Particularly, the strategies involving Hold actuation show similar behaviours.
For these strategies, the simulated and real values are very close for the transient burst
interval, the secondary cost peak (seen around time 0.4 s), and the maximum normalised
cost JM,H. However, the real cost is recovering slower than in the simulations – an effect
that arises due to the nonlinear effects present in the real process, but unmodelled in the
simulated environment. Instead, comparing the Zero actuation strategies, the performance
cost of the physical experiments during the burst interval seem to improve compared to the
simulations. This is again likely due to the unmodelled dynamics (e.g., friction) appearing in
the physical experiment but not in the simulations. The stiction component of the friction
reduces the variance of the states when the actuation signal becomes zero. With longer burst
intervals, a similar behaviour as for the Hold actuation strategies would appear. Despite
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this difference, both the recovery interval, the secondary cost peak (around 0.4 s), and the
maximum normalised costs JM,H are comparable.

We conclude that the results of the experiments performed on the physical process support
the validity of the performance analysis presented in Section 5.2.

6.2 Control Benchmark
In Section 6.1 we extensively discussed the results obtained with a single plant (the Furuta
pendulum), with the aim of showing that simulating the performance cost yields interesting
and relevant results. As the main novelty of this paper lays in the introduction of the
performance analysis as an additional tool to evaluate the behaviour of control systems that
can miss deadlines, we here focus on performance.

We use a set of representative process industrial plants [7], developed to benchmark
PID design algorithms in the control literature. The set includes 9 different batches of
stable plants, each presenting different features that can be encountered in process industrial
plants, for a total of 133 plants.6 For each batch, all systems have the same structure, but
different parameters. For example, the fourth batch is a stable system with a set of repeated
eigenvalues, and a single parameter specifying the system order, which can take six possible
values (3, 4, 5, 6, 7, or 8). Almost all the plants have a single independent parameter. The
only exception is Batch 7, for which we can specify two different configuration parameters,
the first one having 4 possible values and the second one having 9 potential alternatives,
with a total of 36 possible configurations.

The analysis methodology presented in this paper is valid for all linear control systems.
In Section 6.1, we introduced an LQR controller to analyse the Furuta pendulum. To
demonstrate the generality of the analysis, here, we focus on the most common controller
class: proportional and integral (PI) controllers. These controllers constitute the vast
majority of all the control loops in the process industry.7 We also performed the analysis for
proportional, integral, and derivative (PID) controllers obtaining similar results. Introducing
our tuning for PID controllers requires additional clarifications and details, which we omit
due to space limitations.

For each plant we derived a PI controller according to the methodology presented in [28].
In order to showcase the applicability of our analysis to different linear systems, controllers,
and noise models, we analyse the resulting closed-loop systems for m ∈ [1, 20], under the
assumption that the systems are affected by brown noise (in comparison to the white noise
applied to the Furuta Pendulum). The brown noise model integrates the white noise and
is thus applicable to systems where the noise is more dominant at lower frequencies (e.g.,
oscillations from nearby machinery). Figure 6 shows the results for m = 10.

The first result that the figure shows is that the plant dynamics plays an important role in
how the system reacts to misses. For example, the plants in Batch 4 and Batch 8 need around
20 hits to recover from a burst of 10 misses. On the contrary, the plants in Batch 6 and Batch
7 need a higher number of hits to recover from the same burst interval. The second result
that is apparent from the figure is that the Hold actuation strategy recovers much better
(performance-wise) than Zero. The reason why Hold outperforms Zero can be explained by
the brown noise. The control signal will actively counteract the integrated noise dynamics,

6 In our analysis, we present results with 134 plants. In fact, the test set was used in [28] to assess
a control design method, and an additional plant was added to the set during this assessment. We
included this additional plant in our analysis.

7 A 2001 survey by Honeywell [24] states that 97% of the existing industrial controllers are PI controllers.
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Figure 6 Performance Recovery Interval n∗
H needed to recover from a burst of 10 deadline misses

for different strategies and all the plants in the 9 batches for PI controllers designed according to [28].
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meaning that zeroing the control signal removes the compensation against the integrated
noise. Finally, comparing the deadline handling strategies, Kill performs marginally better
than Skip-Next. Under Kill, the controller uses fresh data at the beginning of the recovery
interval, while Skip-Next uses old data. However, we assumed ideal rollback (i.e., zero
additional computation time for the rollback and clean state) for the Kill strategy. In real
systems, rollback is difficult to realise and the advantage provided by Kill over Skip-Next
may therefore become unimportant. These findings are consistent throughout all the plants
in the experimental set, regardless of the burst interval length m.

The plant dynamics and noise affect the behaviour and performance of the strategies.
Comparing the results of Section 6.1 with the aggregate results, it becomes apparent that
the actuation strategy (Zero or Hold) affects control performance significantly more than
the deadline handling strategy. For the Furuta pendulum (an unstable, nonlinear plant
influenced by white noise) Zero performed the best, but for the process industrial systems
(stable, linear plants influenced by brown noise) Hold outperformed Zero. These results
were apparent even with no consideration taken to the deadline handling strategies. Thus,
we conclude that the plant and noise model should be the ruling factor when choosing the
actuation strategy, while the deadline handling strategy is mainly limited by the constraints
imposed by the real-time implementation.

7 Conclusions

In this paper we analysed control systems and their behaviour in the presence of bursts of
deadline misses. We provided a comprehensive set of tools to determine how robust a given
control system is to faults that hinder the computation to complete in time, with different
handling strategies. Our analysis tackles both stability and performance. In fact, we have
shown that analysing the stability of the system is not enough to properly quantify the
robustness to deadline misses, as the performance loss could be significant even for stable
systems. We introduced two performance metrics, linked to the recovery of a system from a
burst of deadline misses.

A limitation of the presented performance analysis is that it only applies to linear control
systems. However, the approach can easily be extended to analyse time-varying linear systems
and can also be used for local analysis of a nonlinear system that should follow a given
reference trajectory. In fact, to illustrate the applicability to real (e.g., nonlinear) systems,
we applied the analysis to a Furuta pendulum and compared the results of simulations
obtained with a model of the process to the real execution data. The results support our
claim that the proposed performance analysis is a valid approximation of the real-world
system performance.

We performed additional tests on a large batch of industrial plants, using modern control
design techniques. From our experimental campaign, we conclude that the choice of actuation
strategy affects the control performance significantly more than the choice of deadline handling
strategy.
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